Microwave Combustion for Rapidly Synthesizing Pore‐Size‐Controllable Porous Graphene
Porous graphene has been widely applied in energy storage, electrocatalysis, photoelectron devices, etc. However, the producing process for porous graphene usually needs long time and is a tedious step. In this work, porous graphene is prepared with controllable pore size by using active metal nanop...
Saved in:
Published in | Advanced functional materials Vol. 28; no. 22 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
30.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Porous graphene has been widely applied in energy storage, electrocatalysis, photoelectron devices, etc. However, the producing process for porous graphene usually needs long time and is a tedious step. In this work, porous graphene is prepared with controllable pore size by using active metal nanoparticles to catalytically oxidize carbon under microwave combustion process within tens of seconds. The ion exchange membrane based on porous graphene with ≈5 nm pore diameter exhibits a great performance for salinity gradient power generation application with a power density output of ≈1.15 W m−2. This work highlights a new strategy for the design and synthesis of pore‐size‐controllable porous graphene and provides new opportunities for 2D porous nanomaterials.
Pore‐size‐controllable porous graphene is rapidly synthesized by utilizing catalytic oxidation combined with microwave combustion. By adjusting the concentration of the precursor and the microwave‐treatment times, the pore size can be easily mediated to ≈5, ≈30, and ≈100 nm. An ion exchange membrane assembled with the porous graphene shows great performance with an output power density of 1.15 W m−2. |
---|---|
AbstractList | Porous graphene has been widely applied in energy storage, electrocatalysis, photoelectron devices, etc. However, the producing process for porous graphene usually needs long time and is a tedious step. In this work, porous graphene is prepared with controllable pore size by using active metal nanoparticles to catalytically oxidize carbon under microwave combustion process within tens of seconds. The ion exchange membrane based on porous graphene with ≈5 nm pore diameter exhibits a great performance for salinity gradient power generation application with a power density output of ≈1.15 W m−2. This work highlights a new strategy for the design and synthesis of pore‐size‐controllable porous graphene and provides new opportunities for 2D porous nanomaterials. Porous graphene has been widely applied in energy storage, electrocatalysis, photoelectron devices, etc. However, the producing process for porous graphene usually needs long time and is a tedious step. In this work, porous graphene is prepared with controllable pore size by using active metal nanoparticles to catalytically oxidize carbon under microwave combustion process within tens of seconds. The ion exchange membrane based on porous graphene with ≈5 nm pore diameter exhibits a great performance for salinity gradient power generation application with a power density output of ≈1.15 W m−2. This work highlights a new strategy for the design and synthesis of pore‐size‐controllable porous graphene and provides new opportunities for 2D porous nanomaterials. Pore‐size‐controllable porous graphene is rapidly synthesized by utilizing catalytic oxidation combined with microwave combustion. By adjusting the concentration of the precursor and the microwave‐treatment times, the pore size can be easily mediated to ≈5, ≈30, and ≈100 nm. An ion exchange membrane assembled with the porous graphene shows great performance with an output power density of 1.15 W m−2. Porous graphene has been widely applied in energy storage, electrocatalysis, photoelectron devices, etc. However, the producing process for porous graphene usually needs long time and is a tedious step. In this work, porous graphene is prepared with controllable pore size by using active metal nanoparticles to catalytically oxidize carbon under microwave combustion process within tens of seconds. The ion exchange membrane based on porous graphene with ≈5 nm pore diameter exhibits a great performance for salinity gradient power generation application with a power density output of ≈1.15 W m −2 . This work highlights a new strategy for the design and synthesis of pore‐size‐controllable porous graphene and provides new opportunities for 2D porous nanomaterials. |
Author | Huang, Liang Wu, Jiabin Zhou, Jun Wan, Jun Xiong, Liukang Hu, Zhimi Li, Tianqi Yu, Huimin |
Author_xml | – sequence: 1 givenname: Jun surname: Wan fullname: Wan, Jun organization: Huazhong University of Science and Technology – sequence: 2 givenname: Liang surname: Huang fullname: Huang, Liang organization: Huazhong University of Science and Technology – sequence: 3 givenname: Jiabin surname: Wu fullname: Wu, Jiabin organization: Huazhong University of Science and Technology – sequence: 4 givenname: Liukang surname: Xiong fullname: Xiong, Liukang organization: Huazhong University of Science and Technology – sequence: 5 givenname: Zhimi surname: Hu fullname: Hu, Zhimi organization: Huazhong University of Science and Technology – sequence: 6 givenname: Huimin surname: Yu fullname: Yu, Huimin organization: Huazhong University of Science and Technology – sequence: 7 givenname: Tianqi surname: Li fullname: Li, Tianqi organization: Huazhong University of Science and Technology – sequence: 8 givenname: Jun orcidid: 0000-0003-4799-8165 surname: Zhou fullname: Zhou, Jun email: jun.zhou@mail.hust.edu.cn organization: Huazhong University of Science and Technology |
BookMark | eNqFkM1Kw0AUhQepYFvdug64Tr0zk99libYKLYo_0F2YTCZ2SjoTZxJLu_IRfEafxIRKBUFcnQv3fPdyzgD1lFYCoXMMIwxALllerEcEcARAI3KE-jjAgUuBRL3DjBcnaGDtCgCHIfX6aDGX3OgNexNOotdZY2uplVNo4zywSubl1nncqnoprNxJ9eLcayM-3z8e5a6TRKva6LJkWSm6lW6sMzWsWgolTtFxwUorzr51iJ4n10_JjTu7m94m45nLPQLE9YuMCiiigAVxjuPCA-pnPM5DgTnH3Pc4zVnGgfsUe4KLyI8YwYRAGAciKygdoov93cro10bYOl3pxqj2ZUrAC70A-xG0Lm_vasNaa0SRclmzLmttmCxTDGnXYdp1mB46bLHRL6wycs3M9m8g3gMbWYrtP-50fDWZ_7BfSN6J3g |
CitedBy_id | crossref_primary_10_1002_smll_202206878 crossref_primary_10_1016_j_matt_2019_08_006 crossref_primary_10_1039_D1NJ03536C crossref_primary_10_1002_sstr_202100169 crossref_primary_10_1016_j_enconman_2024_119069 crossref_primary_10_1016_j_xcrp_2022_101065 crossref_primary_10_1021_acssuschemeng_0c03104 crossref_primary_10_1039_D1DT03709A crossref_primary_10_1111_jace_17477 crossref_primary_10_1039_D4RA05273K crossref_primary_10_1016_j_apsusc_2019_03_311 crossref_primary_10_3390_gels8100622 crossref_primary_10_1021_acsami_1c11673 crossref_primary_10_3389_fchem_2019_00355 crossref_primary_10_1016_j_compositesa_2022_107373 crossref_primary_10_1002_adma_201904351 crossref_primary_10_1016_j_ccr_2024_216112 crossref_primary_10_1039_D4NA00701H crossref_primary_10_1002_aic_17981 crossref_primary_10_1016_j_cej_2020_127592 crossref_primary_10_1016_j_desal_2022_115621 crossref_primary_10_20517_cs_2023_72 crossref_primary_10_1002_sus2_252 crossref_primary_10_1021_acsami_1c08598 crossref_primary_10_1002_adfm_202425595 crossref_primary_10_1007_s11144_022_02183_0 crossref_primary_10_1016_j_carbon_2020_08_034 crossref_primary_10_1007_s10854_020_03793_x crossref_primary_10_1016_j_scib_2020_08_037 crossref_primary_10_1002_smll_202102532 crossref_primary_10_1021_acsenergylett_9b02296 crossref_primary_10_3390_pr11051451 crossref_primary_10_1002_cssc_202301874 crossref_primary_10_1002_smll_202300338 crossref_primary_10_1016_j_seppur_2024_127883 crossref_primary_10_1016_j_carbon_2021_12_061 crossref_primary_10_1016_j_carbon_2021_03_048 crossref_primary_10_1016_j_scitotenv_2023_166121 crossref_primary_10_1002_adfm_201908486 crossref_primary_10_1002_adfm_202008505 crossref_primary_10_1038_s41467_020_20296_9 crossref_primary_10_1007_s12274_020_2778_9 crossref_primary_10_26599_NRE_2022_9120008 crossref_primary_10_3390_molecules29081761 crossref_primary_10_1021_jacs_1c07392 crossref_primary_10_1002_slct_202403178 crossref_primary_10_1002_adfm_202401397 crossref_primary_10_1039_D0MH00815J crossref_primary_10_1016_j_cej_2020_127018 crossref_primary_10_20517_microstructures_2023_86 crossref_primary_10_1002_smll_201903780 crossref_primary_10_1016_j_cej_2022_138398 crossref_primary_10_1016_j_cej_2022_135484 crossref_primary_10_1039_D0NR05223J crossref_primary_10_1002_adfm_202313968 crossref_primary_10_1016_j_est_2023_108151 crossref_primary_10_1039_C9TA03895G crossref_primary_10_1002_smll_202303473 crossref_primary_10_1557_s43581_024_00104_3 crossref_primary_10_3390_ma14102597 crossref_primary_10_1016_j_carbon_2019_10_048 crossref_primary_10_1002_adfm_201902394 crossref_primary_10_1039_C8TA09070J crossref_primary_10_1016_j_pmatsci_2020_100716 crossref_primary_10_1016_j_memsci_2021_119706 crossref_primary_10_1002_adfm_202308176 crossref_primary_10_1021_acs_nanolett_0c03762 crossref_primary_10_1002_smll_202301917 crossref_primary_10_1002_adfm_202010968 crossref_primary_10_1002_adma_202206354 crossref_primary_10_1063_5_0099590 crossref_primary_10_1021_acsestengg_1c00309 crossref_primary_10_1063_5_0148376 crossref_primary_10_1021_acs_analchem_8b04779 crossref_primary_10_1021_acscentsci_1c00633 crossref_primary_10_1016_j_cej_2018_12_034 crossref_primary_10_1515_revic_2022_0001 crossref_primary_10_1002_adma_202103477 crossref_primary_10_1063_5_0231081 crossref_primary_10_3389_frcrb_2023_1220021 |
Cites_doi | 10.1021/ja503692z 10.1038/nature18593 10.1002/(SICI)1521-4095(199809)10:13<1032::AID-ADMA1032>3.0.CO;2-M 10.1039/c3nr02135a 10.1006/jcat.1999.2509 10.1007/s10853-014-8229-9 10.1002/adma.201001068 10.1021/nl080583r 10.1021/nn100511a 10.1021/nn202710s 10.2320/matertrans.47.898 10.1038/ncomms5716 10.1103/PhysRevLett.93.035901 10.1002/adfm.201500321 10.1126/science.aah3398 10.1021/nn1007429 10.1021/ja205693t 10.1126/science.1158877 10.1021/nn502635y 10.1021/j100615a015 10.1016/0021-9517(89)90146-2 10.1021/am200209e 10.1002/adfm.201603623 10.1002/anie.201209320 10.1002/adfm.201603125 10.1007/s10404-010-0641-0 10.1002/adma.201500472 10.1038/nnano.2012.162 10.1002/adma.201700177 10.1016/0008-6223(94)90019-1 10.1016/0022-1902(62)80258-9 10.1002/adfm.201604302 10.1063/1.1675344 10.1021/cr900070d 10.1021/ja01539a017 10.1021/nl8034509 10.1021/acs.nanolett.7b00148 10.1002/adma.201302223 10.1038/nmat1849 10.1021/nl300985q 10.1126/science.1194372 10.1021/ja804409f 10.1021/acsnano.7b04299 10.1039/c0ee00683a 10.1002/smll.201203106 10.1039/B822554K 10.1126/science.aam5852 10.1016/j.compositesa.2015.10.035 10.1016/0021-9517(76)90196-2 10.1126/science.1200770 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201800382 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201800382 ADFM201800382 |
Genre | article |
GrantInformation_xml | – fundername: Major Program of National Natural Science Foundation of China funderid: 21334005 – fundername: National Program for Support of Top‐Notch Young Professionals – fundername: National Natural Science Foundation of China funderid: 51672097; 51602115; 51322210; 61434001 – fundername: Director Fund of WNLO |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4202-5fb3e0f86a69d19f4035bc9d7e1cc1c54c3dabc0c5314ece858a21220796ebf33 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 07:37:07 EDT 2025 Tue Jul 01 04:11:46 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Wed Jan 22 17:02:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4202-5fb3e0f86a69d19f4035bc9d7e1cc1c54c3dabc0c5314ece858a21220796ebf33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4799-8165 |
PQID | 2047461580 |
PQPubID | 2045204 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2047461580 crossref_citationtrail_10_1002_adfm_201800382 crossref_primary_10_1002_adfm_201800382 wiley_primary_10_1002_adfm_201800382_ADFM201800382 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 30, 2018 |
PublicationDateYYYYMMDD | 2018-05-30 |
PublicationDate_xml | – month: 05 year: 2018 text: May 30, 2018 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1976; 41 1974; 78 2013; 25 2010; 329 1989; 119 2017; 27 2010; 39 2014; 49 1999; 185 2008; 8 2017; 29 2011; 4 2011; 3 2013; 5 2012; 12 2011; 5 2017; 356 2011; 332 2014; 136 2011; 133 2013; 9 2010; 22 2015; 25 1971; 54 2014; 5 2015; 27 2004; 93 2017; 17 2016; 536 2017; 11 2006; 47 2013; 52 2010; 110 2007; 6 2009; 9 2016; 353 1962; 24 2016; 81 1958; 80 2012; 7 2014; 8 1998; 10 2010; 4 2016; 26 2008; 130 2009; 324 1994; 32 2010; 9 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 332 start-page: 1537 year: 2011 publication-title: Science – volume: 27 start-page: 1603623 year: 2017 publication-title: Adv. Funct. Mater. – volume: 130 start-page: 16448 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 3307 year: 1971 publication-title: J. Chem. Phys. – volume: 8 start-page: 1912 year: 2008 publication-title: Nano Lett. – volume: 9 start-page: 457 year: 2009 publication-title: Nano Lett. – volume: 25 start-page: 2920 year: 2015 publication-title: Adv. Funct. Mater. – volume: 32 start-page: 145 year: 1994 publication-title: Carbon – volume: 3 start-page: 1652 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 80 start-page: 1339 year: 1958 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 3906 year: 2010 publication-title: Adv. Mater. – volume: 324 start-page: 1530 year: 2009 publication-title: Science – volume: 47 start-page: 898 year: 2006 publication-title: Mater. Trans. – volume: 81 start-page: 78 year: 2016 publication-title: Composites Part A – volume: 24 start-page: 1129 year: 1962 publication-title: J. Inorg. Nucl. Chem. – volume: 110 start-page: 132 year: 2010 publication-title: Chem. Rev. – volume: 12 start-page: 3936 year: 2012 publication-title: Nano Lett. – volume: 119 start-page: 201 year: 1989 publication-title: J. Catal. – volume: 17 start-page: 2928 year: 2017 publication-title: Nano Lett. – volume: 25 start-page: 6270 year: 2013 publication-title: Adv. Mater. – volume: 4 start-page: 1113 year: 2011 publication-title: Energy Environ. Sci. – volume: 353 start-page: 1413 year: 2016 publication-title: Science – volume: 29 start-page: 1700177 year: 2017 publication-title: Adv. Mater. – volume: 39 start-page: 923 year: 2010 publication-title: Chem. Soc. Rev. – volume: 329 start-page: 1637 year: 2010 publication-title: Science – volume: 78 start-page: 2254 year: 1974 publication-title: J. Phys. Chem. – volume: 11 start-page: 10042 year: 2017 publication-title: ACS Nano – volume: 4 start-page: 3845 year: 2010 publication-title: ACS Nano – volume: 5 start-page: 4716 year: 2014 publication-title: Nat. Commun. – volume: 27 start-page: 4113 year: 2015 publication-title: Adv. Mater. – volume: 52 start-page: 4572 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – volume: 536 start-page: 197 year: 2016 publication-title: Nature – volume: 133 start-page: 15264 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 185 start-page: 286 year: 1999 publication-title: J. Catal. – volume: 136 start-page: 12265 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 4174 year: 2010 publication-title: ACS Nano – volume: 26 start-page: 7263 year: 2016 publication-title: Adv. Funct. Mater. – volume: 356 start-page: 599 year: 2017 publication-title: Science – volume: 9 start-page: 1215 year: 2010 publication-title: Microfluid Nanofluid – volume: 9 start-page: 3593 year: 2013 publication-title: Small – volume: 7 start-page: 728 year: 2012 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 1032 year: 1998 publication-title: Adv. Mater. – volume: 93 start-page: 035901 year: 2004 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 7814 year: 2013 publication-title: Nanoscale – volume: 49 start-page: 5199 year: 2014 publication-title: J. Mater. Sci. – volume: 8 start-page: 8255 year: 2014 publication-title: ACS Nano – volume: 41 start-page: 22 year: 1976 publication-title: J. Catal. – volume: 5 start-page: 8739 year: 2011 publication-title: ACS Nano – volume: 27 start-page: 1604302 year: 2017 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_47_1 doi: 10.1021/ja503692z – ident: e_1_2_7_48_1 doi: 10.1038/nature18593 – ident: e_1_2_7_31_1 doi: 10.1002/(SICI)1521-4095(199809)10:13<1032::AID-ADMA1032>3.0.CO;2-M – ident: e_1_2_7_9_1 doi: 10.1039/c3nr02135a – ident: e_1_2_7_24_1 doi: 10.1006/jcat.1999.2509 – ident: e_1_2_7_35_1 doi: 10.1007/s10853-014-8229-9 – ident: e_1_2_7_4_1 doi: 10.1002/adma.201001068 – ident: e_1_2_7_25_1 doi: 10.1021/nl080583r – ident: e_1_2_7_6_1 doi: 10.1021/nn100511a – ident: e_1_2_7_15_1 doi: 10.1021/nn202710s – ident: e_1_2_7_32_1 doi: 10.2320/matertrans.47.898 – ident: e_1_2_7_19_1 doi: 10.1038/ncomms5716 – ident: e_1_2_7_46_1 doi: 10.1103/PhysRevLett.93.035901 – ident: e_1_2_7_10_1 doi: 10.1002/adfm.201500321 – ident: e_1_2_7_29_1 doi: 10.1126/science.aah3398 – ident: e_1_2_7_16_1 doi: 10.1021/nn1007429 – ident: e_1_2_7_13_1 doi: 10.1021/ja205693t – ident: e_1_2_7_2_1 doi: 10.1126/science.1158877 – ident: e_1_2_7_12_1 doi: 10.1021/nn502635y – ident: e_1_2_7_21_1 doi: 10.1021/j100615a015 – ident: e_1_2_7_22_1 doi: 10.1016/0021-9517(89)90146-2 – ident: e_1_2_7_33_1 doi: 10.1021/am200209e – ident: e_1_2_7_40_1 doi: 10.1002/adfm.201603623 – ident: e_1_2_7_8_1 doi: 10.1002/anie.201209320 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.201603125 – ident: e_1_2_7_45_1 doi: 10.1007/s10404-010-0641-0 – ident: e_1_2_7_28_1 doi: 10.1002/adma.201500472 – ident: e_1_2_7_11_1 doi: 10.1038/nnano.2012.162 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201700177 – ident: e_1_2_7_23_1 doi: 10.1016/0008-6223(94)90019-1 – ident: e_1_2_7_36_1 doi: 10.1016/0022-1902(62)80258-9 – ident: e_1_2_7_43_1 doi: 10.1002/adfm.201604302 – ident: e_1_2_7_49_1 doi: 10.1063/1.1675344 – ident: e_1_2_7_3_1 doi: 10.1021/cr900070d – ident: e_1_2_7_50_1 doi: 10.1021/ja01539a017 – ident: e_1_2_7_26_1 doi: 10.1021/nl8034509 – ident: e_1_2_7_41_1 doi: 10.1021/acs.nanolett.7b00148 – ident: e_1_2_7_34_1 doi: 10.1002/adma.201302223 – ident: e_1_2_7_1_1 doi: 10.1038/nmat1849 – ident: e_1_2_7_18_1 doi: 10.1021/nl300985q – ident: e_1_2_7_5_1 doi: 10.1126/science.1194372 – ident: e_1_2_7_39_1 doi: 10.1021/ja804409f – ident: e_1_2_7_42_1 doi: 10.1021/acsnano.7b04299 – ident: e_1_2_7_7_1 doi: 10.1039/c0ee00683a – ident: e_1_2_7_17_1 doi: 10.1002/smll.201203106 – ident: e_1_2_7_44_1 doi: 10.1039/B822554K – ident: e_1_2_7_20_1 doi: 10.1126/science.aam5852 – ident: e_1_2_7_30_1 doi: 10.1016/j.compositesa.2015.10.035 – ident: e_1_2_7_37_1 doi: 10.1016/0021-9517(76)90196-2 – ident: e_1_2_7_14_1 doi: 10.1126/science.1200770 |
SSID | ssj0017734 |
Score | 2.5596485 |
Snippet | Porous graphene has been widely applied in energy storage, electrocatalysis, photoelectron devices, etc. However, the producing process for porous graphene... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Electric power generation Energy storage Graphene Ion exchange Materials science microwave combustion Nanomaterials Pore size Porosity porous graphene |
Title | Microwave Combustion for Rapidly Synthesizing Pore‐Size‐Controllable Porous Graphene |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201800382 https://www.proquest.com/docview/2047461580 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EL3rwLdZHyUHwlJrdZJPusbTWIlbEKvQW9hUollRsq9iTP8Hf6C9xJmljK4igpyTsbtjs7Mx-m535hpATQPFJKIxwtYwMbFAi7SrDqMutkIYHIVUZz3b7OmzdB5dd3p2L4s_5IYofbqgZmb1GBZdqePZFGipNgpHktIqHW2iE0WELUdFtwR9Foyg_Vg4pOnjR7oy10WNni80XV6UvqDkPWLMVp7lB5KyvuaPJQ2U8UhU9-Ubj-J-P2STrUzjq1PL5s0WWbLpN1uZICndIt40-ey_y2TpgPBRm_xqkDmBd51Y-9kz_1em8pgAjh70J1HduBk_24-2905vgpZ57wvcxQAuLBuOhc4Ec2WBid8l98_yu3nKn-RhcHTAwnDxRvvWSaihBulQkgedzpYWJLNWaah5o30ilPQ16HVjMh1qVsDIyLxKhVYnv75HldJDafeIkwnhMaK4kB0gBuyYhJGPUGF8qBaimRNyZPGI9JSvHnBn9OKdZZjGOWFyMWImcFvUfc5qOH2sezcQbT9V1CKVBBPOSV70SYZmcfnlLXGs028XTwV8aHZJVvM88Ebwjsjx6GttjADgjVSYrtUb7qlPOJvMns3L2LA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO6JQIAckToHYiZP6iAqlLEWIReot8hapokoRbUH0xCfwjXwJM0kTFgkhwSlKPI4Sj2f8bI_fELIDKD4JhRGulpGBCUqkXWUYdbkV0vAgpCrj2W5dhM3b4LTNi2hCPAuT80OUC25oGZm_RgPHBen9D9ZQaRI8Sk5ruLsFXngK03ojff7hVckgRaMo31gOKYZ40XbB2-ix_a_1v45LH2DzM2TNxpzGPFHF1-ahJnd7w4Ha06NvRI7_-p0FMjdGpM5B3oUWyYRNl8jsJ57CZdJuYdjek3y0DvgPhQnAeqkDcNe5kvcd0312rp9TQJL9zgjkncveg317eb3ujPBSz4Phu3hGC4t6w75zjDTZ4GVXyG3j6KbedMcpGVwdMPCdPFG-9ZJaKEHBVCSB53OlhYks1ZpqHmjfSKU9DaYdWEyJWpMwODIvEqFVie-vksm0l9o14iTCeExoriQHVAETJyEkY9QYXyoFwKZC3EIhsR7zlWPajG6cMy2zGFssLlusQnZL-fucqeNHyWqh33hssX0oDSLomrzmVQjLFPXLW-KDw0arvFv_S6VtMt28aZ3H5ycXZxtkBp9ngQlelUwOHoZ2E_DOQG1lPfodU4z4tA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIPrgXZxO7YPgUzVJm3Z5HM55nYhT2FvJrTAc3dhF2Z78Cf5Gf4kn7dZNQQR9Km2SkubknHxpzvkOQkeA4uOAa-4qEWrYoITKlZoSlxkuNPMDIlOe7dpdcPnkXzdYYyaKP-OHyH-4Wc1I7bVV8I6OT6ekoULHNpKclOzhFhjhBT_A3CZvqDzkBFIkDLNz5YBYDy_SmNA2Ynr6tf3XZWmKNWcRa7rkVFeRmHQ28zR5Phn05YkafeNx_M_XrKGVMR51ytkEWkdzJtlAyzMshZuoUbNOe6_ixThgPaRN_9VOHAC7zoPoNHVr6NSHCeDIXnME9Z37dtd8vL3XmyN7Octc4Vs2QssWtQc958KSZION3UJP1fPHs0t3nJDBVT4Fy8li6RkclwIB4iU89rHHpOI6NEQpopivPC2kwgoU2zc2IWpJwNJIccgDI2PP20bzSTsxO8iJucaUKyYFA0wB2ybOBaVEa09ICbCmgNyJPCI1Ziu3STNaUcazTCM7YlE-YgV0nNfvZDwdP9YsTsQbjfW1B6V-CBOTlXAB0VROv7wlKleqtfxu9y-NDtHifaUa3V7d3eyhJfs49UrARTTf7w7MPoCdvjxI5_MncLD3Yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microwave+Combustion+for+Rapidly+Synthesizing+Pore%E2%80%90Size%E2%80%90Controllable+Porous+Graphene&rft.jtitle=Advanced+functional+materials&rft.au=Wan%2C+Jun&rft.au=Huang%2C+Liang&rft.au=Wu%2C+Jiabin&rft.au=Xiong%2C+Liukang&rft.date=2018-05-30&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=22&rft_id=info:doi/10.1002%2Fadfm.201800382&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201800382 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |