Porous Hollow Fiber Nickel Electrodes for Effective Supply and Reduction of Carbon Dioxide to Methane through Microbial Electrosynthesis

Microbial electrochemical reduction of CO2 gas to value‐added chemical products requires the development of an electrode architecture with a three‐phase interface for efficient mass transport. A hybrid bioinorganic system for CO2 reduction to CH4 is developed by coupling a new electrode architecture...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 28; no. 43
Main Authors Alqahtani, Manal F., Katuri, Krishna P., Bajracharya, Suman, Yu, Yuanlie, Lai, Zhiping, Saikaly, Pascal Elias
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 24.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microbial electrochemical reduction of CO2 gas to value‐added chemical products requires the development of an electrode architecture with a three‐phase interface for efficient mass transport. A hybrid bioinorganic system for CO2 reduction to CH4 is developed by coupling a new electrode architecture with enriched methanogenic community. The novel electrode design consists of porous nickel hollow fibers, which act as an inorganic electrocatalyst for hydrogen generation from proton reduction and as a gas‐transfer membrane for direct CO2 delivery to CO2‐fixing hydrogenotrophic methanogens (biological catalyst) on the cathode through the pores of the hollow fibers. These unique features of the electrode create a suitable environment for the enrichment of methanogens, which utilize the hydrogen as a source of reducing equivalents for the conversion of CO2 to CH4. The performance of the nickel electrode is tested in microbial electrosynthesis cells operated at cathode potential of −1 V versus Ag/AgCl, achieving high faradaic efficiency of 77% for CH4. The superior performance of the hybrid bioinorganic system is attributed to the electrode architecture, which provides a three‐phase boundary for gas–liquid reactions, with the reactions supported by the inorganic and biological catalysts. Nickel‐based conductive, catalytic, and porous hollow fiber for effective microbial electrochemical reduction of CO2 to methane; hence addressing two challenges facing society in the current century (i.e., energy crisis and global warming).
AbstractList Microbial electrochemical reduction of CO2 gas to value‐added chemical products requires the development of an electrode architecture with a three‐phase interface for efficient mass transport. A hybrid bioinorganic system for CO2 reduction to CH4 is developed by coupling a new electrode architecture with enriched methanogenic community. The novel electrode design consists of porous nickel hollow fibers, which act as an inorganic electrocatalyst for hydrogen generation from proton reduction and as a gas‐transfer membrane for direct CO2 delivery to CO2‐fixing hydrogenotrophic methanogens (biological catalyst) on the cathode through the pores of the hollow fibers. These unique features of the electrode create a suitable environment for the enrichment of methanogens, which utilize the hydrogen as a source of reducing equivalents for the conversion of CO2 to CH4. The performance of the nickel electrode is tested in microbial electrosynthesis cells operated at cathode potential of −1 V versus Ag/AgCl, achieving high faradaic efficiency of 77% for CH4. The superior performance of the hybrid bioinorganic system is attributed to the electrode architecture, which provides a three‐phase boundary for gas–liquid reactions, with the reactions supported by the inorganic and biological catalysts. Nickel‐based conductive, catalytic, and porous hollow fiber for effective microbial electrochemical reduction of CO2 to methane; hence addressing two challenges facing society in the current century (i.e., energy crisis and global warming).
Microbial electrochemical reduction of CO 2 gas to value‐added chemical products requires the development of an electrode architecture with a three‐phase interface for efficient mass transport. A hybrid bioinorganic system for CO 2 reduction to CH 4 is developed by coupling a new electrode architecture with enriched methanogenic community. The novel electrode design consists of porous nickel hollow fibers, which act as an inorganic electrocatalyst for hydrogen generation from proton reduction and as a gas‐transfer membrane for direct CO 2 delivery to CO 2 ‐fixing hydrogenotrophic methanogens (biological catalyst) on the cathode through the pores of the hollow fibers. These unique features of the electrode create a suitable environment for the enrichment of methanogens, which utilize the hydrogen as a source of reducing equivalents for the conversion of CO 2 to CH 4 . The performance of the nickel electrode is tested in microbial electrosynthesis cells operated at cathode potential of −1 V versus Ag/AgCl, achieving high faradaic efficiency of 77% for CH 4 . The superior performance of the hybrid bioinorganic system is attributed to the electrode architecture, which provides a three‐phase boundary for gas–liquid reactions, with the reactions supported by the inorganic and biological catalysts.
Microbial electrochemical reduction of CO2 gas to value‐added chemical products requires the development of an electrode architecture with a three‐phase interface for efficient mass transport. A hybrid bioinorganic system for CO2 reduction to CH4 is developed by coupling a new electrode architecture with enriched methanogenic community. The novel electrode design consists of porous nickel hollow fibers, which act as an inorganic electrocatalyst for hydrogen generation from proton reduction and as a gas‐transfer membrane for direct CO2 delivery to CO2‐fixing hydrogenotrophic methanogens (biological catalyst) on the cathode through the pores of the hollow fibers. These unique features of the electrode create a suitable environment for the enrichment of methanogens, which utilize the hydrogen as a source of reducing equivalents for the conversion of CO2 to CH4. The performance of the nickel electrode is tested in microbial electrosynthesis cells operated at cathode potential of −1 V versus Ag/AgCl, achieving high faradaic efficiency of 77% for CH4. The superior performance of the hybrid bioinorganic system is attributed to the electrode architecture, which provides a three‐phase boundary for gas–liquid reactions, with the reactions supported by the inorganic and biological catalysts.
Author Yu, Yuanlie
Katuri, Krishna P.
Lai, Zhiping
Bajracharya, Suman
Saikaly, Pascal Elias
Alqahtani, Manal F.
Author_xml – sequence: 1
  givenname: Manal F.
  surname: Alqahtani
  fullname: Alqahtani, Manal F.
  organization: King Abdullah University of Science and Technology
– sequence: 2
  givenname: Krishna P.
  surname: Katuri
  fullname: Katuri, Krishna P.
  organization: King Abdullah University of Science and Technology
– sequence: 3
  givenname: Suman
  surname: Bajracharya
  fullname: Bajracharya, Suman
  organization: King Abdullah University of Science and Technology
– sequence: 4
  givenname: Yuanlie
  surname: Yu
  fullname: Yu, Yuanlie
  organization: King Abdullah University of Science and Technology
– sequence: 5
  givenname: Zhiping
  surname: Lai
  fullname: Lai, Zhiping
  organization: King Abdullah University of Science and Technology
– sequence: 6
  givenname: Pascal Elias
  orcidid: 0000-0001-7678-3986
  surname: Saikaly
  fullname: Saikaly, Pascal Elias
  email: pascal.saikaly@kaust.edu.sa
  organization: King Abdullah University of Science and Technology
BookMark eNqFkF1LwzAUhoNMcJveeh3wejNJ27W5HPtwwqbiB3hX0vTEZXbNTFpn_4E_24zJBEG8yptzznPew9tBrdKUgNA5JX1KCLsUuVr3GaEJCZMBOUJtOqCDXkBY0jpo-nyCOs6tCKFxHIRt9HlnrKkdnpmiMFs81RlYfKPlKxR4UoCsrMnBYWUsnijl__od8EO92RQNFmWO7yGvfdGU2Cg8EjbzaqzNh84BVwYvoFqK0suld3lZ4oWW1mRaHJa7pqyW4LQ7RcdKFA7Ovt8ueppOHkez3vz26no0nPdkyAjpAYl5yHguSQ5ZRrlkXCURhFHAeUYEZGEEIuQ8ZxFVvh1HhMexkhJozJTkQRdd7PdurHmrwVXpytS29JYpoyyIg4TR3VR_P-XPdc6CSjdWr4VtUkrSXdrpLu30kLYHwl-A1JXYBVNZoYu_Mb7HtrqA5h-TdDieLn7YLxlgmPY
CitedBy_id crossref_primary_10_1016_j_apenergy_2020_115684
crossref_primary_10_1039_D0SE00321B
crossref_primary_10_3390_pr11030766
crossref_primary_10_1016_j_ijhydene_2021_08_129
crossref_primary_10_1016_j_ijhydene_2024_09_450
crossref_primary_10_1016_j_jwpe_2024_105006
crossref_primary_10_1016_j_biortech_2022_126788
crossref_primary_10_1021_acs_accounts_9b00522
crossref_primary_10_1021_acs_est_3c07018
crossref_primary_10_1039_D2EE03886B
crossref_primary_10_1016_j_biortech_2023_129809
crossref_primary_10_1021_acssuschemeng_0c01276
crossref_primary_10_1016_j_tibtech_2020_10_014
crossref_primary_10_2139_ssrn_4074344
crossref_primary_10_1002_advs_202309775
crossref_primary_10_1016_j_jcou_2022_101956
crossref_primary_10_1038_s41598_020_76229_5
crossref_primary_10_1016_j_memsci_2019_02_007
crossref_primary_10_1016_j_watres_2022_118597
crossref_primary_10_1021_acscatal_1c05401
crossref_primary_10_1039_D3EN00912B
crossref_primary_10_3390_membranes11030223
crossref_primary_10_1016_j_scitotenv_2020_142668
crossref_primary_10_1038_s41467_020_16016_y
crossref_primary_10_1016_j_enchem_2021_100066
crossref_primary_10_1016_j_jece_2021_106189
crossref_primary_10_1016_j_scitotenv_2020_137003
crossref_primary_10_1016_j_mattod_2023_06_020
crossref_primary_10_3389_fmicb_2019_02563
crossref_primary_10_1016_j_chemosphere_2022_136088
crossref_primary_10_1016_j_joule_2021_08_003
crossref_primary_10_1021_acsami_0c07910
crossref_primary_10_1007_s00253_022_12031_9
crossref_primary_10_1039_D0GC00320D
crossref_primary_10_1016_j_cej_2022_138476
crossref_primary_10_1016_j_cej_2021_132093
crossref_primary_10_1016_j_egyr_2022_01_198
crossref_primary_10_1016_j_cej_2022_138230
crossref_primary_10_1016_j_cej_2024_150031
crossref_primary_10_1016_j_renene_2021_12_117
crossref_primary_10_1002_chem_201904619
crossref_primary_10_1002_sus2_117
crossref_primary_10_1016_j_electacta_2021_138349
crossref_primary_10_1149_1945_7111_aca830
crossref_primary_10_3389_fbioe_2021_726946
crossref_primary_10_1039_D4SU00523F
crossref_primary_10_3390_fermentation7040291
crossref_primary_10_1016_j_cej_2023_146328
crossref_primary_10_1016_j_chemosphere_2021_133206
crossref_primary_10_1039_D0EE03756G
crossref_primary_10_1039_D1GC02094C
crossref_primary_10_1016_j_biortech_2020_124177
crossref_primary_10_1016_j_rser_2021_111926
crossref_primary_10_1016_j_cej_2019_123689
crossref_primary_10_1016_j_jcou_2021_101640
crossref_primary_10_1039_C9GC04353E
crossref_primary_10_1016_j_jwpe_2025_107108
crossref_primary_10_1016_j_jenvman_2023_117477
crossref_primary_10_3389_fmicb_2021_669218
crossref_primary_10_1002_adma_202304920
crossref_primary_10_1016_j_tibtech_2024_06_005
crossref_primary_10_1021_acs_chemrev_0c00472
crossref_primary_10_1016_j_chemosphere_2023_140251
crossref_primary_10_1016_j_bej_2022_108745
crossref_primary_10_1039_D1RA00920F
crossref_primary_10_1021_acssuschemeng_4c09723
crossref_primary_10_1016_j_biortech_2024_131380
crossref_primary_10_1016_j_biortech_2024_131381
crossref_primary_10_1016_j_ijhydene_2023_11_055
crossref_primary_10_1007_s12598_023_02317_w
crossref_primary_10_1016_j_xcrp_2021_100602
crossref_primary_10_1016_j_elecom_2022_107205
crossref_primary_10_1016_j_jechem_2022_02_020
crossref_primary_10_1016_j_oneear_2021_05_007
crossref_primary_10_1021_acssuschemeng_2c06143
crossref_primary_10_1016_j_biortech_2020_124272
crossref_primary_10_1016_j_jece_2021_105974
crossref_primary_10_20517_energymater_2023_60
crossref_primary_10_1039_C9TA09471G
crossref_primary_10_1016_j_biortech_2022_127178
crossref_primary_10_1016_j_chemosphere_2021_132843
crossref_primary_10_1016_j_cej_2023_141523
crossref_primary_10_1002_adfm_202010916
crossref_primary_10_1016_j_enconman_2022_116018
crossref_primary_10_1016_j_ijhydene_2020_02_002
crossref_primary_10_1002_celc_201901427
crossref_primary_10_1021_acs_chemmater_9b00394
crossref_primary_10_1016_j_cej_2021_131885
crossref_primary_10_1039_D2TA01355J
crossref_primary_10_1016_j_tibtech_2022_01_012
crossref_primary_10_1021_acssuschemeng_1c07464
crossref_primary_10_1016_j_cej_2022_137079
crossref_primary_10_1016_j_isci_2021_102998
crossref_primary_10_1016_j_biortech_2020_122863
crossref_primary_10_1016_j_biotechadv_2024_108474
crossref_primary_10_1039_C9TA05904K
crossref_primary_10_1016_j_ceja_2025_100722
Cites_doi 10.1021/acssuschemeng.5b00367
10.1021/es504392n
10.1016/S0022-0728(75)80205-1
10.1016/j.bioelechem.2014.12.001
10.1021/es104235v
10.1039/C3RA45087B
10.1039/C5SC04158A
10.1039/C5SC03291A
10.1002/slct.201601980
10.1089/ten.tea.2012.0332
10.1016/j.electacta.2004.04.039
10.1039/C3CS60323G
10.1016/j.biortech.2015.03.064
10.1039/C4TA03101F
10.1002/advs.201700275
10.1002/aenm.201600690
10.1016/j.jpowsour.2017.04.024
10.2166/wst.2006.096
10.1073/pnas.1508075112
10.1039/c3ra40454d
10.1016/j.electacta.2016.09.063
10.1002/adma.201707072
10.1016/j.cej.2015.11.022
10.1039/C7SE00352H
10.1002/0470020393
10.1021/sc400520x
10.1002/adma.201603074
10.1007/s11356-016-7196-x
10.1038/nenergy.2016.34
10.1002/slct.201601169
10.1021/acs.est.5b02833
10.1038/nrmicro2422
10.1126/science.aaf5039
10.1016/j.cej.2018.02.104
10.1002/cssc.201100720
10.1039/c3ee41272e
10.1002/celc.201500530
10.1002/jctb.4413
10.1016/j.biortech.2012.02.110
10.1016/j.ijhydene.2010.08.131
10.1128/mBio.00103-10
10.1007/s10047-012-0649-1
10.1002/aenm.201700759
10.1128/AEM.02401-12
10.1016/j.electacta.2018.04.135
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201804860
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201804860
ADFM201804860
Genre article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
  funderid: URF/1/2985‐01‐01
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4200-e079429dc0debb19c29f85e45399b0aeb45ea499d251f19c750977fcce172fc93
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 07:36:57 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Tue Jul 01 04:11:52 EDT 2025
Wed Jan 22 16:38:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4200-e079429dc0debb19c29f85e45399b0aeb45ea499d251f19c750977fcce172fc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7678-3986
PQID 2123738219
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2123738219
crossref_primary_10_1002_adfm_201804860
crossref_citationtrail_10_1002_adfm_201804860
wiley_primary_10_1002_adfm_201804860_ADFM201804860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 24, 2018
PublicationDateYYYYMMDD 2018-10-24
PublicationDate_xml – month: 10
  year: 2018
  text: October 24, 2018
  day: 24
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 342
2016 2014; 28 48
2017; 2
2010; 35
2015; 102
2004; 49
2015; 186
1998
2016; 287
2016; 50
2004
2012; 15
2012; 78
2013 2014; 6 43
2016 2017; 1 7
2006 2012; 53 122
2013; 19
2018; 275
2013 2015 2017; 2013 3 1
2018; 5
2014; 2
2016; 3
2010 2017; 1 356
2014 2016; 2 217
2018
2013 2014; 3 4
2016; 352
2016
2015 2016 2016 2016 2016; 112 1 6 7 7
2018; 30
2011; 45
2015; 90
1975; 60
2012; 5
2016; 23
2010; 8
e_1_2_6_32_1
e_1_2_6_19_1
e_1_2_6_19_2
e_1_2_6_11_3
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_20_2
e_1_2_6_20_1
e_1_2_6_7_3
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_7_5
e_1_2_6_7_4
e_1_2_6_9_2
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
Cardew P. T. (e_1_2_6_30_1) 1998
e_1_2_6_24_1
Yoon S.‐H. (e_1_2_6_29_1) 2016
e_1_2_6_3_1
e_1_2_6_1_2
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_26_1
e_1_2_6_10_1
e_1_2_6_31_1
Eerten‐Jansen M. C. A. A. (e_1_2_6_11_1) 2013; 2013
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_14_2
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_27_2
e_1_2_6_27_1
References_xml – volume: 60
  start-page: 89
  year: 1975
  publication-title: J. Electroanal. Chem.
– volume: 28 48
  start-page: 9504 12833
  year: 2016 2014
  publication-title: Adv. Mater. Environ. Sci. Technol.
– volume: 49
  start-page: 4553
  year: 2004
  publication-title: Electrochim. Acta
– volume: 1 7
  start-page: 16034 1700759
  year: 2016 2017
  publication-title: Nat. Energy Adv. Energy Mater.
– volume: 23
  start-page: 22292
  year: 2016
  publication-title: Environ. Sci. Pollut. Res.
– volume: 6 43
  start-page: 3112 631
  year: 2013 2014
  publication-title: Energy Environ. Sci. Chem. Soc. Rev.
– volume: 342
  start-page: 350
  year: 2018
  publication-title: Chem. Eng. J.
– year: 2016
– volume: 8
  start-page: 706
  year: 2010
  publication-title: Nat. Rev. Microbiol.
– year: 2018
– volume: 45
  start-page: 5032
  year: 2011
  publication-title: Environ. Sci. Technol.
– start-page: 3
  year: 1998
– volume: 2013 3 1
  start-page: 481784 1668 1734
  year: 2013 2015 2017
  publication-title: Archaea ACS Sustainable Chem. Eng. Sustainable Energy Fuels
– volume: 5
  start-page: 1700275
  year: 2018
  publication-title: Adv. Sci.
– start-page: 132
  year: 2016
– volume: 5
  start-page: 1080
  year: 2012
  publication-title: ChemSusChem
– volume: 2
  start-page: 910
  year: 2014
  publication-title: ACS Sustainable Chem. Eng.
– volume: 53 122
  start-page: 219 83
  year: 2006 2012
  publication-title: Water Sci. Technol. Bioresour. Technol.
– volume: 15
  start-page: 250
  year: 2012
  publication-title: J. Artif. Organs
– volume: 2
  start-page: 879
  year: 2017
  publication-title: ChemistrySelect
– volume: 186
  start-page: 141
  year: 2015
  publication-title: Bioresour. Technol.
– volume: 287
  start-page: 181
  year: 2016
  publication-title: Chem. Eng. J.
– volume: 112 1 6 7 7
  start-page: 11461 6055 1600690 266 2883
  year: 2015 2016 2016 2016 2016
  publication-title: Proc. Natl. Acad. Sci. USA ChemistrySelect Adv. Energy Mater. Chem. Sci. Chem. Sci.
– volume: 3 4
  start-page: 13203 1460
  year: 2013 2014
  publication-title: RSC Adv. RSC Adv.
– year: 2004
– volume: 30
  start-page: 1707072
  year: 2018
  publication-title: Adv. Mater.
– volume: 35
  start-page: 12716
  year: 2010
  publication-title: Int. J. Hydrogen Energy
– volume: 90
  start-page: 963
  year: 2015
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 19
  start-page: 1056
  year: 2013
  publication-title: Tissue Eng., Part A
– volume: 3
  start-page: 581
  year: 2016
  publication-title: ChemElectroChem
– volume: 102
  start-page: 56
  year: 2015
  publication-title: Bioelectrochemistry
– volume: 352
  start-page: 1210
  year: 2016
  publication-title: Science
– volume: 1 356
  start-page: e00103 256
  year: 2010 2017
  publication-title: mBio J. Power Sources
– volume: 2 217
  start-page: 13093 117
  year: 2014 2016
  publication-title: J. Mater. Chem. A Electrochim. Acta
– volume: 50
  start-page: 4439
  year: 2016
  publication-title: Environ. Sci. Technol.
– volume: 78
  start-page: 8412
  year: 2012
  publication-title: Appl. Environ. Microbiol.
– volume: 275
  start-page: 32
  year: 2018
  publication-title: Electrochim. Acta
– ident: e_1_2_6_11_2
  doi: 10.1021/acssuschemeng.5b00367
– ident: e_1_2_6_23_2
  doi: 10.1021/es504392n
– ident: e_1_2_6_25_1
  doi: 10.1016/S0022-0728(75)80205-1
– ident: e_1_2_6_34_1
  doi: 10.1016/j.bioelechem.2014.12.001
– ident: e_1_2_6_18_1
  doi: 10.1021/es104235v
– ident: e_1_2_6_19_2
  doi: 10.1039/C3RA45087B
– ident: e_1_2_6_7_5
  doi: 10.1039/C5SC04158A
– ident: e_1_2_6_7_4
  doi: 10.1039/C5SC03291A
– start-page: 132
  volume-title: Membrane Bioreactor Processes: Principles and Applications
  year: 2016
  ident: e_1_2_6_29_1
– ident: e_1_2_6_12_1
  doi: 10.1002/slct.201601980
– ident: e_1_2_6_22_1
  doi: 10.1089/ten.tea.2012.0332
– start-page: 3
  volume-title: Membrane Processes: A Technology Guide
  year: 1998
  ident: e_1_2_6_30_1
– ident: e_1_2_6_37_1
  doi: 10.1016/j.electacta.2004.04.039
– ident: e_1_2_6_9_2
  doi: 10.1039/C3CS60323G
– ident: e_1_2_6_32_1
  doi: 10.1016/j.biortech.2015.03.064
– ident: e_1_2_6_27_1
  doi: 10.1039/C4TA03101F
– ident: e_1_2_6_4_1
  doi: 10.1002/advs.201700275
– ident: e_1_2_6_3_1
– ident: e_1_2_6_7_3
  doi: 10.1002/aenm.201600690
– ident: e_1_2_6_6_1
– ident: e_1_2_6_14_2
  doi: 10.1016/j.jpowsour.2017.04.024
– ident: e_1_2_6_20_1
  doi: 10.2166/wst.2006.096
– ident: e_1_2_6_7_1
  doi: 10.1073/pnas.1508075112
– ident: e_1_2_6_19_1
  doi: 10.1039/c3ra40454d
– volume: 2013
  start-page: 481784
  year: 2013
  ident: e_1_2_6_11_1
  publication-title: Archaea
– ident: e_1_2_6_27_2
  doi: 10.1016/j.electacta.2016.09.063
– ident: e_1_2_6_8_1
  doi: 10.1002/adma.201707072
– ident: e_1_2_6_38_1
  doi: 10.1016/j.cej.2015.11.022
– ident: e_1_2_6_11_3
  doi: 10.1039/C7SE00352H
– ident: e_1_2_6_28_1
  doi: 10.1002/0470020393
– ident: e_1_2_6_10_1
  doi: 10.1021/sc400520x
– ident: e_1_2_6_23_1
  doi: 10.1002/adma.201603074
– ident: e_1_2_6_17_1
  doi: 10.1007/s11356-016-7196-x
– ident: e_1_2_6_1_1
  doi: 10.1038/nenergy.2016.34
– ident: e_1_2_6_7_2
  doi: 10.1002/slct.201601169
– ident: e_1_2_6_26_1
  doi: 10.1021/acs.est.5b02833
– ident: e_1_2_6_15_1
  doi: 10.1038/nrmicro2422
– ident: e_1_2_6_2_1
– ident: e_1_2_6_13_1
  doi: 10.1126/science.aaf5039
– ident: e_1_2_6_33_1
  doi: 10.1016/j.cej.2018.02.104
– ident: e_1_2_6_35_1
  doi: 10.1002/cssc.201100720
– ident: e_1_2_6_9_1
  doi: 10.1039/c3ee41272e
– ident: e_1_2_6_16_1
  doi: 10.1002/celc.201500530
– ident: e_1_2_6_5_1
  doi: 10.1002/jctb.4413
– ident: e_1_2_6_20_2
  doi: 10.1016/j.biortech.2012.02.110
– ident: e_1_2_6_24_1
  doi: 10.1016/j.ijhydene.2010.08.131
– ident: e_1_2_6_14_1
  doi: 10.1128/mBio.00103-10
– ident: e_1_2_6_21_1
  doi: 10.1007/s10047-012-0649-1
– ident: e_1_2_6_1_2
  doi: 10.1002/aenm.201700759
– ident: e_1_2_6_31_1
  doi: 10.1128/AEM.02401-12
– ident: e_1_2_6_36_1
  doi: 10.1016/j.electacta.2018.04.135
SSID ssj0017734
Score 2.5685382
Snippet Microbial electrochemical reduction of CO2 gas to value‐added chemical products requires the development of an electrode architecture with a three‐phase...
Microbial electrochemical reduction of CO 2 gas to value‐added chemical products requires the development of an electrode architecture with a three‐phase...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Architecture
Carbon dioxide
Catalysis
Catalysts
Cathodes
Chemical reduction
CO2 reduction
Electrodes
electromethanogenesis
Hybrid systems
Hydrogen production
Materials science
Methane
microbial electrosynthesis
Microorganisms
Nickel
Organic chemistry
porous hollow fiber cathodes
Silver chloride
waste to resource
Title Porous Hollow Fiber Nickel Electrodes for Effective Supply and Reduction of Carbon Dioxide to Methane through Microbial Electrosynthesis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201804860
https://www.proquest.com/docview/2123738219
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBaje9kedh_L2hU9DPbk1pKVyH4MTUMY9RjdCnkzuhxBaLFLnLB1v2A_u-dYiZsOxmB9k7EkbOlcPh8ffYexj1KB9Mr7xBorE4UINjE-uMQImTrQqYBAccjyy2h2oT7Ph_OdU_yRH6IPuJFmdPaaFNzY9viONBSnpJPkIu_qKKERpoQtQkXnPX-U0Dr-Vh4JSvAS8y1rYyqP7w-_75XuoOYuYO08zvQ5M9tnjYkml0frlT1yv_6gcXzIy7xgzzZwlI-j_Lxkj6B-xZ7ukBS-Zr-_Nstm3fIZSkzzg08pxYSjAF3CFT-NRXQ8tBzBL49UyGg_eVcs9Iab2vNzIoel7edN4CdmabE1WTQ_Fx74quElUPAem7FgEC8XHTWU6Sdvb2oEqe2ifcMupqffT2bJpn5D4hQqXwIpKrssvEs9WCsKJ4uQD0ERGa5NDVg1BINfXB4xVsDbBF60Ds4Boqrgiuwt26ubGt4xng-1yUciFNYapYMxXqs880ZAaoLy2YAl2_2r3IbcnGpsXFWRlllWtMJVv8ID9qnvfx1pPf7a82ArDtVGvduK_L3OcrT2Aya7ff3HLNV4Mi37q_f_M2ifPaE2-U2ZHbC91XINHxAQrewhezyelGffDjvhvwU2JgbM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIAD5VWxtIAPSJzSxl7vOjlW3a620FSoaqXeIj_G0qpVgja7gvIL-NnMxJu0RUKV4OYktpXYM57Pk_E3jH2UCqRX3ifWWJkoRLCJ8cElRsjUgU4FBPJDFifj2bn6fDHqognpLEzkh-gdbqQZ7XpNCk4O6b0b1lDsk46Si6xNpPSQPaK03kSfPzntGaSE1vHH8lhQiJe46HgbU7l3t_1du3QDNm9D1tbmTDeZ7d42hppc7q6Wdtf9_IPI8b8-5zl7tkakfD-K0Av2AKqX7OktnsJX7NfXelGvGj5Doam_8ylFmXCUoUu44ocxj46HhiP-5ZENGZdQ3uYLveam8vyU-GFJAngd-IFZWCxN5vWPuQe-rHkB5L_HYswZxIt5yw5l-s6b6wpxajNvXrPz6eHZwSxZp3BInEL9SyBFfZe5d6kHa0XuZB6yESjiw7WpAatGYHDT5RFmBXxM-EXr4BwgsAouH26xjaqu4A3j2UibbCxCbq1ROhjjtcqG3ghITVB-OGBJN4GlW_ObU5qNqzIyM8uSRrjsR3jAPvX1v0Vmj7_W3OnkoVxreFOSydfDDBf8AZPtxN7TS7k_mRb91dt_afSBPZ6dFcfl8dHJl232hO6TGZVqh20sFyt4h_hoad-3GvAbU_YJVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD5sHYz1YffSbO2mh8Ge3FqKEtmPpanJLimlrJA3o8sRhBa7xAlb9wv2s3dkJW46GIXtTbYlYUvn6HySpe8D-CAkCiedS4w2IpGEYBPtvE00F6lFlXL0YR1ycjocX8jP08F04xR_5IfoFtyCZ7TjdXDwa-cPb0lDqcpwkpxnrY7SQ3gkh2kexBtG5x2BFFcq_lce8rDDi0_XtI2pOLxb_m5YusWam4i1DTnFM9Drl407TS4PlgtzYH_-weP4P1_zHJ6u8Cg7igb0Ah5g9RK2N1gKX8Gvs3peLxs2JpOpv7Mi7DFhZEGXeMVOooqOw4YR-mWRC5kGUNaqhd4wXTl2HthhQ_-z2rNjPTeUGs3qHzOHbFGzCYbVe0pGxSA2mbXcULqrvLmpCKU2s-Y1XBQn347HyUrAIbGSvC_BlLxd5M6mDo3huRW5zwYoAxuuSTUaOUBNUy5HIMvT44BelPLWIsEqb_P-DmxVdYW7wLKB0tmQ-9wYLZXX2imZ9Z3mmGovXb8Hybr_SrtiNw8iG1dl5GUWZWjhsmvhHnzs8l9HXo-_5txbm0O58u-mDAFf9TMa7nsg2n69p5byaFRMuqs3_1LoPTw-GxXl10-nX97Ck3A7xFAh92BrMV_iPoGjhXnX2v9vMVMIBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Hollow+Fiber+Nickel+Electrodes+for+Effective+Supply+and+Reduction+of+Carbon+Dioxide+to+Methane+through+Microbial+Electrosynthesis&rft.jtitle=Advanced+functional+materials&rft.au=Alqahtani%2C+Manal+F.&rft.au=Katuri%2C+Krishna+P.&rft.au=Bajracharya%2C+Suman&rft.au=Yu%2C+Yuanlie&rft.date=2018-10-24&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=43&rft_id=info:doi/10.1002%2Fadfm.201804860&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201804860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon