Electrochemical Dearomatization: Evolution from Chemicals to Traceless Electrons
Dearomatization reactions represent a versatile approach for the preparation of three‐dimensionally (3D) privileged cyclic moieties from simple planar aromatic compounds. However, exogeneous oxidants are required for most of the radical and oxidative dearomatizations. Therefore, sustainable procedur...
Saved in:
Published in | Advanced synthesis & catalysis Vol. 362; no. 3; pp. 462 - 477 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Wiley Subscription Services, Inc
06.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dearomatization reactions represent a versatile approach for the preparation of three‐dimensionally (3D) privileged cyclic moieties from simple planar aromatic compounds. However, exogeneous oxidants are required for most of the radical and oxidative dearomatizations. Therefore, sustainable procedures are in high demand, especially those in the absence of external oxidizing reagents. Fortunately, electrolytic dearomatization protocols can fulfill the above requirements due to the manipulation of traceless electrons instead of chemicals during the processes. Nevertheless, sustainable electrochemical dearomative transformations have been far less frequently investigated than the well‐developed chemical dearomatization reactions. Herein, we summarize representative breakthroughs in the electrochemical dearomative transformation of indoles, furans and activated arenes (phenols and anisoles) for the synthesis of complicated skeletons. Hopefully, this interesting “simplicity‐to‐complexity” synthetic logic will inspire more innovations from the electroorganic community. |
---|---|
AbstractList | Dearomatization reactions represent a versatile approach for the preparation of three‐dimensionally (3D) privileged cyclic moieties from simple planar aromatic compounds. However, exogeneous oxidants are required for most of the radical and oxidative dearomatizations. Therefore, sustainable procedures are in high demand, especially those in the absence of external oxidizing reagents. Fortunately, electrolytic dearomatization protocols can fulfill the above requirements due to the manipulation of traceless electrons instead of chemicals during the processes. Nevertheless, sustainable electrochemical dearomative transformations have been far less frequently investigated than the well‐developed chemical dearomatization reactions. Herein, we summarize representative breakthroughs in the electrochemical dearomative transformation of indoles, furans and activated arenes (phenols and anisoles) for the synthesis of complicated skeletons. Hopefully, this interesting “simplicity‐to‐complexity” synthetic logic will inspire more innovations from the electroorganic community. Dearomatization reactions represent a versatile approach for the preparation of three‐dimensionally (3D) privileged cyclic moieties from simple planar aromatic compounds. However, exogeneous oxidants are required for most of the radical and oxidative dearomatizations. Therefore, sustainable procedures are in high demand, especially those in the absence of external oxidizing reagents. Fortunately, electrolytic dearomatization protocols can fulfill the above requirements due to the manipulation of traceless electrons instead of chemicals during the processes. Nevertheless, sustainable electrochemical dearomative transformations have been far less frequently investigated than the well‐developed chemical dearomatization reactions. Herein, we summarize representative breakthroughs in the electrochemical dearomative transformation of indoles, furans and activated arenes (phenols and anisoles) for the synthesis of complicated skeletons. Hopefully, this interesting “simplicity‐to‐complexity” synthetic logic will inspire more innovations from the electroorganic community. magnified image |
Author | Zhang, Guofeng Lv, Shide Chen, Jianbin Gao, Wei |
Author_xml | – sequence: 1 givenname: Shide surname: Lv fullname: Lv, Shide organization: Qilu University of Technology (Shandong Academy of Sciences) – sequence: 2 givenname: Guofeng surname: Zhang fullname: Zhang, Guofeng organization: Qilu University of Technology (Shandong Academy of Sciences) – sequence: 3 givenname: Jianbin surname: Chen fullname: Chen, Jianbin email: jchen@qlu.edu.cn organization: Qilu University of Technology (Shandong Academy of Sciences) – sequence: 4 givenname: Wei surname: Gao fullname: Gao, Wei organization: Qilu University of Technology (Shandong Academy of Sciences) |
BookMark | eNqFkM1Lw0AQxRepYFu9eg54Tp3d7Fe8lbR-QEHBel42mw2mpNm6myr1rze1oYIgHoYZeO83w7wRGjSusQhdYphgAHKti2AmBHAKIBicoCHmmMUU83RwnBmcoVEIKwAspBBD9DSvrWm9M692XRldRzOrvVvrtvrsyjU30fzd1dv9GJWdEGW9MUSti5ZeG1vbEKJ-TRPO0WnZqfai72P0cjtfZvfx4vHuIZsuYkMJQCxLgiHHmJZSSJ2SvMS4ICQnHJjgTBSSslTbnHEmC8ELyRgYxijhRJcJ0ckYXR32brx729rQqpXb-qY7qUjCME0Ip7xz0YPLeBeCt6UyVfv9WOt1VSsMap-d2menjtl12OQXtvHVWvvd30B6AD6q2u7-cavp7Dn7Yb8A7XuDKw |
CitedBy_id | crossref_primary_10_1039_C9CC06746A crossref_primary_10_1002_ange_202011657 crossref_primary_10_1039_D5QO00068H crossref_primary_10_1021_acs_orglett_4c00318 crossref_primary_10_1021_acs_joc_3c00309 crossref_primary_10_1021_acs_joc_4c02420 crossref_primary_10_1021_jacsau_3c00813 crossref_primary_10_1039_D2OB00459C crossref_primary_10_1021_acs_joc_3c01956 crossref_primary_10_1002_anie_202313074 crossref_primary_10_1016_j_gresc_2022_06_006 crossref_primary_10_1039_D2QO00312K crossref_primary_10_1021_acs_orglett_3c01270 crossref_primary_10_1021_acs_joc_2c02790 crossref_primary_10_1039_D2QO00085G crossref_primary_10_1021_acs_joc_1c00923 crossref_primary_10_1002_anie_202011657 crossref_primary_10_1002_anie_202206058 crossref_primary_10_1002_adsc_202300118 crossref_primary_10_1002_ange_202001510 crossref_primary_10_1021_acs_joc_3c01449 crossref_primary_10_1002_adsc_202000158 crossref_primary_10_1039_D3GC02153J crossref_primary_10_1021_acs_orglett_1c02063 crossref_primary_10_1002_asia_202101115 crossref_primary_10_1016_j_jssc_2021_122191 crossref_primary_10_1002_adsc_202201110 crossref_primary_10_1016_j_gresc_2022_05_005 crossref_primary_10_1021_acs_joc_3c02094 crossref_primary_10_1021_acs_orglett_0c02194 crossref_primary_10_1055_s_0040_1707152 crossref_primary_10_1021_acs_chemrev_1c00384 crossref_primary_10_1002_ange_202206058 crossref_primary_10_1021_acs_orglett_2c02536 crossref_primary_10_1039_D4CC02527J crossref_primary_10_1039_D0RA09382C crossref_primary_10_1016_j_gresc_2022_10_009 crossref_primary_10_1021_acs_joc_3c01417 crossref_primary_10_1039_D0RA07212E crossref_primary_10_1002_adsc_202000228 crossref_primary_10_1021_acs_joc_1c02681 crossref_primary_10_1002_cctc_202200099 crossref_primary_10_1002_ejoc_202000568 crossref_primary_10_1002_anie_202001510 crossref_primary_10_1002_cssc_202400381 crossref_primary_10_1039_C9CC09276E crossref_primary_10_6023_cjoc202107012 crossref_primary_10_1002_asia_202300122 crossref_primary_10_1039_C9CC09551A crossref_primary_10_6023_cjoc202106044 crossref_primary_10_1016_j_gresc_2024_09_003 crossref_primary_10_1021_acs_joc_0c02429 crossref_primary_10_1021_jacs_3c02556 crossref_primary_10_1039_D2CC03479D crossref_primary_10_1039_D1OB02379A crossref_primary_10_1039_D2QO01392D crossref_primary_10_1002_celc_202400395 crossref_primary_10_1021_acs_orglett_4c03213 crossref_primary_10_1039_D2GC00845A crossref_primary_10_1002_ange_202313074 crossref_primary_10_1002_tcr_202300101 crossref_primary_10_1039_C9CC09178E crossref_primary_10_1002_cjoc_202300673 crossref_primary_10_1021_acscentsci_0c01651 crossref_primary_10_1038_s44160_022_00039_y crossref_primary_10_1039_D2QO01947G crossref_primary_10_1016_j_chempr_2020_06_015 |
Cites_doi | 10.1055/s-2008-1032094 10.1021/acs.chemrev.7b00271 10.3987/COM-03-9989 10.1039/C7CS00619E 10.1021/jacs.8b13371 10.1002/ange.201204822 10.1021/acscatal.7b03547 10.1039/c3cs60464k 10.1016/j.tet.2014.06.054 10.1016/j.tet.2006.03.058 10.1002/anie.201810870 10.1021/acscatal.8b01069 10.1021/ja048085h 10.1021/ol026771k 10.1016/j.chempr.2016.11.005 10.1002/adsc.201801173 10.1002/anie.201404055 10.1021/ol502820p 10.1002/ange.201810870 10.1002/ange.201404055 10.1021/ol991032y 10.1002/anie.201309253 10.1038/s41467-018-06020-8 10.1021/ol047387l 10.1021/cr0306790 10.1021/cr0680843 10.1007/s10800-005-9057-z 10.1002/ange.201411663 10.1021/ol702118n 10.1021/ar500167f 10.1016/j.ccr.2018.06.005 10.1002/ange.201006017 10.1016/j.tet.2010.06.063 10.1016/S0040-4039(00)76643-3 10.1039/C5CS00356C 10.1021/cr990326u 10.1039/C4OB00371C 10.1126/science.aan6206 10.1002/adsc.201900003 10.1021/jo9518359 10.1002/anie.201204822 10.1002/anie.201006017 10.1039/B513532J 10.1038/nature17431 10.1021/cr9902852 10.1002/ange.201309253 10.1039/b512308a 10.1002/ange.201612140 10.1021/acs.orglett.8b00361 10.1002/9783527698479 10.1021/acscatal.8b01682 10.1002/anie.201803887 10.1021/acscatal.8b04807 10.1002/anie.201612140 10.1002/ange.201502638 10.1016/j.tetlet.2015.05.078 10.1039/c0cs00164c 10.1016/0022-0728(86)87045-0 10.3987/REV-16-SR(S)1 10.1021/acs.joc.6b01990 10.1021/acs.chemrev.7b00397 10.1002/anie.201411663 10.1016/j.tetlet.2005.02.148 10.1021/acscentsci.6b00091 10.1021/jo00375a048 10.1002/adsc.200800068 10.1021/acs.orglett.7b03155 10.1021/jacs.8b13192 10.1016/j.chempr.2017.10.001 10.1038/s41929-018-0198-y 10.1002/anie.201502638 10.1021/acs.orglett.6b02613 10.1002/ange.201803887 10.1016/S0040-4039(00)85659-2 10.1021/jo049889i 10.1021/ar700094b 10.1021/ja0660507 10.1021/acs.chemrev.7b00480 10.1021/ja00789a040 10.1002/anie.201603198 10.1038/s41929-019-0229-3 10.1002/ange.201603198 10.1021/acs.orglett.8b00086 10.1016/S0040-4020(01)97477-0 10.1021/acscatal.6b01687 10.1002/cjoc.201700740 10.1021/cr068079z 10.1038/nchem.2735 10.1021/ja00751a083 10.1021/cr100218m 10.1021/jm901241e 10.1038/s41467-017-00873-1 10.1021/cr068072h 10.1002/ejoc.200500517 10.1002/ejoc.200600466 10.1021/ja029064v 10.1016/j.tet.2009.12.046 10.1039/C8CS00389K 10.1007/7081_2007_073 10.1021/jo00001a082 10.3390/molecules24040696 10.1039/c29710000543 10.1002/anie.200352577 10.1021/jo00402a024 10.1021/jacs.8b06744 10.1021/ar5004303 10.1002/cssc.201801946 10.1002/ange.200352577 10.1016/S0040-4039(01)87330-5 10.1021/ja051826 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1002/adsc.201900750 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1615-4169 |
EndPage | 477 |
ExternalDocumentID | 10_1002_adsc_201900750 ADSC201900750 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province – fundername: Qilu University of Technology funderid: Shandong Academy of Sciences; no. 0412048811 – fundername: National Natural Science Foundation of China funderid: nos. 21801144, 81872744, 51602164 – fundername: Natural Science Foundation of Shandong Province funderid: no. ZR2018BB017 |
GroupedDBID | -~X 05W 0R~ 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 52U 52V 5GY 5VS 66C 6P2 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABIJN ABJNI ABLJU ABQWH ABXGK ACAHQ ACCFJ ACCZN ACGFS ACGOF ACMXC ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZVAB BDRZF BFHJK BHBCM BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EBS F5P FUBAC G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 JPC KBYEO KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NNB O66 O9- OIG P2P P2W P4E QRW R.K RJQFR ROL RWI RX1 RYL SUPJJ TUS V2E W99 WBKPD WH7 WIH WIJ WIK WJL WOHZO WXSBR WYJ XPP XV2 ~S- AAMNL AAYXX AEYWJ AGHNM CITATION 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M |
ID | FETCH-LOGICAL-c4200-8f210b114f878a92bf11d22b26057657d8459aeb5658d76d8550c554262af32a3 |
IEDL.DBID | DR2 |
ISSN | 1615-4150 |
IngestDate | Fri Jul 25 07:32:23 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Tue Jul 01 04:09:54 EDT 2025 Wed Jan 22 16:37:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4200-8f210b114f878a92bf11d22b26057657d8459aeb5658d76d8550c554262af32a3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2351432646 |
PQPubID | 2045202 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2351432646 crossref_citationtrail_10_1002_adsc_201900750 crossref_primary_10_1002_adsc_201900750 wiley_primary_10_1002_adsc_201900750_ADSC201900750 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 6, 2020 |
PublicationDateYYYYMMDD | 2020-02-06 |
PublicationDate_xml | – month: 02 year: 2020 text: February 6, 2020 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Advanced synthesis & catalysis |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 63 2017; 8 2001; 101 1973; 95 2004; 126 2015; 71 1991; 56 2006; 35 2004; 69 2019; 12 1973; 14 2014 2014; 126 53 2006; 36 2008; 108 1971 2011 2011; 123 50 2019; 361 2017; 357 2017; 9 2011; 111 2017; 117 2018; 47 1982; 23 2010; 66 2015; 48 2018; 9 2018; 374 2018; 8 2009; 52 1971; 93 2006; 20 2017 2017; 129 56 2018; 4 2006; 62 2019; 24 2014; 16 1996; 61 2007; 9 1994; 35 2016; 81 2003; 125 2006; 128 2008; 350 2014; 12 2016; 45 2018; 36 2015; 56 2019; 9 2004; 104 2018; 140 1986; 51 2016 2016; 128 55 1974; 30 2019; 2 2010 1986; 199 2018 2018; 130 57 2011; 40 2017; 23 2008 2014; 47 2002; 4 2006 1999; 1 2016; 18 2019; 141 2006; 0 2007; 11 2018; 20 2014; 43 2005; 46 2017; 95 2016; 6 2016; 1 2003 2003; 115 42 2016; 2 1978; 43 2018; 118 2015 2015; 127 54 2005; 127 2005; 7 2016 2017; 19 2012 2012; 124 51 2007; 40 2016; 533 2000; 100 2013 1967 e_1_2_7_108_2 e_1_2_7_3_2 e_1_2_7_7_3 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_100_1 e_1_2_7_83_2 e_1_2_7_15_3 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_64_1 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_11_2 e_1_2_7_68_1 e_1_2_7_45_2 e_1_2_7_45_3 e_1_2_7_26_1 e_1_2_7_49_2 e_1_2_7_90_2 e_1_2_7_116_1 e_1_2_7_112_2 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_98_2 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_75_1 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_37_2 e_1_2_7_4_2 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_105_1 e_1_2_7_101_2 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_120_2 e_1_2_7_120_1 e_1_2_7_40_2 e_1_2_7_86_2 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_67_1 e_1_2_7_48_2 e_1_2_7_29_2 e_1_2_7_109_2 e_1_2_7_117_1 e_1_2_7_113_2 e_1_2_7_70_3 e_1_2_7_93_2 e_1_2_7_70_2 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_24_1 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_59_2 e_1_2_7_5_2 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_2 e_1_2_7_17_3 e_1_2_7_17_2 e_1_2_7_62_1 e_1_2_7_121_1 e_1_2_7_81_2 e_1_2_7_13_2 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_66_2 Ding Q. (e_1_2_7_103_2) 2013 e_1_2_7_47_2 e_1_2_7_89_2 e_1_2_7_28_1 e_1_2_7_118_1 e_1_2_7_114_2 Bertuzzi G. (e_1_2_7_22_1) 2018; 8 Qian P. (e_1_2_7_43_2) 2017; 23 e_1_2_7_110_2 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_25_1 e_1_2_7_77_1 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_96_2 e_1_2_7_21_2 e_1_2_7_54_3 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_39_2 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_88_1 e_1_2_7_42_2 e_1_2_7_84_2 e_1_2_7_65_1 Battersby A. R. (e_1_2_7_104_1) 1967 e_1_2_7_10_1 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_119_2 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_2 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_2 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_30_2 e_1_2_7_53_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_38_2 |
References_xml | – volume: 361 start-page: 485 year: 2019 end-page: 489 publication-title: Adv. Synth. Catal. – volume: 4 start-page: 27 year: 2018 end-page: 45 publication-title: Chem. – volume: 52 start-page: 6752 year: 2009 end-page: 6756 publication-title: J. Med. Chem. – volume: 9 start-page: 793 year: 2017 end-page: 798 publication-title: Nat. Chem. – volume: 9 start-page: 4599 year: 2007 end-page: 4602 publication-title: Org. Lett. – volume: 66 start-page: 6820 year: 2010 end-page: 6825 publication-title: Tetrahedron – volume: 63 start-page: 765 year: 2004 end-page: 771 publication-title: Heterocycles – volume: 9 start-page: 4302 year: 2019 end-page: 4307 publication-title: ACS Catal. – volume: 95 start-page: 63 year: 2017 end-page: 80 publication-title: Heterocycles – volume: 20 start-page: 1845 year: 2018 end-page: 1848 publication-title: Org. Lett. – volume: 0 start-page: 194 year: 2006 end-page: 196 publication-title: Chem. Commun. – volume: 16 start-page: 5752 year: 2014 end-page: 5755 publication-title: Org. Lett. – start-page: 241 year: 2006 end-page: 245 publication-title: Eur. J. Org. Chem. – volume: 66 start-page: 2235 year: 2010 end-page: 2261 publication-title: Tetrahedron – volume: 111 start-page: 1713 year: 2011 end-page: 1760 publication-title: Chem. Rev. – volume: 40 start-page: 1357 year: 2007 end-page: 1366 publication-title: Acc. Chem. Res. – volume: 101 start-page: 1385 year: 2001 end-page: 1419 publication-title: Chem. Rev. – volume: 104 start-page: 2777 year: 2004 end-page: 2812 publication-title: Chem. Rev. – volume: 130 57 start-page: 11221 11055 year: 2018 2018 end-page: 11225 11059 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 19 start-page: 6336 year: 2017 end-page: 6339 publication-title: Org. Lett. – volume: 141 start-page: 2825 year: 2019 end-page: 2831 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 702 year: 2015 end-page: 711 publication-title: Acc. Chem. Res. – volume: 23 start-page: 262 year: 2017 end-page: 275 publication-title: J. Electrochem. – volume: 47 start-page: 2558 year: 2014 end-page: 2573 publication-title: Acc. Chem. Res. – volume: 43 start-page: 1580 year: 1978 end-page: 1586 publication-title: J. Org. Chem. – volume: 117 start-page: 13230 year: 2017 end-page: 13319 publication-title: Chem. Rev. – volume: 18 start-page: 5296 year: 2016 end-page: 5299 publication-title: Org. Lett. – volume: 100 start-page: 2917 year: 2000 end-page: 2940 publication-title: Chem. Rev. – volume: 140 start-page: 12511 year: 2018 end-page: 12520 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1 year: 2007 end-page: 61 publication-title: Top. Heterocycl. Chem. – volume: 30 start-page: 931 year: 1974 end-page: 934 publication-title: Tetrahedron – volume: 62 start-page: 6551 year: 2006 end-page: 6557 publication-title: Tetrahedron – start-page: 543 year: 1971 end-page: 544 publication-title: J. Chem. Soc. D – volume: 47 start-page: 7996 year: 2018 end-page: 8017 publication-title: Chem. Soc. Rev. – volume: 361 start-page: 2804 year: 2019 end-page: 2824 publication-title: Adv. Synth. Catal. – volume: 93 start-page: 5941 year: 1971 end-page: 5942 publication-title: J. Am. Chem. Soc. – start-page: 1 year: 2013 end-page: 16 publication-title: Synthesis – year: 2016 – volume: 126 53 start-page: 3624 3552 year: 2014 2014 end-page: 3629 3557 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 2 start-page: 34 year: 2019 end-page: 40 publication-title: Nat. Catal. – volume: 47 start-page: 5786 year: 2018 end-page: 5865 publication-title: Chem. Soc. Rev. – year: 2010 – volume: 125 start-page: 36 year: 2003 end-page: 37 publication-title: J. Am. Chem. Soc. – volume: 129 56 start-page: 7828 7720 year: 2017 2017 end-page: 7847 7738 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 46 start-page: 2789 year: 2005 end-page: 2793 publication-title: Tetrahedron Lett. – start-page: 467 year: 2008 end-page: 495 publication-title: Synlett – volume: 1 start-page: 1535 year: 1999 end-page: 1538 publication-title: Org. Lett. – volume: 81 start-page: 10930 year: 2016 end-page: 10941 publication-title: J. Org. Chem. – volume: 128 55 start-page: 12770 12582 year: 2016 2016 end-page: 12783 12594 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 108 start-page: 2348 year: 2008 end-page: 2378 publication-title: Chem. Rev. – volume: 115 42 start-page: 5111 4961 year: 2003 2003 end-page: 5116 4966 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 35 start-page: 605 year: 2006 end-page: 621 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 4807 year: 2014 end-page: 4815 publication-title: Org. Biomol. Chem. – volume: 45 start-page: 1570 year: 2016 end-page: 1580 publication-title: Chem. Soc. Rev. – volume: 61 start-page: 1578 year: 1996 end-page: 1598 publication-title: J. Org. Chem. – volume: 23 start-page: 4581 year: 1982 end-page: 4584 publication-title: Tetrahedron Lett. – volume: 118 start-page: 4485 year: 2018 end-page: 4540 publication-title: Chem. Rev. – volume: 2 start-page: 243 year: 2019 end-page: 250 publication-title: Nat. Catal. – volume: 36 start-page: 338 year: 2018 end-page: 352 publication-title: Chin. J. Chem. – volume: 8 start-page: 5175 year: 2018 end-page: 5187 publication-title: ACS Catal. – volume: 126 53 start-page: 12075 11881 year: 2014 2014 end-page: 12079 11885 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 56 start-page: 4413 year: 2015 end-page: 4429 publication-title: Tetrahedron Lett. – volume: 9 start-page: 3551 year: 2018 end-page: 3558 publication-title: Nat. Commun. – volume: 20 start-page: 1342 year: 2018 end-page: 1347 publication-title: Org. Lett. – volume: 51 start-page: 5005 year: 1986 end-page: 5007 publication-title: J. Org. Chem. – volume: 127 54 start-page: 6496 6398 year: 2015 2015 end-page: 6497 6399 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 56 start-page: 435 year: 1991 end-page: 438 publication-title: J. Org. Chem. – volume: 108 start-page: 2265 year: 2008 end-page: 2299 publication-title: Chem. Rev. – volume: 8 start-page: 632 year: 2018 publication-title: Catalysis – volume: 126 start-page: 9106 year: 2004 end-page: 9111 publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 17057 year: 2006 end-page: 17062 publication-title: J. Am. Chem. Soc. – volume: 130 57 start-page: 17371 17125 year: 2018 2018 end-page: 17375 17129 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 8 start-page: 775 year: 2017 publication-title: Nat. Commun. – volume: 43 start-page: 2492 year: 2014 end-page: 2521 publication-title: Chem. Soc. Rev. – volume: 35 start-page: 2857 year: 1994 end-page: 2860 publication-title: Tetrahedron Lett. – volume: 36 start-page: 249 year: 2006 end-page: 253 publication-title: J. Appl. Electrochem. – volume: 533 start-page: 77 year: 2016 end-page: 81 publication-title: Nature – start-page: 119 year: 1967 – volume: 8 start-page: 7086 year: 2018 end-page: 7103 publication-title: ACS Catal. – volume: 14 start-page: 4759 year: 1973 end-page: 4762 publication-title: Tetrahedron Lett. – volume: 24 start-page: 696 year: 2019 publication-title: Molecules – volume: 2 start-page: 302 year: 2016 end-page: 308 publication-title: ACS Cent. Sci. – volume: 127 54 start-page: 4900 4818 year: 2015 2015 end-page: 4904 4822 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 7 start-page: 3425 year: 2005 end-page: 3428 publication-title: Org. Lett. – volume: 1 start-page: 830 year: 2016 end-page: 857 publication-title: Chem. – volume: 4 start-page: 3763 year: 2002 end-page: 3765 publication-title: Org. Lett. – volume: 69 start-page: 3726 year: 2004 end-page: 3734 publication-title: J. Org. Chem. – volume: 127 start-page: 8034 year: 2005 end-page: 8035 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 4569 year: 2006 end-page: 4572 publication-title: Eur. J. Org. Chem. – volume: 117 start-page: 13721 year: 2017 end-page: 13755 publication-title: Chem. Rev. – volume: 374 start-page: 114 year: 2018 end-page: 132 publication-title: Coord. Chem. Rev. – volume: 12 start-page: 115 year: 2019 end-page: 132 publication-title: ChemSusChem – volume: 108 start-page: 2300 year: 2008 end-page: 2347 publication-title: Chem. Rev. – volume: 124 51 start-page: 12834 12662 year: 2012 2012 end-page: 12858 12686 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 199 start-page: 101 year: 1986 end-page: 126 publication-title: J. Electroanal. Chem. – volume: 123 50 start-page: 4154 4068 year: 2011 2011 end-page: 4179 4093 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 6 start-page: 7834 year: 2016 end-page: 7838 publication-title: ACS Catal. – volume: 357 start-page: 575 year: 2017 end-page: 579 publication-title: Science – volume: 71 start-page: 3549 year: 2015 end-page: 3591 publication-title: Tetrahedron – volume: 141 start-page: 2832 year: 2019 end-page: 2837 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 17 year: 2018 end-page: 21 publication-title: ACS Catal. – volume: 40 start-page: 3744 year: 2011 end-page: 3763 publication-title: Chem. Soc. Rev. – volume: 350 start-page: 1101 year: 2008 end-page: 1105 publication-title: Adv. Synth. Catal. – volume: 95 start-page: 2651 year: 1973 end-page: 2656 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_25_1 doi: 10.1055/s-2008-1032094 – ident: e_1_2_7_37_2 doi: 10.1021/acs.chemrev.7b00271 – ident: e_1_2_7_62_1 doi: 10.3987/COM-03-9989 – ident: e_1_2_7_36_2 doi: 10.1039/C7CS00619E – ident: e_1_2_7_65_1 doi: 10.1021/jacs.8b13371 – ident: e_1_2_7_7_2 doi: 10.1002/ange.201204822 – ident: e_1_2_7_13_2 doi: 10.1021/acscatal.7b03547 – ident: e_1_2_7_100_1 – ident: e_1_2_7_46_2 doi: 10.1039/c3cs60464k – ident: e_1_2_7_58_2 doi: 10.1016/j.tet.2014.06.054 – ident: e_1_2_7_87_2 doi: 10.1016/j.tet.2006.03.058 – ident: e_1_2_7_119_2 doi: 10.1002/anie.201810870 – ident: e_1_2_7_38_2 doi: 10.1021/acscatal.8b01069 – ident: e_1_2_7_90_2 doi: 10.1021/ja048085h – ident: e_1_2_7_10_1 – ident: e_1_2_7_82_2 doi: 10.1021/ol026771k – ident: e_1_2_7_5_2 doi: 10.1016/j.chempr.2016.11.005 – ident: e_1_2_7_64_1 doi: 10.1002/adsc.201801173 – ident: e_1_2_7_54_3 doi: 10.1002/anie.201404055 – ident: e_1_2_7_60_2 doi: 10.1021/ol502820p – ident: e_1_2_7_119_1 doi: 10.1002/ange.201810870 – ident: e_1_2_7_68_1 – ident: e_1_2_7_54_2 doi: 10.1002/ange.201404055 – ident: e_1_2_7_81_2 doi: 10.1021/ol991032y – ident: e_1_2_7_17_3 doi: 10.1002/anie.201309253 – ident: e_1_2_7_35_2 doi: 10.1038/s41467-018-06020-8 – ident: e_1_2_7_92_2 doi: 10.1021/ol047387l – ident: e_1_2_7_97_2 doi: 10.1021/cr0306790 – ident: e_1_2_7_48_2 doi: 10.1021/cr0680843 – ident: e_1_2_7_118_1 doi: 10.1007/s10800-005-9057-z – ident: e_1_2_7_70_2 doi: 10.1002/ange.201411663 – ident: e_1_2_7_99_1 doi: 10.1021/ol702118n – ident: e_1_2_7_6_2 doi: 10.1021/ar500167f – ident: e_1_2_7_12_2 doi: 10.1016/j.ccr.2018.06.005 – ident: e_1_2_7_8_2 doi: 10.1002/ange.201006017 – ident: e_1_2_7_63_1 doi: 10.1016/j.tet.2010.06.063 – ident: e_1_2_7_78_2 doi: 10.1016/S0040-4039(00)76643-3 – ident: e_1_2_7_23_1 doi: 10.1039/C5CS00356C – ident: e_1_2_7_96_2 doi: 10.1021/cr990326u – ident: e_1_2_7_101_2 doi: 10.1039/C4OB00371C – ident: e_1_2_7_30_2 doi: 10.1126/science.aan6206 – ident: e_1_2_7_41_2 doi: 10.1002/adsc.201900003 – ident: e_1_2_7_79_2 doi: 10.1021/jo9518359 – ident: e_1_2_7_7_3 doi: 10.1002/anie.201204822 – ident: e_1_2_7_8_3 doi: 10.1002/anie.201006017 – start-page: 119 volume-title: Oxidative Coupling of Phenols year: 1967 ident: e_1_2_7_104_1 – ident: e_1_2_7_77_1 – ident: e_1_2_7_94_1 doi: 10.1039/B513532J – ident: e_1_2_7_29_2 doi: 10.1038/nature17431 – ident: e_1_2_7_80_1 – ident: e_1_2_7_98_2 doi: 10.1021/cr9902852 – ident: e_1_2_7_17_2 doi: 10.1002/ange.201309253 – start-page: 1 year: 2013 ident: e_1_2_7_103_2 publication-title: Synthesis – ident: e_1_2_7_50_2 doi: 10.1039/b512308a – ident: e_1_2_7_27_1 doi: 10.1002/ange.201612140 – ident: e_1_2_7_55_2 doi: 10.1021/acs.orglett.8b00361 – ident: e_1_2_7_3_2 doi: 10.1002/9783527698479 – ident: e_1_2_7_34_2 doi: 10.1021/acscatal.8b01682 – ident: e_1_2_7_69_2 – ident: e_1_2_7_115_2 doi: 10.1002/anie.201803887 – ident: e_1_2_7_11_2 doi: 10.1021/acscatal.8b04807 – ident: e_1_2_7_120_1 doi: 10.1002/ange.201204822 – ident: e_1_2_7_27_2 doi: 10.1002/anie.201612140 – ident: e_1_2_7_45_2 doi: 10.1002/ange.201502638 – ident: e_1_2_7_59_2 doi: 10.1016/j.tetlet.2015.05.078 – ident: e_1_2_7_19_2 doi: 10.1039/c0cs00164c – ident: e_1_2_7_52_1 – ident: e_1_2_7_61_1 doi: 10.1016/0022-0728(86)87045-0 – ident: e_1_2_7_14_2 doi: 10.3987/REV-16-SR(S)1 – ident: e_1_2_7_114_2 doi: 10.1021/acs.joc.6b01990 – ident: e_1_2_7_2_1 – ident: e_1_2_7_42_2 doi: 10.1021/acs.chemrev.7b00397 – ident: e_1_2_7_70_3 doi: 10.1002/anie.201411663 – ident: e_1_2_7_84_2 doi: 10.1016/j.tetlet.2005.02.148 – ident: e_1_2_7_44_2 doi: 10.1021/acscentsci.6b00091 – volume: 8 start-page: 632 year: 2018 ident: e_1_2_7_22_1 publication-title: Catalysis – ident: e_1_2_7_112_2 doi: 10.1021/jo00375a048 – ident: e_1_2_7_20_2 doi: 10.1002/adsc.200800068 – ident: e_1_2_7_56_2 doi: 10.1021/acs.orglett.7b03155 – ident: e_1_2_7_74_2 doi: 10.1021/jacs.8b13192 – ident: e_1_2_7_95_1 – ident: e_1_2_7_33_2 doi: 10.1016/j.chempr.2017.10.001 – ident: e_1_2_7_31_2 doi: 10.1038/s41929-018-0198-y – ident: e_1_2_7_45_3 doi: 10.1002/anie.201502638 – ident: e_1_2_7_57_2 doi: 10.1021/acs.orglett.6b02613 – ident: e_1_2_7_115_1 doi: 10.1002/ange.201803887 – ident: e_1_2_7_110_2 doi: 10.1016/S0040-4039(00)85659-2 – ident: e_1_2_7_120_2 doi: 10.1002/anie.201204822 – ident: e_1_2_7_83_2 doi: 10.1021/jo049889i – ident: e_1_2_7_21_2 doi: 10.1021/ar700094b – ident: e_1_2_7_93_2 doi: 10.1021/ja0660507 – ident: e_1_2_7_4_2 doi: 10.1021/acs.chemrev.7b00480 – ident: e_1_2_7_108_2 doi: 10.1021/ja00789a040 – ident: e_1_2_7_15_3 doi: 10.1002/anie.201603198 – ident: e_1_2_7_32_2 doi: 10.1038/s41929-019-0229-3 – ident: e_1_2_7_15_2 doi: 10.1002/ange.201603198 – ident: e_1_2_7_76_1 doi: 10.1021/acs.orglett.8b00086 – ident: e_1_2_7_113_2 doi: 10.1016/S0040-4020(01)97477-0 – ident: e_1_2_7_16_2 doi: 10.1021/acscatal.6b01687 – ident: e_1_2_7_39_2 doi: 10.1002/cjoc.201700740 – ident: e_1_2_7_49_2 doi: 10.1021/cr068079z – ident: e_1_2_7_53_2 doi: 10.1038/nchem.2735 – ident: e_1_2_7_85_1 – ident: e_1_2_7_28_1 – ident: e_1_2_7_106_1 doi: 10.1021/ja00751a083 – ident: e_1_2_7_18_2 doi: 10.1021/cr100218m – ident: e_1_2_7_9_1 doi: 10.1021/jm901241e – ident: e_1_2_7_71_1 doi: 10.1038/s41467-017-00873-1 – ident: e_1_2_7_51_2 doi: 10.1021/cr068072h – ident: e_1_2_7_116_1 doi: 10.1002/ejoc.200500517 – ident: e_1_2_7_117_1 doi: 10.1002/ejoc.200600466 – ident: e_1_2_7_89_2 doi: 10.1021/ja029064v – ident: e_1_2_7_102_2 doi: 10.1016/j.tet.2009.12.046 – volume: 23 start-page: 262 year: 2017 ident: e_1_2_7_43_2 publication-title: J. Electrochem. – ident: e_1_2_7_91_1 – ident: e_1_2_7_26_1 doi: 10.1039/C8CS00389K – ident: e_1_2_7_121_1 doi: 10.1007/7081_2007_073 – ident: e_1_2_7_67_1 doi: 10.1021/jo00001a082 – ident: e_1_2_7_73_2 doi: 10.1126/science.aan6206 – ident: e_1_2_7_47_2 doi: 10.3390/molecules24040696 – ident: e_1_2_7_105_1 doi: 10.1039/c29710000543 – ident: e_1_2_7_72_1 – ident: e_1_2_7_66_2 doi: 10.1002/anie.200352577 – ident: e_1_2_7_88_1 – ident: e_1_2_7_109_2 doi: 10.1021/jo00402a024 – ident: e_1_2_7_75_1 doi: 10.1021/jacs.8b06744 – ident: e_1_2_7_24_1 doi: 10.1021/ar5004303 – ident: e_1_2_7_107_1 – ident: e_1_2_7_40_2 doi: 10.1002/cssc.201801946 – ident: e_1_2_7_66_1 doi: 10.1002/ange.200352577 – ident: e_1_2_7_111_2 doi: 10.1016/S0040-4039(01)87330-5 – ident: e_1_2_7_86_2 doi: 10.1021/ja051826 |
SSID | ssj0017877 |
Score | 2.5358825 |
SecondaryResourceType | review_article |
Snippet | Dearomatization reactions represent a versatile approach for the preparation of three‐dimensionally (3D) privileged cyclic moieties from simple planar aromatic... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 462 |
SubjectTerms | Aromatic compounds Chemical reactions dearomatization electrochemistry Electrons Furans Indoles Organic chemistry Oxidation Oxidizing agents Phenols radicals Reagents three-dimensional structures |
Title | Electrochemical Dearomatization: Evolution from Chemicals to Traceless Electrons |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadsc.201900750 https://www.proquest.com/docview/2351432646 |
Volume | 362 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-yi178FqdTchA8ZevSNG28jX0wBEXUwW4laZKL0ontPPjX-9KvbYIIeikUktAm7-X3eyHv9xC6ijwNRNkTRIWWE8YEJ4qzgBgutPCCwDfGZSPf3fPpjN3Og_laFn-pD9EcuDnPKPZr5-BSZb2VaKjUmZMgBEBzqAebsLuw5VjRY6Mf1QdrLKqrAGwTQCqvVm30aG-z-yYqrajmOmEtEGeyh2T9reVFk5fuMlfd5PObjON_fmYf7VZ0FA9K-zlAWyY9RNvDugrcEXoYl3VykkpYAI_ANRaO5pb5mzd4_FFZL3apKrhWIMhwvsCAhAngWpbhapg0O0azyfh5OCVVFQaSMHAhElmIChWETTYKIymosv2-plS5QCjkQagjFghpFDDDSIdcO4W0BEgK5VRan0r_BLXSRWpOERYQL4U-09YaCk8JQwHlSpSOfCOs8NqI1KsQJ5VEuauU8RqX4so0dvMUN_PURtdN-7dSnOPHlp16UePKSbOYuiwGoK-MtxEtVueXUeLB6GnYvJ39pdM52qEuYnf3vnkHtfL3pbkAWpOry8J0vwCuB-1X |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGWDhjSgU8IDEZEidxInZqlJUoCDEQ2KL4thZQC0iLQO_nru8SpEQEiyRLNlWYt_l-87yfQdwGDoGibKjuA5SyT1PSa6l53MrlVGO77vWUjby9Y3sP3qXT351m5ByYQp9iPrAjTwj_1-Tg9OB9MlUNTQ2GWkQIqIR7M3DApX1zqOqu1pBqo32mNdXQeDmiFVOpdvoiJPZ8bO4NCWbXylrjjnnK6Crty2umjwfT8b6OPn4JuT4r89ZheWSkbJOYUJrMGeH67DYrQrBbcBtryiVk5TaAuwMvWNETLdI4TxlvffSgBllq7BKhCBj4xFDMEwQ2rKMldMMs014PO89dPu8LMTAEw-9iIcpBoYaI6c0DMJYCZ2220YITbFQIP3AhJ6vYquRHIYmkIZE0hLkKUKKOHVF7G5BYzga2m1gCkOmwPVMmlqBzxinQtaVaBO6VqXKaQKvtiFKSpVyKpbxEhX6yiKidYrqdWrCUd3_tdDn-LFnq9rVqPTTLBKUyIAM1pNNEPn2_DJL1Dm779atnb8MOoDF_sP1IBpc3FztwpKgAJ6ugcsWNMZvE7uHLGes93M7_gSTq_Fy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BfXiW1xdNQfBU7SbpmnjTfbB-kR8gLfSNMlF2V3srgd_vZO-fIAIeikUktBmZvp9UzLfABxEnkai7EmqQiso51JQJXhAjZBaekHgG-Oqka-uxeCBnz8Gj5-q-At9iPqHm4uM_HvtAnys7fGHaGiiMydBiIDmUG8W5rjwIufX3dtaQKqN7pi3V0HcpghVXiXb6LHjr_O_wtIH1_zMWHPI6S9DUj1scdLk6Wg6UUfp2zcdx_-8zQoslXyUnBYOtAozZrgGC52qDdw63PSKRjlpqSxAuhgbI8dziwLOE9J7Ld2XuFoVUkkQZGQyIgiFKQJblpFymWG2AQ_93n1nQMs2DDTlGEM0spgWKsybbBRGiWTKttuaMeUyoVAEoY54IBOjkBpGOhTaSaSlyFKYYIn1WeJvQmM4GpotIBITptDn2lrD8JrgUsi5UqUj30grvSbQygpxWmqUu1YZz3Ghrsxit09xvU9NOKzHjwt1jh9HtiqjxmWUZjFzZQzIX7loAsut88sq8Wn3rlPfbf9l0j7M33T78eXZ9cUOLDKXvbsz4KIFjcnL1OwixZmovdyL3wHb4PAq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Dearomatization%3A+Evolution+from+Chemicals+to+Traceless+Electrons&rft.jtitle=Advanced+synthesis+%26+catalysis&rft.au=Lv%2C+Shide&rft.au=Zhang%2C+Guofeng&rft.au=Chen%2C+Jianbin&rft.au=Gao%2C+Wei&rft.date=2020-02-06&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1615-4150&rft.eissn=1615-4169&rft.volume=362&rft.issue=3&rft.spage=462&rft.epage=477&rft_id=info:doi/10.1002%2Fadsc.201900750&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-4150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-4150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-4150&client=summon |