Porous Hollow Fiber Nickel Electrodes for Effective Supply and Reduction of Carbon Dioxide to Methane through Microbial Electrosynthesis
Microbial electrochemical reduction of CO2 gas to value‐added chemical products requires the development of an electrode architecture with a three‐phase interface for efficient mass transport. A hybrid bioinorganic system for CO2 reduction to CH4 is developed by coupling a new electrode architecture...
Saved in:
Published in | Advanced functional materials Vol. 28; no. 43 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
24.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microbial electrochemical reduction of CO2 gas to value‐added chemical products requires the development of an electrode architecture with a three‐phase interface for efficient mass transport. A hybrid bioinorganic system for CO2 reduction to CH4 is developed by coupling a new electrode architecture with enriched methanogenic community. The novel electrode design consists of porous nickel hollow fibers, which act as an inorganic electrocatalyst for hydrogen generation from proton reduction and as a gas‐transfer membrane for direct CO2 delivery to CO2‐fixing hydrogenotrophic methanogens (biological catalyst) on the cathode through the pores of the hollow fibers. These unique features of the electrode create a suitable environment for the enrichment of methanogens, which utilize the hydrogen as a source of reducing equivalents for the conversion of CO2 to CH4. The performance of the nickel electrode is tested in microbial electrosynthesis cells operated at cathode potential of −1 V versus Ag/AgCl, achieving high faradaic efficiency of 77% for CH4. The superior performance of the hybrid bioinorganic system is attributed to the electrode architecture, which provides a three‐phase boundary for gas–liquid reactions, with the reactions supported by the inorganic and biological catalysts.
Nickel‐based conductive, catalytic, and porous hollow fiber for effective microbial electrochemical reduction of CO2 to methane; hence addressing two challenges facing society in the current century (i.e., energy crisis and global warming). |
---|---|
AbstractList | Microbial electrochemical reduction of CO2 gas to value‐added chemical products requires the development of an electrode architecture with a three‐phase interface for efficient mass transport. A hybrid bioinorganic system for CO2 reduction to CH4 is developed by coupling a new electrode architecture with enriched methanogenic community. The novel electrode design consists of porous nickel hollow fibers, which act as an inorganic electrocatalyst for hydrogen generation from proton reduction and as a gas‐transfer membrane for direct CO2 delivery to CO2‐fixing hydrogenotrophic methanogens (biological catalyst) on the cathode through the pores of the hollow fibers. These unique features of the electrode create a suitable environment for the enrichment of methanogens, which utilize the hydrogen as a source of reducing equivalents for the conversion of CO2 to CH4. The performance of the nickel electrode is tested in microbial electrosynthesis cells operated at cathode potential of −1 V versus Ag/AgCl, achieving high faradaic efficiency of 77% for CH4. The superior performance of the hybrid bioinorganic system is attributed to the electrode architecture, which provides a three‐phase boundary for gas–liquid reactions, with the reactions supported by the inorganic and biological catalysts.
Nickel‐based conductive, catalytic, and porous hollow fiber for effective microbial electrochemical reduction of CO2 to methane; hence addressing two challenges facing society in the current century (i.e., energy crisis and global warming). Microbial electrochemical reduction of CO 2 gas to value‐added chemical products requires the development of an electrode architecture with a three‐phase interface for efficient mass transport. A hybrid bioinorganic system for CO 2 reduction to CH 4 is developed by coupling a new electrode architecture with enriched methanogenic community. The novel electrode design consists of porous nickel hollow fibers, which act as an inorganic electrocatalyst for hydrogen generation from proton reduction and as a gas‐transfer membrane for direct CO 2 delivery to CO 2 ‐fixing hydrogenotrophic methanogens (biological catalyst) on the cathode through the pores of the hollow fibers. These unique features of the electrode create a suitable environment for the enrichment of methanogens, which utilize the hydrogen as a source of reducing equivalents for the conversion of CO 2 to CH 4 . The performance of the nickel electrode is tested in microbial electrosynthesis cells operated at cathode potential of −1 V versus Ag/AgCl, achieving high faradaic efficiency of 77% for CH 4 . The superior performance of the hybrid bioinorganic system is attributed to the electrode architecture, which provides a three‐phase boundary for gas–liquid reactions, with the reactions supported by the inorganic and biological catalysts. Microbial electrochemical reduction of CO2 gas to value‐added chemical products requires the development of an electrode architecture with a three‐phase interface for efficient mass transport. A hybrid bioinorganic system for CO2 reduction to CH4 is developed by coupling a new electrode architecture with enriched methanogenic community. The novel electrode design consists of porous nickel hollow fibers, which act as an inorganic electrocatalyst for hydrogen generation from proton reduction and as a gas‐transfer membrane for direct CO2 delivery to CO2‐fixing hydrogenotrophic methanogens (biological catalyst) on the cathode through the pores of the hollow fibers. These unique features of the electrode create a suitable environment for the enrichment of methanogens, which utilize the hydrogen as a source of reducing equivalents for the conversion of CO2 to CH4. The performance of the nickel electrode is tested in microbial electrosynthesis cells operated at cathode potential of −1 V versus Ag/AgCl, achieving high faradaic efficiency of 77% for CH4. The superior performance of the hybrid bioinorganic system is attributed to the electrode architecture, which provides a three‐phase boundary for gas–liquid reactions, with the reactions supported by the inorganic and biological catalysts. |
Author | Yu, Yuanlie Katuri, Krishna P. Lai, Zhiping Bajracharya, Suman Saikaly, Pascal Elias Alqahtani, Manal F. |
Author_xml | – sequence: 1 givenname: Manal F. surname: Alqahtani fullname: Alqahtani, Manal F. organization: King Abdullah University of Science and Technology – sequence: 2 givenname: Krishna P. surname: Katuri fullname: Katuri, Krishna P. organization: King Abdullah University of Science and Technology – sequence: 3 givenname: Suman surname: Bajracharya fullname: Bajracharya, Suman organization: King Abdullah University of Science and Technology – sequence: 4 givenname: Yuanlie surname: Yu fullname: Yu, Yuanlie organization: King Abdullah University of Science and Technology – sequence: 5 givenname: Zhiping surname: Lai fullname: Lai, Zhiping organization: King Abdullah University of Science and Technology – sequence: 6 givenname: Pascal Elias orcidid: 0000-0001-7678-3986 surname: Saikaly fullname: Saikaly, Pascal Elias email: pascal.saikaly@kaust.edu.sa organization: King Abdullah University of Science and Technology |
BookMark | eNqFkF1LwzAUhoNMcJveeh3wejNJ27W5HPtwwqbiB3hX0vTEZXbNTFpn_4E_24zJBEG8yptzznPew9tBrdKUgNA5JX1KCLsUuVr3GaEJCZMBOUJtOqCDXkBY0jpo-nyCOs6tCKFxHIRt9HlnrKkdnpmiMFs81RlYfKPlKxR4UoCsrMnBYWUsnijl__od8EO92RQNFmWO7yGvfdGU2Cg8EjbzaqzNh84BVwYvoFqK0suld3lZ4oWW1mRaHJa7pqyW4LQ7RcdKFA7Ovt8ueppOHkez3vz26no0nPdkyAjpAYl5yHguSQ5ZRrlkXCURhFHAeUYEZGEEIuQ8ZxFVvh1HhMexkhJozJTkQRdd7PdurHmrwVXpytS29JYpoyyIg4TR3VR_P-XPdc6CSjdWr4VtUkrSXdrpLu30kLYHwl-A1JXYBVNZoYu_Mb7HtrqA5h-TdDieLn7YLxlgmPY |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2020_115684 crossref_primary_10_1039_D0SE00321B crossref_primary_10_3390_pr11030766 crossref_primary_10_1016_j_ijhydene_2021_08_129 crossref_primary_10_1016_j_ijhydene_2024_09_450 crossref_primary_10_1016_j_jwpe_2024_105006 crossref_primary_10_1016_j_biortech_2022_126788 crossref_primary_10_1021_acs_accounts_9b00522 crossref_primary_10_1021_acs_est_3c07018 crossref_primary_10_1039_D2EE03886B crossref_primary_10_1016_j_biortech_2023_129809 crossref_primary_10_1021_acssuschemeng_0c01276 crossref_primary_10_1016_j_tibtech_2020_10_014 crossref_primary_10_2139_ssrn_4074344 crossref_primary_10_1002_advs_202309775 crossref_primary_10_1016_j_jcou_2022_101956 crossref_primary_10_1038_s41598_020_76229_5 crossref_primary_10_1016_j_memsci_2019_02_007 crossref_primary_10_1016_j_watres_2022_118597 crossref_primary_10_1021_acscatal_1c05401 crossref_primary_10_1039_D3EN00912B crossref_primary_10_3390_membranes11030223 crossref_primary_10_1016_j_scitotenv_2020_142668 crossref_primary_10_1038_s41467_020_16016_y crossref_primary_10_1016_j_enchem_2021_100066 crossref_primary_10_1016_j_jece_2021_106189 crossref_primary_10_1016_j_scitotenv_2020_137003 crossref_primary_10_1016_j_mattod_2023_06_020 crossref_primary_10_3389_fmicb_2019_02563 crossref_primary_10_1016_j_chemosphere_2022_136088 crossref_primary_10_1016_j_joule_2021_08_003 crossref_primary_10_1021_acsami_0c07910 crossref_primary_10_1007_s00253_022_12031_9 crossref_primary_10_1039_D0GC00320D crossref_primary_10_1016_j_cej_2022_138476 crossref_primary_10_1016_j_cej_2021_132093 crossref_primary_10_1016_j_egyr_2022_01_198 crossref_primary_10_1016_j_cej_2022_138230 crossref_primary_10_1016_j_cej_2024_150031 crossref_primary_10_1016_j_renene_2021_12_117 crossref_primary_10_1002_chem_201904619 crossref_primary_10_1002_sus2_117 crossref_primary_10_1016_j_electacta_2021_138349 crossref_primary_10_1149_1945_7111_aca830 crossref_primary_10_3389_fbioe_2021_726946 crossref_primary_10_1039_D4SU00523F crossref_primary_10_3390_fermentation7040291 crossref_primary_10_1016_j_cej_2023_146328 crossref_primary_10_1016_j_chemosphere_2021_133206 crossref_primary_10_1039_D0EE03756G crossref_primary_10_1039_D1GC02094C crossref_primary_10_1016_j_biortech_2020_124177 crossref_primary_10_1016_j_rser_2021_111926 crossref_primary_10_1016_j_cej_2019_123689 crossref_primary_10_1016_j_jcou_2021_101640 crossref_primary_10_1039_C9GC04353E crossref_primary_10_1016_j_jwpe_2025_107108 crossref_primary_10_1016_j_jenvman_2023_117477 crossref_primary_10_3389_fmicb_2021_669218 crossref_primary_10_1002_adma_202304920 crossref_primary_10_1016_j_tibtech_2024_06_005 crossref_primary_10_1021_acs_chemrev_0c00472 crossref_primary_10_1016_j_chemosphere_2023_140251 crossref_primary_10_1016_j_bej_2022_108745 crossref_primary_10_1039_D1RA00920F crossref_primary_10_1021_acssuschemeng_4c09723 crossref_primary_10_1016_j_biortech_2024_131380 crossref_primary_10_1016_j_biortech_2024_131381 crossref_primary_10_1016_j_ijhydene_2023_11_055 crossref_primary_10_1007_s12598_023_02317_w crossref_primary_10_1016_j_xcrp_2021_100602 crossref_primary_10_1016_j_elecom_2022_107205 crossref_primary_10_1016_j_jechem_2022_02_020 crossref_primary_10_1016_j_oneear_2021_05_007 crossref_primary_10_1021_acssuschemeng_2c06143 crossref_primary_10_1016_j_biortech_2020_124272 crossref_primary_10_1016_j_jece_2021_105974 crossref_primary_10_20517_energymater_2023_60 crossref_primary_10_1039_C9TA09471G crossref_primary_10_1016_j_biortech_2022_127178 crossref_primary_10_1016_j_chemosphere_2021_132843 crossref_primary_10_1016_j_cej_2023_141523 crossref_primary_10_1002_adfm_202010916 crossref_primary_10_1016_j_enconman_2022_116018 crossref_primary_10_1016_j_ijhydene_2020_02_002 crossref_primary_10_1002_celc_201901427 crossref_primary_10_1021_acs_chemmater_9b00394 crossref_primary_10_1016_j_cej_2021_131885 crossref_primary_10_1039_D2TA01355J crossref_primary_10_1016_j_tibtech_2022_01_012 crossref_primary_10_1021_acssuschemeng_1c07464 crossref_primary_10_1016_j_cej_2022_137079 crossref_primary_10_1016_j_isci_2021_102998 crossref_primary_10_1016_j_biortech_2020_122863 crossref_primary_10_1016_j_biotechadv_2024_108474 crossref_primary_10_1039_C9TA05904K crossref_primary_10_1016_j_ceja_2025_100722 |
Cites_doi | 10.1021/acssuschemeng.5b00367 10.1021/es504392n 10.1016/S0022-0728(75)80205-1 10.1016/j.bioelechem.2014.12.001 10.1021/es104235v 10.1039/C3RA45087B 10.1039/C5SC04158A 10.1039/C5SC03291A 10.1002/slct.201601980 10.1089/ten.tea.2012.0332 10.1016/j.electacta.2004.04.039 10.1039/C3CS60323G 10.1016/j.biortech.2015.03.064 10.1039/C4TA03101F 10.1002/advs.201700275 10.1002/aenm.201600690 10.1016/j.jpowsour.2017.04.024 10.2166/wst.2006.096 10.1073/pnas.1508075112 10.1039/c3ra40454d 10.1016/j.electacta.2016.09.063 10.1002/adma.201707072 10.1016/j.cej.2015.11.022 10.1039/C7SE00352H 10.1002/0470020393 10.1021/sc400520x 10.1002/adma.201603074 10.1007/s11356-016-7196-x 10.1038/nenergy.2016.34 10.1002/slct.201601169 10.1021/acs.est.5b02833 10.1038/nrmicro2422 10.1126/science.aaf5039 10.1016/j.cej.2018.02.104 10.1002/cssc.201100720 10.1039/c3ee41272e 10.1002/celc.201500530 10.1002/jctb.4413 10.1016/j.biortech.2012.02.110 10.1016/j.ijhydene.2010.08.131 10.1128/mBio.00103-10 10.1007/s10047-012-0649-1 10.1002/aenm.201700759 10.1128/AEM.02401-12 10.1016/j.electacta.2018.04.135 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201804860 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Architecture |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201804860 ADFM201804860 |
Genre | article |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology funderid: URF/1/2985‐01‐01 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4200-e079429dc0debb19c29f85e45399b0aeb45ea499d251f19c750977fcce172fc93 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 07:36:57 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Tue Jul 01 04:11:52 EDT 2025 Wed Jan 22 16:38:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4200-e079429dc0debb19c29f85e45399b0aeb45ea499d251f19c750977fcce172fc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7678-3986 |
PQID | 2123738219 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2123738219 crossref_primary_10_1002_adfm_201804860 crossref_citationtrail_10_1002_adfm_201804860 wiley_primary_10_1002_adfm_201804860_ADFM201804860 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 24, 2018 |
PublicationDateYYYYMMDD | 2018-10-24 |
PublicationDate_xml | – month: 10 year: 2018 text: October 24, 2018 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 342 2016 2014; 28 48 2017; 2 2010; 35 2015; 102 2004; 49 2015; 186 1998 2016; 287 2016; 50 2004 2012; 15 2012; 78 2013 2014; 6 43 2016 2017; 1 7 2006 2012; 53 122 2013; 19 2018; 275 2013 2015 2017; 2013 3 1 2018; 5 2014; 2 2016; 3 2010 2017; 1 356 2014 2016; 2 217 2018 2013 2014; 3 4 2016; 352 2016 2015 2016 2016 2016 2016; 112 1 6 7 7 2018; 30 2011; 45 2015; 90 1975; 60 2012; 5 2016; 23 2010; 8 e_1_2_6_32_1 e_1_2_6_19_1 e_1_2_6_19_2 e_1_2_6_11_3 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_34_1 e_1_2_6_11_2 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_20_2 e_1_2_6_20_1 e_1_2_6_7_3 e_1_2_6_9_1 e_1_2_6_7_2 e_1_2_6_7_5 e_1_2_6_7_4 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 Cardew P. T. (e_1_2_6_30_1) 1998 e_1_2_6_24_1 Yoon S.‐H. (e_1_2_6_29_1) 2016 e_1_2_6_3_1 e_1_2_6_1_2 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_26_1 e_1_2_6_10_1 e_1_2_6_31_1 Eerten‐Jansen M. C. A. A. (e_1_2_6_11_1) 2013; 2013 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_14_2 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_27_2 e_1_2_6_27_1 |
References_xml | – volume: 60 start-page: 89 year: 1975 publication-title: J. Electroanal. Chem. – volume: 28 48 start-page: 9504 12833 year: 2016 2014 publication-title: Adv. Mater. Environ. Sci. Technol. – volume: 49 start-page: 4553 year: 2004 publication-title: Electrochim. Acta – volume: 1 7 start-page: 16034 1700759 year: 2016 2017 publication-title: Nat. Energy Adv. Energy Mater. – volume: 23 start-page: 22292 year: 2016 publication-title: Environ. Sci. Pollut. Res. – volume: 6 43 start-page: 3112 631 year: 2013 2014 publication-title: Energy Environ. Sci. Chem. Soc. Rev. – volume: 342 start-page: 350 year: 2018 publication-title: Chem. Eng. J. – year: 2016 – volume: 8 start-page: 706 year: 2010 publication-title: Nat. Rev. Microbiol. – year: 2018 – volume: 45 start-page: 5032 year: 2011 publication-title: Environ. Sci. Technol. – start-page: 3 year: 1998 – volume: 2013 3 1 start-page: 481784 1668 1734 year: 2013 2015 2017 publication-title: Archaea ACS Sustainable Chem. Eng. Sustainable Energy Fuels – volume: 5 start-page: 1700275 year: 2018 publication-title: Adv. Sci. – start-page: 132 year: 2016 – volume: 5 start-page: 1080 year: 2012 publication-title: ChemSusChem – volume: 2 start-page: 910 year: 2014 publication-title: ACS Sustainable Chem. Eng. – volume: 53 122 start-page: 219 83 year: 2006 2012 publication-title: Water Sci. Technol. Bioresour. Technol. – volume: 15 start-page: 250 year: 2012 publication-title: J. Artif. Organs – volume: 2 start-page: 879 year: 2017 publication-title: ChemistrySelect – volume: 186 start-page: 141 year: 2015 publication-title: Bioresour. Technol. – volume: 287 start-page: 181 year: 2016 publication-title: Chem. Eng. J. – volume: 112 1 6 7 7 start-page: 11461 6055 1600690 266 2883 year: 2015 2016 2016 2016 2016 publication-title: Proc. Natl. Acad. Sci. USA ChemistrySelect Adv. Energy Mater. Chem. Sci. Chem. Sci. – volume: 3 4 start-page: 13203 1460 year: 2013 2014 publication-title: RSC Adv. RSC Adv. – year: 2004 – volume: 30 start-page: 1707072 year: 2018 publication-title: Adv. Mater. – volume: 35 start-page: 12716 year: 2010 publication-title: Int. J. Hydrogen Energy – volume: 90 start-page: 963 year: 2015 publication-title: J. Chem. Technol. Biotechnol. – volume: 19 start-page: 1056 year: 2013 publication-title: Tissue Eng., Part A – volume: 3 start-page: 581 year: 2016 publication-title: ChemElectroChem – volume: 102 start-page: 56 year: 2015 publication-title: Bioelectrochemistry – volume: 352 start-page: 1210 year: 2016 publication-title: Science – volume: 1 356 start-page: e00103 256 year: 2010 2017 publication-title: mBio J. Power Sources – volume: 2 217 start-page: 13093 117 year: 2014 2016 publication-title: J. Mater. Chem. A Electrochim. Acta – volume: 50 start-page: 4439 year: 2016 publication-title: Environ. Sci. Technol. – volume: 78 start-page: 8412 year: 2012 publication-title: Appl. Environ. Microbiol. – volume: 275 start-page: 32 year: 2018 publication-title: Electrochim. Acta – ident: e_1_2_6_11_2 doi: 10.1021/acssuschemeng.5b00367 – ident: e_1_2_6_23_2 doi: 10.1021/es504392n – ident: e_1_2_6_25_1 doi: 10.1016/S0022-0728(75)80205-1 – ident: e_1_2_6_34_1 doi: 10.1016/j.bioelechem.2014.12.001 – ident: e_1_2_6_18_1 doi: 10.1021/es104235v – ident: e_1_2_6_19_2 doi: 10.1039/C3RA45087B – ident: e_1_2_6_7_5 doi: 10.1039/C5SC04158A – ident: e_1_2_6_7_4 doi: 10.1039/C5SC03291A – start-page: 132 volume-title: Membrane Bioreactor Processes: Principles and Applications year: 2016 ident: e_1_2_6_29_1 – ident: e_1_2_6_12_1 doi: 10.1002/slct.201601980 – ident: e_1_2_6_22_1 doi: 10.1089/ten.tea.2012.0332 – start-page: 3 volume-title: Membrane Processes: A Technology Guide year: 1998 ident: e_1_2_6_30_1 – ident: e_1_2_6_37_1 doi: 10.1016/j.electacta.2004.04.039 – ident: e_1_2_6_9_2 doi: 10.1039/C3CS60323G – ident: e_1_2_6_32_1 doi: 10.1016/j.biortech.2015.03.064 – ident: e_1_2_6_27_1 doi: 10.1039/C4TA03101F – ident: e_1_2_6_4_1 doi: 10.1002/advs.201700275 – ident: e_1_2_6_3_1 – ident: e_1_2_6_7_3 doi: 10.1002/aenm.201600690 – ident: e_1_2_6_6_1 – ident: e_1_2_6_14_2 doi: 10.1016/j.jpowsour.2017.04.024 – ident: e_1_2_6_20_1 doi: 10.2166/wst.2006.096 – ident: e_1_2_6_7_1 doi: 10.1073/pnas.1508075112 – ident: e_1_2_6_19_1 doi: 10.1039/c3ra40454d – volume: 2013 start-page: 481784 year: 2013 ident: e_1_2_6_11_1 publication-title: Archaea – ident: e_1_2_6_27_2 doi: 10.1016/j.electacta.2016.09.063 – ident: e_1_2_6_8_1 doi: 10.1002/adma.201707072 – ident: e_1_2_6_38_1 doi: 10.1016/j.cej.2015.11.022 – ident: e_1_2_6_11_3 doi: 10.1039/C7SE00352H – ident: e_1_2_6_28_1 doi: 10.1002/0470020393 – ident: e_1_2_6_10_1 doi: 10.1021/sc400520x – ident: e_1_2_6_23_1 doi: 10.1002/adma.201603074 – ident: e_1_2_6_17_1 doi: 10.1007/s11356-016-7196-x – ident: e_1_2_6_1_1 doi: 10.1038/nenergy.2016.34 – ident: e_1_2_6_7_2 doi: 10.1002/slct.201601169 – ident: e_1_2_6_26_1 doi: 10.1021/acs.est.5b02833 – ident: e_1_2_6_15_1 doi: 10.1038/nrmicro2422 – ident: e_1_2_6_2_1 – ident: e_1_2_6_13_1 doi: 10.1126/science.aaf5039 – ident: e_1_2_6_33_1 doi: 10.1016/j.cej.2018.02.104 – ident: e_1_2_6_35_1 doi: 10.1002/cssc.201100720 – ident: e_1_2_6_9_1 doi: 10.1039/c3ee41272e – ident: e_1_2_6_16_1 doi: 10.1002/celc.201500530 – ident: e_1_2_6_5_1 doi: 10.1002/jctb.4413 – ident: e_1_2_6_20_2 doi: 10.1016/j.biortech.2012.02.110 – ident: e_1_2_6_24_1 doi: 10.1016/j.ijhydene.2010.08.131 – ident: e_1_2_6_14_1 doi: 10.1128/mBio.00103-10 – ident: e_1_2_6_21_1 doi: 10.1007/s10047-012-0649-1 – ident: e_1_2_6_1_2 doi: 10.1002/aenm.201700759 – ident: e_1_2_6_31_1 doi: 10.1128/AEM.02401-12 – ident: e_1_2_6_36_1 doi: 10.1016/j.electacta.2018.04.135 |
SSID | ssj0017734 |
Score | 2.5685382 |
Snippet | Microbial electrochemical reduction of CO2 gas to value‐added chemical products requires the development of an electrode architecture with a three‐phase... Microbial electrochemical reduction of CO 2 gas to value‐added chemical products requires the development of an electrode architecture with a three‐phase... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Architecture Carbon dioxide Catalysis Catalysts Cathodes Chemical reduction CO2 reduction Electrodes electromethanogenesis Hybrid systems Hydrogen production Materials science Methane microbial electrosynthesis Microorganisms Nickel Organic chemistry porous hollow fiber cathodes Silver chloride waste to resource |
Title | Porous Hollow Fiber Nickel Electrodes for Effective Supply and Reduction of Carbon Dioxide to Methane through Microbial Electrosynthesis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201804860 https://www.proquest.com/docview/2123738219 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBaje9kedh_L2hU9DPbk1pKVyH4MTUMY9RjdCnkzuhxBaLFLnLB1v2A_u-dYiZsOxmB9k7EkbOlcPh8ffYexj1KB9Mr7xBorE4UINjE-uMQImTrQqYBAccjyy2h2oT7Ph_OdU_yRH6IPuJFmdPaaFNzY9viONBSnpJPkIu_qKKERpoQtQkXnPX-U0Dr-Vh4JSvAS8y1rYyqP7w-_75XuoOYuYO08zvQ5M9tnjYkml0frlT1yv_6gcXzIy7xgzzZwlI-j_Lxkj6B-xZ7ukBS-Zr-_Nstm3fIZSkzzg08pxYSjAF3CFT-NRXQ8tBzBL49UyGg_eVcs9Iab2vNzIoel7edN4CdmabE1WTQ_Fx74quElUPAem7FgEC8XHTWU6Sdvb2oEqe2ifcMupqffT2bJpn5D4hQqXwIpKrssvEs9WCsKJ4uQD0ERGa5NDVg1BINfXB4xVsDbBF60Ds4Boqrgiuwt26ubGt4xng-1yUciFNYapYMxXqs880ZAaoLy2YAl2_2r3IbcnGpsXFWRlllWtMJVv8ID9qnvfx1pPf7a82ArDtVGvduK_L3OcrT2Aya7ff3HLNV4Mi37q_f_M2ifPaE2-U2ZHbC91XINHxAQrewhezyelGffDjvhvwU2JgbM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIAD5VWxtIAPSJzSxl7vOjlW3a620FSoaqXeIj_G0qpVgja7gvIL-NnMxJu0RUKV4OYktpXYM57Pk_E3jH2UCqRX3ifWWJkoRLCJ8cElRsjUgU4FBPJDFifj2bn6fDHqognpLEzkh-gdbqQZ7XpNCk4O6b0b1lDsk46Si6xNpPSQPaK03kSfPzntGaSE1vHH8lhQiJe46HgbU7l3t_1du3QDNm9D1tbmTDeZ7d42hppc7q6Wdtf9_IPI8b8-5zl7tkakfD-K0Av2AKqX7OktnsJX7NfXelGvGj5Doam_8ylFmXCUoUu44ocxj46HhiP-5ZENGZdQ3uYLveam8vyU-GFJAngd-IFZWCxN5vWPuQe-rHkB5L_HYswZxIt5yw5l-s6b6wpxajNvXrPz6eHZwSxZp3BInEL9SyBFfZe5d6kHa0XuZB6yESjiw7WpAatGYHDT5RFmBXxM-EXr4BwgsAouH26xjaqu4A3j2UibbCxCbq1ROhjjtcqG3ghITVB-OGBJN4GlW_ObU5qNqzIyM8uSRrjsR3jAPvX1v0Vmj7_W3OnkoVxreFOSydfDDBf8AZPtxN7TS7k_mRb91dt_afSBPZ6dFcfl8dHJl232hO6TGZVqh20sFyt4h_hoad-3GvAbU_YJVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD5sHYz1YffSbO2mh8Ge3FqKEtmPpanJLimlrJA3o8sRhBa7xAlb9wv2s3dkJW46GIXtTbYlYUvn6HySpe8D-CAkCiedS4w2IpGEYBPtvE00F6lFlXL0YR1ycjocX8jP08F04xR_5IfoFtyCZ7TjdXDwa-cPb0lDqcpwkpxnrY7SQ3gkh2kexBtG5x2BFFcq_lce8rDDi0_XtI2pOLxb_m5YusWam4i1DTnFM9Drl407TS4PlgtzYH_-weP4P1_zHJ6u8Cg7igb0Ah5g9RK2N1gKX8Gvs3peLxs2JpOpv7Mi7DFhZEGXeMVOooqOw4YR-mWRC5kGUNaqhd4wXTl2HthhQ_-z2rNjPTeUGs3qHzOHbFGzCYbVe0pGxSA2mbXcULqrvLmpCKU2s-Y1XBQn347HyUrAIbGSvC_BlLxd5M6mDo3huRW5zwYoAxuuSTUaOUBNUy5HIMvT44BelPLWIsEqb_P-DmxVdYW7wLKB0tmQ-9wYLZXX2imZ9Z3mmGovXb8Hybr_SrtiNw8iG1dl5GUWZWjhsmvhHnzs8l9HXo-_5txbm0O58u-mDAFf9TMa7nsg2n69p5byaFRMuqs3_1LoPTw-GxXl10-nX97Ck3A7xFAh92BrMV_iPoGjhXnX2v9vMVMIBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Hollow+Fiber+Nickel+Electrodes+for+Effective+Supply+and+Reduction+of+Carbon+Dioxide+to+Methane+through+Microbial+Electrosynthesis&rft.jtitle=Advanced+functional+materials&rft.au=Alqahtani%2C+Manal+F.&rft.au=Katuri%2C+Krishna+P.&rft.au=Bajracharya%2C+Suman&rft.au=Yu%2C+Yuanlie&rft.date=2018-10-24&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=43&rft_id=info:doi/10.1002%2Fadfm.201804860&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201804860 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |