Carbon‐Supported High‐Entropy Oxide Nanoparticles as Stable Electrocatalysts for Oxygen Reduction Reactions

Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long‐term operations while maintaining high activity remains a grand challenge. Herein, a highly stable and active electrocatalyst featuring high‐entro...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 21
Main Authors Li, Tangyuan, Yao, Yonggang, Ko, Byung Hee, Huang, Zhennan, Dong, Qi, Gao, Jinlong, Chen, Wilson, Li, Jianguo, Li, Shuke, Wang, Xizheng, Shahbazian‐Yassar, Reza, Jiao, Feng, Hu, Liangbing
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.05.2021
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202010561

Cover

Loading…
Abstract Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long‐term operations while maintaining high activity remains a grand challenge. Herein, a highly stable and active electrocatalyst featuring high‐entropy oxide (HEO) nanoparticles uniformly dispersed on commercial carbon black is reported, which is synthesized via rapid high‐temperature heating (≈1 s, 1400 K). Notably, the HEO nanoparticles with a record‐high entropy are composed of ten metal elements (i.e., Hf, Zr, La, V, Ce, Ti, Nd, Gd, Y, and Pd). The rapid high‐temperature synthesis can tailor structural stability and avoid nanoparticle detachment or agglomeration. Meanwhile, the high‐entropy design can enhance chemical stability to prevent elemental segregation. Using oxygen reduction reaction as a model, the 10‐element HEO exhibits good activity and greatly enhances stability (i.e., 92% and 86% retention after 12 and 100 h, respectively) compared to the commercial Pd/C electrocatalyst (i.e., 76% retention after 12 h). This superior performance is attributed to the high‐entropy compositional design and synthetic approach, which offers an entropy stabilization effect and strong interfacial bonding between the nanoparticles and carbon substrate. The approach promises a viable route toward synthesizing carbon‐supported high‐entropy electrocatalysts with good stability and high activity for various applications. The long‐term durability of electrocatalysts remains a major challenge due to issues such as nanoparticle detachment, agglomeration, and elemental segregation. This study demonstrates a series of carbon‐supported high‐entropy oxide (HEO/C) nanoparticles for stable electrocatalysts. In particular, a 10‐element HEO/C shows superior stability in the oxygen reduction reaction compared to the commercial Pd/C electrocatalyst.
AbstractList Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long‐term operations while maintaining high activity remains a grand challenge. Herein, a highly stable and active electrocatalyst featuring high‐entropy oxide (HEO) nanoparticles uniformly dispersed on commercial carbon black is reported, which is synthesized via rapid high‐temperature heating (≈1 s, 1400 K). Notably, the HEO nanoparticles with a record‐high entropy are composed of ten metal elements (i.e., Hf, Zr, La, V, Ce, Ti, Nd, Gd, Y, and Pd). The rapid high‐temperature synthesis can tailor structural stability and avoid nanoparticle detachment or agglomeration. Meanwhile, the high‐entropy design can enhance chemical stability to prevent elemental segregation. Using oxygen reduction reaction as a model, the 10‐element HEO exhibits good activity and greatly enhances stability (i.e., 92% and 86% retention after 12 and 100 h, respectively) compared to the commercial Pd/C electrocatalyst (i.e., 76% retention after 12 h). This superior performance is attributed to the high‐entropy compositional design and synthetic approach, which offers an entropy stabilization effect and strong interfacial bonding between the nanoparticles and carbon substrate. The approach promises a viable route toward synthesizing carbon‐supported high‐entropy electrocatalysts with good stability and high activity for various applications.
Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long‐term operations while maintaining high activity remains a grand challenge. Herein, a highly stable and active electrocatalyst featuring high‐entropy oxide (HEO) nanoparticles uniformly dispersed on commercial carbon black is reported, which is synthesized via rapid high‐temperature heating (≈1 s, 1400 K). Notably, the HEO nanoparticles with a record‐high entropy are composed of ten metal elements (i.e., Hf, Zr, La, V, Ce, Ti, Nd, Gd, Y, and Pd). The rapid high‐temperature synthesis can tailor structural stability and avoid nanoparticle detachment or agglomeration. Meanwhile, the high‐entropy design can enhance chemical stability to prevent elemental segregation. Using oxygen reduction reaction as a model, the 10‐element HEO exhibits good activity and greatly enhances stability (i.e., 92% and 86% retention after 12 and 100 h, respectively) compared to the commercial Pd/C electrocatalyst (i.e., 76% retention after 12 h). This superior performance is attributed to the high‐entropy compositional design and synthetic approach, which offers an entropy stabilization effect and strong interfacial bonding between the nanoparticles and carbon substrate. The approach promises a viable route toward synthesizing carbon‐supported high‐entropy electrocatalysts with good stability and high activity for various applications. The long‐term durability of electrocatalysts remains a major challenge due to issues such as nanoparticle detachment, agglomeration, and elemental segregation. This study demonstrates a series of carbon‐supported high‐entropy oxide (HEO/C) nanoparticles for stable electrocatalysts. In particular, a 10‐element HEO/C shows superior stability in the oxygen reduction reaction compared to the commercial Pd/C electrocatalyst.
Author Wang, Xizheng
Hu, Liangbing
Ko, Byung Hee
Dong, Qi
Chen, Wilson
Gao, Jinlong
Li, Tangyuan
Shahbazian‐Yassar, Reza
Jiao, Feng
Li, Jianguo
Li, Shuke
Huang, Zhennan
Yao, Yonggang
Author_xml – sequence: 1
  givenname: Tangyuan
  surname: Li
  fullname: Li, Tangyuan
  organization: University of Maryland
– sequence: 2
  givenname: Yonggang
  surname: Yao
  fullname: Yao, Yonggang
  organization: University of Maryland
– sequence: 3
  givenname: Byung Hee
  surname: Ko
  fullname: Ko, Byung Hee
  organization: University of Delaware
– sequence: 4
  givenname: Zhennan
  surname: Huang
  fullname: Huang, Zhennan
  organization: University of Illinois at Chicago
– sequence: 5
  givenname: Qi
  surname: Dong
  fullname: Dong, Qi
  organization: University of Maryland
– sequence: 6
  givenname: Jinlong
  surname: Gao
  fullname: Gao, Jinlong
  organization: University of Maryland
– sequence: 7
  givenname: Wilson
  surname: Chen
  fullname: Chen, Wilson
  organization: University of Delaware
– sequence: 8
  givenname: Jianguo
  surname: Li
  fullname: Li, Jianguo
  organization: University of Maryland
– sequence: 9
  givenname: Shuke
  surname: Li
  fullname: Li, Shuke
  organization: University of Maryland
– sequence: 10
  givenname: Xizheng
  surname: Wang
  fullname: Wang, Xizheng
  organization: University of Maryland
– sequence: 11
  givenname: Reza
  surname: Shahbazian‐Yassar
  fullname: Shahbazian‐Yassar, Reza
  email: rsyassar@uic.edu
  organization: University of Illinois at Chicago
– sequence: 12
  givenname: Feng
  surname: Jiao
  fullname: Jiao, Feng
  email: jiao@udel.edu
  organization: University of Delaware
– sequence: 13
  givenname: Liangbing
  orcidid: 0000-0002-9456-9315
  surname: Hu
  fullname: Hu, Liangbing
  email: binghu@umd.edu
  organization: University of Maryland
BookMark eNqFkMFKw0AQhhepYK1ePS94bt3NJtnkWGprhWrBKngLk82mpqTZuLtBc_MRfEafxI2VCoJ4mp-Z_5th_mPUq1QlETqjZEQJ8S4gy7cjj3iEkiCkB6hPQxoOGfGi3l7TxyN0bMyGEMo58_tITUCnqvp4e181da20lRmeF-sn15hWVqu6xcvXIpP4FipVg7aFKKXBYPDKQlpKPC2lcD4BFsrWWINzpR3SrmWF72TWCFuoTsGXMCfoMIfSyNPvOkAPs-n9ZD5cLK-uJ-PFUPjugWEeRCxlQRxTT8YCKEmB8CjlEXeTkAkIPOlzQiDlfpSlLAw8zhhhQSS4HzLKBuh8t7fW6rmRxiYb1ejKnUy8gFHq3Cx0rtHOJbQyRss8qXWxBd0mlCRdqEkXarIP1QH-L0AUFrrPrIai_BuLd9hLUcr2nyPJ-HJ288N-ApwrkGE
CitedBy_id crossref_primary_10_1007_s41918_022_00144_8
crossref_primary_10_1016_j_jcis_2023_05_043
crossref_primary_10_1002_adfm_202314282
crossref_primary_10_1007_s12598_024_02852_0
crossref_primary_10_1002_cssc_202102635
crossref_primary_10_1016_j_ccr_2024_216111
crossref_primary_10_1007_s12274_023_5419_2
crossref_primary_10_1016_j_pnsc_2024_04_014
crossref_primary_10_1016_j_pmatsci_2024_101385
crossref_primary_10_1021_acs_langmuir_4c02299
crossref_primary_10_1021_acs_nanolett_4c03208
crossref_primary_10_1002_adfm_202214275
crossref_primary_10_1039_D1NA00871D
crossref_primary_10_1016_j_jece_2023_110703
crossref_primary_10_1016_j_pmatsci_2024_101300
crossref_primary_10_1002_adfm_202413115
crossref_primary_10_1039_D3NA00090G
crossref_primary_10_1002_adfm_202315248
crossref_primary_10_1002_aenm_202300239
crossref_primary_10_1021_acscatal_2c00944
crossref_primary_10_1016_j_jallcom_2023_170690
crossref_primary_10_1016_j_jallcom_2023_172232
crossref_primary_10_1039_D4NR00474D
crossref_primary_10_3390_catal14060373
crossref_primary_10_1002_smsc_202200109
crossref_primary_10_1002_adma_202308490
crossref_primary_10_1039_D2SC04461G
crossref_primary_10_1002_adfm_202314820
crossref_primary_10_1016_j_jcis_2024_01_090
crossref_primary_10_1039_D1SE02038B
crossref_primary_10_1002_smll_202207820
crossref_primary_10_3390_nano11123221
crossref_primary_10_1002_anie_202200086
crossref_primary_10_1016_j_jechem_2021_12_026
crossref_primary_10_1016_j_apsusc_2024_161568
crossref_primary_10_1021_acsanm_3c00243
crossref_primary_10_1039_D1NR03147C
crossref_primary_10_1039_D3TA05096C
crossref_primary_10_1016_j_jpowsour_2024_235207
crossref_primary_10_1038_s41467_024_50721_2
crossref_primary_10_1088_1361_6528_acec4f
crossref_primary_10_1360_TB_2023_0133
crossref_primary_10_1002_adfm_202204643
crossref_primary_10_1021_acsaem_3c00311
crossref_primary_10_1002_smll_202309937
crossref_primary_10_1039_D4EY00104D
crossref_primary_10_1002_metm_31
crossref_primary_10_1126_science_abn3103
crossref_primary_10_1039_D3NR05176E
crossref_primary_10_1039_D2TA01376B
crossref_primary_10_1016_j_nanoen_2023_109153
crossref_primary_10_1039_D4TA04811C
crossref_primary_10_1016_j_checat_2022_10_002
crossref_primary_10_1039_D4TA04156A
crossref_primary_10_1002_cey2_263
crossref_primary_10_1007_s12274_022_4304_8
crossref_primary_10_1002_adfm_202214273
crossref_primary_10_1016_j_seppur_2024_130672
crossref_primary_10_1016_j_jallcom_2024_174304
crossref_primary_10_1002_phmt_14
crossref_primary_10_1021_acs_analchem_1c05005
crossref_primary_10_1021_acscatal_2c02778
crossref_primary_10_1021_acsnano_4c12538
crossref_primary_10_1038_s41467_023_41359_7
crossref_primary_10_1039_D4QI02985B
crossref_primary_10_1016_j_jechem_2023_07_019
crossref_primary_10_1016_j_jece_2024_114956
crossref_primary_10_1021_acscentsci_2c00340
crossref_primary_10_1039_D2CS01030E
crossref_primary_10_1016_j_cej_2022_138659
crossref_primary_10_1039_D3TA04862D
crossref_primary_10_1002_smll_202106358
crossref_primary_10_1016_j_cej_2022_139501
crossref_primary_10_1002_sstr_202200176
crossref_primary_10_1073_pnas_2313239121
crossref_primary_10_1002_adma_202107868
crossref_primary_10_1016_j_microc_2025_113332
crossref_primary_10_1039_D2SC06403K
crossref_primary_10_1021_acsestengg_3c00614
crossref_primary_10_1016_j_saa_2024_125158
crossref_primary_10_1016_j_cej_2023_145850
crossref_primary_10_1039_D4MH01764A
crossref_primary_10_1002_cssc_202401517
crossref_primary_10_1002_ange_202200086
crossref_primary_10_1016_j_jcis_2021_10_018
crossref_primary_10_1039_D3MH01302B
crossref_primary_10_1002_gch2_202300199
crossref_primary_10_1016_j_cej_2022_137210
crossref_primary_10_1002_sus2_32
crossref_primary_10_1016_j_nantod_2022_101697
crossref_primary_10_1039_D3TA07107C
crossref_primary_10_1002_adfm_202308229
crossref_primary_10_1002_adma_202305222
crossref_primary_10_1002_batt_202200068
crossref_primary_10_1016_j_cej_2024_149791
crossref_primary_10_1360_TB_2024_0239
crossref_primary_10_1021_acsami_2c11627
crossref_primary_10_1002_adfm_202205142
crossref_primary_10_1016_j_ccr_2023_215204
crossref_primary_10_1016_j_cej_2023_147862
crossref_primary_10_1021_acscatal_4c03349
crossref_primary_10_1021_acs_iecr_2c03876
crossref_primary_10_1021_acsami_2c02559
crossref_primary_10_1002_smtd_202300791
crossref_primary_10_3866_PKU_WHXB202307057
crossref_primary_10_1002_adfm_202113399
crossref_primary_10_1021_acsnano_2c01064
crossref_primary_10_1021_acs_nanolett_4c02985
crossref_primary_10_1007_s12274_023_5402_y
crossref_primary_10_1039_D3TA08101J
crossref_primary_10_1016_j_cej_2023_144506
crossref_primary_10_1016_j_checat_2022_05_003
crossref_primary_10_1007_s12274_022_5259_5
crossref_primary_10_1021_acsmaterialslett_4c01333
crossref_primary_10_1016_j_jcis_2023_02_128
crossref_primary_10_1002_smll_202403162
crossref_primary_10_1002_smll_202104761
crossref_primary_10_1021_acs_analchem_4c01960
crossref_primary_10_1016_j_jallcom_2025_178967
crossref_primary_10_1021_acs_energyfuels_3c04730
crossref_primary_10_1002_cey2_228
crossref_primary_10_1002_cssc_202401663
crossref_primary_10_1007_s12274_024_6421_z
Cites_doi 10.1038/ncomms9485
10.1073/pnas.1210315109
10.1016/j.scriptamat.2017.08.040
10.1002/adma.201806236
10.1039/C6EE03054H
10.1038/s41560-019-0355-9
10.1038/nchem.1069
10.1021/acs.chemmater.5b00450
10.1126/science.aam5852
10.1039/C4EE03869J
10.1002/adfm.201201244
10.1021/acscatal.5b00524
10.1016/j.apcatb.2018.10.040
10.1002/adma.201806296
10.1038/nmat3087
10.1002/smll.201603793
10.1016/j.nantod.2016.09.001
10.1002/aenm.201700826
10.1002/adma.201705441
10.1038/ncomms8345
10.1107/S0567739476001551
10.1002/adma.201400173
10.1002/ange.201502226
10.1149/1.3456630
10.1016/j.electacta.2018.05.077
10.1016/j.joule.2018.06.019
10.1021/nl401325u
10.1038/s41929-020-00554-1
10.1038/s41578-019-0170-8
10.1002/anie.201509382
10.1021/acs.chemrev.5b00462
10.1002/adma.201803625
10.1021/ja3030565
10.1002/adma.201601651
10.1002/cssc.201902705
10.1126/science.aan5412
10.1002/anie.201708765
10.1021/ja305623m
10.1021/ja210924t
10.1002/adma.201807468
10.1038/s41586-019-1603-7
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202010561
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202010561
ADFM202010561
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMR‐1809439
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4201-f583b359912e9ca10ba078b787f5863ca52e4700ab748db36527330358c746313
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 06:12:11 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
Tue Jul 01 04:12:27 EDT 2025
Wed Jan 22 16:29:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4201-f583b359912e9ca10ba078b787f5863ca52e4700ab748db36527330358c746313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9456-9315
PQID 2531173336
PQPubID 2045204
PageCount 7
ParticipantIDs proquest_journals_2531173336
crossref_primary_10_1002_adfm_202010561
crossref_citationtrail_10_1002_adfm_202010561
wiley_primary_10_1002_adfm_202010561_ADFM202010561
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 142
2017; 7
2015; 6
2019; 4
2015; 5
2021; 4
2019; 31
2015; 127
2019; 59
2014; 26
2011; 10
2020; 13
1971
2011; 3
2015; 8
2017; 356
2019; 243
2012; 109
2016; 11
2016; 55
1976; 32
2020; 5
2015; 27
2018; 2
2012; 134
2018; 359
2013; 13
2017; 10
2017; 13
2010; 157
2018; 279
2017; 56
2018; 30
2016; 116
2016; 28
2012; 22
2019; 574
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
Reed T. B. (e_1_2_9_35_1) 1971
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Lu X. F. (e_1_2_9_38_1) 2019; 59
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 4
  start-page: 62
  year: 2021
  publication-title: Nat. Catal.
– volume: 2
  start-page: 1242
  year: 2018
  publication-title: Joule
– volume: 109
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 13
  start-page: 111
  year: 2020
  publication-title: ChemSusChem
– volume: 116
  start-page: 3594
  year: 2016
  publication-title: Chem. Rev.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 134
  start-page: 9082
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 601
  year: 2016
  publication-title: Nano Today
– volume: 134
  start-page: 3517
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 780
  year: 2011
  publication-title: Nat. Mater.
– volume: 127
  start-page: 7507
  year: 2015
  publication-title: Angew. Chem.
– volume: 243
  start-page: 175
  year: 2019
  publication-title: Appl. Catal., B
– year: 1971
– volume: 28
  start-page: 8771
  year: 2016
  publication-title: Adv. Mater.
– volume: 157
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 22
  start-page: 4584
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 329
  year: 2019
  publication-title: Nat. Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 356
  start-page: 599
  year: 2017
  publication-title: Science
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 4662
  year: 2019
  publication-title: Angew. Chem.
– volume: 279
  start-page: 301
  year: 2018
  publication-title: Electrochim. Acta
– volume: 142
  start-page: 116
  year: 2018
  publication-title: Scr. Mater.
– volume: 8
  start-page: 1404
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 295
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 26
  start-page: 3943
  year: 2014
  publication-title: Adv. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 2947
  year: 2013
  publication-title: Nano Lett.
– volume: 27
  start-page: 3048
  year: 2015
  publication-title: Chem. Mater.
– volume: 10
  start-page: 321
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 359
  start-page: 1489
  year: 2018
  publication-title: Science
– volume: 32
  start-page: 751
  year: 1976
  publication-title: Acta Crystallogr., Sect. A: Found. Crystallogr.
– volume: 55
  start-page: 4087
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 7345
  year: 2015
  publication-title: Nat. Commun.
– volume: 6
  start-page: 8485
  year: 2015
  publication-title: Nat. Commun.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 5
  start-page: 4643
  year: 2015
  publication-title: ACS Catal.
– volume: 574
  start-page: 81
  year: 2019
  publication-title: Nature
– volume: 3
  start-page: 546
  year: 2011
  publication-title: Nat. Chem.
– ident: e_1_2_9_20_1
  doi: 10.1038/ncomms9485
– ident: e_1_2_9_11_1
  doi: 10.1073/pnas.1210315109
– ident: e_1_2_9_21_1
  doi: 10.1016/j.scriptamat.2017.08.040
– ident: e_1_2_9_22_1
  doi: 10.1002/adma.201806236
– ident: e_1_2_9_27_1
  doi: 10.1039/C6EE03054H
– ident: e_1_2_9_37_1
  doi: 10.1038/s41560-019-0355-9
– ident: e_1_2_9_10_1
  doi: 10.1038/nchem.1069
– ident: e_1_2_9_39_1
  doi: 10.1021/acs.chemmater.5b00450
– ident: e_1_2_9_7_1
  doi: 10.1126/science.aam5852
– ident: e_1_2_9_15_1
  doi: 10.1039/C4EE03869J
– ident: e_1_2_9_19_1
  doi: 10.1002/adfm.201201244
– volume: 59
  start-page: 4662
  year: 2019
  ident: e_1_2_9_38_1
  publication-title: Angew. Chem.
– ident: e_1_2_9_2_1
  doi: 10.1021/acscatal.5b00524
– ident: e_1_2_9_43_1
  doi: 10.1016/j.apcatb.2018.10.040
– ident: e_1_2_9_3_1
  doi: 10.1002/adma.201806296
– ident: e_1_2_9_9_1
  doi: 10.1038/nmat3087
– ident: e_1_2_9_6_1
  doi: 10.1002/smll.201603793
– ident: e_1_2_9_14_1
  doi: 10.1016/j.nantod.2016.09.001
– ident: e_1_2_9_8_1
  doi: 10.1002/aenm.201700826
– ident: e_1_2_9_12_1
  doi: 10.1002/adma.201705441
– ident: e_1_2_9_29_1
  doi: 10.1038/ncomms8345
– ident: e_1_2_9_36_1
  doi: 10.1107/S0567739476001551
– ident: e_1_2_9_31_1
  doi: 10.1002/adma.201400173
– volume-title: Free Energy of Formation of Binary Compounds
  year: 1971
  ident: e_1_2_9_35_1
– ident: e_1_2_9_34_1
  doi: 10.1002/ange.201502226
– ident: e_1_2_9_16_1
  doi: 10.1149/1.3456630
– ident: e_1_2_9_32_1
  doi: 10.1016/j.electacta.2018.05.077
– ident: e_1_2_9_40_1
  doi: 10.1016/j.joule.2018.06.019
– ident: e_1_2_9_13_1
  doi: 10.1021/nl401325u
– ident: e_1_2_9_25_1
  doi: 10.1038/s41929-020-00554-1
– ident: e_1_2_9_24_1
  doi: 10.1038/s41578-019-0170-8
– ident: e_1_2_9_26_1
  doi: 10.1002/anie.201509382
– ident: e_1_2_9_1_1
  doi: 10.1021/acs.chemrev.5b00462
– ident: e_1_2_9_4_1
  doi: 10.1002/adma.201803625
– ident: e_1_2_9_28_1
  doi: 10.1021/ja3030565
– ident: e_1_2_9_41_1
  doi: 10.1002/adma.201601651
– ident: e_1_2_9_23_1
  doi: 10.1002/cssc.201902705
– ident: e_1_2_9_33_1
  doi: 10.1126/science.aan5412
– ident: e_1_2_9_42_1
  doi: 10.1002/anie.201708765
– ident: e_1_2_9_17_1
  doi: 10.1021/ja305623m
– ident: e_1_2_9_18_1
  doi: 10.1021/ja210924t
– ident: e_1_2_9_30_1
  doi: 10.1002/adma.201807468
– ident: e_1_2_9_5_1
  doi: 10.1038/s41586-019-1603-7
SSID ssj0017734
Score 2.6593971
Snippet Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long‐term...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bonding strength
Carbon
Carbon black
Electrocatalysts
Entropy
Gadolinium
high‐entropy oxides
high‐temperature synthesis
Interfacial bonding
Materials science
Nanoparticles
Oxygen reduction reactions
Palladium
Structural stability
Substrates
Synthesis
Titanium
Zirconium
Title Carbon‐Supported High‐Entropy Oxide Nanoparticles as Stable Electrocatalysts for Oxygen Reduction Reactions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202010561
https://www.proquest.com/docview/2531173336
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wLk6n5EHwqVubS9s9jrkxhCkMB3srSZOBOLaxbuB88if4G_0lntN23SaIoG-9JCXNOSf5knz5QsiNMNzoeqgdYRh3hC8DCKnYcwKjmLXQH-hUTKf74Hf64n4gBxu7-DN9iGLCDSMjba8xwJVOamvRUGWGuJMcV3NlOv5Bwhaiol6hH-UFQbas7HtI8PIGK9VGl9W2s2_3SmuouQlY0x6nfUDUqqwZ0eSlupjravz2TcbxPz9zSPZzOEobmf8ckR07PiZ7GyKFJ2TSVDM9GX--f-AJoMjNNRTZIfCghTT36ZI-vj4bS6GhhhF4TrSjKqEAZPXI0lZ20k46UbRM5gkFnAxZluC6tIfKsegbcJVtsUhOSb_demp2nPyYBicWUGBnKEOuuQSgyWw9Vp6rFeAODS0BvPF5rCSzInBdpQMRGg1WAsgEPacM40D43ONnpDSejO05obJuJYO64HXFBSItV-jQD5QQJpZDZcvEWZkpinMNczxKYxRl6ssswoqMioosk9si_TRT7_gxZWVl9SiP4iRi0EB5UFbulwlLzffLV6LGXbtb3F38JdMl2WVIm0k5lRVSms8W9gpwz1xfp779Badf-wY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA1SF-rCt1ifWQiuxs7kMTNdirZUbSuIgrshmaQglrY4FawrP8Fv9Eu8d16tggi6m0cyZJJ7k5Pk5FxCjoThRtdD7QjDuCN8GYBLxZ4TGMWshfFAp2I6na7fuhOX97JgE-JZmEwfolxwQ89I-2t0cFyQrk1VQ5Xp4VFy3M6VOAGax7DeGMTg_KZUkPKCINtY9j2keHn3hW6jy2pf838dl6ZgcxaypmNOc4XoorQZ1eTx5HmsT-LXb0KO__qdVbKcI1J6mpnQGpmzg3WyNKNTuEGGZ-pJDwcfb-8YBBTpuYYiQQQeNJDpPprQ65cHYyn01TAJz7l2VCUUsKzuW9rIgu2ka0WTZJxQgMqQZQLWS29QPBbNA66yUxbJJrlrNm7PWk4eqcGJBRTY6cmQay4BazJbj5XnagXQQ0NnAG98HivJrAhcV-lAhEZzH2XfYPCUYRwIn3t8i1QGw4HdJlTWrWRQF7yuuECw5Qod-oESwsSyp2yVOEU7RXEuY47RNPpRJsDMIqzIqKzIKjku048yAY8fU-4VzR7ljpxEDPooD8rK_Sphafv98pXo9LzZKe92_pLpkCy0bjvtqH3RvdoliwxZNCnFco9Uxk_Pdh9g0FgfpIb-CVaR_yA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIPrgXZzXPAg-Vdvc2j2K2_CuiIO9laTJQJRt2AnOJ3-Cv9Ff4jlt122CCPrWS1LS5Fy-JCffIWRfWG5NNTKesIx7QskQVCoJvNBq5hz4A5OR6Vxdq9OmOG_J1tgp_pwfolxwQ83I7DUqeM-2j0akodq28SQ57uZKnP_MCAUag7DoriSQCsIw31dWAUZ4Ba0hbaPPjibrT7qlEdYcR6yZy2ksEj1sbB5p8nj40jeHyds3Hsf__M0SWSjwKD3OBWiZTLnOCpkfYylcJd0T_Wy6nc_3D0wBisG5lmJ4CDyoY5x7b0BvXh-so2CpYQpeRNpRnVJAsubJ0XqeaidbKRqk_ZQCUIYqA5BdeofUsSgccJWfsUjXSLNRvz859Yo8DV4ioMFeW0bccAlIk7lqogPfaAAeBkwBvFE80ZI5Efq-NqGIrOEKSd_AdcooCYXiAV8n051ux20QKqtOMugLXtVcINTyhYlUqIWwiWxrVyHecJjipCAxx1waT3FOv8xi7Mi47MgKOSjL93L6jh9Lbg9HPS7UOI0ZWKgA2spVhbBs-H75Snxca1yVd5t_qbRHZm9rjfjy7Ppii8wxDKHJ4iu3yXT_-cXtAAbqm91MzL8Acg_92A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon%E2%80%90Supported+High%E2%80%90Entropy+Oxide+Nanoparticles+as+Stable+Electrocatalysts+for+Oxygen+Reduction+Reactions&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Tangyuan&rft.au=Yao%2C+Yonggang&rft.au=Ko%2C+Byung+Hee&rft.au=Huang%2C+Zhennan&rft.date=2021-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202010561&rft.externalDBID=10.1002%252Fadfm.202010561&rft.externalDocID=ADFM202010561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon