Microwave Combustion for Rapidly Synthesizing Pore‐Size‐Controllable Porous Graphene

Porous graphene has been widely applied in energy storage, electrocatalysis, photoelectron devices, etc. However, the producing process for porous graphene usually needs long time and is a tedious step. In this work, porous graphene is prepared with controllable pore size by using active metal nanop...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 28; no. 22
Main Authors Wan, Jun, Huang, Liang, Wu, Jiabin, Xiong, Liukang, Hu, Zhimi, Yu, Huimin, Li, Tianqi, Zhou, Jun
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 30.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Porous graphene has been widely applied in energy storage, electrocatalysis, photoelectron devices, etc. However, the producing process for porous graphene usually needs long time and is a tedious step. In this work, porous graphene is prepared with controllable pore size by using active metal nanoparticles to catalytically oxidize carbon under microwave combustion process within tens of seconds. The ion exchange membrane based on porous graphene with ≈5 nm pore diameter exhibits a great performance for salinity gradient power generation application with a power density output of ≈1.15 W m−2. This work highlights a new strategy for the design and synthesis of pore‐size‐controllable porous graphene and provides new opportunities for 2D porous nanomaterials. Pore‐size‐controllable porous graphene is rapidly synthesized by utilizing catalytic oxidation combined with microwave combustion. By adjusting the concentration of the precursor and the microwave‐treatment times, the pore size can be easily mediated to ≈5, ≈30, and ≈100 nm. An ion exchange membrane assembled with the porous graphene shows great performance with an output power density of 1.15 W m−2.
AbstractList Porous graphene has been widely applied in energy storage, electrocatalysis, photoelectron devices, etc. However, the producing process for porous graphene usually needs long time and is a tedious step. In this work, porous graphene is prepared with controllable pore size by using active metal nanoparticles to catalytically oxidize carbon under microwave combustion process within tens of seconds. The ion exchange membrane based on porous graphene with ≈5 nm pore diameter exhibits a great performance for salinity gradient power generation application with a power density output of ≈1.15 W m−2. This work highlights a new strategy for the design and synthesis of pore‐size‐controllable porous graphene and provides new opportunities for 2D porous nanomaterials.
Porous graphene has been widely applied in energy storage, electrocatalysis, photoelectron devices, etc. However, the producing process for porous graphene usually needs long time and is a tedious step. In this work, porous graphene is prepared with controllable pore size by using active metal nanoparticles to catalytically oxidize carbon under microwave combustion process within tens of seconds. The ion exchange membrane based on porous graphene with ≈5 nm pore diameter exhibits a great performance for salinity gradient power generation application with a power density output of ≈1.15 W m−2. This work highlights a new strategy for the design and synthesis of pore‐size‐controllable porous graphene and provides new opportunities for 2D porous nanomaterials. Pore‐size‐controllable porous graphene is rapidly synthesized by utilizing catalytic oxidation combined with microwave combustion. By adjusting the concentration of the precursor and the microwave‐treatment times, the pore size can be easily mediated to ≈5, ≈30, and ≈100 nm. An ion exchange membrane assembled with the porous graphene shows great performance with an output power density of 1.15 W m−2.
Porous graphene has been widely applied in energy storage, electrocatalysis, photoelectron devices, etc. However, the producing process for porous graphene usually needs long time and is a tedious step. In this work, porous graphene is prepared with controllable pore size by using active metal nanoparticles to catalytically oxidize carbon under microwave combustion process within tens of seconds. The ion exchange membrane based on porous graphene with ≈5 nm pore diameter exhibits a great performance for salinity gradient power generation application with a power density output of ≈1.15 W m −2 . This work highlights a new strategy for the design and synthesis of pore‐size‐controllable porous graphene and provides new opportunities for 2D porous nanomaterials.
Author Huang, Liang
Wu, Jiabin
Zhou, Jun
Wan, Jun
Xiong, Liukang
Hu, Zhimi
Li, Tianqi
Yu, Huimin
Author_xml – sequence: 1
  givenname: Jun
  surname: Wan
  fullname: Wan, Jun
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Liang
  surname: Huang
  fullname: Huang, Liang
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Jiabin
  surname: Wu
  fullname: Wu, Jiabin
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Liukang
  surname: Xiong
  fullname: Xiong, Liukang
  organization: Huazhong University of Science and Technology
– sequence: 5
  givenname: Zhimi
  surname: Hu
  fullname: Hu, Zhimi
  organization: Huazhong University of Science and Technology
– sequence: 6
  givenname: Huimin
  surname: Yu
  fullname: Yu, Huimin
  organization: Huazhong University of Science and Technology
– sequence: 7
  givenname: Tianqi
  surname: Li
  fullname: Li, Tianqi
  organization: Huazhong University of Science and Technology
– sequence: 8
  givenname: Jun
  orcidid: 0000-0003-4799-8165
  surname: Zhou
  fullname: Zhou, Jun
  email: jun.zhou@mail.hust.edu.cn
  organization: Huazhong University of Science and Technology
BookMark eNqFkM1Kw0AUhQepYFvdug64Tr0zk99libYKLYo_0F2YTCZ2SjoTZxJLu_IRfEafxIRKBUFcnQv3fPdyzgD1lFYCoXMMIwxALllerEcEcARAI3KE-jjAgUuBRL3DjBcnaGDtCgCHIfX6aDGX3OgNexNOotdZY2uplVNo4zywSubl1nncqnoprNxJ9eLcayM-3z8e5a6TRKva6LJkWSm6lW6sMzWsWgolTtFxwUorzr51iJ4n10_JjTu7m94m45nLPQLE9YuMCiiigAVxjuPCA-pnPM5DgTnH3Pc4zVnGgfsUe4KLyI8YwYRAGAciKygdoov93cro10bYOl3pxqj2ZUrAC70A-xG0Lm_vasNaa0SRclmzLmttmCxTDGnXYdp1mB46bLHRL6wycs3M9m8g3gMbWYrtP-50fDWZ_7BfSN6J3g
CitedBy_id crossref_primary_10_1002_smll_202206878
crossref_primary_10_1016_j_matt_2019_08_006
crossref_primary_10_1039_D1NJ03536C
crossref_primary_10_1002_sstr_202100169
crossref_primary_10_1016_j_enconman_2024_119069
crossref_primary_10_1016_j_xcrp_2022_101065
crossref_primary_10_1021_acssuschemeng_0c03104
crossref_primary_10_1039_D1DT03709A
crossref_primary_10_1111_jace_17477
crossref_primary_10_1039_D4RA05273K
crossref_primary_10_1016_j_apsusc_2019_03_311
crossref_primary_10_3390_gels8100622
crossref_primary_10_1021_acsami_1c11673
crossref_primary_10_3389_fchem_2019_00355
crossref_primary_10_1016_j_compositesa_2022_107373
crossref_primary_10_1002_adma_201904351
crossref_primary_10_1016_j_ccr_2024_216112
crossref_primary_10_1039_D4NA00701H
crossref_primary_10_1002_aic_17981
crossref_primary_10_1016_j_cej_2020_127592
crossref_primary_10_1016_j_desal_2022_115621
crossref_primary_10_20517_cs_2023_72
crossref_primary_10_1002_sus2_252
crossref_primary_10_1021_acsami_1c08598
crossref_primary_10_1002_adfm_202425595
crossref_primary_10_1007_s11144_022_02183_0
crossref_primary_10_1016_j_carbon_2020_08_034
crossref_primary_10_1007_s10854_020_03793_x
crossref_primary_10_1016_j_scib_2020_08_037
crossref_primary_10_1002_smll_202102532
crossref_primary_10_1021_acsenergylett_9b02296
crossref_primary_10_3390_pr11051451
crossref_primary_10_1002_cssc_202301874
crossref_primary_10_1002_smll_202300338
crossref_primary_10_1016_j_seppur_2024_127883
crossref_primary_10_1016_j_carbon_2021_12_061
crossref_primary_10_1016_j_carbon_2021_03_048
crossref_primary_10_1016_j_scitotenv_2023_166121
crossref_primary_10_1002_adfm_201908486
crossref_primary_10_1002_adfm_202008505
crossref_primary_10_1038_s41467_020_20296_9
crossref_primary_10_1007_s12274_020_2778_9
crossref_primary_10_26599_NRE_2022_9120008
crossref_primary_10_3390_molecules29081761
crossref_primary_10_1021_jacs_1c07392
crossref_primary_10_1002_slct_202403178
crossref_primary_10_1002_adfm_202401397
crossref_primary_10_1039_D0MH00815J
crossref_primary_10_1016_j_cej_2020_127018
crossref_primary_10_20517_microstructures_2023_86
crossref_primary_10_1002_smll_201903780
crossref_primary_10_1016_j_cej_2022_138398
crossref_primary_10_1016_j_cej_2022_135484
crossref_primary_10_1039_D0NR05223J
crossref_primary_10_1002_adfm_202313968
crossref_primary_10_1016_j_est_2023_108151
crossref_primary_10_1039_C9TA03895G
crossref_primary_10_1002_smll_202303473
crossref_primary_10_1557_s43581_024_00104_3
crossref_primary_10_3390_ma14102597
crossref_primary_10_1016_j_carbon_2019_10_048
crossref_primary_10_1002_adfm_201902394
crossref_primary_10_1039_C8TA09070J
crossref_primary_10_1016_j_pmatsci_2020_100716
crossref_primary_10_1016_j_memsci_2021_119706
crossref_primary_10_1002_adfm_202308176
crossref_primary_10_1021_acs_nanolett_0c03762
crossref_primary_10_1002_smll_202301917
crossref_primary_10_1002_adfm_202010968
crossref_primary_10_1002_adma_202206354
crossref_primary_10_1063_5_0099590
crossref_primary_10_1021_acsestengg_1c00309
crossref_primary_10_1063_5_0148376
crossref_primary_10_1021_acs_analchem_8b04779
crossref_primary_10_1021_acscentsci_1c00633
crossref_primary_10_1016_j_cej_2018_12_034
crossref_primary_10_1515_revic_2022_0001
crossref_primary_10_1002_adma_202103477
crossref_primary_10_1063_5_0231081
crossref_primary_10_3389_frcrb_2023_1220021
Cites_doi 10.1021/ja503692z
10.1038/nature18593
10.1002/(SICI)1521-4095(199809)10:13<1032::AID-ADMA1032>3.0.CO;2-M
10.1039/c3nr02135a
10.1006/jcat.1999.2509
10.1007/s10853-014-8229-9
10.1002/adma.201001068
10.1021/nl080583r
10.1021/nn100511a
10.1021/nn202710s
10.2320/matertrans.47.898
10.1038/ncomms5716
10.1103/PhysRevLett.93.035901
10.1002/adfm.201500321
10.1126/science.aah3398
10.1021/nn1007429
10.1021/ja205693t
10.1126/science.1158877
10.1021/nn502635y
10.1021/j100615a015
10.1016/0021-9517(89)90146-2
10.1021/am200209e
10.1002/adfm.201603623
10.1002/anie.201209320
10.1002/adfm.201603125
10.1007/s10404-010-0641-0
10.1002/adma.201500472
10.1038/nnano.2012.162
10.1002/adma.201700177
10.1016/0008-6223(94)90019-1
10.1016/0022-1902(62)80258-9
10.1002/adfm.201604302
10.1063/1.1675344
10.1021/cr900070d
10.1021/ja01539a017
10.1021/nl8034509
10.1021/acs.nanolett.7b00148
10.1002/adma.201302223
10.1038/nmat1849
10.1021/nl300985q
10.1126/science.1194372
10.1021/ja804409f
10.1021/acsnano.7b04299
10.1039/c0ee00683a
10.1002/smll.201203106
10.1039/B822554K
10.1126/science.aam5852
10.1016/j.compositesa.2015.10.035
10.1016/0021-9517(76)90196-2
10.1126/science.1200770
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201800382
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201800382
ADFM201800382
Genre article
GrantInformation_xml – fundername: Major Program of National Natural Science Foundation of China
  funderid: 21334005
– fundername: National Program for Support of Top‐Notch Young Professionals
– fundername: National Natural Science Foundation of China
  funderid: 51672097; 51602115; 51322210; 61434001
– fundername: Director Fund of WNLO
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4202-5fb3e0f86a69d19f4035bc9d7e1cc1c54c3dabc0c5314ece858a21220796ebf33
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 07:37:07 EDT 2025
Tue Jul 01 04:11:46 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Wed Jan 22 17:02:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4202-5fb3e0f86a69d19f4035bc9d7e1cc1c54c3dabc0c5314ece858a21220796ebf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4799-8165
PQID 2047461580
PQPubID 2045204
PageCount 7
ParticipantIDs proquest_journals_2047461580
crossref_citationtrail_10_1002_adfm_201800382
crossref_primary_10_1002_adfm_201800382
wiley_primary_10_1002_adfm_201800382_ADFM201800382
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 30, 2018
PublicationDateYYYYMMDD 2018-05-30
PublicationDate_xml – month: 05
  year: 2018
  text: May 30, 2018
  day: 30
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1976; 41
1974; 78
2013; 25
2010; 329
1989; 119
2017; 27
2010; 39
2014; 49
1999; 185
2008; 8
2017; 29
2011; 4
2011; 3
2013; 5
2012; 12
2011; 5
2017; 356
2011; 332
2014; 136
2011; 133
2013; 9
2010; 22
2015; 25
1971; 54
2014; 5
2015; 27
2004; 93
2017; 17
2016; 536
2017; 11
2006; 47
2013; 52
2010; 110
2007; 6
2009; 9
2016; 353
1962; 24
2016; 81
1958; 80
2012; 7
2014; 8
1998; 10
2010; 4
2016; 26
2008; 130
2009; 324
1994; 32
2010; 9
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 332
  start-page: 1537
  year: 2011
  publication-title: Science
– volume: 27
  start-page: 1603623
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 130
  start-page: 16448
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 3307
  year: 1971
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 1912
  year: 2008
  publication-title: Nano Lett.
– volume: 9
  start-page: 457
  year: 2009
  publication-title: Nano Lett.
– volume: 25
  start-page: 2920
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 32
  start-page: 145
  year: 1994
  publication-title: Carbon
– volume: 3
  start-page: 1652
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 80
  start-page: 1339
  year: 1958
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 3906
  year: 2010
  publication-title: Adv. Mater.
– volume: 324
  start-page: 1530
  year: 2009
  publication-title: Science
– volume: 47
  start-page: 898
  year: 2006
  publication-title: Mater. Trans.
– volume: 81
  start-page: 78
  year: 2016
  publication-title: Composites Part A
– volume: 24
  start-page: 1129
  year: 1962
  publication-title: J. Inorg. Nucl. Chem.
– volume: 110
  start-page: 132
  year: 2010
  publication-title: Chem. Rev.
– volume: 12
  start-page: 3936
  year: 2012
  publication-title: Nano Lett.
– volume: 119
  start-page: 201
  year: 1989
  publication-title: J. Catal.
– volume: 17
  start-page: 2928
  year: 2017
  publication-title: Nano Lett.
– volume: 25
  start-page: 6270
  year: 2013
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1113
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 353
  start-page: 1413
  year: 2016
  publication-title: Science
– volume: 29
  start-page: 1700177
  year: 2017
  publication-title: Adv. Mater.
– volume: 39
  start-page: 923
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 329
  start-page: 1637
  year: 2010
  publication-title: Science
– volume: 78
  start-page: 2254
  year: 1974
  publication-title: J. Phys. Chem.
– volume: 11
  start-page: 10042
  year: 2017
  publication-title: ACS Nano
– volume: 4
  start-page: 3845
  year: 2010
  publication-title: ACS Nano
– volume: 5
  start-page: 4716
  year: 2014
  publication-title: Nat. Commun.
– volume: 27
  start-page: 4113
  year: 2015
  publication-title: Adv. Mater.
– volume: 52
  start-page: 4572
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 183
  year: 2007
  publication-title: Nat. Mater.
– volume: 536
  start-page: 197
  year: 2016
  publication-title: Nature
– volume: 133
  start-page: 15264
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 185
  start-page: 286
  year: 1999
  publication-title: J. Catal.
– volume: 136
  start-page: 12265
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 4174
  year: 2010
  publication-title: ACS Nano
– volume: 26
  start-page: 7263
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 356
  start-page: 599
  year: 2017
  publication-title: Science
– volume: 9
  start-page: 1215
  year: 2010
  publication-title: Microfluid Nanofluid
– volume: 9
  start-page: 3593
  year: 2013
  publication-title: Small
– volume: 7
  start-page: 728
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 1032
  year: 1998
  publication-title: Adv. Mater.
– volume: 93
  start-page: 035901
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 7814
  year: 2013
  publication-title: Nanoscale
– volume: 49
  start-page: 5199
  year: 2014
  publication-title: J. Mater. Sci.
– volume: 8
  start-page: 8255
  year: 2014
  publication-title: ACS Nano
– volume: 41
  start-page: 22
  year: 1976
  publication-title: J. Catal.
– volume: 5
  start-page: 8739
  year: 2011
  publication-title: ACS Nano
– volume: 27
  start-page: 1604302
  year: 2017
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_47_1
  doi: 10.1021/ja503692z
– ident: e_1_2_7_48_1
  doi: 10.1038/nature18593
– ident: e_1_2_7_31_1
  doi: 10.1002/(SICI)1521-4095(199809)10:13<1032::AID-ADMA1032>3.0.CO;2-M
– ident: e_1_2_7_9_1
  doi: 10.1039/c3nr02135a
– ident: e_1_2_7_24_1
  doi: 10.1006/jcat.1999.2509
– ident: e_1_2_7_35_1
  doi: 10.1007/s10853-014-8229-9
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201001068
– ident: e_1_2_7_25_1
  doi: 10.1021/nl080583r
– ident: e_1_2_7_6_1
  doi: 10.1021/nn100511a
– ident: e_1_2_7_15_1
  doi: 10.1021/nn202710s
– ident: e_1_2_7_32_1
  doi: 10.2320/matertrans.47.898
– ident: e_1_2_7_19_1
  doi: 10.1038/ncomms5716
– ident: e_1_2_7_46_1
  doi: 10.1103/PhysRevLett.93.035901
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.201500321
– ident: e_1_2_7_29_1
  doi: 10.1126/science.aah3398
– ident: e_1_2_7_16_1
  doi: 10.1021/nn1007429
– ident: e_1_2_7_13_1
  doi: 10.1021/ja205693t
– ident: e_1_2_7_2_1
  doi: 10.1126/science.1158877
– ident: e_1_2_7_12_1
  doi: 10.1021/nn502635y
– ident: e_1_2_7_21_1
  doi: 10.1021/j100615a015
– ident: e_1_2_7_22_1
  doi: 10.1016/0021-9517(89)90146-2
– ident: e_1_2_7_33_1
  doi: 10.1021/am200209e
– ident: e_1_2_7_40_1
  doi: 10.1002/adfm.201603623
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.201209320
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.201603125
– ident: e_1_2_7_45_1
  doi: 10.1007/s10404-010-0641-0
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.201500472
– ident: e_1_2_7_11_1
  doi: 10.1038/nnano.2012.162
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201700177
– ident: e_1_2_7_23_1
  doi: 10.1016/0008-6223(94)90019-1
– ident: e_1_2_7_36_1
  doi: 10.1016/0022-1902(62)80258-9
– ident: e_1_2_7_43_1
  doi: 10.1002/adfm.201604302
– ident: e_1_2_7_49_1
  doi: 10.1063/1.1675344
– ident: e_1_2_7_3_1
  doi: 10.1021/cr900070d
– ident: e_1_2_7_50_1
  doi: 10.1021/ja01539a017
– ident: e_1_2_7_26_1
  doi: 10.1021/nl8034509
– ident: e_1_2_7_41_1
  doi: 10.1021/acs.nanolett.7b00148
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.201302223
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat1849
– ident: e_1_2_7_18_1
  doi: 10.1021/nl300985q
– ident: e_1_2_7_5_1
  doi: 10.1126/science.1194372
– ident: e_1_2_7_39_1
  doi: 10.1021/ja804409f
– ident: e_1_2_7_42_1
  doi: 10.1021/acsnano.7b04299
– ident: e_1_2_7_7_1
  doi: 10.1039/c0ee00683a
– ident: e_1_2_7_17_1
  doi: 10.1002/smll.201203106
– ident: e_1_2_7_44_1
  doi: 10.1039/B822554K
– ident: e_1_2_7_20_1
  doi: 10.1126/science.aam5852
– ident: e_1_2_7_30_1
  doi: 10.1016/j.compositesa.2015.10.035
– ident: e_1_2_7_37_1
  doi: 10.1016/0021-9517(76)90196-2
– ident: e_1_2_7_14_1
  doi: 10.1126/science.1200770
SSID ssj0017734
Score 2.5596485
Snippet Porous graphene has been widely applied in energy storage, electrocatalysis, photoelectron devices, etc. However, the producing process for porous graphene...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Electric power generation
Energy storage
Graphene
Ion exchange
Materials science
microwave combustion
Nanomaterials
Pore size
Porosity
porous graphene
Title Microwave Combustion for Rapidly Synthesizing Pore‐Size‐Controllable Porous Graphene
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201800382
https://www.proquest.com/docview/2047461580
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EL3rwLdZHyUHwlJrdZJPusbTWIlbEKvQW9hUollRsq9iTP8Hf6C9xJmljK4igpyTsbtjs7Mx-m535hpATQPFJKIxwtYwMbFAi7SrDqMutkIYHIVUZz3b7OmzdB5dd3p2L4s_5IYofbqgZmb1GBZdqePZFGipNgpHktIqHW2iE0WELUdFtwR9Foyg_Vg4pOnjR7oy10WNni80XV6UvqDkPWLMVp7lB5KyvuaPJQ2U8UhU9-Ubj-J-P2STrUzjq1PL5s0WWbLpN1uZICndIt40-ey_y2TpgPBRm_xqkDmBd51Y-9kz_1em8pgAjh70J1HduBk_24-2905vgpZ57wvcxQAuLBuOhc4Ec2WBid8l98_yu3nKn-RhcHTAwnDxRvvWSaihBulQkgedzpYWJLNWaah5o30ilPQ16HVjMh1qVsDIyLxKhVYnv75HldJDafeIkwnhMaK4kB0gBuyYhJGPUGF8qBaimRNyZPGI9JSvHnBn9OKdZZjGOWFyMWImcFvUfc5qOH2sezcQbT9V1CKVBBPOSV70SYZmcfnlLXGs028XTwV8aHZJVvM88Ebwjsjx6GttjADgjVSYrtUb7qlPOJvMns3L2LA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO6JQIAckToHYiZP6iAqlLEWIReot8hapokoRbUH0xCfwjXwJM0kTFgkhwSlKPI4Sj2f8bI_fELIDKD4JhRGulpGBCUqkXWUYdbkV0vAgpCrj2W5dhM3b4LTNi2hCPAuT80OUC25oGZm_RgPHBen9D9ZQaRI8Sk5ruLsFXngK03ojff7hVckgRaMo31gOKYZ40XbB2-ix_a_1v45LH2DzM2TNxpzGPFHF1-ahJnd7w4Ha06NvRI7_-p0FMjdGpM5B3oUWyYRNl8jsJ57CZdJuYdjek3y0DvgPhQnAeqkDcNe5kvcd0312rp9TQJL9zgjkncveg317eb3ujPBSz4Phu3hGC4t6w75zjDTZ4GVXyG3j6KbedMcpGVwdMPCdPFG-9ZJaKEHBVCSB53OlhYks1ZpqHmjfSKU9DaYdWEyJWpMwODIvEqFVie-vksm0l9o14iTCeExoriQHVAETJyEkY9QYXyoFwKZC3EIhsR7zlWPajG6cMy2zGFssLlusQnZL-fucqeNHyWqh33hssX0oDSLomrzmVQjLFPXLW-KDw0arvFv_S6VtMt28aZ3H5ycXZxtkBp9ngQlelUwOHoZ2E_DOQG1lPfodU4z4tA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIPrgXZxO7YPgUzVJm3Z5HM55nYhT2FvJrTAc3dhF2Z78Cf5Gf4kn7dZNQQR9Km2SkubknHxpzvkOQkeA4uOAa-4qEWrYoITKlZoSlxkuNPMDIlOe7dpdcPnkXzdYYyaKP-OHyH-4Wc1I7bVV8I6OT6ekoULHNpKclOzhFhjhBT_A3CZvqDzkBFIkDLNz5YBYDy_SmNA2Ynr6tf3XZWmKNWcRa7rkVFeRmHQ28zR5Phn05YkafeNx_M_XrKGVMR51ytkEWkdzJtlAyzMshZuoUbNOe6_ixThgPaRN_9VOHAC7zoPoNHVr6NSHCeDIXnME9Z37dtd8vL3XmyN7Octc4Vs2QssWtQc958KSZION3UJP1fPHs0t3nJDBVT4Fy8li6RkclwIB4iU89rHHpOI6NEQpopivPC2kwgoU2zc2IWpJwNJIccgDI2PP20bzSTsxO8iJucaUKyYFA0wB2ybOBaVEa09ICbCmgNyJPCI1Ziu3STNaUcazTCM7YlE-YgV0nNfvZDwdP9YsTsQbjfW1B6V-CBOTlXAB0VROv7wlKleqtfxu9y-NDtHifaUa3V7d3eyhJfs49UrARTTf7w7MPoCdvjxI5_MncLD3Yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microwave+Combustion+for+Rapidly+Synthesizing+Pore%E2%80%90Size%E2%80%90Controllable+Porous+Graphene&rft.jtitle=Advanced+functional+materials&rft.au=Wan%2C+Jun&rft.au=Huang%2C+Liang&rft.au=Wu%2C+Jiabin&rft.au=Xiong%2C+Liukang&rft.date=2018-05-30&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=22&rft_id=info:doi/10.1002%2Fadfm.201800382&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201800382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon