Carbon‐Supported High‐Entropy Oxide Nanoparticles as Stable Electrocatalysts for Oxygen Reduction Reactions
Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long‐term operations while maintaining high activity remains a grand challenge. Herein, a highly stable and active electrocatalyst featuring high‐entro...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 21 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202010561 |
Cover
Loading…
Abstract | Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long‐term operations while maintaining high activity remains a grand challenge. Herein, a highly stable and active electrocatalyst featuring high‐entropy oxide (HEO) nanoparticles uniformly dispersed on commercial carbon black is reported, which is synthesized via rapid high‐temperature heating (≈1 s, 1400 K). Notably, the HEO nanoparticles with a record‐high entropy are composed of ten metal elements (i.e., Hf, Zr, La, V, Ce, Ti, Nd, Gd, Y, and Pd). The rapid high‐temperature synthesis can tailor structural stability and avoid nanoparticle detachment or agglomeration. Meanwhile, the high‐entropy design can enhance chemical stability to prevent elemental segregation. Using oxygen reduction reaction as a model, the 10‐element HEO exhibits good activity and greatly enhances stability (i.e., 92% and 86% retention after 12 and 100 h, respectively) compared to the commercial Pd/C electrocatalyst (i.e., 76% retention after 12 h). This superior performance is attributed to the high‐entropy compositional design and synthetic approach, which offers an entropy stabilization effect and strong interfacial bonding between the nanoparticles and carbon substrate. The approach promises a viable route toward synthesizing carbon‐supported high‐entropy electrocatalysts with good stability and high activity for various applications.
The long‐term durability of electrocatalysts remains a major challenge due to issues such as nanoparticle detachment, agglomeration, and elemental segregation. This study demonstrates a series of carbon‐supported high‐entropy oxide (HEO/C) nanoparticles for stable electrocatalysts. In particular, a 10‐element HEO/C shows superior stability in the oxygen reduction reaction compared to the commercial Pd/C electrocatalyst. |
---|---|
AbstractList | Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long‐term operations while maintaining high activity remains a grand challenge. Herein, a highly stable and active electrocatalyst featuring high‐entropy oxide (HEO) nanoparticles uniformly dispersed on commercial carbon black is reported, which is synthesized via rapid high‐temperature heating (≈1 s, 1400 K). Notably, the HEO nanoparticles with a record‐high entropy are composed of ten metal elements (i.e., Hf, Zr, La, V, Ce, Ti, Nd, Gd, Y, and Pd). The rapid high‐temperature synthesis can tailor structural stability and avoid nanoparticle detachment or agglomeration. Meanwhile, the high‐entropy design can enhance chemical stability to prevent elemental segregation. Using oxygen reduction reaction as a model, the 10‐element HEO exhibits good activity and greatly enhances stability (i.e., 92% and 86% retention after 12 and 100 h, respectively) compared to the commercial Pd/C electrocatalyst (i.e., 76% retention after 12 h). This superior performance is attributed to the high‐entropy compositional design and synthetic approach, which offers an entropy stabilization effect and strong interfacial bonding between the nanoparticles and carbon substrate. The approach promises a viable route toward synthesizing carbon‐supported high‐entropy electrocatalysts with good stability and high activity for various applications. Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long‐term operations while maintaining high activity remains a grand challenge. Herein, a highly stable and active electrocatalyst featuring high‐entropy oxide (HEO) nanoparticles uniformly dispersed on commercial carbon black is reported, which is synthesized via rapid high‐temperature heating (≈1 s, 1400 K). Notably, the HEO nanoparticles with a record‐high entropy are composed of ten metal elements (i.e., Hf, Zr, La, V, Ce, Ti, Nd, Gd, Y, and Pd). The rapid high‐temperature synthesis can tailor structural stability and avoid nanoparticle detachment or agglomeration. Meanwhile, the high‐entropy design can enhance chemical stability to prevent elemental segregation. Using oxygen reduction reaction as a model, the 10‐element HEO exhibits good activity and greatly enhances stability (i.e., 92% and 86% retention after 12 and 100 h, respectively) compared to the commercial Pd/C electrocatalyst (i.e., 76% retention after 12 h). This superior performance is attributed to the high‐entropy compositional design and synthetic approach, which offers an entropy stabilization effect and strong interfacial bonding between the nanoparticles and carbon substrate. The approach promises a viable route toward synthesizing carbon‐supported high‐entropy electrocatalysts with good stability and high activity for various applications. The long‐term durability of electrocatalysts remains a major challenge due to issues such as nanoparticle detachment, agglomeration, and elemental segregation. This study demonstrates a series of carbon‐supported high‐entropy oxide (HEO/C) nanoparticles for stable electrocatalysts. In particular, a 10‐element HEO/C shows superior stability in the oxygen reduction reaction compared to the commercial Pd/C electrocatalyst. |
Author | Wang, Xizheng Hu, Liangbing Ko, Byung Hee Dong, Qi Chen, Wilson Gao, Jinlong Li, Tangyuan Shahbazian‐Yassar, Reza Jiao, Feng Li, Jianguo Li, Shuke Huang, Zhennan Yao, Yonggang |
Author_xml | – sequence: 1 givenname: Tangyuan surname: Li fullname: Li, Tangyuan organization: University of Maryland – sequence: 2 givenname: Yonggang surname: Yao fullname: Yao, Yonggang organization: University of Maryland – sequence: 3 givenname: Byung Hee surname: Ko fullname: Ko, Byung Hee organization: University of Delaware – sequence: 4 givenname: Zhennan surname: Huang fullname: Huang, Zhennan organization: University of Illinois at Chicago – sequence: 5 givenname: Qi surname: Dong fullname: Dong, Qi organization: University of Maryland – sequence: 6 givenname: Jinlong surname: Gao fullname: Gao, Jinlong organization: University of Maryland – sequence: 7 givenname: Wilson surname: Chen fullname: Chen, Wilson organization: University of Delaware – sequence: 8 givenname: Jianguo surname: Li fullname: Li, Jianguo organization: University of Maryland – sequence: 9 givenname: Shuke surname: Li fullname: Li, Shuke organization: University of Maryland – sequence: 10 givenname: Xizheng surname: Wang fullname: Wang, Xizheng organization: University of Maryland – sequence: 11 givenname: Reza surname: Shahbazian‐Yassar fullname: Shahbazian‐Yassar, Reza email: rsyassar@uic.edu organization: University of Illinois at Chicago – sequence: 12 givenname: Feng surname: Jiao fullname: Jiao, Feng email: jiao@udel.edu organization: University of Delaware – sequence: 13 givenname: Liangbing orcidid: 0000-0002-9456-9315 surname: Hu fullname: Hu, Liangbing email: binghu@umd.edu organization: University of Maryland |
BookMark | eNqFkMFKw0AQhhepYK1ePS94bt3NJtnkWGprhWrBKngLk82mpqTZuLtBc_MRfEafxI2VCoJ4mp-Z_5th_mPUq1QlETqjZEQJ8S4gy7cjj3iEkiCkB6hPQxoOGfGi3l7TxyN0bMyGEMo58_tITUCnqvp4e181da20lRmeF-sn15hWVqu6xcvXIpP4FipVg7aFKKXBYPDKQlpKPC2lcD4BFsrWWINzpR3SrmWF72TWCFuoTsGXMCfoMIfSyNPvOkAPs-n9ZD5cLK-uJ-PFUPjugWEeRCxlQRxTT8YCKEmB8CjlEXeTkAkIPOlzQiDlfpSlLAw8zhhhQSS4HzLKBuh8t7fW6rmRxiYb1ejKnUy8gFHq3Cx0rtHOJbQyRss8qXWxBd0mlCRdqEkXarIP1QH-L0AUFrrPrIai_BuLd9hLUcr2nyPJ-HJ288N-ApwrkGE |
CitedBy_id | crossref_primary_10_1007_s41918_022_00144_8 crossref_primary_10_1016_j_jcis_2023_05_043 crossref_primary_10_1002_adfm_202314282 crossref_primary_10_1007_s12598_024_02852_0 crossref_primary_10_1002_cssc_202102635 crossref_primary_10_1016_j_ccr_2024_216111 crossref_primary_10_1007_s12274_023_5419_2 crossref_primary_10_1016_j_pnsc_2024_04_014 crossref_primary_10_1016_j_pmatsci_2024_101385 crossref_primary_10_1021_acs_langmuir_4c02299 crossref_primary_10_1021_acs_nanolett_4c03208 crossref_primary_10_1002_adfm_202214275 crossref_primary_10_1039_D1NA00871D crossref_primary_10_1016_j_jece_2023_110703 crossref_primary_10_1016_j_pmatsci_2024_101300 crossref_primary_10_1002_adfm_202413115 crossref_primary_10_1039_D3NA00090G crossref_primary_10_1002_adfm_202315248 crossref_primary_10_1002_aenm_202300239 crossref_primary_10_1021_acscatal_2c00944 crossref_primary_10_1016_j_jallcom_2023_170690 crossref_primary_10_1016_j_jallcom_2023_172232 crossref_primary_10_1039_D4NR00474D crossref_primary_10_3390_catal14060373 crossref_primary_10_1002_smsc_202200109 crossref_primary_10_1002_adma_202308490 crossref_primary_10_1039_D2SC04461G crossref_primary_10_1002_adfm_202314820 crossref_primary_10_1016_j_jcis_2024_01_090 crossref_primary_10_1039_D1SE02038B crossref_primary_10_1002_smll_202207820 crossref_primary_10_3390_nano11123221 crossref_primary_10_1002_anie_202200086 crossref_primary_10_1016_j_jechem_2021_12_026 crossref_primary_10_1016_j_apsusc_2024_161568 crossref_primary_10_1021_acsanm_3c00243 crossref_primary_10_1039_D1NR03147C crossref_primary_10_1039_D3TA05096C crossref_primary_10_1016_j_jpowsour_2024_235207 crossref_primary_10_1038_s41467_024_50721_2 crossref_primary_10_1088_1361_6528_acec4f crossref_primary_10_1360_TB_2023_0133 crossref_primary_10_1002_adfm_202204643 crossref_primary_10_1021_acsaem_3c00311 crossref_primary_10_1002_smll_202309937 crossref_primary_10_1039_D4EY00104D crossref_primary_10_1002_metm_31 crossref_primary_10_1126_science_abn3103 crossref_primary_10_1039_D3NR05176E crossref_primary_10_1039_D2TA01376B crossref_primary_10_1016_j_nanoen_2023_109153 crossref_primary_10_1039_D4TA04811C crossref_primary_10_1016_j_checat_2022_10_002 crossref_primary_10_1039_D4TA04156A crossref_primary_10_1002_cey2_263 crossref_primary_10_1007_s12274_022_4304_8 crossref_primary_10_1002_adfm_202214273 crossref_primary_10_1016_j_seppur_2024_130672 crossref_primary_10_1016_j_jallcom_2024_174304 crossref_primary_10_1002_phmt_14 crossref_primary_10_1021_acs_analchem_1c05005 crossref_primary_10_1021_acscatal_2c02778 crossref_primary_10_1021_acsnano_4c12538 crossref_primary_10_1038_s41467_023_41359_7 crossref_primary_10_1039_D4QI02985B crossref_primary_10_1016_j_jechem_2023_07_019 crossref_primary_10_1016_j_jece_2024_114956 crossref_primary_10_1021_acscentsci_2c00340 crossref_primary_10_1039_D2CS01030E crossref_primary_10_1016_j_cej_2022_138659 crossref_primary_10_1039_D3TA04862D crossref_primary_10_1002_smll_202106358 crossref_primary_10_1016_j_cej_2022_139501 crossref_primary_10_1002_sstr_202200176 crossref_primary_10_1073_pnas_2313239121 crossref_primary_10_1002_adma_202107868 crossref_primary_10_1016_j_microc_2025_113332 crossref_primary_10_1039_D2SC06403K crossref_primary_10_1021_acsestengg_3c00614 crossref_primary_10_1016_j_saa_2024_125158 crossref_primary_10_1016_j_cej_2023_145850 crossref_primary_10_1039_D4MH01764A crossref_primary_10_1002_cssc_202401517 crossref_primary_10_1002_ange_202200086 crossref_primary_10_1016_j_jcis_2021_10_018 crossref_primary_10_1039_D3MH01302B crossref_primary_10_1002_gch2_202300199 crossref_primary_10_1016_j_cej_2022_137210 crossref_primary_10_1002_sus2_32 crossref_primary_10_1016_j_nantod_2022_101697 crossref_primary_10_1039_D3TA07107C crossref_primary_10_1002_adfm_202308229 crossref_primary_10_1002_adma_202305222 crossref_primary_10_1002_batt_202200068 crossref_primary_10_1016_j_cej_2024_149791 crossref_primary_10_1360_TB_2024_0239 crossref_primary_10_1021_acsami_2c11627 crossref_primary_10_1002_adfm_202205142 crossref_primary_10_1016_j_ccr_2023_215204 crossref_primary_10_1016_j_cej_2023_147862 crossref_primary_10_1021_acscatal_4c03349 crossref_primary_10_1021_acs_iecr_2c03876 crossref_primary_10_1021_acsami_2c02559 crossref_primary_10_1002_smtd_202300791 crossref_primary_10_3866_PKU_WHXB202307057 crossref_primary_10_1002_adfm_202113399 crossref_primary_10_1021_acsnano_2c01064 crossref_primary_10_1021_acs_nanolett_4c02985 crossref_primary_10_1007_s12274_023_5402_y crossref_primary_10_1039_D3TA08101J crossref_primary_10_1016_j_cej_2023_144506 crossref_primary_10_1016_j_checat_2022_05_003 crossref_primary_10_1007_s12274_022_5259_5 crossref_primary_10_1021_acsmaterialslett_4c01333 crossref_primary_10_1016_j_jcis_2023_02_128 crossref_primary_10_1002_smll_202403162 crossref_primary_10_1002_smll_202104761 crossref_primary_10_1021_acs_analchem_4c01960 crossref_primary_10_1016_j_jallcom_2025_178967 crossref_primary_10_1021_acs_energyfuels_3c04730 crossref_primary_10_1002_cey2_228 crossref_primary_10_1002_cssc_202401663 crossref_primary_10_1007_s12274_024_6421_z |
Cites_doi | 10.1038/ncomms9485 10.1073/pnas.1210315109 10.1016/j.scriptamat.2017.08.040 10.1002/adma.201806236 10.1039/C6EE03054H 10.1038/s41560-019-0355-9 10.1038/nchem.1069 10.1021/acs.chemmater.5b00450 10.1126/science.aam5852 10.1039/C4EE03869J 10.1002/adfm.201201244 10.1021/acscatal.5b00524 10.1016/j.apcatb.2018.10.040 10.1002/adma.201806296 10.1038/nmat3087 10.1002/smll.201603793 10.1016/j.nantod.2016.09.001 10.1002/aenm.201700826 10.1002/adma.201705441 10.1038/ncomms8345 10.1107/S0567739476001551 10.1002/adma.201400173 10.1002/ange.201502226 10.1149/1.3456630 10.1016/j.electacta.2018.05.077 10.1016/j.joule.2018.06.019 10.1021/nl401325u 10.1038/s41929-020-00554-1 10.1038/s41578-019-0170-8 10.1002/anie.201509382 10.1021/acs.chemrev.5b00462 10.1002/adma.201803625 10.1021/ja3030565 10.1002/adma.201601651 10.1002/cssc.201902705 10.1126/science.aan5412 10.1002/anie.201708765 10.1021/ja305623m 10.1021/ja210924t 10.1002/adma.201807468 10.1038/s41586-019-1603-7 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202010561 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202010561 ADFM202010561 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: DMR‐1809439 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4201-f583b359912e9ca10ba078b787f5863ca52e4700ab748db36527330358c746313 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 06:12:11 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 Tue Jul 01 04:12:27 EDT 2025 Wed Jan 22 16:29:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4201-f583b359912e9ca10ba078b787f5863ca52e4700ab748db36527330358c746313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9456-9315 |
PQID | 2531173336 |
PQPubID | 2045204 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2531173336 crossref_primary_10_1002_adfm_202010561 crossref_citationtrail_10_1002_adfm_202010561 wiley_primary_10_1002_adfm_202010561_ADFM202010561 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 142 2017; 7 2015; 6 2019; 4 2015; 5 2021; 4 2019; 31 2015; 127 2019; 59 2014; 26 2011; 10 2020; 13 1971 2011; 3 2015; 8 2017; 356 2019; 243 2012; 109 2016; 11 2016; 55 1976; 32 2020; 5 2015; 27 2018; 2 2012; 134 2018; 359 2013; 13 2017; 10 2017; 13 2010; 157 2018; 279 2017; 56 2018; 30 2016; 116 2016; 28 2012; 22 2019; 574 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 Reed T. B. (e_1_2_9_35_1) 1971 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 Lu X. F. (e_1_2_9_38_1) 2019; 59 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 4 start-page: 62 year: 2021 publication-title: Nat. Catal. – volume: 2 start-page: 1242 year: 2018 publication-title: Joule – volume: 109 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 start-page: 111 year: 2020 publication-title: ChemSusChem – volume: 116 start-page: 3594 year: 2016 publication-title: Chem. Rev. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 134 start-page: 9082 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 601 year: 2016 publication-title: Nano Today – volume: 134 start-page: 3517 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 780 year: 2011 publication-title: Nat. Mater. – volume: 127 start-page: 7507 year: 2015 publication-title: Angew. Chem. – volume: 243 start-page: 175 year: 2019 publication-title: Appl. Catal., B – year: 1971 – volume: 28 start-page: 8771 year: 2016 publication-title: Adv. Mater. – volume: 157 year: 2010 publication-title: J. Electrochem. Soc. – volume: 22 start-page: 4584 year: 2012 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 329 year: 2019 publication-title: Nat. Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 356 start-page: 599 year: 2017 publication-title: Science – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 4662 year: 2019 publication-title: Angew. Chem. – volume: 279 start-page: 301 year: 2018 publication-title: Electrochim. Acta – volume: 142 start-page: 116 year: 2018 publication-title: Scr. Mater. – volume: 8 start-page: 1404 year: 2015 publication-title: Energy Environ. Sci. – volume: 5 start-page: 295 year: 2020 publication-title: Nat. Rev. Mater. – volume: 26 start-page: 3943 year: 2014 publication-title: Adv. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 13 start-page: 2947 year: 2013 publication-title: Nano Lett. – volume: 27 start-page: 3048 year: 2015 publication-title: Chem. Mater. – volume: 10 start-page: 321 year: 2017 publication-title: Energy Environ. Sci. – volume: 359 start-page: 1489 year: 2018 publication-title: Science – volume: 32 start-page: 751 year: 1976 publication-title: Acta Crystallogr., Sect. A: Found. Crystallogr. – volume: 55 start-page: 4087 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 7345 year: 2015 publication-title: Nat. Commun. – volume: 6 start-page: 8485 year: 2015 publication-title: Nat. Commun. – volume: 13 year: 2017 publication-title: Small – volume: 5 start-page: 4643 year: 2015 publication-title: ACS Catal. – volume: 574 start-page: 81 year: 2019 publication-title: Nature – volume: 3 start-page: 546 year: 2011 publication-title: Nat. Chem. – ident: e_1_2_9_20_1 doi: 10.1038/ncomms9485 – ident: e_1_2_9_11_1 doi: 10.1073/pnas.1210315109 – ident: e_1_2_9_21_1 doi: 10.1016/j.scriptamat.2017.08.040 – ident: e_1_2_9_22_1 doi: 10.1002/adma.201806236 – ident: e_1_2_9_27_1 doi: 10.1039/C6EE03054H – ident: e_1_2_9_37_1 doi: 10.1038/s41560-019-0355-9 – ident: e_1_2_9_10_1 doi: 10.1038/nchem.1069 – ident: e_1_2_9_39_1 doi: 10.1021/acs.chemmater.5b00450 – ident: e_1_2_9_7_1 doi: 10.1126/science.aam5852 – ident: e_1_2_9_15_1 doi: 10.1039/C4EE03869J – ident: e_1_2_9_19_1 doi: 10.1002/adfm.201201244 – volume: 59 start-page: 4662 year: 2019 ident: e_1_2_9_38_1 publication-title: Angew. Chem. – ident: e_1_2_9_2_1 doi: 10.1021/acscatal.5b00524 – ident: e_1_2_9_43_1 doi: 10.1016/j.apcatb.2018.10.040 – ident: e_1_2_9_3_1 doi: 10.1002/adma.201806296 – ident: e_1_2_9_9_1 doi: 10.1038/nmat3087 – ident: e_1_2_9_6_1 doi: 10.1002/smll.201603793 – ident: e_1_2_9_14_1 doi: 10.1016/j.nantod.2016.09.001 – ident: e_1_2_9_8_1 doi: 10.1002/aenm.201700826 – ident: e_1_2_9_12_1 doi: 10.1002/adma.201705441 – ident: e_1_2_9_29_1 doi: 10.1038/ncomms8345 – ident: e_1_2_9_36_1 doi: 10.1107/S0567739476001551 – ident: e_1_2_9_31_1 doi: 10.1002/adma.201400173 – volume-title: Free Energy of Formation of Binary Compounds year: 1971 ident: e_1_2_9_35_1 – ident: e_1_2_9_34_1 doi: 10.1002/ange.201502226 – ident: e_1_2_9_16_1 doi: 10.1149/1.3456630 – ident: e_1_2_9_32_1 doi: 10.1016/j.electacta.2018.05.077 – ident: e_1_2_9_40_1 doi: 10.1016/j.joule.2018.06.019 – ident: e_1_2_9_13_1 doi: 10.1021/nl401325u – ident: e_1_2_9_25_1 doi: 10.1038/s41929-020-00554-1 – ident: e_1_2_9_24_1 doi: 10.1038/s41578-019-0170-8 – ident: e_1_2_9_26_1 doi: 10.1002/anie.201509382 – ident: e_1_2_9_1_1 doi: 10.1021/acs.chemrev.5b00462 – ident: e_1_2_9_4_1 doi: 10.1002/adma.201803625 – ident: e_1_2_9_28_1 doi: 10.1021/ja3030565 – ident: e_1_2_9_41_1 doi: 10.1002/adma.201601651 – ident: e_1_2_9_23_1 doi: 10.1002/cssc.201902705 – ident: e_1_2_9_33_1 doi: 10.1126/science.aan5412 – ident: e_1_2_9_42_1 doi: 10.1002/anie.201708765 – ident: e_1_2_9_17_1 doi: 10.1021/ja305623m – ident: e_1_2_9_18_1 doi: 10.1021/ja210924t – ident: e_1_2_9_30_1 doi: 10.1002/adma.201807468 – ident: e_1_2_9_5_1 doi: 10.1038/s41586-019-1603-7 |
SSID | ssj0017734 |
Score | 2.6593971 |
Snippet | Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long‐term... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bonding strength Carbon Carbon black Electrocatalysts Entropy Gadolinium high‐entropy oxides high‐temperature synthesis Interfacial bonding Materials science Nanoparticles Oxygen reduction reactions Palladium Structural stability Substrates Synthesis Titanium Zirconium |
Title | Carbon‐Supported High‐Entropy Oxide Nanoparticles as Stable Electrocatalysts for Oxygen Reduction Reactions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202010561 https://www.proquest.com/docview/2531173336 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wLk6n5EHwqVubS9s9jrkxhCkMB3srSZOBOLaxbuB88if4G_0lntN23SaIoG-9JCXNOSf5knz5QsiNMNzoeqgdYRh3hC8DCKnYcwKjmLXQH-hUTKf74Hf64n4gBxu7-DN9iGLCDSMjba8xwJVOamvRUGWGuJMcV3NlOv5Bwhaiol6hH-UFQbas7HtI8PIGK9VGl9W2s2_3SmuouQlY0x6nfUDUqqwZ0eSlupjravz2TcbxPz9zSPZzOEobmf8ckR07PiZ7GyKFJ2TSVDM9GX--f-AJoMjNNRTZIfCghTT36ZI-vj4bS6GhhhF4TrSjKqEAZPXI0lZ20k46UbRM5gkFnAxZluC6tIfKsegbcJVtsUhOSb_demp2nPyYBicWUGBnKEOuuQSgyWw9Vp6rFeAODS0BvPF5rCSzInBdpQMRGg1WAsgEPacM40D43ONnpDSejO05obJuJYO64HXFBSItV-jQD5QQJpZDZcvEWZkpinMNczxKYxRl6ssswoqMioosk9si_TRT7_gxZWVl9SiP4iRi0EB5UFbulwlLzffLV6LGXbtb3F38JdMl2WVIm0k5lRVSms8W9gpwz1xfp779Badf-wY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA1SF-rCt1ifWQiuxs7kMTNdirZUbSuIgrshmaQglrY4FawrP8Fv9Eu8d16tggi6m0cyZJJ7k5Pk5FxCjoThRtdD7QjDuCN8GYBLxZ4TGMWshfFAp2I6na7fuhOX97JgE-JZmEwfolxwQ89I-2t0cFyQrk1VQ5Xp4VFy3M6VOAGax7DeGMTg_KZUkPKCINtY9j2keHn3hW6jy2pf838dl6ZgcxaypmNOc4XoorQZ1eTx5HmsT-LXb0KO__qdVbKcI1J6mpnQGpmzg3WyNKNTuEGGZ-pJDwcfb-8YBBTpuYYiQQQeNJDpPprQ65cHYyn01TAJz7l2VCUUsKzuW9rIgu2ka0WTZJxQgMqQZQLWS29QPBbNA66yUxbJJrlrNm7PWk4eqcGJBRTY6cmQay4BazJbj5XnagXQQ0NnAG98HivJrAhcV-lAhEZzH2XfYPCUYRwIn3t8i1QGw4HdJlTWrWRQF7yuuECw5Qod-oESwsSyp2yVOEU7RXEuY47RNPpRJsDMIqzIqKzIKjku048yAY8fU-4VzR7ljpxEDPooD8rK_Sphafv98pXo9LzZKe92_pLpkCy0bjvtqH3RvdoliwxZNCnFco9Uxk_Pdh9g0FgfpIb-CVaR_yA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIPrgXZzXPAg-Vdvc2j2K2_CuiIO9laTJQJRt2AnOJ3-Cv9Ff4jlt122CCPrWS1LS5Fy-JCffIWRfWG5NNTKesIx7QskQVCoJvNBq5hz4A5OR6Vxdq9OmOG_J1tgp_pwfolxwQ83I7DUqeM-2j0akodq28SQ57uZKnP_MCAUag7DoriSQCsIw31dWAUZ4Ba0hbaPPjibrT7qlEdYcR6yZy2ksEj1sbB5p8nj40jeHyds3Hsf__M0SWSjwKD3OBWiZTLnOCpkfYylcJd0T_Wy6nc_3D0wBisG5lmJ4CDyoY5x7b0BvXh-so2CpYQpeRNpRnVJAsubJ0XqeaidbKRqk_ZQCUIYqA5BdeofUsSgccJWfsUjXSLNRvz859Yo8DV4ioMFeW0bccAlIk7lqogPfaAAeBkwBvFE80ZI5Efq-NqGIrOEKSd_AdcooCYXiAV8n051ux20QKqtOMugLXtVcINTyhYlUqIWwiWxrVyHecJjipCAxx1waT3FOv8xi7Mi47MgKOSjL93L6jh9Lbg9HPS7UOI0ZWKgA2spVhbBs-H75Snxca1yVd5t_qbRHZm9rjfjy7Ppii8wxDKHJ4iu3yXT_-cXtAAbqm91MzL8Acg_92A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon%E2%80%90Supported+High%E2%80%90Entropy+Oxide+Nanoparticles+as+Stable+Electrocatalysts+for+Oxygen+Reduction+Reactions&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Tangyuan&rft.au=Yao%2C+Yonggang&rft.au=Ko%2C+Byung+Hee&rft.au=Huang%2C+Zhennan&rft.date=2021-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202010561&rft.externalDBID=10.1002%252Fadfm.202010561&rft.externalDocID=ADFM202010561 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |