Recent Advances in MOF‐Derived Single Atom Catalysts for Electrochemical Applications
Electrocatalysis plays a critical role in clean energy conversion, enabling great improvement for future sustainable technologies. Single atom catalysts (SACs) derived from metal–organic framework (MOF) are emerging extraordinary materials in electrochemical catalytic applications. Covering the meri...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 38 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocatalysis plays a critical role in clean energy conversion, enabling great improvement for future sustainable technologies. Single atom catalysts (SACs) derived from metal–organic framework (MOF) are emerging extraordinary materials in electrochemical catalytic applications. Covering the merits of unique electronic structure, low‐coordination environment, quantum size effect, and metal–support interaction, SACs promise enhanced electrocatalytic activity, stability, and selectivity in the field of clean energy conversion. In this article, MOF synthesis routes to afford well‐dispersed SACs along with the respective synthesis mechanism are systematically reviewed first, and typical examples of each strategy are carefully discussed. Then the characterization techniques in understanding the isolated and spatial distribution, local electronic structure, coordination environment for SACs, and insights into stable mechanisms provided by density functional theory (DFT) calculations are summarized. In addition, several important electrocatalytic applications and electrocatalytic mechanisms of the MOF‐derived SACs, including for the oxygen reduction reaction, CO2 reduction reaction, nitrogen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, etc., are highlighted. To facilitate the future development of high‐performing SACs, several technical challenges and corresponding research directions are proposed.
This review presents recent progress in the design and synthesis of metal–organic framework (MOF)‐derived single atom electrocatalysts, the ex situ and in situ characterizations, and their remarkable catalytic performance in electrochemical conversion reactions. |
---|---|
AbstractList | Electrocatalysis plays a critical role in clean energy conversion, enabling great improvement for future sustainable technologies. Single atom catalysts (SACs) derived from metal–organic framework (MOF) are emerging extraordinary materials in electrochemical catalytic applications. Covering the merits of unique electronic structure, low‐coordination environment, quantum size effect, and metal–support interaction, SACs promise enhanced electrocatalytic activity, stability, and selectivity in the field of clean energy conversion. In this article, MOF synthesis routes to afford well‐dispersed SACs along with the respective synthesis mechanism are systematically reviewed first, and typical examples of each strategy are carefully discussed. Then the characterization techniques in understanding the isolated and spatial distribution, local electronic structure, coordination environment for SACs, and insights into stable mechanisms provided by density functional theory (DFT) calculations are summarized. In addition, several important electrocatalytic applications and electrocatalytic mechanisms of the MOF‐derived SACs, including for the oxygen reduction reaction, CO2 reduction reaction, nitrogen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, etc., are highlighted. To facilitate the future development of high‐performing SACs, several technical challenges and corresponding research directions are proposed.
This review presents recent progress in the design and synthesis of metal–organic framework (MOF)‐derived single atom electrocatalysts, the ex situ and in situ characterizations, and their remarkable catalytic performance in electrochemical conversion reactions. Electrocatalysis plays a critical role in clean energy conversion, enabling great improvement for future sustainable technologies. Single atom catalysts (SACs) derived from metal–organic framework (MOF) are emerging extraordinary materials in electrochemical catalytic applications. Covering the merits of unique electronic structure, low‐coordination environment, quantum size effect, and metal–support interaction, SACs promise enhanced electrocatalytic activity, stability, and selectivity in the field of clean energy conversion. In this article, MOF synthesis routes to afford well‐dispersed SACs along with the respective synthesis mechanism are systematically reviewed first, and typical examples of each strategy are carefully discussed. Then the characterization techniques in understanding the isolated and spatial distribution, local electronic structure, coordination environment for SACs, and insights into stable mechanisms provided by density functional theory (DFT) calculations are summarized. In addition, several important electrocatalytic applications and electrocatalytic mechanisms of the MOF‐derived SACs, including for the oxygen reduction reaction, CO2 reduction reaction, nitrogen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, etc., are highlighted. To facilitate the future development of high‐performing SACs, several technical challenges and corresponding research directions are proposed. Electrocatalysis plays a critical role in clean energy conversion, enabling great improvement for future sustainable technologies. Single atom catalysts (SACs) derived from metal–organic framework (MOF) are emerging extraordinary materials in electrochemical catalytic applications. Covering the merits of unique electronic structure, low‐coordination environment, quantum size effect, and metal–support interaction, SACs promise enhanced electrocatalytic activity, stability, and selectivity in the field of clean energy conversion. In this article, MOF synthesis routes to afford well‐dispersed SACs along with the respective synthesis mechanism are systematically reviewed first, and typical examples of each strategy are carefully discussed. Then the characterization techniques in understanding the isolated and spatial distribution, local electronic structure, coordination environment for SACs, and insights into stable mechanisms provided by density functional theory (DFT) calculations are summarized. In addition, several important electrocatalytic applications and electrocatalytic mechanisms of the MOF‐derived SACs, including for the oxygen reduction reaction, CO 2 reduction reaction, nitrogen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, etc., are highlighted. To facilitate the future development of high‐performing SACs, several technical challenges and corresponding research directions are proposed. |
Author | Fu, Xianzhu Luo, Jing‐Li Song, Zhongxin Doyle‐Davis, Kieran Zhang, Lei Sun, Xueliang |
Author_xml | – sequence: 1 givenname: Zhongxin surname: Song fullname: Song, Zhongxin organization: Shenzhen University – sequence: 2 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: University of Western Ontario – sequence: 3 givenname: Kieran surname: Doyle‐Davis fullname: Doyle‐Davis, Kieran organization: University of Western Ontario – sequence: 4 givenname: Xianzhu surname: Fu fullname: Fu, Xianzhu organization: Shenzhen University – sequence: 5 givenname: Jing‐Li surname: Luo fullname: Luo, Jing‐Li email: jingli.luo@ualberta.ca organization: Shenzhen University – sequence: 6 givenname: Xueliang orcidid: 0000-0003-0374-1245 surname: Sun fullname: Sun, Xueliang email: xsun@eng.uwo.ca organization: University of Western Ontario |
BookMark | eNqFkM1KAzEUhYNUsNZuXQdct97MT6azHGqrQmvBH1wOmTuJpkwzNUkr3fkIPqNP4tRKBUG8m3sW57v3cI5Jy9RGEnLKoM8AgnMhzaIfQADAYs4OSJtxFvX4IILWXofBEek6N4dmopRBGLbJ461EaTzNyrUwKB3Vhk5n44-39wtp9VqW9E6bp0rSzNcLOhReVBvnHVW1paNKorc1PsuFRlHRbLmsGuF1bdwJOVSicrL7vTvkYTy6H171JrPL62E26WEUAOsxXioZqYHCAhMFRVQCKIkMQ45MlQgckzAYJMDCZCDiOOWISRrHRaFingKGHXK2u7u09ctKOp_P65U1zcs8iGJgQcxD1riinQtt7ZyVKkftv4J6K3SVM8i3LebbFvN9iw3W_4UtrV4Iu_kbSHfAq67k5h93no1upj_sJ6foh9U |
CitedBy_id | crossref_primary_10_1002_adfm_202104864 crossref_primary_10_1002_cctc_202401186 crossref_primary_10_1007_s10562_023_04496_8 crossref_primary_10_1016_j_mtchem_2023_101531 crossref_primary_10_1021_acs_chemrev_1c00243 crossref_primary_10_1002_smll_202401796 crossref_primary_10_1016_j_ccr_2022_214613 crossref_primary_10_1016_j_ccr_2022_214855 crossref_primary_10_1002_ange_202316123 crossref_primary_10_1002_smll_202201428 crossref_primary_10_1016_j_jcis_2025_137386 crossref_primary_10_1039_D3QI00732D crossref_primary_10_1002_EXP_20230001 crossref_primary_10_1007_s00604_023_06014_4 crossref_primary_10_1016_j_ccr_2022_214969 crossref_primary_10_1021_acsami_4c07732 crossref_primary_10_1016_j_apcatb_2024_124288 crossref_primary_10_1002_cssc_202100342 crossref_primary_10_1002_smll_202304663 crossref_primary_10_1063_5_0099758 crossref_primary_10_3389_fenrg_2023_1194674 crossref_primary_10_1002_advs_202100498 crossref_primary_10_1021_acscatal_2c01873 crossref_primary_10_1016_j_cjac_2024_100426 crossref_primary_10_1016_j_trechm_2023_02_001 crossref_primary_10_1039_D4CP00160E crossref_primary_10_1016_j_est_2024_110823 crossref_primary_10_1016_j_jallcom_2023_172518 crossref_primary_10_1002_smtd_202101567 crossref_primary_10_1016_j_jcis_2022_02_080 crossref_primary_10_2139_ssrn_4102865 crossref_primary_10_3390_molecules28072879 crossref_primary_10_1016_j_microc_2025_112955 crossref_primary_10_1016_j_jelechem_2023_117161 crossref_primary_10_1002_cey2_484 crossref_primary_10_1002_aenm_202102257 crossref_primary_10_1039_D1GC02331D crossref_primary_10_2139_ssrn_4165503 crossref_primary_10_3390_molecules29235696 crossref_primary_10_1002_aenm_202003970 crossref_primary_10_1002_adma_202210037 crossref_primary_10_1039_D1SC05867C crossref_primary_10_1007_s12274_023_6294_6 crossref_primary_10_1016_j_ccr_2024_215726 crossref_primary_10_1021_acsmaterialslett_2c00751 crossref_primary_10_1039_D2TA00747A crossref_primary_10_1002_asia_202400896 crossref_primary_10_1021_jacs_3c11355 crossref_primary_10_1016_j_ccr_2024_216372 crossref_primary_10_1021_acs_analchem_3c02340 crossref_primary_10_1039_D1SC01375K crossref_primary_10_1002_cey2_491 crossref_primary_10_1002_smll_202410976 crossref_primary_10_1016_j_apcatb_2023_122489 crossref_primary_10_1021_acsami_2c21632 crossref_primary_10_1002_cctc_202400438 crossref_primary_10_1016_j_cej_2022_139446 crossref_primary_10_1039_D0CS01032D crossref_primary_10_1039_D2CC02865D crossref_primary_10_1002_chem_202101020 crossref_primary_10_1002_cplu_202400192 crossref_primary_10_1016_j_apcatb_2023_122482 crossref_primary_10_2139_ssrn_4184973 crossref_primary_10_1039_D2TA05777H crossref_primary_10_1002_advs_202203391 crossref_primary_10_1002_adfm_202425056 crossref_primary_10_1002_adma_202414889 crossref_primary_10_1039_D3DT03249C crossref_primary_10_1016_j_joei_2021_11_015 crossref_primary_10_1021_acs_jpclett_3c03105 crossref_primary_10_1039_D2QI01688E crossref_primary_10_3390_c7020047 crossref_primary_10_1007_s12274_022_4979_x crossref_primary_10_1016_j_envpol_2022_119690 crossref_primary_10_1002_anie_202107123 crossref_primary_10_1039_D3CS00419H crossref_primary_10_1016_j_ccr_2021_214122 crossref_primary_10_1016_j_ijhydene_2023_11_037 crossref_primary_10_1016_j_jcat_2024_115296 crossref_primary_10_1016_j_nxnano_2024_100073 crossref_primary_10_1021_acsnano_3c02749 crossref_primary_10_1021_acs_energyfuels_1c00758 crossref_primary_10_1021_acsomega_1c03427 crossref_primary_10_1038_s41467_021_27768_6 crossref_primary_10_1016_j_chroma_2023_463869 crossref_primary_10_1002_smll_202304750 crossref_primary_10_1039_D1EE00247C crossref_primary_10_1002_adma_202105410 crossref_primary_10_1016_j_electacta_2024_145620 crossref_primary_10_1016_j_rser_2024_114520 crossref_primary_10_1016_j_ijhydene_2021_11_063 crossref_primary_10_1016_j_ijhydene_2022_11_340 crossref_primary_10_1016_j_carbon_2022_08_027 crossref_primary_10_1021_acs_chemrev_4c00155 crossref_primary_10_1039_D2YA00284A crossref_primary_10_1016_j_jcis_2021_12_157 crossref_primary_10_1039_D1TA07778C crossref_primary_10_1016_j_jcis_2022_10_146 crossref_primary_10_1039_D3TA02712K crossref_primary_10_1002_inf2_12257 crossref_primary_10_1002_ange_202109058 crossref_primary_10_1016_j_solener_2024_112478 crossref_primary_10_1002_adfm_202418602 crossref_primary_10_1016_j_ijhydene_2021_01_063 crossref_primary_10_1039_D2EE01037B crossref_primary_10_1039_D2NR03050K crossref_primary_10_1016_j_poly_2022_115728 crossref_primary_10_3390_molecules29163719 crossref_primary_10_1021_acs_chemrev_1c00158 crossref_primary_10_1002_adma_202102212 crossref_primary_10_1016_j_mtchem_2023_101857 crossref_primary_10_1016_j_surfin_2024_105066 crossref_primary_10_1002_smtd_202201532 crossref_primary_10_1016_j_jece_2022_108836 crossref_primary_10_1039_D2CY01837C crossref_primary_10_1016_j_ccr_2021_214264 crossref_primary_10_1016_j_cej_2022_139475 crossref_primary_10_1002_ange_202110838 crossref_primary_10_1021_acsami_1c12695 crossref_primary_10_1021_acsnano_4c04068 crossref_primary_10_1021_acsami_1c18797 crossref_primary_10_1016_j_electacta_2021_138751 crossref_primary_10_1016_j_nanoen_2021_106868 crossref_primary_10_1007_s40820_021_00651_1 crossref_primary_10_1039_D2TA08735A crossref_primary_10_1002_smll_202006473 crossref_primary_10_1016_j_jpowsour_2021_230944 crossref_primary_10_1002_aic_18746 crossref_primary_10_1002_smll_202006113 crossref_primary_10_1142_S1793604723400131 crossref_primary_10_1016_j_ccr_2021_214392 crossref_primary_10_1007_s12598_021_01904_z crossref_primary_10_1002_anie_202109058 crossref_primary_10_1016_j_electacta_2024_144636 crossref_primary_10_1016_j_ccr_2023_215288 crossref_primary_10_1021_acsabm_1c00174 crossref_primary_10_1039_D2QM01352E crossref_primary_10_1039_D3QM01172K crossref_primary_10_1002_cey2_695 crossref_primary_10_1039_D1TA08582D crossref_primary_10_1002_smtd_202100947 crossref_primary_10_1002_smll_202306621 crossref_primary_10_1021_acs_jpcc_2c08006 crossref_primary_10_1002_adfm_202008318 crossref_primary_10_1002_cctc_202301753 crossref_primary_10_1021_acscatal_2c04807 crossref_primary_10_1002_smll_202301850 crossref_primary_10_1016_j_jcis_2021_07_075 crossref_primary_10_1149_1945_7111_ac7c95 crossref_primary_10_3389_fnut_2022_987442 crossref_primary_10_1016_j_cej_2024_150769 crossref_primary_10_1016_j_jechem_2021_02_029 crossref_primary_10_1002_adfm_202316699 crossref_primary_10_1038_s41467_022_30520_3 crossref_primary_10_1016_j_ccr_2021_214289 crossref_primary_10_1016_j_ccr_2023_215058 crossref_primary_10_1016_j_colsurfa_2024_134890 crossref_primary_10_1021_acsami_3c18548 crossref_primary_10_1002_anie_202110838 crossref_primary_10_1039_D1TA08254J crossref_primary_10_1002_smll_202107997 crossref_primary_10_1016_j_apcatb_2021_120599 crossref_primary_10_3390_catal12050533 crossref_primary_10_6023_A23080374 crossref_primary_10_1039_D3CC00451A crossref_primary_10_1016_j_cej_2023_147840 crossref_primary_10_1021_acsmaterialslett_0c00396 crossref_primary_10_1002_aenm_202402278 crossref_primary_10_1016_j_fuel_2024_132539 crossref_primary_10_1039_D1CC06427D crossref_primary_10_1016_j_cej_2024_150054 crossref_primary_10_1007_s41918_024_00213_0 crossref_primary_10_1002_celc_202300722 crossref_primary_10_1002_advs_202301098 crossref_primary_10_1002_cctc_202301291 crossref_primary_10_1016_j_ijhydene_2022_04_075 crossref_primary_10_1002_ange_202414506 crossref_primary_10_1007_s12274_022_4318_2 crossref_primary_10_1002_cey2_510 crossref_primary_10_1007_s11814_021_0741_4 crossref_primary_10_1016_j_nanoen_2022_107869 crossref_primary_10_1039_D4NJ04380D crossref_primary_10_1016_j_cej_2021_129973 crossref_primary_10_1016_j_cej_2023_143482 crossref_primary_10_1039_D1TA08007E crossref_primary_10_1039_D2TC00530A crossref_primary_10_1016_j_pecs_2024_101175 crossref_primary_10_1038_s41598_024_58825_x crossref_primary_10_1016_j_ijhydene_2021_12_239 crossref_primary_10_1002_aesr_202100024 crossref_primary_10_1002_smll_202403903 crossref_primary_10_1002_advs_202306095 crossref_primary_10_1002_smll_202200720 crossref_primary_10_1002_adsu_202100281 crossref_primary_10_1039_D2CS00843B crossref_primary_10_1002_smll_202204767 crossref_primary_10_1016_j_enmf_2022_06_001 crossref_primary_10_1039_D1NJ02769G crossref_primary_10_1016_j_coche_2023_100940 crossref_primary_10_1007_s40843_022_2207_x crossref_primary_10_1002_aesr_202100033 crossref_primary_10_1039_D4TA04194A crossref_primary_10_1016_j_jhazmat_2021_125253 crossref_primary_10_1016_j_carbon_2023_118456 crossref_primary_10_1016_j_nanoen_2023_108450 crossref_primary_10_1016_j_nanoen_2023_108570 crossref_primary_10_1016_j_jhazmat_2021_125122 crossref_primary_10_1016_j_chemosphere_2021_132889 crossref_primary_10_1021_acs_accounts_3c00243 crossref_primary_10_1007_s11581_023_05095_8 crossref_primary_10_1016_j_cej_2024_153670 crossref_primary_10_1016_j_enchem_2021_100054 crossref_primary_10_1021_jacs_2c12952 crossref_primary_10_1002_anie_202316123 crossref_primary_10_1021_acs_est_3c06021 crossref_primary_10_1007_s40242_024_4072_y crossref_primary_10_1016_j_apenergy_2023_121755 crossref_primary_10_1007_s41918_022_00169_z crossref_primary_10_1186_s40824_023_00464_w crossref_primary_10_1002_adfm_202206263 crossref_primary_10_1016_j_fuproc_2023_107705 crossref_primary_10_1021_acs_jpcc_1c01201 crossref_primary_10_1021_acsnano_1c03876 crossref_primary_10_3390_catal13040651 crossref_primary_10_1039_D2CE01296K crossref_primary_10_1016_S1872_5805_24_60828_0 crossref_primary_10_1016_j_ccr_2023_215493 crossref_primary_10_1016_j_talanta_2024_127405 crossref_primary_10_20517_microstructures_2023_71 crossref_primary_10_1016_j_mser_2024_100886 crossref_primary_10_1002_adfm_202309223 crossref_primary_10_1016_j_ensm_2023_102790 crossref_primary_10_1021_acs_est_4c01133 crossref_primary_10_1002_chem_202301455 crossref_primary_10_3390_catal13101338 crossref_primary_10_1002_adfm_202303473 crossref_primary_10_1016_j_gee_2021_11_005 crossref_primary_10_1002_ange_202107123 crossref_primary_10_1016_j_coelec_2022_101197 crossref_primary_10_3390_nano12244369 crossref_primary_10_1002_aenm_202102556 crossref_primary_10_1039_D4TA07503J crossref_primary_10_1016_j_cis_2023_103068 crossref_primary_10_1039_D1SC00095K crossref_primary_10_1016_j_ica_2023_121517 crossref_primary_10_1016_j_apcatb_2022_122116 crossref_primary_10_1007_s40843_024_3165_6 crossref_primary_10_3390_catal13010130 crossref_primary_10_1016_j_mtsust_2022_100288 crossref_primary_10_1021_acs_jpclett_4c02334 crossref_primary_10_1016_j_cej_2021_132150 crossref_primary_10_1016_j_jcat_2024_115551 crossref_primary_10_1016_j_ensm_2022_12_002 crossref_primary_10_1002_adma_202404659 crossref_primary_10_1039_D2TA09232H crossref_primary_10_1016_j_fuproc_2022_107427 crossref_primary_10_1002_eom2_12186 crossref_primary_10_1002_aenm_202400160 crossref_primary_10_1021_acsenergylett_1c01911 crossref_primary_10_1016_j_seppur_2021_119369 crossref_primary_10_1021_acs_chemmater_3c01171 crossref_primary_10_1080_01614940_2024_2347479 crossref_primary_10_2139_ssrn_3979949 crossref_primary_10_1016_j_carbon_2023_02_007 crossref_primary_10_1007_s12598_023_02378_x crossref_primary_10_1016_j_ccr_2022_214761 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1002_smtd_202001194 crossref_primary_10_1016_j_seppur_2024_128056 crossref_primary_10_1039_D3TA05750J crossref_primary_10_1016_j_cej_2022_140864 crossref_primary_10_1002_cctc_202100966 crossref_primary_10_1016_j_cogsc_2022_100660 crossref_primary_10_1039_D1TA05960B crossref_primary_10_1039_D0CS00323A crossref_primary_10_1039_D4CS00370E crossref_primary_10_1039_D3EY00018D crossref_primary_10_1039_D1NR05090G crossref_primary_10_1021_acscatal_4c05169 crossref_primary_10_1002_adfm_202103597 crossref_primary_10_1016_j_carbon_2022_01_057 crossref_primary_10_1039_D1TA09069K crossref_primary_10_1002_adma_202209590 crossref_primary_10_1002_anie_202414506 crossref_primary_10_1016_j_ccr_2025_216576 crossref_primary_10_1002_smtd_202300277 crossref_primary_10_1016_j_cej_2023_143429 crossref_primary_10_1016_j_jechem_2023_08_042 crossref_primary_10_1039_D4TA03760J crossref_primary_10_1039_D2CC02939A crossref_primary_10_1039_D2CS00257D crossref_primary_10_1007_s12274_022_5097_5 crossref_primary_10_1021_acssuschemeng_0c05509 crossref_primary_10_1002_adma_202208942 crossref_primary_10_1002_cssc_202300530 crossref_primary_10_1016_j_apcatb_2022_121590 crossref_primary_10_1016_j_ccr_2024_216292 crossref_primary_10_1016_j_ccr_2022_214505 crossref_primary_10_1039_D3CY00243H crossref_primary_10_1016_j_cej_2021_133944 crossref_primary_10_1016_j_nanoen_2023_108415 crossref_primary_10_1038_s41467_021_27640_7 crossref_primary_10_1039_D1CC01989A crossref_primary_10_1016_j_isci_2023_107275 crossref_primary_10_1016_j_mtchem_2024_102035 crossref_primary_10_1021_acs_chemmater_3c02367 crossref_primary_10_1016_j_chemosphere_2024_143312 crossref_primary_10_1016_j_jcis_2021_03_124 crossref_primary_10_1016_j_ensm_2022_07_027 crossref_primary_10_1016_j_ccr_2023_215333 crossref_primary_10_1016_j_cclet_2021_07_038 crossref_primary_10_3390_catal12111462 crossref_primary_10_1002_smsc_202000028 crossref_primary_10_1016_j_ccr_2024_216281 crossref_primary_10_1039_D1NJ05713H crossref_primary_10_1016_j_apcatb_2023_123143 crossref_primary_10_1016_j_jpowsour_2025_236228 crossref_primary_10_1016_j_fuel_2024_134021 crossref_primary_10_1002_smll_202305009 |
Cites_doi | 10.1002/anie.201811728 10.1002/smtd.201800352 10.1002/smtd.201700341 10.1002/smtd.201800492 10.1021/acscatal.8b01014 10.1038/srep01775 10.1021/acsenergylett.8b00245 10.1002/aenm.201703487 10.1002/adma.201802066 10.1007/s12274-020-2755-3 10.1038/s41467-018-08136-3 10.1002/adma.201800396 10.1021/jacs.5b06485 10.1038/s41929-017-0009-x 10.1021/acscatal.5b00842 10.1002/smll.201704282 10.1039/C9CS00869A 10.1002/ange.201608597 10.1021/jacs.8b07294 10.1021/acsnano.7b00796 10.1021/acscatal.6b01534 10.1021/jacs.7b01686 10.1002/cssc.201701306 10.1002/anie.201703864 10.1016/j.nanoen.2018.03.059 10.1016/j.nanoen.2016.04.009 10.1002/anie.201604802 10.1038/ncomms9668 10.1021/acs.accounts.8b00478 10.1021/acscatal.8b04937 10.1002/celc.201801189 10.1021/acscatal.6b02899 10.1002/anie.201705002 10.1002/aenm.201803402 10.1002/chem.202000294 10.1002/aenm.201803913 10.1002/anie.201806936 10.1002/adma.201402978 10.1016/j.mattod.2019.03.002 10.1002/anie.201702473 10.1002/aenm.201701345 10.1038/s41467-018-07850-2 10.1021/jacs.9b07963 10.1038/nenergy.2016.184 10.1002/anie.201402342 10.1002/asia.201901100 10.1002/anie.201710556 10.1002/aenm.201701343 10.1021/jacs.8b00814 10.1021/nl403520c 10.1002/anie.201902109 10.1038/s41560-019-0450-y 10.1002/anie.201914977 10.1021/acscatal.8b00138 10.1039/C8EE02939C 10.1002/anie.201909312 10.1038/s41557-018-0092-x 10.1039/C9CS00903E 10.1002/chem.201803083 10.1021/acs.jpcc.8b00078 10.1002/anie.201813494 10.1021/acs.chemrev.9b00223 10.1038/s41565-019-0518-7 10.1021/acs.chemrev.8b00501 10.1002/adma.201807166 10.1002/smtd.201800481 10.1002/anie.201712451 10.1039/c2cs35174a 10.1016/j.chempr.2018.12.011 10.1038/natrevmats.2016.9 10.1016/j.scib.2018.07.005 10.1038/s41467-019-12887-y 10.1002/anie.201813634 10.1016/j.apcatb.2019.118144 10.1021/jacs.7b02736 10.1038/s41467-018-03012-6 10.1002/smtd.201800471 10.1002/aenm.201800369 10.1038/ncomms9177 10.1039/C7EE03245E 10.1038/s41560-017-0078-8 10.1126/science.1211906 10.1039/C9CS00163H 10.1002/ange.201810175 10.1021/acscatal.6b03353 10.1039/C8EE02888E 10.1016/j.chempr.2018.12.014 10.1021/jacs.7b07093 10.1007/s12274-019-2345-4 10.1002/ange.201901575 10.1002/adma.201606550 10.1038/s41929-018-0195-1 10.1002/adma.201706758 10.1126/science.aaf5251 10.1039/C8CC00988K 10.1021/acscatal.8b00398 10.1021/jacs.7b05018 10.1002/adfm.201702546 10.1038/ncomms15938 10.1021/jacs.9b06482 10.1002/anie.201811126 10.1002/aenm.201903815 10.1002/anie.201904058 10.1002/adfm.201700802 10.1038/s41929-019-0246-2 10.1021/ja5128133 10.1002/smll.201902218 10.1002/smtd.201800331 10.1021/acs.chemrev.7b00776 10.1021/acscatal.0c01459 10.1126/sciadv.aao6657 10.1021/acs.accounts.9b00496 10.1002/adma.201705112 10.1002/anie.201800817 10.1021/acsenergylett.8b02197 10.1021/jacs.8b09834 10.1002/anie.201808593 10.1002/anie.201803262 10.1002/anie.201812423 10.1039/C9EE01722D 10.1039/C9TA10206J 10.1039/C7CP08626A 10.1038/s41467-019-11796-4 10.1039/C9EE00877B 10.1038/s41929-017-0008-y 10.1002/smtd.201800202 10.1038/nmat4924 10.1038/nchem.1095 10.1016/j.nanoen.2018.04.039 10.1002/adfm.201808872 10.1038/ncomms10922 10.1021/acs.jpcc.8b05257 10.1002/adma.201801995 10.1038/s41467-017-01100-7 10.1021/jacs.8b11386 10.1126/sciadv.1500462 10.1002/aenm.201902625 10.1016/j.joule.2018.11.008 10.1016/j.apcatb.2020.118720 10.1002/anie.201808049 10.1016/j.nanoen.2018.12.085 10.1002/smtd.201800386 10.1002/adma.201806312 10.1016/j.cogsc.2018.11.002 10.1002/smtd.201800501 10.1021/acsenergylett.8b00640 10.1002/anie.201507381 10.1002/aenm.201902844 10.1002/adma.201800743 10.1038/s41557-018-0201-x 10.1002/adma.201803498 10.1038/s41467-018-03896-4 10.1038/nmat4367 10.1021/acscatal.7b02165 10.1039/C4CS00085D 10.1073/pnas.1800771115 10.1021/jacs.8b13579 10.1002/ange.201509241 10.1021/jacs.7b06514 10.1021/ja408574m 10.1021/acs.jpclett.6b01153 10.1039/C8EE00133B 10.1021/acsnano.5b05984 10.1021/acs.chemrev.9b00311 10.1021/acscatal.6b02966 10.1021/acscatal.6b01393 10.1126/science.aac6368 10.1038/s41570-018-0010-1 10.1039/C9CS00906J 10.1038/s41565-018-0197-9 10.1021/acsnano.7b02148 10.1002/anie.201610119 10.1038/s41929-018-0090-9 10.1002/anie.201910309 10.1016/j.joule.2018.03.018 10.1016/j.chempr.2020.01.013 10.1002/anie.201906079 10.1126/science.aaf8800 10.1002/anie.201800269 10.1016/j.chempr.2017.12.005 10.1038/s41929-019-0237-3 10.1039/C9EE04040D 10.1016/j.nanoen.2019.103917 10.1002/anie.201710599 10.1002/adfm.201600240 10.1126/science.aal3439 10.1038/s41929-018-0146-x 10.1021/acscatal.8b00905 10.1016/j.enchem.2019.100001 10.1002/smtd.201800337 10.1016/j.nanoen.2018.02.025 10.1038/s41467-017-01259-z 10.1016/j.joule.2018.09.011 10.1007/s41918-019-00050-6 10.1021/jp408979h 10.1038/ncomms6634 10.1038/ncomms10667 10.1021/jacs.7b00452 10.1002/adma.201800588 10.1016/j.nanoen.2019.04.092 10.1002/anie.201509241 10.1002/anie.202002665 10.1021/acscatal.9b00252 10.1002/advs.201901129 10.1038/s41467-020-16715-6 10.1021/jacs.7b10385 10.1039/C8EE02656D 10.1021/jacs.9b04907 10.1039/C8EE02694G 10.1093/nsr/nwy010 10.1016/j.chempr.2018.10.007 10.1038/s41929-018-0164-8 10.1007/s41918-018-0013-0 10.1021/acscatal.9b00959 10.1021/jacs.7b05213 10.1039/C8TA07683A 10.1002/cssc.201500322 10.1021/acs.chemmater.5b04887 10.1038/ncomms15341 10.1007/s41918-018-0004-1 10.1021/ja7106146 10.1021/ar300361m 10.1038/s41929-018-0203-5 10.1038/ncomms13638 10.1073/pnas.1813605115 10.1039/C5EE00751H 10.1002/smtd.201800388 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202001561 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202001561 AENM202001561 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Canada Research Chairs – fundername: National Natural Science Foundation of China funderid: NSFC21905179 – fundername: Shenzhen University – fundername: Canada Foundation for Innovation – fundername: University of Western Ontario – fundername: Natural Sciences and Engineering Research Council of Canada |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4201-16dfe4f8fcbc7f0b4d00fec1c36c1fdc06c7328701378a5596cc7955bbf5690c3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:14:03 EDT 2025 Tue Jul 01 01:43:36 EDT 2025 Thu Apr 24 22:59:16 EDT 2025 Wed Jan 22 16:33:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4201-16dfe4f8fcbc7f0b4d00fec1c36c1fdc06c7328701378a5596cc7955bbf5690c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0374-1245 |
PQID | 2450125631 |
PQPubID | 886389 |
PageCount | 42 |
ParticipantIDs | proquest_journals_2450125631 crossref_citationtrail_10_1002_aenm_202001561 crossref_primary_10_1002_aenm_202001561 wiley_primary_10_1002_aenm_202001561_AENM202001561 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019 2018 2019 2017 2018 2019 2017 2018 2018; 12 3 2 7 140 31 56 115 30 2018 2018 2019 2019 2017 2018 2019; 122 20 58 61 139 6 9 2017; 8 2013; 3 2019 2019 2018 2018; 141 3 8 2 2019; 10 2019; 12 2019 2019 2018; 2 2 115 2019; 58 2019 2017 2017; 58 7 11 2020; 59 2018 2016 2014; 122 6 53 2019 2020 2019 2018 2020 2019 2019; 9 262 58 14 26 31 15 2019 2018 2018 2015 2018 2019; 4 30 1 6 10 58 2018; 48 2018; 46 2018; 9 2018; 8 2014; 5 2018; 2 2015 2015 2018; 9 14 1 2018 2013 2018 2018 2019; 11 46 1 1 12 2019 2018; 12 57 2018 2020; 57 11 2018; 1 2018 2017 2019 2018; 11 139 58 54 2018 2017 2018 2016 2017 2019; 8 8 30 128 139 9 2015 2017 2019; 137 8 141 2016; 353 2016; 352 2020 2020 2020; 49 120 59 2019 2019 2018; 14 9 9 2019 2016 2019 2019; 3 7 10 2 2018; 30 2018 2019 2018; 1 12 4 2020 2019; 10 3 2018 2018 2019 2018 2013 2019; 3 57 3 4 135 9 2014; 118 2014 2019 2019; 43 3 4 2011; 334 2019; 6 2018; 140 2020 2018 2018 2019 2018 2019 2019 2017; 120 118 1 6 2 9 119 355 2018 2018 2018; 3 11 57 2019; 31 2019 2014; 10 14 2017; 27 2019 2020 2020; 1 13 2017 2017 2018 2019; 56 139 14 29 2018 2018 2019 2018; 2 63 5 30 2016 2019 2016 2017; 1 52 55 16 2018 2015 2016 2017 2015; 9 54 7 56 6 2020 2020; 10 49 2017; 29 2019 2020; 16 59 2015 2015 2017; 1 8 11 2011; 3 2015; 8 2016 2018; 55 57 2017; 139 2016; 7 2018 2016 2019 2020; 24 29 31 53 2018 2017; 8 8 2016; 1 2020 2019 2019 2020; 49 12 48 2019 2018 2019 2019 2019 2019 2018 2019 2019; 3 8 27 3 3 141 49 3 3 2019 2019 2018 2020 2019; 14 3 8 6 7 2015 2015 2016; 350 137 7 2019 2016 2018 2018 2019; 141 128 30 5 5 2017 2018; 56 8 2018 2019; 1 141 2018 2019 2017 2016 2019 2017 2019; 8 141 139 6 5 56 11 2016 2017 2020 2020 2018 2014 2018 2018 2019; 26 7 13 10 57 26 57 30 64 2017 2019 2020; 7 58 267 2016; 28 2018; 11 2008; 130 2012; 41 2019; 131 2018; 57 2018; 13 e_1_2_8_49_3 e_1_2_8_49_2 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_1_3 e_1_2_8_1_2 e_1_2_8_1_5 e_1_2_8_1_4 e_1_2_8_9_1 e_1_2_8_64_3 e_1_2_8_64_4 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_64_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_38_2 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_15_2 e_1_2_8_91_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_48_3 e_1_2_8_25_1 e_1_2_8_48_2 e_1_2_8_63_6 e_1_2_8_48_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_2_3 e_1_2_8_2_6 e_1_2_8_2_5 e_1_2_8_63_4 e_1_2_8_63_5 e_1_2_8_63_2 e_1_2_8_63_3 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_2 e_1_2_8_40_1 e_1_2_8_37_3 e_1_2_8_75_9 e_1_2_8_75_8 e_1_2_8_14_1 e_1_2_8_75_7 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_75_6 e_1_2_8_14_3 e_1_2_8_37_1 e_1_2_8_75_5 e_1_2_8_90_1 e_1_2_8_75_4 e_1_2_8_75_3 e_1_2_8_52_2 e_1_2_8_75_2 e_1_2_8_52_3 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_7_4 e_1_2_8_7_1 e_1_2_8_7_3 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_66_2 e_1_2_8_43_3 e_1_2_8_43_2 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_78_5 e_1_2_8_78_4 e_1_2_8_78_3 e_1_2_8_78_2 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_93_1 e_1_2_8_65_4 e_1_2_8_27_1 e_1_2_8_8_4 e_1_2_8_8_3 e_1_2_8_8_6 e_1_2_8_8_5 e_1_2_8_8_8 e_1_2_8_8_7 e_1_2_8_80_2 e_1_2_8_80_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_65_2 e_1_2_8_42_1 e_1_2_8_65_3 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_80_7 e_1_2_8_80_6 e_1_2_8_80_5 e_1_2_8_80_4 e_1_2_8_80_3 e_1_2_8_39_2 e_1_2_8_39_1 e_1_2_8_54_8 e_1_2_8_39_3 e_1_2_8_54_9 e_1_2_8_54_6 e_1_2_8_54_7 e_1_2_8_54_4 e_1_2_8_16_1 e_1_2_8_54_5 e_1_2_8_92_1 e_1_2_8_54_2 e_1_2_8_31_1 e_1_2_8_54_3 e_1_2_8_77_1 e_1_2_8_54_1 Zhang H. (e_1_2_8_18_2) 2018; 8 e_1_2_8_45_2 e_1_2_8_68_1 e_1_2_8_5_7 e_1_2_8_5_6 e_1_2_8_5_9 e_1_2_8_5_8 e_1_2_8_5_1 e_1_2_8_5_3 e_1_2_8_5_2 e_1_2_8_5_5 e_1_2_8_5_4 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_83_3 e_1_2_8_83_2 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_34_7 e_1_2_8_34_6 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_11_3 e_1_2_8_34_3 e_1_2_8_34_2 e_1_2_8_34_5 e_1_2_8_57_1 e_1_2_8_19_3 Ji S. (e_1_2_8_14_4) 2020 e_1_2_8_72_7 e_1_2_8_72_6 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_72_5 e_1_2_8_11_2 e_1_2_8_72_4 e_1_2_8_72_3 e_1_2_8_72_2 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_29_3 e_1_2_8_29_4 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_6_4 e_1_2_8_6_3 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_82_6 e_1_2_8_44_1 e_1_2_8_82_5 e_1_2_8_82_4 e_1_2_8_82_3 e_1_2_8_82_2 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_79_4 e_1_2_8_79_3 e_1_2_8_79_2 e_1_2_8_79_1 Wei Y.‐S. (e_1_2_8_17_3) 2020 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_2 e_1_2_8_33_1 e_1_2_8_71_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_47_3 e_1_2_8_47_2 e_1_2_8_3_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_46_2 e_1_2_8_69_2 e_1_2_8_46_1 e_1_2_8_69_3 e_1_2_8_46_3 e_1_2_8_69_1 e_1_2_8_4_1 Wei C. (e_1_2_8_81_1) 2019; 31 e_1_2_8_84_5 e_1_2_8_61_4 e_1_2_8_84_4 e_1_2_8_23_1 e_1_2_8_84_3 e_1_2_8_61_2 e_1_2_8_84_2 e_1_2_8_61_3 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_12_3 e_1_2_8_35_1 e_1_2_8_12_4 e_1_2_8_12_5 e_1_2_8_58_1 He T. (e_1_2_8_34_4) 2018; 14 e_1_2_8_12_1 e_1_2_8_73_3 e_1_2_8_73_2 e_1_2_8_73_1 e_1_2_8_50_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 1 8 11 start-page: 1594 3392 year: 2015 2015 2017 publication-title: Sci. Adv. Energy Environ. Sci. ACS Nano – volume: 350 137 7 start-page: 189 3076 2537 year: 2015 2015 2016 publication-title: Science J. Am. Chem. Soc. J. Phys. Chem. Lett. – volume: 57 11 start-page: 8525 2831 year: 2018 2020 publication-title: Angew. Chem., Int. Ed. Nat. Commun. – volume: 8 start-page: 1186 year: 2018 publication-title: ACS Catal. – volume: 11 start-page: 1204 year: 2018 publication-title: Energy Environ. Sci. – volume: 1 start-page: 935 year: 2018 publication-title: Nat. Catal. – volume: 4 30 1 6 10 58 start-page: 732 111 8177 974 3511 year: 2019 2018 2018 2015 2018 2019 publication-title: Nat. Energy Adv. Mater. Nat. Catal. Nat. Commun. Nat. Chem. Angew. Chem., Int. Ed. – volume: 16 59 start-page: 1 2705 year: 2019 2020 publication-title: Curr. Opin. Green Sustainable Chem. Angew. Chem., Int. Ed. – volume: 58 7 11 start-page: 1163 1301 6930 year: 2019 2017 2017 publication-title: Angew. Chem., Int. Ed. ACS Catal. ACS Nano – volume: 3 57 3 4 135 9 start-page: 1713 7568 year: 2018 2018 2019 2018 2013 2019 publication-title: ACS Energy Lett. Angew. Chem., Int. Ed. Small Methods Sci. Adv. J. Am. Chem. Soc. Adv. Energy Mater. – volume: 12 57 start-page: 2067 9604 year: 2019 2018 publication-title: Nano Res. Angew. Chem., Int. Ed. – volume: 3 11 57 start-page: 140 893 year: 2018 2018 2018 publication-title: Nat. Energy Energy Environ. Sci. Angew. Chem., Int. Ed. – volume: 46 start-page: 396 year: 2018 publication-title: Nano Energy – volume: 139 start-page: 8078 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3734 year: 2019 publication-title: Nat. Commun. – volume: 57 start-page: 3493 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 8 8 30 128 139 9 start-page: 2098 3289 year: 2018 2017 2018 2016 2017 2019 publication-title: Adv. Energy Mater. Nat. Commun. Adv. Mater. Angew. Chem., Int. Ed. J. Am. Chem. Soc. ACS Catal. – volume: 2 year: 2018 publication-title: Small Methods – volume: 2 2 115 start-page: 134 304 year: 2019 2019 2018 publication-title: Nat. Catal. Nat. Catal. Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 5634 year: 2014 publication-title: Nat. Commun. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 7384 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 140 start-page: 4218 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 10 3 start-page: 6579 year: 2020 2019 publication-title: ACS Catal. Small Methods – volume: 2 63 5 30 start-page: 1246 204 year: 2018 2018 2019 2018 publication-title: Small Methods Sci. Bull. Chem Adv. Mater. – volume: 31 start-page: 24 year: 2019 publication-title: Adv. Mater. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 26 7 13 10 57 26 57 30 64 start-page: 2988 34 1842 8147 year: 2016 2017 2020 2020 2018 2014 2018 2018 2019 publication-title: Adv. Funct. Mater. ACS Catal. Nano Res. Adv. Energy Mater. Angew. Chem., Int. Ed. Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. Nano Energy – volume: 131 start-page: 2648 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 131 start-page: 7046 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 24 29 31 53 start-page: 439 255 year: 2018 2016 2019 2020 publication-title: Chem. ‐ Eur. J. Nano Energy Adv. Mater. Acc. Chem. Res. – volume: 9 262 58 14 26 31 15 start-page: 6 6402 year: 2019 2020 2019 2018 2020 2019 2019 publication-title: Adv. Energy Mater. Appl. Catal., B Angew. Chem., Int. Ed. Small Chem. ‐ Eur. J. Adv. Mater. Small – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 10 49 start-page: 3484 year: 2020 2020 publication-title: Adv. Energy Mater. Chem. Soc. Rev. – volume: 118 start-page: 3890 year: 2014 publication-title: J. Phys. Chem. C – volume: 48 start-page: 217 year: 2018 publication-title: Nano Energy – volume: 137 8 141 start-page: 1070 year: 2015 2017 2019 publication-title: J. Am. Chem. Soc. Nat. Commun. J. Am. Chem. Soc. – volume: 43 3 4 start-page: 5183 163 year: 2014 2019 2019 publication-title: Chem. Soc. Rev. Small Methods ACS Energy Lett. – volume: 3 start-page: 1775 year: 2013 publication-title: Sci. Rep. – volume: 9 start-page: 5422 year: 2018 publication-title: Nat. Commun. – volume: 13 start-page: 856 year: 2018 publication-title: Nat. Nanotechnol. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 56 139 14 29 start-page: 6937 9795 year: 2017 2017 2018 2019 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. Small Adv. Funct. Mater. – volume: 334 start-page: 780 year: 2011 publication-title: Science – volume: 352 start-page: 797 year: 2016 publication-title: Science – volume: 58 start-page: 4227 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 141 3 8 2 start-page: 4086 584 587 year: 2019 2019 2018 2018 publication-title: J. Am. Chem. Soc. Joule Adv. Energy Mater. Joule – volume: 12 start-page: 250 year: 2019 publication-title: Energy Environ. Sci. – volume: 1 141 start-page: 781 4505 year: 2018 2019 publication-title: Nat. Catal. J. Am. Chem. Soc. – volume: 28 start-page: 1213 year: 2016 publication-title: Chem. Mater. – volume: 1 12 4 start-page: 985 1000 285 year: 2018 2019 2018 publication-title: Nat. Catal. Energy Environ. Sci. Chem – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 58 start-page: 1 year: 2019 publication-title: Nano Energy – volume: 130 start-page: 5390 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 49 120 59 start-page: 1414 1438 4634 year: 2020 2020 2020 publication-title: Chem. Soc. Rev. Chem. Rev. Angew. Chem., Int. Ed. – volume: 14 3 8 6 7 start-page: 2911 7517 885 year: 2019 2019 2018 2020 2019 publication-title: Chem. ‐ Asian J. Small Methods ACS Catal. Chem J. Mater. Chem. A – volume: 8 start-page: 2180 year: 2015 publication-title: ChemSusChem – volume: 1 52 55 16 start-page: 656 2058 703 year: 2016 2019 2016 2017 publication-title: Nat. Rev. Mater. Acc. Chem. Res. Angew. Chem., Int. Ed. Nat. Mater. – volume: 55 57 start-page: 1944 year: 2016 2018 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 11 139 58 54 start-page: 3375 1975 4274 year: 2018 2017 2019 2018 publication-title: Energy Environ. Sci. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Chem. Commun. – volume: 3 8 27 3 3 141 49 3 3 start-page: 69 316 279 year: 2019 2018 2019 2019 2019 2019 2018 2019 2019 publication-title: Small Methods Adv. Energy Mater. Mater. Today Small Methods Small Methods J. Am. Chem. Soc. Nano Energy Joule Small Methods – volume: 122 6 53 start-page: 4488 840 year: 2018 2016 2014 publication-title: J. Phys. Chem. C ACS Catal. Angew. Chem., Int. Ed. – volume: 141 128 30 5 5 start-page: 5201 626 786 year: 2019 2016 2018 2018 2019 publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. Adv. Mater. Natl. Sci. Rev. Chem – volume: 58 start-page: 7035 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 9 54 7 56 6 start-page: 1460 8668 year: 2018 2015 2016 2017 2015 publication-title: Nat. Commun. Angew. Chem., Int. Ed. Nat. Commun. Angew. Chem., Int. Ed. Nat. Commun. – volume: 56 8 year: 2017 2018 publication-title: Angew. Chem., Int. Ed. Adv. Mater. – volume: 1 13 start-page: 1658 year: 2019 2020 2020 publication-title: EnergyChem Energy Environ. Sci. Chem. Rev. – volume: 139 start-page: 9419 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 122 20 58 61 139 6 9 start-page: 9248 2321 420 7311 year: 2018 2018 2019 2019 2017 2018 2019 publication-title: J. Phys. Chem. C Phys. Chem. Chem. Phys. Angew. Chem., Int. Ed. Nano Energy J. Am. Chem. Soc. J. Mater. Chem. A ACS Catal. – volume: 3 7 10 2 start-page: 4936 539 year: 2019 2016 2019 2019 publication-title: Small Methods Nat. Commun. Nat. Commun. Electrochem. Energy Rev. – volume: 8 141 139 6 5 56 11 start-page: 7113 4486 7769 693 222 year: 2018 2019 2017 2016 2019 2017 2019 publication-title: ACS Catal. J. Am. Chem. Soc. J. Am. Chem. Soc. ACS Catal. Chem Angew. Chem., Int. Ed. Nat. Chem. – volume: 8 start-page: 3116 year: 2018 publication-title: ACS Catal. – volume: 12 3 2 7 140 31 56 115 30 start-page: 2548 883 259 1655 610 6626 year: 2019 2018 2019 2017 2018 2019 2017 2018 2018 publication-title: Energy Environ. Sci. ACS Energy Lett. Nat. Catal. ACS Catal. J. Am. Chem. Soc. Adv. Mater. Angew. Chem., Int. Ed. Proc. Natl. Acad. Sci. USA Adv. Mater. – volume: 14 9 9 start-page: 851 2521 574 year: 2019 2019 2018 publication-title: Nat. Nanotechnol. ACS Catal. Nat. Commun. – volume: 120 118 1 6 2 9 119 355 start-page: 623 4981 385 289 65 1806 1399 year: 2020 2018 2018 2019 2018 2019 2019 2017 publication-title: Chem. Rev. Chem. Rev. Nat. Catal. ChemElectroChem Nat. Rev. Chem. Adv. Energy Mater. Chem. Rev. Science – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 9 14 1 start-page: 937 63 year: 2015 2015 2018 publication-title: ACS Nano Nat. Mater. Nat. Catal. – volume: 7 58 267 start-page: 1520 year: 2017 2019 2020 publication-title: ACS Catal. Angew. Chem., Int. Ed. Appl. Catal., B – volume: 353 start-page: 150 year: 2016 publication-title: Science – volume: 3 start-page: 634 year: 2011 publication-title: Nat. Chem. – volume: 49 12 48 start-page: 2215 2890 5310 year: 2020 2019 2019 2020 publication-title: Chem. Soc. Rev. Energy Environ. Sci. Chem. Soc. Rev. Chem. Rev. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 10 14 start-page: 234 134 year: 2019 2014 publication-title: Nat. Commun. Nano Lett. – volume: 41 start-page: 8163 year: 2012 publication-title: Chem. Soc. Rev. – volume: 11 46 1 1 12 start-page: 104 1740 54 324 492 year: 2018 2013 2018 2018 2019 publication-title: ChemSusChem Acc. Chem. Res. Electrochem. Energy Rev. Electrochem. Energy Rev. Energy Environ. Sci. – volume: 8 8 start-page: 2824 957 year: 2018 2017 publication-title: ACS Catal. Nat. Commun. – ident: e_1_2_8_80_3 doi: 10.1002/anie.201811728 – ident: e_1_2_8_73_2 doi: 10.1002/smtd.201800352 – ident: e_1_2_8_42_1 doi: 10.1002/smtd.201700341 – ident: e_1_2_8_82_3 doi: 10.1002/smtd.201800492 – ident: e_1_2_8_72_1 doi: 10.1021/acscatal.8b01014 – ident: e_1_2_8_4_1 doi: 10.1038/srep01775 – ident: e_1_2_8_54_2 doi: 10.1021/acsenergylett.8b00245 – ident: e_1_2_8_65_3 doi: 10.1002/aenm.201703487 – ident: e_1_2_8_63_2 doi: 10.1002/adma.201802066 – ident: e_1_2_8_5_3 doi: 10.1007/s12274-020-2755-3 – ident: e_1_2_8_38_1 doi: 10.1038/s41467-018-08136-3 – ident: e_1_2_8_85_1 doi: 10.1002/adma.201800396 – ident: e_1_2_8_11_1 doi: 10.1021/jacs.5b06485 – ident: e_1_2_8_63_3 doi: 10.1038/s41929-017-0009-x – ident: e_1_2_8_48_2 doi: 10.1021/acscatal.5b00842 – ident: e_1_2_8_29_3 doi: 10.1002/smll.201704282 – ident: e_1_2_8_14_1 doi: 10.1039/C9CS00869A – ident: e_1_2_8_12_2 doi: 10.1002/ange.201608597 – ident: e_1_2_8_54_5 doi: 10.1021/jacs.8b07294 – ident: e_1_2_8_39_3 doi: 10.1021/acsnano.7b00796 – year: 2020 ident: e_1_2_8_17_3 publication-title: Chem. Rev. – ident: e_1_2_8_5_2 doi: 10.1021/acscatal.6b01534 – ident: e_1_2_8_26_1 doi: 10.1021/jacs.7b01686 – ident: e_1_2_8_1_1 doi: 10.1002/cssc.201701306 – ident: e_1_2_8_18_1 doi: 10.1002/anie.201703864 – ident: e_1_2_8_93_1 doi: 10.1016/j.nanoen.2018.03.059 – ident: e_1_2_8_64_2 doi: 10.1016/j.nanoen.2016.04.009 – ident: e_1_2_8_21_1 doi: 10.1002/anie.201604802 – ident: e_1_2_8_84_5 doi: 10.1038/ncomms9668 – ident: e_1_2_8_7_2 doi: 10.1021/acs.accounts.8b00478 – ident: e_1_2_8_37_2 doi: 10.1021/acscatal.8b04937 – ident: e_1_2_8_8_4 doi: 10.1002/celc.201801189 – ident: e_1_2_8_52_2 doi: 10.1021/acscatal.6b02899 – ident: e_1_2_8_72_6 doi: 10.1002/anie.201705002 – ident: e_1_2_8_34_1 doi: 10.1002/aenm.201803402 – ident: e_1_2_8_34_5 doi: 10.1002/chem.202000294 – ident: e_1_2_8_82_6 doi: 10.1002/aenm.201803913 – ident: e_1_2_8_5_5 doi: 10.1002/anie.201806936 – ident: e_1_2_8_5_6 doi: 10.1002/adma.201402978 – ident: e_1_2_8_75_3 doi: 10.1016/j.mattod.2019.03.002 – ident: e_1_2_8_29_1 doi: 10.1002/anie.201702473 – ident: e_1_2_8_51_1 doi: 10.1002/aenm.201701345 – ident: e_1_2_8_55_1 doi: 10.1038/s41467-018-07850-2 – ident: e_1_2_8_75_6 doi: 10.1021/jacs.9b07963 – ident: e_1_2_8_86_1 doi: 10.1038/nenergy.2016.184 – ident: e_1_2_8_48_3 doi: 10.1002/anie.201402342 – volume: 8 start-page: 1701343 year: 2018 ident: e_1_2_8_18_2 publication-title: Adv. Mater. – ident: e_1_2_8_78_1 doi: 10.1002/asia.201901100 – ident: e_1_2_8_82_2 doi: 10.1002/anie.201710556 – ident: e_1_2_8_25_1 doi: 10.1038/s41467-018-07850-2 – ident: e_1_2_8_2_1 doi: 10.1002/aenm.201701343 – ident: e_1_2_8_68_1 doi: 10.1021/jacs.8b00814 – ident: e_1_2_8_38_2 doi: 10.1021/nl403520c – ident: e_1_2_8_60_1 doi: 10.1002/anie.201902109 – ident: e_1_2_8_63_1 doi: 10.1038/s41560-019-0450-y – ident: e_1_2_8_66_2 doi: 10.1002/anie.201914977 – ident: e_1_2_8_45_1 doi: 10.1021/acscatal.8b00138 – ident: e_1_2_8_1_5 doi: 10.1039/C8EE02939C – ident: e_1_2_8_50_1 doi: 10.1002/anie.201909312 – ident: e_1_2_8_63_5 doi: 10.1038/s41557-018-0092-x – ident: e_1_2_8_35_2 doi: 10.1039/C9CS00903E – ident: e_1_2_8_64_1 doi: 10.1002/chem.201803083 – ident: e_1_2_8_48_1 doi: 10.1021/acs.jpcc.8b00078 – ident: e_1_2_8_63_6 doi: 10.1002/anie.201813494 – ident: e_1_2_8_19_2 doi: 10.1021/acs.chemrev.9b00223 – ident: e_1_2_8_37_1 doi: 10.1038/s41565-019-0518-7 – ident: e_1_2_8_8_7 doi: 10.1021/acs.chemrev.8b00501 – ident: e_1_2_8_64_3 doi: 10.1002/adma.201807166 – ident: e_1_2_8_6_1 doi: 10.1002/smtd.201800481 – ident: e_1_2_8_21_2 doi: 10.1002/anie.201712451 – ident: e_1_2_8_44_1 doi: 10.1039/c2cs35174a – ident: e_1_2_8_12_5 doi: 10.1016/j.chempr.2018.12.011 – ident: e_1_2_8_7_1 doi: 10.1038/natrevmats.2016.9 – ident: e_1_2_8_79_2 doi: 10.1016/j.scib.2018.07.005 – ident: e_1_2_8_6_3 doi: 10.1038/s41467-019-12887-y – volume: 31 start-page: 24 year: 2019 ident: e_1_2_8_81_1 publication-title: Adv. Mater. – ident: e_1_2_8_90_1 doi: 10.1002/anie.201813634 – ident: e_1_2_8_34_2 doi: 10.1016/j.apcatb.2019.118144 – ident: e_1_2_8_24_1 doi: 10.1021/jacs.7b02736 – ident: e_1_2_8_37_3 doi: 10.1038/s41467-018-03012-6 – ident: e_1_2_8_15_2 doi: 10.1002/smtd.201800471 – ident: e_1_2_8_75_2 doi: 10.1002/aenm.201800369 – ident: e_1_2_8_63_4 doi: 10.1038/ncomms9177 – ident: e_1_2_8_46_2 doi: 10.1039/C7EE03245E – ident: e_1_2_8_46_1 doi: 10.1038/s41560-017-0078-8 – ident: e_1_2_8_74_1 doi: 10.1126/science.1211906 – ident: e_1_2_8_14_3 doi: 10.1039/C9CS00163H – ident: e_1_2_8_62_1 doi: 10.1002/ange.201810175 – ident: e_1_2_8_69_1 doi: 10.1021/acscatal.6b03353 – ident: e_1_2_8_83_2 doi: 10.1039/C8EE02888E – year: 2020 ident: e_1_2_8_14_4 publication-title: Chem. Rev. – ident: e_1_2_8_72_5 doi: 10.1016/j.chempr.2018.12.014 – ident: e_1_2_8_10_1 doi: 10.1021/jacs.7b07093 – ident: e_1_2_8_40_1 doi: 10.1007/s12274-019-2345-4 – ident: e_1_2_8_71_1 doi: 10.1002/ange.201901575 – ident: e_1_2_8_77_1 doi: 10.1002/adma.201606550 – ident: e_1_2_8_83_1 doi: 10.1038/s41929-018-0195-1 – ident: e_1_2_8_2_3 doi: 10.1002/adma.201706758 – ident: e_1_2_8_13_1 doi: 10.1126/science.aaf5251 – ident: e_1_2_8_61_4 doi: 10.1039/C8CC00988K – ident: e_1_2_8_70_1 doi: 10.1021/acscatal.8b00398 – ident: e_1_2_8_29_2 doi: 10.1021/jacs.7b05018 – ident: e_1_2_8_89_1 doi: 10.1002/adfm.201702546 – volume: 14 start-page: 6 year: 2018 ident: e_1_2_8_34_4 publication-title: Small – ident: e_1_2_8_2_2 doi: 10.1038/ncomms15938 – ident: e_1_2_8_11_3 doi: 10.1021/jacs.9b06482 – ident: e_1_2_8_61_3 doi: 10.1002/anie.201811126 – ident: e_1_2_8_5_4 doi: 10.1002/aenm.201903815 – ident: e_1_2_8_34_3 doi: 10.1002/anie.201904058 – ident: e_1_2_8_59_1 doi: 10.1002/adfm.201700802 – ident: e_1_2_8_47_2 doi: 10.1038/s41929-019-0246-2 – ident: e_1_2_8_49_2 doi: 10.1021/ja5128133 – ident: e_1_2_8_34_7 doi: 10.1002/smll.201902218 – ident: e_1_2_8_75_5 doi: 10.1002/smtd.201800331 – ident: e_1_2_8_8_2 doi: 10.1021/acs.chemrev.7b00776 – ident: e_1_2_8_15_1 doi: 10.1021/acscatal.0c01459 – ident: e_1_2_8_82_4 doi: 10.1126/sciadv.aao6657 – ident: e_1_2_8_64_4 doi: 10.1021/acs.accounts.9b00496 – ident: e_1_2_8_12_3 doi: 10.1002/adma.201705112 – ident: e_1_2_8_27_1 doi: 10.1002/anie.201800817 – ident: e_1_2_8_73_3 doi: 10.1021/acsenergylett.8b02197 – ident: e_1_2_8_33_2 doi: 10.1021/jacs.8b09834 – ident: e_1_2_8_46_3 doi: 10.1002/anie.201808593 – ident: e_1_2_8_28_1 doi: 10.1002/anie.201803262 – ident: e_1_2_8_52_1 doi: 10.1002/anie.201812423 – ident: e_1_2_8_14_2 doi: 10.1039/C9EE01722D – ident: e_1_2_8_78_5 doi: 10.1039/C9TA10206J – ident: e_1_2_8_80_2 doi: 10.1039/C7CP08626A – ident: e_1_2_8_58_1 doi: 10.1038/s41467-019-11796-4 – ident: e_1_2_8_54_1 doi: 10.1039/C9EE00877B – ident: e_1_2_8_43_3 doi: 10.1038/s41929-017-0008-y – ident: e_1_2_8_79_1 doi: 10.1002/smtd.201800202 – ident: e_1_2_8_7_4 doi: 10.1038/nmat4924 – ident: e_1_2_8_3_1 doi: 10.1038/nchem.1095 – ident: e_1_2_8_75_7 doi: 10.1016/j.nanoen.2018.04.039 – ident: e_1_2_8_29_4 doi: 10.1002/adfm.201808872 – ident: e_1_2_8_53_1 doi: 10.1038/ncomms10922 – ident: e_1_2_8_80_1 doi: 10.1021/acs.jpcc.8b05257 – ident: e_1_2_8_5_8 doi: 10.1002/adma.201801995 – ident: e_1_2_8_45_2 doi: 10.1038/s41467-017-01100-7 – ident: e_1_2_8_12_1 doi: 10.1021/jacs.8b11386 – ident: e_1_2_8_39_1 doi: 10.1126/sciadv.1500462 – ident: e_1_2_8_8_6 doi: 10.1002/aenm.201902625 – ident: e_1_2_8_65_2 doi: 10.1016/j.joule.2018.11.008 – ident: e_1_2_8_69_3 doi: 10.1016/j.apcatb.2020.118720 – ident: e_1_2_8_32_1 doi: 10.1002/anie.201808049 – ident: e_1_2_8_88_1 doi: 10.1016/j.nanoen.2018.12.085 – ident: e_1_2_8_75_9 doi: 10.1002/smtd.201800386 – ident: e_1_2_8_54_6 doi: 10.1002/adma.201806312 – ident: e_1_2_8_66_1 doi: 10.1016/j.cogsc.2018.11.002 – ident: e_1_2_8_78_2 doi: 10.1002/smtd.201800501 – ident: e_1_2_8_82_1 doi: 10.1021/acsenergylett.8b00640 – ident: e_1_2_8_84_2 doi: 10.1002/anie.201507381 – ident: e_1_2_8_35_1 doi: 10.1002/aenm.201902844 – ident: e_1_2_8_34_6 doi: 10.1002/adma.201800743 – ident: e_1_2_8_72_7 doi: 10.1038/s41557-018-0201-x – ident: e_1_2_8_79_4 doi: 10.1002/adma.201803498 – ident: e_1_2_8_84_1 doi: 10.1038/s41467-018-03896-4 – ident: e_1_2_8_43_2 doi: 10.1038/nmat4367 – ident: e_1_2_8_92_1 doi: 10.1021/acscatal.7b02165 – ident: e_1_2_8_73_1 doi: 10.1039/C4CS00085D – ident: e_1_2_8_20_1 doi: 10.1002/adma.201706758 – ident: e_1_2_8_54_8 doi: 10.1073/pnas.1800771115 – ident: e_1_2_8_65_1 doi: 10.1021/jacs.8b13579 – ident: e_1_2_8_2_4 doi: 10.1002/ange.201509241 – ident: e_1_2_8_2_5 doi: 10.1021/jacs.7b06514 – ident: e_1_2_8_82_5 doi: 10.1021/ja408574m – ident: e_1_2_8_49_3 doi: 10.1021/acs.jpclett.6b01153 – ident: e_1_2_8_67_1 doi: 10.1039/C8EE00133B – ident: e_1_2_8_43_1 doi: 10.1021/acsnano.5b05984 – ident: e_1_2_8_8_1 doi: 10.1021/acs.chemrev.9b00311 – ident: e_1_2_8_54_4 doi: 10.1021/acscatal.6b02966 – ident: e_1_2_8_72_4 doi: 10.1021/acscatal.6b01393 – ident: e_1_2_8_49_1 doi: 10.1126/science.aac6368 – ident: e_1_2_8_8_5 doi: 10.1038/s41570-018-0010-1 – ident: e_1_2_8_19_1 doi: 10.1039/C9CS00906J – ident: e_1_2_8_31_1 doi: 10.1038/s41565-018-0197-9 – ident: e_1_2_8_52_3 doi: 10.1021/acsnano.7b02148 – ident: e_1_2_8_54_7 doi: 10.1002/anie.201610119 – ident: e_1_2_8_8_3 doi: 10.1038/s41929-018-0090-9 – ident: e_1_2_8_19_3 doi: 10.1002/anie.201910309 – ident: e_1_2_8_5_7 doi: 10.1002/anie.201806936 – ident: e_1_2_8_65_4 doi: 10.1016/j.joule.2018.03.018 – ident: e_1_2_8_78_4 doi: 10.1016/j.chempr.2020.01.013 – ident: e_1_2_8_69_2 doi: 10.1002/anie.201906079 – ident: e_1_2_8_30_1 doi: 10.1126/science.aaf8800 – ident: e_1_2_8_40_2 doi: 10.1002/anie.201800269 – ident: e_1_2_8_83_3 doi: 10.1016/j.chempr.2017.12.005 – ident: e_1_2_8_54_3 doi: 10.1038/s41929-019-0237-3 – ident: e_1_2_8_17_2 doi: 10.1039/C9EE04040D – ident: e_1_2_8_5_9 doi: 10.1016/j.nanoen.2019.103917 – ident: e_1_2_8_84_4 doi: 10.1002/anie.201710599 – ident: e_1_2_8_5_1 doi: 10.1002/adfm.201600240 – ident: e_1_2_8_8_8 doi: 10.1126/science.aal3439 – ident: e_1_2_8_33_1 doi: 10.1038/s41929-018-0146-x – ident: e_1_2_8_78_3 doi: 10.1021/acscatal.8b00905 – ident: e_1_2_8_17_1 doi: 10.1016/j.enchem.2019.100001 – ident: e_1_2_8_75_1 doi: 10.1002/smtd.201800337 – ident: e_1_2_8_91_1 doi: 10.1016/j.nanoen.2018.02.025 – ident: e_1_2_8_11_2 doi: 10.1038/s41467-017-01259-z – ident: e_1_2_8_75_8 doi: 10.1016/j.joule.2018.09.011 – ident: e_1_2_8_6_4 doi: 10.1007/s41918-019-00050-6 – ident: e_1_2_8_41_1 doi: 10.1021/jp408979h – ident: e_1_2_8_9_1 doi: 10.1038/ncomms6634 – ident: e_1_2_8_84_3 doi: 10.1038/ncomms10667 – ident: e_1_2_8_72_3 doi: 10.1021/jacs.7b00452 – ident: e_1_2_8_54_9 doi: 10.1002/adma.201800588 – ident: e_1_2_8_80_4 doi: 10.1016/j.nanoen.2019.04.092 – ident: e_1_2_8_7_3 doi: 10.1002/anie.201509241 – ident: e_1_2_8_56_1 doi: 10.1002/anie.202002665 – ident: e_1_2_8_2_6 doi: 10.1021/acscatal.9b00252 – ident: e_1_2_8_36_1 doi: 10.1002/advs.201901129 – ident: e_1_2_8_28_2 doi: 10.1038/s41467-020-16715-6 – ident: e_1_2_8_61_2 doi: 10.1021/jacs.7b10385 – ident: e_1_2_8_61_1 doi: 10.1039/C8EE02656D – ident: e_1_2_8_72_2 doi: 10.1021/jacs.9b04907 – ident: e_1_2_8_22_1 doi: 10.1039/C8EE02694G – ident: e_1_2_8_12_4 doi: 10.1093/nsr/nwy010 – ident: e_1_2_8_79_3 doi: 10.1016/j.chempr.2018.10.007 – ident: e_1_2_8_57_1 doi: 10.1038/s41929-018-0164-8 – ident: e_1_2_8_1_4 doi: 10.1007/s41918-018-0013-0 – ident: e_1_2_8_80_7 doi: 10.1021/acscatal.9b00959 – ident: e_1_2_8_80_5 doi: 10.1021/jacs.7b05213 – ident: e_1_2_8_80_6 doi: 10.1039/C8TA07683A – ident: e_1_2_8_76_1 doi: 10.1002/cssc.201500322 – ident: e_1_2_8_23_1 doi: 10.1021/acs.chemmater.5b04887 – ident: e_1_2_8_87_1 doi: 10.1038/ncomms15341 – ident: e_1_2_8_1_3 doi: 10.1007/s41918-018-0004-1 – ident: e_1_2_8_16_1 doi: 10.1021/ja7106146 – ident: e_1_2_8_1_2 doi: 10.1021/ar300361m – ident: e_1_2_8_47_1 doi: 10.1038/s41929-018-0203-5 – ident: e_1_2_8_6_2 doi: 10.1038/ncomms13638 – ident: e_1_2_8_47_3 doi: 10.1073/pnas.1813605115 – ident: e_1_2_8_39_2 doi: 10.1039/C5EE00751H – ident: e_1_2_8_75_4 doi: 10.1002/smtd.201800388 |
SSID | ssj0000491033 |
Score | 2.6828728 |
SecondaryResourceType | review_article |
Snippet | Electrocatalysis plays a critical role in clean energy conversion, enabling great improvement for future sustainable technologies. Single atom catalysts (SACs)... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Clean energy Clean technology Coordination Density functional theory electrocatalysis Electronic structure Energy conversion energy conversion reactions Hydrogen evolution reactions Metal-organic frameworks Oxygen evolution reactions Oxygen reduction reactions Selectivity Single atom catalysts Size effects Spatial distribution Synthesis |
Title | Recent Advances in MOF‐Derived Single Atom Catalysts for Electrochemical Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202001561 https://www.proquest.com/docview/2450125631 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWGdgOLiqdoKcgLJBaVwUkcJ1lGdEYVdMqCVozYRLFjqyMNGdRmUNsVn4D4RL6E6zh2MrzpJoocTybxPfF9-N5jhJ7KTPBAJAnhoFsJq4QmQichCRWXKWNlkAkT75ge8YMT9moWz0ajr4OspVUjnsurX9aVXEeq0AZyNVWy_yFZf1NogHOQLxxBwnD8JxmDzWeW8nO7jt9mtk7fTHz-wj48wydjUIJ6Wqi9vFl-MBV_hoWkaWkY9sZ2ExzpWAPywXL20GzNXaaAsqWCYOba9_MBmi6z9_0pnFzMPeJ8PPpQzb3NvLxcqP4hHc3Ba1DQPVQnK9M2A_Bena6GoQnwQ12Sm5tNQfcTnnYBTDVssxxNfgqmA6hZtpdOG3td9dNUb6ljS1UbPoGwLQkPeqXmFvJ9z_jPfS0F8Pho6q_fQJshuB4wd27m-9PDtz5yBz5VQKO2csO9n2MDpeGL9T9Zt3Z6F2boCLWWzPFttNW5IDi3eLqDRqq-i24NiCnvoXcWWdghC89rDMj69vlLhylsMYUNprDHFAZM4R8whYeYuo9OJuPjlwek24KDSAamIQl4pRXTqZZCJpoKVlGqlQxkxGWgK0m5NGxPiSGuTEvwTrmUSRbHQuiYZ1RGD9BGvazVQ4Qr0BVCRUlWioSBWVnKNE3jpAwCnSqm6DYibqgK2fHTm21SFoVl1g4LM7SFH9pt9Mz3_2iZWX7bc9eNfNF9vedFyGKwzWIeweWwlcZf7lKsoWPnOj96hG72n8ku2mjOVuox2LSNeNKB7DvYnZje |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+MOF%E2%80%90Derived+Single+Atom+Catalysts+for+Electrochemical+Applications&rft.jtitle=Advanced+energy+materials&rft.au=Song%2C+Zhongxin&rft.au=Zhang%2C+Lei&rft.au=Doyle%E2%80%90Davis%2C+Kieran&rft.au=Fu%2C+Xianzhu&rft.date=2020-10-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202001561&rft.externalDBID=10.1002%252Faenm.202001561&rft.externalDocID=AENM202001561 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |