Recent Advances in MOF‐Derived Single Atom Catalysts for Electrochemical Applications

Electrocatalysis plays a critical role in clean energy conversion, enabling great improvement for future sustainable technologies. Single atom catalysts (SACs) derived from metal–organic framework (MOF) are emerging extraordinary materials in electrochemical catalytic applications. Covering the meri...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 38
Main Authors Song, Zhongxin, Zhang, Lei, Doyle‐Davis, Kieran, Fu, Xianzhu, Luo, Jing‐Li, Sun, Xueliang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocatalysis plays a critical role in clean energy conversion, enabling great improvement for future sustainable technologies. Single atom catalysts (SACs) derived from metal–organic framework (MOF) are emerging extraordinary materials in electrochemical catalytic applications. Covering the merits of unique electronic structure, low‐coordination environment, quantum size effect, and metal–support interaction, SACs promise enhanced electrocatalytic activity, stability, and selectivity in the field of clean energy conversion. In this article, MOF synthesis routes to afford well‐dispersed SACs along with the respective synthesis mechanism are systematically reviewed first, and typical examples of each strategy are carefully discussed. Then the characterization techniques in understanding the isolated and spatial distribution, local electronic structure, coordination environment for SACs, and insights into stable mechanisms provided by density functional theory (DFT) calculations are summarized. In addition, several important electrocatalytic applications and electrocatalytic mechanisms of the MOF‐derived SACs, including for the oxygen reduction reaction, CO2 reduction reaction, nitrogen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, etc., are highlighted. To facilitate the future development of high‐performing SACs, several technical challenges and corresponding research directions are proposed. This review presents recent progress in the design and synthesis of metal–organic framework (MOF)‐derived single atom electrocatalysts, the ex situ and in situ characterizations, and their remarkable catalytic performance in electrochemical conversion reactions.
AbstractList Electrocatalysis plays a critical role in clean energy conversion, enabling great improvement for future sustainable technologies. Single atom catalysts (SACs) derived from metal–organic framework (MOF) are emerging extraordinary materials in electrochemical catalytic applications. Covering the merits of unique electronic structure, low‐coordination environment, quantum size effect, and metal–support interaction, SACs promise enhanced electrocatalytic activity, stability, and selectivity in the field of clean energy conversion. In this article, MOF synthesis routes to afford well‐dispersed SACs along with the respective synthesis mechanism are systematically reviewed first, and typical examples of each strategy are carefully discussed. Then the characterization techniques in understanding the isolated and spatial distribution, local electronic structure, coordination environment for SACs, and insights into stable mechanisms provided by density functional theory (DFT) calculations are summarized. In addition, several important electrocatalytic applications and electrocatalytic mechanisms of the MOF‐derived SACs, including for the oxygen reduction reaction, CO2 reduction reaction, nitrogen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, etc., are highlighted. To facilitate the future development of high‐performing SACs, several technical challenges and corresponding research directions are proposed. This review presents recent progress in the design and synthesis of metal–organic framework (MOF)‐derived single atom electrocatalysts, the ex situ and in situ characterizations, and their remarkable catalytic performance in electrochemical conversion reactions.
Electrocatalysis plays a critical role in clean energy conversion, enabling great improvement for future sustainable technologies. Single atom catalysts (SACs) derived from metal–organic framework (MOF) are emerging extraordinary materials in electrochemical catalytic applications. Covering the merits of unique electronic structure, low‐coordination environment, quantum size effect, and metal–support interaction, SACs promise enhanced electrocatalytic activity, stability, and selectivity in the field of clean energy conversion. In this article, MOF synthesis routes to afford well‐dispersed SACs along with the respective synthesis mechanism are systematically reviewed first, and typical examples of each strategy are carefully discussed. Then the characterization techniques in understanding the isolated and spatial distribution, local electronic structure, coordination environment for SACs, and insights into stable mechanisms provided by density functional theory (DFT) calculations are summarized. In addition, several important electrocatalytic applications and electrocatalytic mechanisms of the MOF‐derived SACs, including for the oxygen reduction reaction, CO2 reduction reaction, nitrogen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, etc., are highlighted. To facilitate the future development of high‐performing SACs, several technical challenges and corresponding research directions are proposed.
Electrocatalysis plays a critical role in clean energy conversion, enabling great improvement for future sustainable technologies. Single atom catalysts (SACs) derived from metal–organic framework (MOF) are emerging extraordinary materials in electrochemical catalytic applications. Covering the merits of unique electronic structure, low‐coordination environment, quantum size effect, and metal–support interaction, SACs promise enhanced electrocatalytic activity, stability, and selectivity in the field of clean energy conversion. In this article, MOF synthesis routes to afford well‐dispersed SACs along with the respective synthesis mechanism are systematically reviewed first, and typical examples of each strategy are carefully discussed. Then the characterization techniques in understanding the isolated and spatial distribution, local electronic structure, coordination environment for SACs, and insights into stable mechanisms provided by density functional theory (DFT) calculations are summarized. In addition, several important electrocatalytic applications and electrocatalytic mechanisms of the MOF‐derived SACs, including for the oxygen reduction reaction, CO 2 reduction reaction, nitrogen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, etc., are highlighted. To facilitate the future development of high‐performing SACs, several technical challenges and corresponding research directions are proposed.
Author Fu, Xianzhu
Luo, Jing‐Li
Song, Zhongxin
Doyle‐Davis, Kieran
Zhang, Lei
Sun, Xueliang
Author_xml – sequence: 1
  givenname: Zhongxin
  surname: Song
  fullname: Song, Zhongxin
  organization: Shenzhen University
– sequence: 2
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: University of Western Ontario
– sequence: 3
  givenname: Kieran
  surname: Doyle‐Davis
  fullname: Doyle‐Davis, Kieran
  organization: University of Western Ontario
– sequence: 4
  givenname: Xianzhu
  surname: Fu
  fullname: Fu, Xianzhu
  organization: Shenzhen University
– sequence: 5
  givenname: Jing‐Li
  surname: Luo
  fullname: Luo, Jing‐Li
  email: jingli.luo@ualberta.ca
  organization: Shenzhen University
– sequence: 6
  givenname: Xueliang
  orcidid: 0000-0003-0374-1245
  surname: Sun
  fullname: Sun, Xueliang
  email: xsun@eng.uwo.ca
  organization: University of Western Ontario
BookMark eNqFkM1KAzEUhYNUsNZuXQdct97MT6azHGqrQmvBH1wOmTuJpkwzNUkr3fkIPqNP4tRKBUG8m3sW57v3cI5Jy9RGEnLKoM8AgnMhzaIfQADAYs4OSJtxFvX4IILWXofBEek6N4dmopRBGLbJ461EaTzNyrUwKB3Vhk5n44-39wtp9VqW9E6bp0rSzNcLOhReVBvnHVW1paNKorc1PsuFRlHRbLmsGuF1bdwJOVSicrL7vTvkYTy6H171JrPL62E26WEUAOsxXioZqYHCAhMFRVQCKIkMQ45MlQgckzAYJMDCZCDiOOWISRrHRaFingKGHXK2u7u09ctKOp_P65U1zcs8iGJgQcxD1riinQtt7ZyVKkftv4J6K3SVM8i3LebbFvN9iw3W_4UtrV4Iu_kbSHfAq67k5h93no1upj_sJ6foh9U
CitedBy_id crossref_primary_10_1002_adfm_202104864
crossref_primary_10_1002_cctc_202401186
crossref_primary_10_1007_s10562_023_04496_8
crossref_primary_10_1016_j_mtchem_2023_101531
crossref_primary_10_1021_acs_chemrev_1c00243
crossref_primary_10_1002_smll_202401796
crossref_primary_10_1016_j_ccr_2022_214613
crossref_primary_10_1016_j_ccr_2022_214855
crossref_primary_10_1002_ange_202316123
crossref_primary_10_1002_smll_202201428
crossref_primary_10_1016_j_jcis_2025_137386
crossref_primary_10_1039_D3QI00732D
crossref_primary_10_1002_EXP_20230001
crossref_primary_10_1007_s00604_023_06014_4
crossref_primary_10_1016_j_ccr_2022_214969
crossref_primary_10_1021_acsami_4c07732
crossref_primary_10_1016_j_apcatb_2024_124288
crossref_primary_10_1002_cssc_202100342
crossref_primary_10_1002_smll_202304663
crossref_primary_10_1063_5_0099758
crossref_primary_10_3389_fenrg_2023_1194674
crossref_primary_10_1002_advs_202100498
crossref_primary_10_1021_acscatal_2c01873
crossref_primary_10_1016_j_cjac_2024_100426
crossref_primary_10_1016_j_trechm_2023_02_001
crossref_primary_10_1039_D4CP00160E
crossref_primary_10_1016_j_est_2024_110823
crossref_primary_10_1016_j_jallcom_2023_172518
crossref_primary_10_1002_smtd_202101567
crossref_primary_10_1016_j_jcis_2022_02_080
crossref_primary_10_2139_ssrn_4102865
crossref_primary_10_3390_molecules28072879
crossref_primary_10_1016_j_microc_2025_112955
crossref_primary_10_1016_j_jelechem_2023_117161
crossref_primary_10_1002_cey2_484
crossref_primary_10_1002_aenm_202102257
crossref_primary_10_1039_D1GC02331D
crossref_primary_10_2139_ssrn_4165503
crossref_primary_10_3390_molecules29235696
crossref_primary_10_1002_aenm_202003970
crossref_primary_10_1002_adma_202210037
crossref_primary_10_1039_D1SC05867C
crossref_primary_10_1007_s12274_023_6294_6
crossref_primary_10_1016_j_ccr_2024_215726
crossref_primary_10_1021_acsmaterialslett_2c00751
crossref_primary_10_1039_D2TA00747A
crossref_primary_10_1002_asia_202400896
crossref_primary_10_1021_jacs_3c11355
crossref_primary_10_1016_j_ccr_2024_216372
crossref_primary_10_1021_acs_analchem_3c02340
crossref_primary_10_1039_D1SC01375K
crossref_primary_10_1002_cey2_491
crossref_primary_10_1002_smll_202410976
crossref_primary_10_1016_j_apcatb_2023_122489
crossref_primary_10_1021_acsami_2c21632
crossref_primary_10_1002_cctc_202400438
crossref_primary_10_1016_j_cej_2022_139446
crossref_primary_10_1039_D0CS01032D
crossref_primary_10_1039_D2CC02865D
crossref_primary_10_1002_chem_202101020
crossref_primary_10_1002_cplu_202400192
crossref_primary_10_1016_j_apcatb_2023_122482
crossref_primary_10_2139_ssrn_4184973
crossref_primary_10_1039_D2TA05777H
crossref_primary_10_1002_advs_202203391
crossref_primary_10_1002_adfm_202425056
crossref_primary_10_1002_adma_202414889
crossref_primary_10_1039_D3DT03249C
crossref_primary_10_1016_j_joei_2021_11_015
crossref_primary_10_1021_acs_jpclett_3c03105
crossref_primary_10_1039_D2QI01688E
crossref_primary_10_3390_c7020047
crossref_primary_10_1007_s12274_022_4979_x
crossref_primary_10_1016_j_envpol_2022_119690
crossref_primary_10_1002_anie_202107123
crossref_primary_10_1039_D3CS00419H
crossref_primary_10_1016_j_ccr_2021_214122
crossref_primary_10_1016_j_ijhydene_2023_11_037
crossref_primary_10_1016_j_jcat_2024_115296
crossref_primary_10_1016_j_nxnano_2024_100073
crossref_primary_10_1021_acsnano_3c02749
crossref_primary_10_1021_acs_energyfuels_1c00758
crossref_primary_10_1021_acsomega_1c03427
crossref_primary_10_1038_s41467_021_27768_6
crossref_primary_10_1016_j_chroma_2023_463869
crossref_primary_10_1002_smll_202304750
crossref_primary_10_1039_D1EE00247C
crossref_primary_10_1002_adma_202105410
crossref_primary_10_1016_j_electacta_2024_145620
crossref_primary_10_1016_j_rser_2024_114520
crossref_primary_10_1016_j_ijhydene_2021_11_063
crossref_primary_10_1016_j_ijhydene_2022_11_340
crossref_primary_10_1016_j_carbon_2022_08_027
crossref_primary_10_1021_acs_chemrev_4c00155
crossref_primary_10_1039_D2YA00284A
crossref_primary_10_1016_j_jcis_2021_12_157
crossref_primary_10_1039_D1TA07778C
crossref_primary_10_1016_j_jcis_2022_10_146
crossref_primary_10_1039_D3TA02712K
crossref_primary_10_1002_inf2_12257
crossref_primary_10_1002_ange_202109058
crossref_primary_10_1016_j_solener_2024_112478
crossref_primary_10_1002_adfm_202418602
crossref_primary_10_1016_j_ijhydene_2021_01_063
crossref_primary_10_1039_D2EE01037B
crossref_primary_10_1039_D2NR03050K
crossref_primary_10_1016_j_poly_2022_115728
crossref_primary_10_3390_molecules29163719
crossref_primary_10_1021_acs_chemrev_1c00158
crossref_primary_10_1002_adma_202102212
crossref_primary_10_1016_j_mtchem_2023_101857
crossref_primary_10_1016_j_surfin_2024_105066
crossref_primary_10_1002_smtd_202201532
crossref_primary_10_1016_j_jece_2022_108836
crossref_primary_10_1039_D2CY01837C
crossref_primary_10_1016_j_ccr_2021_214264
crossref_primary_10_1016_j_cej_2022_139475
crossref_primary_10_1002_ange_202110838
crossref_primary_10_1021_acsami_1c12695
crossref_primary_10_1021_acsnano_4c04068
crossref_primary_10_1021_acsami_1c18797
crossref_primary_10_1016_j_electacta_2021_138751
crossref_primary_10_1016_j_nanoen_2021_106868
crossref_primary_10_1007_s40820_021_00651_1
crossref_primary_10_1039_D2TA08735A
crossref_primary_10_1002_smll_202006473
crossref_primary_10_1016_j_jpowsour_2021_230944
crossref_primary_10_1002_aic_18746
crossref_primary_10_1002_smll_202006113
crossref_primary_10_1142_S1793604723400131
crossref_primary_10_1016_j_ccr_2021_214392
crossref_primary_10_1007_s12598_021_01904_z
crossref_primary_10_1002_anie_202109058
crossref_primary_10_1016_j_electacta_2024_144636
crossref_primary_10_1016_j_ccr_2023_215288
crossref_primary_10_1021_acsabm_1c00174
crossref_primary_10_1039_D2QM01352E
crossref_primary_10_1039_D3QM01172K
crossref_primary_10_1002_cey2_695
crossref_primary_10_1039_D1TA08582D
crossref_primary_10_1002_smtd_202100947
crossref_primary_10_1002_smll_202306621
crossref_primary_10_1021_acs_jpcc_2c08006
crossref_primary_10_1002_adfm_202008318
crossref_primary_10_1002_cctc_202301753
crossref_primary_10_1021_acscatal_2c04807
crossref_primary_10_1002_smll_202301850
crossref_primary_10_1016_j_jcis_2021_07_075
crossref_primary_10_1149_1945_7111_ac7c95
crossref_primary_10_3389_fnut_2022_987442
crossref_primary_10_1016_j_cej_2024_150769
crossref_primary_10_1016_j_jechem_2021_02_029
crossref_primary_10_1002_adfm_202316699
crossref_primary_10_1038_s41467_022_30520_3
crossref_primary_10_1016_j_ccr_2021_214289
crossref_primary_10_1016_j_ccr_2023_215058
crossref_primary_10_1016_j_colsurfa_2024_134890
crossref_primary_10_1021_acsami_3c18548
crossref_primary_10_1002_anie_202110838
crossref_primary_10_1039_D1TA08254J
crossref_primary_10_1002_smll_202107997
crossref_primary_10_1016_j_apcatb_2021_120599
crossref_primary_10_3390_catal12050533
crossref_primary_10_6023_A23080374
crossref_primary_10_1039_D3CC00451A
crossref_primary_10_1016_j_cej_2023_147840
crossref_primary_10_1021_acsmaterialslett_0c00396
crossref_primary_10_1002_aenm_202402278
crossref_primary_10_1016_j_fuel_2024_132539
crossref_primary_10_1039_D1CC06427D
crossref_primary_10_1016_j_cej_2024_150054
crossref_primary_10_1007_s41918_024_00213_0
crossref_primary_10_1002_celc_202300722
crossref_primary_10_1002_advs_202301098
crossref_primary_10_1002_cctc_202301291
crossref_primary_10_1016_j_ijhydene_2022_04_075
crossref_primary_10_1002_ange_202414506
crossref_primary_10_1007_s12274_022_4318_2
crossref_primary_10_1002_cey2_510
crossref_primary_10_1007_s11814_021_0741_4
crossref_primary_10_1016_j_nanoen_2022_107869
crossref_primary_10_1039_D4NJ04380D
crossref_primary_10_1016_j_cej_2021_129973
crossref_primary_10_1016_j_cej_2023_143482
crossref_primary_10_1039_D1TA08007E
crossref_primary_10_1039_D2TC00530A
crossref_primary_10_1016_j_pecs_2024_101175
crossref_primary_10_1038_s41598_024_58825_x
crossref_primary_10_1016_j_ijhydene_2021_12_239
crossref_primary_10_1002_aesr_202100024
crossref_primary_10_1002_smll_202403903
crossref_primary_10_1002_advs_202306095
crossref_primary_10_1002_smll_202200720
crossref_primary_10_1002_adsu_202100281
crossref_primary_10_1039_D2CS00843B
crossref_primary_10_1002_smll_202204767
crossref_primary_10_1016_j_enmf_2022_06_001
crossref_primary_10_1039_D1NJ02769G
crossref_primary_10_1016_j_coche_2023_100940
crossref_primary_10_1007_s40843_022_2207_x
crossref_primary_10_1002_aesr_202100033
crossref_primary_10_1039_D4TA04194A
crossref_primary_10_1016_j_jhazmat_2021_125253
crossref_primary_10_1016_j_carbon_2023_118456
crossref_primary_10_1016_j_nanoen_2023_108450
crossref_primary_10_1016_j_nanoen_2023_108570
crossref_primary_10_1016_j_jhazmat_2021_125122
crossref_primary_10_1016_j_chemosphere_2021_132889
crossref_primary_10_1021_acs_accounts_3c00243
crossref_primary_10_1007_s11581_023_05095_8
crossref_primary_10_1016_j_cej_2024_153670
crossref_primary_10_1016_j_enchem_2021_100054
crossref_primary_10_1021_jacs_2c12952
crossref_primary_10_1002_anie_202316123
crossref_primary_10_1021_acs_est_3c06021
crossref_primary_10_1007_s40242_024_4072_y
crossref_primary_10_1016_j_apenergy_2023_121755
crossref_primary_10_1007_s41918_022_00169_z
crossref_primary_10_1186_s40824_023_00464_w
crossref_primary_10_1002_adfm_202206263
crossref_primary_10_1016_j_fuproc_2023_107705
crossref_primary_10_1021_acs_jpcc_1c01201
crossref_primary_10_1021_acsnano_1c03876
crossref_primary_10_3390_catal13040651
crossref_primary_10_1039_D2CE01296K
crossref_primary_10_1016_S1872_5805_24_60828_0
crossref_primary_10_1016_j_ccr_2023_215493
crossref_primary_10_1016_j_talanta_2024_127405
crossref_primary_10_20517_microstructures_2023_71
crossref_primary_10_1016_j_mser_2024_100886
crossref_primary_10_1002_adfm_202309223
crossref_primary_10_1016_j_ensm_2023_102790
crossref_primary_10_1021_acs_est_4c01133
crossref_primary_10_1002_chem_202301455
crossref_primary_10_3390_catal13101338
crossref_primary_10_1002_adfm_202303473
crossref_primary_10_1016_j_gee_2021_11_005
crossref_primary_10_1002_ange_202107123
crossref_primary_10_1016_j_coelec_2022_101197
crossref_primary_10_3390_nano12244369
crossref_primary_10_1002_aenm_202102556
crossref_primary_10_1039_D4TA07503J
crossref_primary_10_1016_j_cis_2023_103068
crossref_primary_10_1039_D1SC00095K
crossref_primary_10_1016_j_ica_2023_121517
crossref_primary_10_1016_j_apcatb_2022_122116
crossref_primary_10_1007_s40843_024_3165_6
crossref_primary_10_3390_catal13010130
crossref_primary_10_1016_j_mtsust_2022_100288
crossref_primary_10_1021_acs_jpclett_4c02334
crossref_primary_10_1016_j_cej_2021_132150
crossref_primary_10_1016_j_jcat_2024_115551
crossref_primary_10_1016_j_ensm_2022_12_002
crossref_primary_10_1002_adma_202404659
crossref_primary_10_1039_D2TA09232H
crossref_primary_10_1016_j_fuproc_2022_107427
crossref_primary_10_1002_eom2_12186
crossref_primary_10_1002_aenm_202400160
crossref_primary_10_1021_acsenergylett_1c01911
crossref_primary_10_1016_j_seppur_2021_119369
crossref_primary_10_1021_acs_chemmater_3c01171
crossref_primary_10_1080_01614940_2024_2347479
crossref_primary_10_2139_ssrn_3979949
crossref_primary_10_1016_j_carbon_2023_02_007
crossref_primary_10_1007_s12598_023_02378_x
crossref_primary_10_1016_j_ccr_2022_214761
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1002_smtd_202001194
crossref_primary_10_1016_j_seppur_2024_128056
crossref_primary_10_1039_D3TA05750J
crossref_primary_10_1016_j_cej_2022_140864
crossref_primary_10_1002_cctc_202100966
crossref_primary_10_1016_j_cogsc_2022_100660
crossref_primary_10_1039_D1TA05960B
crossref_primary_10_1039_D0CS00323A
crossref_primary_10_1039_D4CS00370E
crossref_primary_10_1039_D3EY00018D
crossref_primary_10_1039_D1NR05090G
crossref_primary_10_1021_acscatal_4c05169
crossref_primary_10_1002_adfm_202103597
crossref_primary_10_1016_j_carbon_2022_01_057
crossref_primary_10_1039_D1TA09069K
crossref_primary_10_1002_adma_202209590
crossref_primary_10_1002_anie_202414506
crossref_primary_10_1016_j_ccr_2025_216576
crossref_primary_10_1002_smtd_202300277
crossref_primary_10_1016_j_cej_2023_143429
crossref_primary_10_1016_j_jechem_2023_08_042
crossref_primary_10_1039_D4TA03760J
crossref_primary_10_1039_D2CC02939A
crossref_primary_10_1039_D2CS00257D
crossref_primary_10_1007_s12274_022_5097_5
crossref_primary_10_1021_acssuschemeng_0c05509
crossref_primary_10_1002_adma_202208942
crossref_primary_10_1002_cssc_202300530
crossref_primary_10_1016_j_apcatb_2022_121590
crossref_primary_10_1016_j_ccr_2024_216292
crossref_primary_10_1016_j_ccr_2022_214505
crossref_primary_10_1039_D3CY00243H
crossref_primary_10_1016_j_cej_2021_133944
crossref_primary_10_1016_j_nanoen_2023_108415
crossref_primary_10_1038_s41467_021_27640_7
crossref_primary_10_1039_D1CC01989A
crossref_primary_10_1016_j_isci_2023_107275
crossref_primary_10_1016_j_mtchem_2024_102035
crossref_primary_10_1021_acs_chemmater_3c02367
crossref_primary_10_1016_j_chemosphere_2024_143312
crossref_primary_10_1016_j_jcis_2021_03_124
crossref_primary_10_1016_j_ensm_2022_07_027
crossref_primary_10_1016_j_ccr_2023_215333
crossref_primary_10_1016_j_cclet_2021_07_038
crossref_primary_10_3390_catal12111462
crossref_primary_10_1002_smsc_202000028
crossref_primary_10_1016_j_ccr_2024_216281
crossref_primary_10_1039_D1NJ05713H
crossref_primary_10_1016_j_apcatb_2023_123143
crossref_primary_10_1016_j_jpowsour_2025_236228
crossref_primary_10_1016_j_fuel_2024_134021
crossref_primary_10_1002_smll_202305009
Cites_doi 10.1002/anie.201811728
10.1002/smtd.201800352
10.1002/smtd.201700341
10.1002/smtd.201800492
10.1021/acscatal.8b01014
10.1038/srep01775
10.1021/acsenergylett.8b00245
10.1002/aenm.201703487
10.1002/adma.201802066
10.1007/s12274-020-2755-3
10.1038/s41467-018-08136-3
10.1002/adma.201800396
10.1021/jacs.5b06485
10.1038/s41929-017-0009-x
10.1021/acscatal.5b00842
10.1002/smll.201704282
10.1039/C9CS00869A
10.1002/ange.201608597
10.1021/jacs.8b07294
10.1021/acsnano.7b00796
10.1021/acscatal.6b01534
10.1021/jacs.7b01686
10.1002/cssc.201701306
10.1002/anie.201703864
10.1016/j.nanoen.2018.03.059
10.1016/j.nanoen.2016.04.009
10.1002/anie.201604802
10.1038/ncomms9668
10.1021/acs.accounts.8b00478
10.1021/acscatal.8b04937
10.1002/celc.201801189
10.1021/acscatal.6b02899
10.1002/anie.201705002
10.1002/aenm.201803402
10.1002/chem.202000294
10.1002/aenm.201803913
10.1002/anie.201806936
10.1002/adma.201402978
10.1016/j.mattod.2019.03.002
10.1002/anie.201702473
10.1002/aenm.201701345
10.1038/s41467-018-07850-2
10.1021/jacs.9b07963
10.1038/nenergy.2016.184
10.1002/anie.201402342
10.1002/asia.201901100
10.1002/anie.201710556
10.1002/aenm.201701343
10.1021/jacs.8b00814
10.1021/nl403520c
10.1002/anie.201902109
10.1038/s41560-019-0450-y
10.1002/anie.201914977
10.1021/acscatal.8b00138
10.1039/C8EE02939C
10.1002/anie.201909312
10.1038/s41557-018-0092-x
10.1039/C9CS00903E
10.1002/chem.201803083
10.1021/acs.jpcc.8b00078
10.1002/anie.201813494
10.1021/acs.chemrev.9b00223
10.1038/s41565-019-0518-7
10.1021/acs.chemrev.8b00501
10.1002/adma.201807166
10.1002/smtd.201800481
10.1002/anie.201712451
10.1039/c2cs35174a
10.1016/j.chempr.2018.12.011
10.1038/natrevmats.2016.9
10.1016/j.scib.2018.07.005
10.1038/s41467-019-12887-y
10.1002/anie.201813634
10.1016/j.apcatb.2019.118144
10.1021/jacs.7b02736
10.1038/s41467-018-03012-6
10.1002/smtd.201800471
10.1002/aenm.201800369
10.1038/ncomms9177
10.1039/C7EE03245E
10.1038/s41560-017-0078-8
10.1126/science.1211906
10.1039/C9CS00163H
10.1002/ange.201810175
10.1021/acscatal.6b03353
10.1039/C8EE02888E
10.1016/j.chempr.2018.12.014
10.1021/jacs.7b07093
10.1007/s12274-019-2345-4
10.1002/ange.201901575
10.1002/adma.201606550
10.1038/s41929-018-0195-1
10.1002/adma.201706758
10.1126/science.aaf5251
10.1039/C8CC00988K
10.1021/acscatal.8b00398
10.1021/jacs.7b05018
10.1002/adfm.201702546
10.1038/ncomms15938
10.1021/jacs.9b06482
10.1002/anie.201811126
10.1002/aenm.201903815
10.1002/anie.201904058
10.1002/adfm.201700802
10.1038/s41929-019-0246-2
10.1021/ja5128133
10.1002/smll.201902218
10.1002/smtd.201800331
10.1021/acs.chemrev.7b00776
10.1021/acscatal.0c01459
10.1126/sciadv.aao6657
10.1021/acs.accounts.9b00496
10.1002/adma.201705112
10.1002/anie.201800817
10.1021/acsenergylett.8b02197
10.1021/jacs.8b09834
10.1002/anie.201808593
10.1002/anie.201803262
10.1002/anie.201812423
10.1039/C9EE01722D
10.1039/C9TA10206J
10.1039/C7CP08626A
10.1038/s41467-019-11796-4
10.1039/C9EE00877B
10.1038/s41929-017-0008-y
10.1002/smtd.201800202
10.1038/nmat4924
10.1038/nchem.1095
10.1016/j.nanoen.2018.04.039
10.1002/adfm.201808872
10.1038/ncomms10922
10.1021/acs.jpcc.8b05257
10.1002/adma.201801995
10.1038/s41467-017-01100-7
10.1021/jacs.8b11386
10.1126/sciadv.1500462
10.1002/aenm.201902625
10.1016/j.joule.2018.11.008
10.1016/j.apcatb.2020.118720
10.1002/anie.201808049
10.1016/j.nanoen.2018.12.085
10.1002/smtd.201800386
10.1002/adma.201806312
10.1016/j.cogsc.2018.11.002
10.1002/smtd.201800501
10.1021/acsenergylett.8b00640
10.1002/anie.201507381
10.1002/aenm.201902844
10.1002/adma.201800743
10.1038/s41557-018-0201-x
10.1002/adma.201803498
10.1038/s41467-018-03896-4
10.1038/nmat4367
10.1021/acscatal.7b02165
10.1039/C4CS00085D
10.1073/pnas.1800771115
10.1021/jacs.8b13579
10.1002/ange.201509241
10.1021/jacs.7b06514
10.1021/ja408574m
10.1021/acs.jpclett.6b01153
10.1039/C8EE00133B
10.1021/acsnano.5b05984
10.1021/acs.chemrev.9b00311
10.1021/acscatal.6b02966
10.1021/acscatal.6b01393
10.1126/science.aac6368
10.1038/s41570-018-0010-1
10.1039/C9CS00906J
10.1038/s41565-018-0197-9
10.1021/acsnano.7b02148
10.1002/anie.201610119
10.1038/s41929-018-0090-9
10.1002/anie.201910309
10.1016/j.joule.2018.03.018
10.1016/j.chempr.2020.01.013
10.1002/anie.201906079
10.1126/science.aaf8800
10.1002/anie.201800269
10.1016/j.chempr.2017.12.005
10.1038/s41929-019-0237-3
10.1039/C9EE04040D
10.1016/j.nanoen.2019.103917
10.1002/anie.201710599
10.1002/adfm.201600240
10.1126/science.aal3439
10.1038/s41929-018-0146-x
10.1021/acscatal.8b00905
10.1016/j.enchem.2019.100001
10.1002/smtd.201800337
10.1016/j.nanoen.2018.02.025
10.1038/s41467-017-01259-z
10.1016/j.joule.2018.09.011
10.1007/s41918-019-00050-6
10.1021/jp408979h
10.1038/ncomms6634
10.1038/ncomms10667
10.1021/jacs.7b00452
10.1002/adma.201800588
10.1016/j.nanoen.2019.04.092
10.1002/anie.201509241
10.1002/anie.202002665
10.1021/acscatal.9b00252
10.1002/advs.201901129
10.1038/s41467-020-16715-6
10.1021/jacs.7b10385
10.1039/C8EE02656D
10.1021/jacs.9b04907
10.1039/C8EE02694G
10.1093/nsr/nwy010
10.1016/j.chempr.2018.10.007
10.1038/s41929-018-0164-8
10.1007/s41918-018-0013-0
10.1021/acscatal.9b00959
10.1021/jacs.7b05213
10.1039/C8TA07683A
10.1002/cssc.201500322
10.1021/acs.chemmater.5b04887
10.1038/ncomms15341
10.1007/s41918-018-0004-1
10.1021/ja7106146
10.1021/ar300361m
10.1038/s41929-018-0203-5
10.1038/ncomms13638
10.1073/pnas.1813605115
10.1039/C5EE00751H
10.1002/smtd.201800388
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202001561
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202001561
AENM202001561
Genre reviewArticle
GrantInformation_xml – fundername: Canada Research Chairs
– fundername: National Natural Science Foundation of China
  funderid: NSFC21905179
– fundername: Shenzhen University
– fundername: Canada Foundation for Innovation
– fundername: University of Western Ontario
– fundername: Natural Sciences and Engineering Research Council of Canada
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4201-16dfe4f8fcbc7f0b4d00fec1c36c1fdc06c7328701378a5596cc7955bbf5690c3
ISSN 1614-6832
IngestDate Fri Jul 25 12:14:03 EDT 2025
Tue Jul 01 01:43:36 EDT 2025
Thu Apr 24 22:59:16 EDT 2025
Wed Jan 22 16:33:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4201-16dfe4f8fcbc7f0b4d00fec1c36c1fdc06c7328701378a5596cc7955bbf5690c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0374-1245
PQID 2450125631
PQPubID 886389
PageCount 42
ParticipantIDs proquest_journals_2450125631
crossref_citationtrail_10_1002_aenm_202001561
crossref_primary_10_1002_aenm_202001561
wiley_primary_10_1002_aenm_202001561_AENM202001561
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019 2018 2019 2017 2018 2019 2017 2018 2018; 12 3 2 7 140 31 56 115 30
2018 2018 2019 2019 2017 2018 2019; 122 20 58 61 139 6 9
2017; 8
2013; 3
2019 2019 2018 2018; 141 3 8 2
2019; 10
2019; 12
2019 2019 2018; 2 2 115
2019; 58
2019 2017 2017; 58 7 11
2020; 59
2018 2016 2014; 122 6 53
2019 2020 2019 2018 2020 2019 2019; 9 262 58 14 26 31 15
2019 2018 2018 2015 2018 2019; 4 30 1 6 10 58
2018; 48
2018; 46
2018; 9
2018; 8
2014; 5
2018; 2
2015 2015 2018; 9 14 1
2018 2013 2018 2018 2019; 11 46 1 1 12
2019 2018; 12 57
2018 2020; 57 11
2018; 1
2018 2017 2019 2018; 11 139 58 54
2018 2017 2018 2016 2017 2019; 8 8 30 128 139 9
2015 2017 2019; 137 8 141
2016; 353
2016; 352
2020 2020 2020; 49 120 59
2019 2019 2018; 14 9 9
2019 2016 2019 2019; 3 7 10 2
2018; 30
2018 2019 2018; 1 12 4
2020 2019; 10 3
2018 2018 2019 2018 2013 2019; 3 57 3 4 135 9
2014; 118
2014 2019 2019; 43 3 4
2011; 334
2019; 6
2018; 140
2020 2018 2018 2019 2018 2019 2019 2017; 120 118 1 6 2 9 119 355
2018 2018 2018; 3 11 57
2019; 31
2019 2014; 10 14
2017; 27
2019 2020 2020; 1 13
2017 2017 2018 2019; 56 139 14 29
2018 2018 2019 2018; 2 63 5 30
2016 2019 2016 2017; 1 52 55 16
2018 2015 2016 2017 2015; 9 54 7 56 6
2020 2020; 10 49
2017; 29
2019 2020; 16 59
2015 2015 2017; 1 8 11
2011; 3
2015; 8
2016 2018; 55 57
2017; 139
2016; 7
2018 2016 2019 2020; 24 29 31 53
2018 2017; 8 8
2016; 1
2020 2019 2019 2020; 49 12 48
2019 2018 2019 2019 2019 2019 2018 2019 2019; 3 8 27 3 3 141 49 3 3
2019 2019 2018 2020 2019; 14 3 8 6 7
2015 2015 2016; 350 137 7
2019 2016 2018 2018 2019; 141 128 30 5 5
2017 2018; 56 8
2018 2019; 1 141
2018 2019 2017 2016 2019 2017 2019; 8 141 139 6 5 56 11
2016 2017 2020 2020 2018 2014 2018 2018 2019; 26 7 13 10 57 26 57 30 64
2017 2019 2020; 7 58 267
2016; 28
2018; 11
2008; 130
2012; 41
2019; 131
2018; 57
2018; 13
e_1_2_8_49_3
e_1_2_8_49_2
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_1_3
e_1_2_8_1_2
e_1_2_8_1_5
e_1_2_8_1_4
e_1_2_8_9_1
e_1_2_8_64_3
e_1_2_8_64_4
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_64_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_38_2
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_15_2
e_1_2_8_91_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_48_3
e_1_2_8_25_1
e_1_2_8_48_2
e_1_2_8_63_6
e_1_2_8_48_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_2_3
e_1_2_8_2_6
e_1_2_8_2_5
e_1_2_8_63_4
e_1_2_8_63_5
e_1_2_8_63_2
e_1_2_8_63_3
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_2
e_1_2_8_40_1
e_1_2_8_37_3
e_1_2_8_75_9
e_1_2_8_75_8
e_1_2_8_14_1
e_1_2_8_75_7
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_75_6
e_1_2_8_14_3
e_1_2_8_37_1
e_1_2_8_75_5
e_1_2_8_90_1
e_1_2_8_75_4
e_1_2_8_75_3
e_1_2_8_52_2
e_1_2_8_75_2
e_1_2_8_52_3
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_7_4
e_1_2_8_7_1
e_1_2_8_7_3
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_66_2
e_1_2_8_43_3
e_1_2_8_43_2
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_78_5
e_1_2_8_78_4
e_1_2_8_78_3
e_1_2_8_78_2
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_93_1
e_1_2_8_65_4
e_1_2_8_27_1
e_1_2_8_8_4
e_1_2_8_8_3
e_1_2_8_8_6
e_1_2_8_8_5
e_1_2_8_8_8
e_1_2_8_8_7
e_1_2_8_80_2
e_1_2_8_80_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_65_2
e_1_2_8_42_1
e_1_2_8_65_3
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_80_7
e_1_2_8_80_6
e_1_2_8_80_5
e_1_2_8_80_4
e_1_2_8_80_3
e_1_2_8_39_2
e_1_2_8_39_1
e_1_2_8_54_8
e_1_2_8_39_3
e_1_2_8_54_9
e_1_2_8_54_6
e_1_2_8_54_7
e_1_2_8_54_4
e_1_2_8_16_1
e_1_2_8_54_5
e_1_2_8_92_1
e_1_2_8_54_2
e_1_2_8_31_1
e_1_2_8_54_3
e_1_2_8_77_1
e_1_2_8_54_1
Zhang H. (e_1_2_8_18_2) 2018; 8
e_1_2_8_45_2
e_1_2_8_68_1
e_1_2_8_5_7
e_1_2_8_5_6
e_1_2_8_5_9
e_1_2_8_5_8
e_1_2_8_5_1
e_1_2_8_5_3
e_1_2_8_5_2
e_1_2_8_5_5
e_1_2_8_5_4
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_83_3
e_1_2_8_83_2
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_34_7
e_1_2_8_34_6
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_11_3
e_1_2_8_34_3
e_1_2_8_34_2
e_1_2_8_34_5
e_1_2_8_57_1
e_1_2_8_19_3
Ji S. (e_1_2_8_14_4) 2020
e_1_2_8_72_7
e_1_2_8_72_6
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_72_5
e_1_2_8_11_2
e_1_2_8_72_4
e_1_2_8_72_3
e_1_2_8_72_2
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_29_3
e_1_2_8_29_4
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_6_4
e_1_2_8_6_3
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_82_6
e_1_2_8_44_1
e_1_2_8_82_5
e_1_2_8_82_4
e_1_2_8_82_3
e_1_2_8_82_2
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_79_4
e_1_2_8_79_3
e_1_2_8_79_2
e_1_2_8_79_1
Wei Y.‐S. (e_1_2_8_17_3) 2020
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_2
e_1_2_8_33_1
e_1_2_8_71_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_47_3
e_1_2_8_47_2
e_1_2_8_3_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_46_2
e_1_2_8_69_2
e_1_2_8_46_1
e_1_2_8_69_3
e_1_2_8_46_3
e_1_2_8_69_1
e_1_2_8_4_1
Wei C. (e_1_2_8_81_1) 2019; 31
e_1_2_8_84_5
e_1_2_8_61_4
e_1_2_8_84_4
e_1_2_8_23_1
e_1_2_8_84_3
e_1_2_8_61_2
e_1_2_8_84_2
e_1_2_8_61_3
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_12_3
e_1_2_8_35_1
e_1_2_8_12_4
e_1_2_8_12_5
e_1_2_8_58_1
He T. (e_1_2_8_34_4) 2018; 14
e_1_2_8_12_1
e_1_2_8_73_3
e_1_2_8_73_2
e_1_2_8_73_1
e_1_2_8_50_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 1 8 11
  start-page: 1594 3392
  year: 2015 2015 2017
  publication-title: Sci. Adv. Energy Environ. Sci. ACS Nano
– volume: 350 137 7
  start-page: 189 3076 2537
  year: 2015 2015 2016
  publication-title: Science J. Am. Chem. Soc. J. Phys. Chem. Lett.
– volume: 57 11
  start-page: 8525 2831
  year: 2018 2020
  publication-title: Angew. Chem., Int. Ed. Nat. Commun.
– volume: 8
  start-page: 1186
  year: 2018
  publication-title: ACS Catal.
– volume: 11
  start-page: 1204
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 935
  year: 2018
  publication-title: Nat. Catal.
– volume: 4 30 1 6 10 58
  start-page: 732 111 8177 974 3511
  year: 2019 2018 2018 2015 2018 2019
  publication-title: Nat. Energy Adv. Mater. Nat. Catal. Nat. Commun. Nat. Chem. Angew. Chem., Int. Ed.
– volume: 16 59
  start-page: 1 2705
  year: 2019 2020
  publication-title: Curr. Opin. Green Sustainable Chem. Angew. Chem., Int. Ed.
– volume: 58 7 11
  start-page: 1163 1301 6930
  year: 2019 2017 2017
  publication-title: Angew. Chem., Int. Ed. ACS Catal. ACS Nano
– volume: 3 57 3 4 135 9
  start-page: 1713 7568
  year: 2018 2018 2019 2018 2013 2019
  publication-title: ACS Energy Lett. Angew. Chem., Int. Ed. Small Methods Sci. Adv. J. Am. Chem. Soc. Adv. Energy Mater.
– volume: 12 57
  start-page: 2067 9604
  year: 2019 2018
  publication-title: Nano Res. Angew. Chem., Int. Ed.
– volume: 3 11 57
  start-page: 140 893
  year: 2018 2018 2018
  publication-title: Nat. Energy Energy Environ. Sci. Angew. Chem., Int. Ed.
– volume: 46
  start-page: 396
  year: 2018
  publication-title: Nano Energy
– volume: 139
  start-page: 8078
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3734
  year: 2019
  publication-title: Nat. Commun.
– volume: 57
  start-page: 3493
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 8 8 30 128 139 9
  start-page: 2098 3289
  year: 2018 2017 2018 2016 2017 2019
  publication-title: Adv. Energy Mater. Nat. Commun. Adv. Mater. Angew. Chem., Int. Ed. J. Am. Chem. Soc. ACS Catal.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 2 2 115
  start-page: 134 304
  year: 2019 2019 2018
  publication-title: Nat. Catal. Nat. Catal. Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 5634
  year: 2014
  publication-title: Nat. Commun.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 7384
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 140
  start-page: 4218
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 10 3
  start-page: 6579
  year: 2020 2019
  publication-title: ACS Catal. Small Methods
– volume: 2 63 5 30
  start-page: 1246 204
  year: 2018 2018 2019 2018
  publication-title: Small Methods Sci. Bull. Chem Adv. Mater.
– volume: 31
  start-page: 24
  year: 2019
  publication-title: Adv. Mater.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 26 7 13 10 57 26 57 30 64
  start-page: 2988 34 1842 8147
  year: 2016 2017 2020 2020 2018 2014 2018 2018 2019
  publication-title: Adv. Funct. Mater. ACS Catal. Nano Res. Adv. Energy Mater. Angew. Chem., Int. Ed. Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. Nano Energy
– volume: 131
  start-page: 2648
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 131
  start-page: 7046
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 24 29 31 53
  start-page: 439 255
  year: 2018 2016 2019 2020
  publication-title: Chem. ‐ Eur. J. Nano Energy Adv. Mater. Acc. Chem. Res.
– volume: 9 262 58 14 26 31 15
  start-page: 6 6402
  year: 2019 2020 2019 2018 2020 2019 2019
  publication-title: Adv. Energy Mater. Appl. Catal., B Angew. Chem., Int. Ed. Small Chem. ‐ Eur. J. Adv. Mater. Small
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 10 49
  start-page: 3484
  year: 2020 2020
  publication-title: Adv. Energy Mater. Chem. Soc. Rev.
– volume: 118
  start-page: 3890
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 48
  start-page: 217
  year: 2018
  publication-title: Nano Energy
– volume: 137 8 141
  start-page: 1070
  year: 2015 2017 2019
  publication-title: J. Am. Chem. Soc. Nat. Commun. J. Am. Chem. Soc.
– volume: 43 3 4
  start-page: 5183 163
  year: 2014 2019 2019
  publication-title: Chem. Soc. Rev. Small Methods ACS Energy Lett.
– volume: 3
  start-page: 1775
  year: 2013
  publication-title: Sci. Rep.
– volume: 9
  start-page: 5422
  year: 2018
  publication-title: Nat. Commun.
– volume: 13
  start-page: 856
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 56 139 14 29
  start-page: 6937 9795
  year: 2017 2017 2018 2019
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. Small Adv. Funct. Mater.
– volume: 334
  start-page: 780
  year: 2011
  publication-title: Science
– volume: 352
  start-page: 797
  year: 2016
  publication-title: Science
– volume: 58
  start-page: 4227
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 141 3 8 2
  start-page: 4086 584 587
  year: 2019 2019 2018 2018
  publication-title: J. Am. Chem. Soc. Joule Adv. Energy Mater. Joule
– volume: 12
  start-page: 250
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 1 141
  start-page: 781 4505
  year: 2018 2019
  publication-title: Nat. Catal. J. Am. Chem. Soc.
– volume: 28
  start-page: 1213
  year: 2016
  publication-title: Chem. Mater.
– volume: 1 12 4
  start-page: 985 1000 285
  year: 2018 2019 2018
  publication-title: Nat. Catal. Energy Environ. Sci. Chem
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 58
  start-page: 1
  year: 2019
  publication-title: Nano Energy
– volume: 130
  start-page: 5390
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 49 120 59
  start-page: 1414 1438 4634
  year: 2020 2020 2020
  publication-title: Chem. Soc. Rev. Chem. Rev. Angew. Chem., Int. Ed.
– volume: 14 3 8 6 7
  start-page: 2911 7517 885
  year: 2019 2019 2018 2020 2019
  publication-title: Chem. ‐ Asian J. Small Methods ACS Catal. Chem J. Mater. Chem. A
– volume: 8
  start-page: 2180
  year: 2015
  publication-title: ChemSusChem
– volume: 1 52 55 16
  start-page: 656 2058 703
  year: 2016 2019 2016 2017
  publication-title: Nat. Rev. Mater. Acc. Chem. Res. Angew. Chem., Int. Ed. Nat. Mater.
– volume: 55 57
  start-page: 1944
  year: 2016 2018
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 11 139 58 54
  start-page: 3375 1975 4274
  year: 2018 2017 2019 2018
  publication-title: Energy Environ. Sci. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Chem. Commun.
– volume: 3 8 27 3 3 141 49 3 3
  start-page: 69 316 279
  year: 2019 2018 2019 2019 2019 2019 2018 2019 2019
  publication-title: Small Methods Adv. Energy Mater. Mater. Today Small Methods Small Methods J. Am. Chem. Soc. Nano Energy Joule Small Methods
– volume: 122 6 53
  start-page: 4488 840
  year: 2018 2016 2014
  publication-title: J. Phys. Chem. C ACS Catal. Angew. Chem., Int. Ed.
– volume: 141 128 30 5 5
  start-page: 5201 626 786
  year: 2019 2016 2018 2018 2019
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. Adv. Mater. Natl. Sci. Rev. Chem
– volume: 58
  start-page: 7035
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 9 54 7 56 6
  start-page: 1460 8668
  year: 2018 2015 2016 2017 2015
  publication-title: Nat. Commun. Angew. Chem., Int. Ed. Nat. Commun. Angew. Chem., Int. Ed. Nat. Commun.
– volume: 56 8
  year: 2017 2018
  publication-title: Angew. Chem., Int. Ed. Adv. Mater.
– volume: 1 13
  start-page: 1658
  year: 2019 2020 2020
  publication-title: EnergyChem Energy Environ. Sci. Chem. Rev.
– volume: 139
  start-page: 9419
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 122 20 58 61 139 6 9
  start-page: 9248 2321 420 7311
  year: 2018 2018 2019 2019 2017 2018 2019
  publication-title: J. Phys. Chem. C Phys. Chem. Chem. Phys. Angew. Chem., Int. Ed. Nano Energy J. Am. Chem. Soc. J. Mater. Chem. A ACS Catal.
– volume: 3 7 10 2
  start-page: 4936 539
  year: 2019 2016 2019 2019
  publication-title: Small Methods Nat. Commun. Nat. Commun. Electrochem. Energy Rev.
– volume: 8 141 139 6 5 56 11
  start-page: 7113 4486 7769 693 222
  year: 2018 2019 2017 2016 2019 2017 2019
  publication-title: ACS Catal. J. Am. Chem. Soc. J. Am. Chem. Soc. ACS Catal. Chem Angew. Chem., Int. Ed. Nat. Chem.
– volume: 8
  start-page: 3116
  year: 2018
  publication-title: ACS Catal.
– volume: 12 3 2 7 140 31 56 115 30
  start-page: 2548 883 259 1655 610 6626
  year: 2019 2018 2019 2017 2018 2019 2017 2018 2018
  publication-title: Energy Environ. Sci. ACS Energy Lett. Nat. Catal. ACS Catal. J. Am. Chem. Soc. Adv. Mater. Angew. Chem., Int. Ed. Proc. Natl. Acad. Sci. USA Adv. Mater.
– volume: 14 9 9
  start-page: 851 2521 574
  year: 2019 2019 2018
  publication-title: Nat. Nanotechnol. ACS Catal. Nat. Commun.
– volume: 120 118 1 6 2 9 119 355
  start-page: 623 4981 385 289 65 1806 1399
  year: 2020 2018 2018 2019 2018 2019 2019 2017
  publication-title: Chem. Rev. Chem. Rev. Nat. Catal. ChemElectroChem Nat. Rev. Chem. Adv. Energy Mater. Chem. Rev. Science
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 9 14 1
  start-page: 937 63
  year: 2015 2015 2018
  publication-title: ACS Nano Nat. Mater. Nat. Catal.
– volume: 7 58 267
  start-page: 1520
  year: 2017 2019 2020
  publication-title: ACS Catal. Angew. Chem., Int. Ed. Appl. Catal., B
– volume: 353
  start-page: 150
  year: 2016
  publication-title: Science
– volume: 3
  start-page: 634
  year: 2011
  publication-title: Nat. Chem.
– volume: 49 12 48
  start-page: 2215 2890 5310
  year: 2020 2019 2019 2020
  publication-title: Chem. Soc. Rev. Energy Environ. Sci. Chem. Soc. Rev. Chem. Rev.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 10 14
  start-page: 234 134
  year: 2019 2014
  publication-title: Nat. Commun. Nano Lett.
– volume: 41
  start-page: 8163
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 11 46 1 1 12
  start-page: 104 1740 54 324 492
  year: 2018 2013 2018 2018 2019
  publication-title: ChemSusChem Acc. Chem. Res. Electrochem. Energy Rev. Electrochem. Energy Rev. Energy Environ. Sci.
– volume: 8 8
  start-page: 2824 957
  year: 2018 2017
  publication-title: ACS Catal. Nat. Commun.
– ident: e_1_2_8_80_3
  doi: 10.1002/anie.201811728
– ident: e_1_2_8_73_2
  doi: 10.1002/smtd.201800352
– ident: e_1_2_8_42_1
  doi: 10.1002/smtd.201700341
– ident: e_1_2_8_82_3
  doi: 10.1002/smtd.201800492
– ident: e_1_2_8_72_1
  doi: 10.1021/acscatal.8b01014
– ident: e_1_2_8_4_1
  doi: 10.1038/srep01775
– ident: e_1_2_8_54_2
  doi: 10.1021/acsenergylett.8b00245
– ident: e_1_2_8_65_3
  doi: 10.1002/aenm.201703487
– ident: e_1_2_8_63_2
  doi: 10.1002/adma.201802066
– ident: e_1_2_8_5_3
  doi: 10.1007/s12274-020-2755-3
– ident: e_1_2_8_38_1
  doi: 10.1038/s41467-018-08136-3
– ident: e_1_2_8_85_1
  doi: 10.1002/adma.201800396
– ident: e_1_2_8_11_1
  doi: 10.1021/jacs.5b06485
– ident: e_1_2_8_63_3
  doi: 10.1038/s41929-017-0009-x
– ident: e_1_2_8_48_2
  doi: 10.1021/acscatal.5b00842
– ident: e_1_2_8_29_3
  doi: 10.1002/smll.201704282
– ident: e_1_2_8_14_1
  doi: 10.1039/C9CS00869A
– ident: e_1_2_8_12_2
  doi: 10.1002/ange.201608597
– ident: e_1_2_8_54_5
  doi: 10.1021/jacs.8b07294
– ident: e_1_2_8_39_3
  doi: 10.1021/acsnano.7b00796
– year: 2020
  ident: e_1_2_8_17_3
  publication-title: Chem. Rev.
– ident: e_1_2_8_5_2
  doi: 10.1021/acscatal.6b01534
– ident: e_1_2_8_26_1
  doi: 10.1021/jacs.7b01686
– ident: e_1_2_8_1_1
  doi: 10.1002/cssc.201701306
– ident: e_1_2_8_18_1
  doi: 10.1002/anie.201703864
– ident: e_1_2_8_93_1
  doi: 10.1016/j.nanoen.2018.03.059
– ident: e_1_2_8_64_2
  doi: 10.1016/j.nanoen.2016.04.009
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.201604802
– ident: e_1_2_8_84_5
  doi: 10.1038/ncomms9668
– ident: e_1_2_8_7_2
  doi: 10.1021/acs.accounts.8b00478
– ident: e_1_2_8_37_2
  doi: 10.1021/acscatal.8b04937
– ident: e_1_2_8_8_4
  doi: 10.1002/celc.201801189
– ident: e_1_2_8_52_2
  doi: 10.1021/acscatal.6b02899
– ident: e_1_2_8_72_6
  doi: 10.1002/anie.201705002
– ident: e_1_2_8_34_1
  doi: 10.1002/aenm.201803402
– ident: e_1_2_8_34_5
  doi: 10.1002/chem.202000294
– ident: e_1_2_8_82_6
  doi: 10.1002/aenm.201803913
– ident: e_1_2_8_5_5
  doi: 10.1002/anie.201806936
– ident: e_1_2_8_5_6
  doi: 10.1002/adma.201402978
– ident: e_1_2_8_75_3
  doi: 10.1016/j.mattod.2019.03.002
– ident: e_1_2_8_29_1
  doi: 10.1002/anie.201702473
– ident: e_1_2_8_51_1
  doi: 10.1002/aenm.201701345
– ident: e_1_2_8_55_1
  doi: 10.1038/s41467-018-07850-2
– ident: e_1_2_8_75_6
  doi: 10.1021/jacs.9b07963
– ident: e_1_2_8_86_1
  doi: 10.1038/nenergy.2016.184
– ident: e_1_2_8_48_3
  doi: 10.1002/anie.201402342
– volume: 8
  start-page: 1701343
  year: 2018
  ident: e_1_2_8_18_2
  publication-title: Adv. Mater.
– ident: e_1_2_8_78_1
  doi: 10.1002/asia.201901100
– ident: e_1_2_8_82_2
  doi: 10.1002/anie.201710556
– ident: e_1_2_8_25_1
  doi: 10.1038/s41467-018-07850-2
– ident: e_1_2_8_2_1
  doi: 10.1002/aenm.201701343
– ident: e_1_2_8_68_1
  doi: 10.1021/jacs.8b00814
– ident: e_1_2_8_38_2
  doi: 10.1021/nl403520c
– ident: e_1_2_8_60_1
  doi: 10.1002/anie.201902109
– ident: e_1_2_8_63_1
  doi: 10.1038/s41560-019-0450-y
– ident: e_1_2_8_66_2
  doi: 10.1002/anie.201914977
– ident: e_1_2_8_45_1
  doi: 10.1021/acscatal.8b00138
– ident: e_1_2_8_1_5
  doi: 10.1039/C8EE02939C
– ident: e_1_2_8_50_1
  doi: 10.1002/anie.201909312
– ident: e_1_2_8_63_5
  doi: 10.1038/s41557-018-0092-x
– ident: e_1_2_8_35_2
  doi: 10.1039/C9CS00903E
– ident: e_1_2_8_64_1
  doi: 10.1002/chem.201803083
– ident: e_1_2_8_48_1
  doi: 10.1021/acs.jpcc.8b00078
– ident: e_1_2_8_63_6
  doi: 10.1002/anie.201813494
– ident: e_1_2_8_19_2
  doi: 10.1021/acs.chemrev.9b00223
– ident: e_1_2_8_37_1
  doi: 10.1038/s41565-019-0518-7
– ident: e_1_2_8_8_7
  doi: 10.1021/acs.chemrev.8b00501
– ident: e_1_2_8_64_3
  doi: 10.1002/adma.201807166
– ident: e_1_2_8_6_1
  doi: 10.1002/smtd.201800481
– ident: e_1_2_8_21_2
  doi: 10.1002/anie.201712451
– ident: e_1_2_8_44_1
  doi: 10.1039/c2cs35174a
– ident: e_1_2_8_12_5
  doi: 10.1016/j.chempr.2018.12.011
– ident: e_1_2_8_7_1
  doi: 10.1038/natrevmats.2016.9
– ident: e_1_2_8_79_2
  doi: 10.1016/j.scib.2018.07.005
– ident: e_1_2_8_6_3
  doi: 10.1038/s41467-019-12887-y
– volume: 31
  start-page: 24
  year: 2019
  ident: e_1_2_8_81_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_90_1
  doi: 10.1002/anie.201813634
– ident: e_1_2_8_34_2
  doi: 10.1016/j.apcatb.2019.118144
– ident: e_1_2_8_24_1
  doi: 10.1021/jacs.7b02736
– ident: e_1_2_8_37_3
  doi: 10.1038/s41467-018-03012-6
– ident: e_1_2_8_15_2
  doi: 10.1002/smtd.201800471
– ident: e_1_2_8_75_2
  doi: 10.1002/aenm.201800369
– ident: e_1_2_8_63_4
  doi: 10.1038/ncomms9177
– ident: e_1_2_8_46_2
  doi: 10.1039/C7EE03245E
– ident: e_1_2_8_46_1
  doi: 10.1038/s41560-017-0078-8
– ident: e_1_2_8_74_1
  doi: 10.1126/science.1211906
– ident: e_1_2_8_14_3
  doi: 10.1039/C9CS00163H
– ident: e_1_2_8_62_1
  doi: 10.1002/ange.201810175
– ident: e_1_2_8_69_1
  doi: 10.1021/acscatal.6b03353
– ident: e_1_2_8_83_2
  doi: 10.1039/C8EE02888E
– year: 2020
  ident: e_1_2_8_14_4
  publication-title: Chem. Rev.
– ident: e_1_2_8_72_5
  doi: 10.1016/j.chempr.2018.12.014
– ident: e_1_2_8_10_1
  doi: 10.1021/jacs.7b07093
– ident: e_1_2_8_40_1
  doi: 10.1007/s12274-019-2345-4
– ident: e_1_2_8_71_1
  doi: 10.1002/ange.201901575
– ident: e_1_2_8_77_1
  doi: 10.1002/adma.201606550
– ident: e_1_2_8_83_1
  doi: 10.1038/s41929-018-0195-1
– ident: e_1_2_8_2_3
  doi: 10.1002/adma.201706758
– ident: e_1_2_8_13_1
  doi: 10.1126/science.aaf5251
– ident: e_1_2_8_61_4
  doi: 10.1039/C8CC00988K
– ident: e_1_2_8_70_1
  doi: 10.1021/acscatal.8b00398
– ident: e_1_2_8_29_2
  doi: 10.1021/jacs.7b05018
– ident: e_1_2_8_89_1
  doi: 10.1002/adfm.201702546
– volume: 14
  start-page: 6
  year: 2018
  ident: e_1_2_8_34_4
  publication-title: Small
– ident: e_1_2_8_2_2
  doi: 10.1038/ncomms15938
– ident: e_1_2_8_11_3
  doi: 10.1021/jacs.9b06482
– ident: e_1_2_8_61_3
  doi: 10.1002/anie.201811126
– ident: e_1_2_8_5_4
  doi: 10.1002/aenm.201903815
– ident: e_1_2_8_34_3
  doi: 10.1002/anie.201904058
– ident: e_1_2_8_59_1
  doi: 10.1002/adfm.201700802
– ident: e_1_2_8_47_2
  doi: 10.1038/s41929-019-0246-2
– ident: e_1_2_8_49_2
  doi: 10.1021/ja5128133
– ident: e_1_2_8_34_7
  doi: 10.1002/smll.201902218
– ident: e_1_2_8_75_5
  doi: 10.1002/smtd.201800331
– ident: e_1_2_8_8_2
  doi: 10.1021/acs.chemrev.7b00776
– ident: e_1_2_8_15_1
  doi: 10.1021/acscatal.0c01459
– ident: e_1_2_8_82_4
  doi: 10.1126/sciadv.aao6657
– ident: e_1_2_8_64_4
  doi: 10.1021/acs.accounts.9b00496
– ident: e_1_2_8_12_3
  doi: 10.1002/adma.201705112
– ident: e_1_2_8_27_1
  doi: 10.1002/anie.201800817
– ident: e_1_2_8_73_3
  doi: 10.1021/acsenergylett.8b02197
– ident: e_1_2_8_33_2
  doi: 10.1021/jacs.8b09834
– ident: e_1_2_8_46_3
  doi: 10.1002/anie.201808593
– ident: e_1_2_8_28_1
  doi: 10.1002/anie.201803262
– ident: e_1_2_8_52_1
  doi: 10.1002/anie.201812423
– ident: e_1_2_8_14_2
  doi: 10.1039/C9EE01722D
– ident: e_1_2_8_78_5
  doi: 10.1039/C9TA10206J
– ident: e_1_2_8_80_2
  doi: 10.1039/C7CP08626A
– ident: e_1_2_8_58_1
  doi: 10.1038/s41467-019-11796-4
– ident: e_1_2_8_54_1
  doi: 10.1039/C9EE00877B
– ident: e_1_2_8_43_3
  doi: 10.1038/s41929-017-0008-y
– ident: e_1_2_8_79_1
  doi: 10.1002/smtd.201800202
– ident: e_1_2_8_7_4
  doi: 10.1038/nmat4924
– ident: e_1_2_8_3_1
  doi: 10.1038/nchem.1095
– ident: e_1_2_8_75_7
  doi: 10.1016/j.nanoen.2018.04.039
– ident: e_1_2_8_29_4
  doi: 10.1002/adfm.201808872
– ident: e_1_2_8_53_1
  doi: 10.1038/ncomms10922
– ident: e_1_2_8_80_1
  doi: 10.1021/acs.jpcc.8b05257
– ident: e_1_2_8_5_8
  doi: 10.1002/adma.201801995
– ident: e_1_2_8_45_2
  doi: 10.1038/s41467-017-01100-7
– ident: e_1_2_8_12_1
  doi: 10.1021/jacs.8b11386
– ident: e_1_2_8_39_1
  doi: 10.1126/sciadv.1500462
– ident: e_1_2_8_8_6
  doi: 10.1002/aenm.201902625
– ident: e_1_2_8_65_2
  doi: 10.1016/j.joule.2018.11.008
– ident: e_1_2_8_69_3
  doi: 10.1016/j.apcatb.2020.118720
– ident: e_1_2_8_32_1
  doi: 10.1002/anie.201808049
– ident: e_1_2_8_88_1
  doi: 10.1016/j.nanoen.2018.12.085
– ident: e_1_2_8_75_9
  doi: 10.1002/smtd.201800386
– ident: e_1_2_8_54_6
  doi: 10.1002/adma.201806312
– ident: e_1_2_8_66_1
  doi: 10.1016/j.cogsc.2018.11.002
– ident: e_1_2_8_78_2
  doi: 10.1002/smtd.201800501
– ident: e_1_2_8_82_1
  doi: 10.1021/acsenergylett.8b00640
– ident: e_1_2_8_84_2
  doi: 10.1002/anie.201507381
– ident: e_1_2_8_35_1
  doi: 10.1002/aenm.201902844
– ident: e_1_2_8_34_6
  doi: 10.1002/adma.201800743
– ident: e_1_2_8_72_7
  doi: 10.1038/s41557-018-0201-x
– ident: e_1_2_8_79_4
  doi: 10.1002/adma.201803498
– ident: e_1_2_8_84_1
  doi: 10.1038/s41467-018-03896-4
– ident: e_1_2_8_43_2
  doi: 10.1038/nmat4367
– ident: e_1_2_8_92_1
  doi: 10.1021/acscatal.7b02165
– ident: e_1_2_8_73_1
  doi: 10.1039/C4CS00085D
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.201706758
– ident: e_1_2_8_54_8
  doi: 10.1073/pnas.1800771115
– ident: e_1_2_8_65_1
  doi: 10.1021/jacs.8b13579
– ident: e_1_2_8_2_4
  doi: 10.1002/ange.201509241
– ident: e_1_2_8_2_5
  doi: 10.1021/jacs.7b06514
– ident: e_1_2_8_82_5
  doi: 10.1021/ja408574m
– ident: e_1_2_8_49_3
  doi: 10.1021/acs.jpclett.6b01153
– ident: e_1_2_8_67_1
  doi: 10.1039/C8EE00133B
– ident: e_1_2_8_43_1
  doi: 10.1021/acsnano.5b05984
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.chemrev.9b00311
– ident: e_1_2_8_54_4
  doi: 10.1021/acscatal.6b02966
– ident: e_1_2_8_72_4
  doi: 10.1021/acscatal.6b01393
– ident: e_1_2_8_49_1
  doi: 10.1126/science.aac6368
– ident: e_1_2_8_8_5
  doi: 10.1038/s41570-018-0010-1
– ident: e_1_2_8_19_1
  doi: 10.1039/C9CS00906J
– ident: e_1_2_8_31_1
  doi: 10.1038/s41565-018-0197-9
– ident: e_1_2_8_52_3
  doi: 10.1021/acsnano.7b02148
– ident: e_1_2_8_54_7
  doi: 10.1002/anie.201610119
– ident: e_1_2_8_8_3
  doi: 10.1038/s41929-018-0090-9
– ident: e_1_2_8_19_3
  doi: 10.1002/anie.201910309
– ident: e_1_2_8_5_7
  doi: 10.1002/anie.201806936
– ident: e_1_2_8_65_4
  doi: 10.1016/j.joule.2018.03.018
– ident: e_1_2_8_78_4
  doi: 10.1016/j.chempr.2020.01.013
– ident: e_1_2_8_69_2
  doi: 10.1002/anie.201906079
– ident: e_1_2_8_30_1
  doi: 10.1126/science.aaf8800
– ident: e_1_2_8_40_2
  doi: 10.1002/anie.201800269
– ident: e_1_2_8_83_3
  doi: 10.1016/j.chempr.2017.12.005
– ident: e_1_2_8_54_3
  doi: 10.1038/s41929-019-0237-3
– ident: e_1_2_8_17_2
  doi: 10.1039/C9EE04040D
– ident: e_1_2_8_5_9
  doi: 10.1016/j.nanoen.2019.103917
– ident: e_1_2_8_84_4
  doi: 10.1002/anie.201710599
– ident: e_1_2_8_5_1
  doi: 10.1002/adfm.201600240
– ident: e_1_2_8_8_8
  doi: 10.1126/science.aal3439
– ident: e_1_2_8_33_1
  doi: 10.1038/s41929-018-0146-x
– ident: e_1_2_8_78_3
  doi: 10.1021/acscatal.8b00905
– ident: e_1_2_8_17_1
  doi: 10.1016/j.enchem.2019.100001
– ident: e_1_2_8_75_1
  doi: 10.1002/smtd.201800337
– ident: e_1_2_8_91_1
  doi: 10.1016/j.nanoen.2018.02.025
– ident: e_1_2_8_11_2
  doi: 10.1038/s41467-017-01259-z
– ident: e_1_2_8_75_8
  doi: 10.1016/j.joule.2018.09.011
– ident: e_1_2_8_6_4
  doi: 10.1007/s41918-019-00050-6
– ident: e_1_2_8_41_1
  doi: 10.1021/jp408979h
– ident: e_1_2_8_9_1
  doi: 10.1038/ncomms6634
– ident: e_1_2_8_84_3
  doi: 10.1038/ncomms10667
– ident: e_1_2_8_72_3
  doi: 10.1021/jacs.7b00452
– ident: e_1_2_8_54_9
  doi: 10.1002/adma.201800588
– ident: e_1_2_8_80_4
  doi: 10.1016/j.nanoen.2019.04.092
– ident: e_1_2_8_7_3
  doi: 10.1002/anie.201509241
– ident: e_1_2_8_56_1
  doi: 10.1002/anie.202002665
– ident: e_1_2_8_2_6
  doi: 10.1021/acscatal.9b00252
– ident: e_1_2_8_36_1
  doi: 10.1002/advs.201901129
– ident: e_1_2_8_28_2
  doi: 10.1038/s41467-020-16715-6
– ident: e_1_2_8_61_2
  doi: 10.1021/jacs.7b10385
– ident: e_1_2_8_61_1
  doi: 10.1039/C8EE02656D
– ident: e_1_2_8_72_2
  doi: 10.1021/jacs.9b04907
– ident: e_1_2_8_22_1
  doi: 10.1039/C8EE02694G
– ident: e_1_2_8_12_4
  doi: 10.1093/nsr/nwy010
– ident: e_1_2_8_79_3
  doi: 10.1016/j.chempr.2018.10.007
– ident: e_1_2_8_57_1
  doi: 10.1038/s41929-018-0164-8
– ident: e_1_2_8_1_4
  doi: 10.1007/s41918-018-0013-0
– ident: e_1_2_8_80_7
  doi: 10.1021/acscatal.9b00959
– ident: e_1_2_8_80_5
  doi: 10.1021/jacs.7b05213
– ident: e_1_2_8_80_6
  doi: 10.1039/C8TA07683A
– ident: e_1_2_8_76_1
  doi: 10.1002/cssc.201500322
– ident: e_1_2_8_23_1
  doi: 10.1021/acs.chemmater.5b04887
– ident: e_1_2_8_87_1
  doi: 10.1038/ncomms15341
– ident: e_1_2_8_1_3
  doi: 10.1007/s41918-018-0004-1
– ident: e_1_2_8_16_1
  doi: 10.1021/ja7106146
– ident: e_1_2_8_1_2
  doi: 10.1021/ar300361m
– ident: e_1_2_8_47_1
  doi: 10.1038/s41929-018-0203-5
– ident: e_1_2_8_6_2
  doi: 10.1038/ncomms13638
– ident: e_1_2_8_47_3
  doi: 10.1073/pnas.1813605115
– ident: e_1_2_8_39_2
  doi: 10.1039/C5EE00751H
– ident: e_1_2_8_75_4
  doi: 10.1002/smtd.201800388
SSID ssj0000491033
Score 2.6828728
SecondaryResourceType review_article
Snippet Electrocatalysis plays a critical role in clean energy conversion, enabling great improvement for future sustainable technologies. Single atom catalysts (SACs)...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Clean energy
Clean technology
Coordination
Density functional theory
electrocatalysis
Electronic structure
Energy conversion
energy conversion reactions
Hydrogen evolution reactions
Metal-organic frameworks
Oxygen evolution reactions
Oxygen reduction reactions
Selectivity
Single atom catalysts
Size effects
Spatial distribution
Synthesis
Title Recent Advances in MOF‐Derived Single Atom Catalysts for Electrochemical Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202001561
https://www.proquest.com/docview/2450125631
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWGdgOLiqdoKcgLJBaVwUkcJ1lGdEYVdMqCVozYRLFjqyMNGdRmUNsVn4D4RL6E6zh2MrzpJoocTybxPfF9-N5jhJ7KTPBAJAnhoFsJq4QmQichCRWXKWNlkAkT75ge8YMT9moWz0ajr4OspVUjnsurX9aVXEeq0AZyNVWy_yFZf1NogHOQLxxBwnD8JxmDzWeW8nO7jt9mtk7fTHz-wj48wydjUIJ6Wqi9vFl-MBV_hoWkaWkY9sZ2ExzpWAPywXL20GzNXaaAsqWCYOba9_MBmi6z9_0pnFzMPeJ8PPpQzb3NvLxcqP4hHc3Ba1DQPVQnK9M2A_Bena6GoQnwQ12Sm5tNQfcTnnYBTDVssxxNfgqmA6hZtpdOG3td9dNUb6ljS1UbPoGwLQkPeqXmFvJ9z_jPfS0F8Pho6q_fQJshuB4wd27m-9PDtz5yBz5VQKO2csO9n2MDpeGL9T9Zt3Z6F2boCLWWzPFttNW5IDi3eLqDRqq-i24NiCnvoXcWWdghC89rDMj69vlLhylsMYUNprDHFAZM4R8whYeYuo9OJuPjlwek24KDSAamIQl4pRXTqZZCJpoKVlGqlQxkxGWgK0m5NGxPiSGuTEvwTrmUSRbHQuiYZ1RGD9BGvazVQ4Qr0BVCRUlWioSBWVnKNE3jpAwCnSqm6DYibqgK2fHTm21SFoVl1g4LM7SFH9pt9Mz3_2iZWX7bc9eNfNF9vedFyGKwzWIeweWwlcZf7lKsoWPnOj96hG72n8ku2mjOVuox2LSNeNKB7DvYnZje
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+MOF%E2%80%90Derived+Single+Atom+Catalysts+for+Electrochemical+Applications&rft.jtitle=Advanced+energy+materials&rft.au=Song%2C+Zhongxin&rft.au=Zhang%2C+Lei&rft.au=Doyle%E2%80%90Davis%2C+Kieran&rft.au=Fu%2C+Xianzhu&rft.date=2020-10-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202001561&rft.externalDBID=10.1002%252Faenm.202001561&rft.externalDocID=AENM202001561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon