Composite Common Spatial Pattern for Subject-to-Subject Transfer
Common spatial pattern (CSP) is a popular feature extraction method for electroencephalogram (EEG) classification. Most of existing CSP-based methods exploit covariance matrices on a subject-by-subject basis so that inter-subject information is neglected. In this paper we present modifications of CS...
Saved in:
Published in | IEEE signal processing letters Vol. 16; no. 8; pp. 683 - 686 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Common spatial pattern (CSP) is a popular feature extraction method for electroencephalogram (EEG) classification. Most of existing CSP-based methods exploit covariance matrices on a subject-by-subject basis so that inter-subject information is neglected. In this paper we present modifications of CSP for subject-to-subject transfer, where we exploit a linear combination of covariance matrices of subjects in consideration. We develop two methods to determine a composite covariance matrix that is a weighted sum of covariance matrices involving subjects, leading to composite CSP . Numerical experiments on dataset IVa in BCI competition III confirm that our composite CSP methods improve classification performance over the standard CSP (on a subject-by-subject basis), especially in the case of subjects with fewer number of training samples. |
---|---|
AbstractList | Common spatial pattern (CSP) is a popular feature extraction method for electroencephalogram (EEG) classification. Most of existing CSP-based methods exploit covariance matrices on a subject-by-subject basis so that inter-subject information is neglected. In this paper we present modifications of CSP for subject- to-subject transfer, where we exploit a linear combination of covariance matrices of subjects in consideration. We develop two methods to determine a composite covariance matrix that is a weighted sum of covariance matrices involving subjects, leading to composite CSP. Numerical experiments on dataset IVa in BCI competition III confirm that our composite CSP methods improve classification performance over the standard CSP (on a subject-by-subject basis), especially in the case of subjects with fewer number of training samples. |
Author | Hyohyeong Kang Seungjin Choi Yunjun Nam |
Author_xml | – sequence: 1 givenname: Hyohyeong Kang surname: Hyohyeong Kang fullname: Hyohyeong Kang, Hyohyeong Kang – sequence: 2 givenname: Yunjun Nam surname: Yunjun Nam fullname: Yunjun Nam, Yunjun Nam – sequence: 3 givenname: Seungjin Choi surname: Seungjin Choi fullname: Seungjin Choi, Seungjin Choi |
BookMark | eNp9kEtrAjEUhUOxULXdF7oZumhXY29eM8muRfoCoYJ2HWJMYGSc2CSz6L9vROnChZvkwD3nPr4RGnS-swjdYphgDPJptphPCIDMDyGc1xdoiDkXJaEVHmQNNZRSgrhCoxg3ACCw4EP0PPXbnY9NskVWW98Vi51OjW6LuU7Jhq5wPhSLfrWxJpXJl0dZLIPuorPhGl063UZ7c_zH6PvtdTn9KGdf75_Tl1lpGJapdK5yrKpZRUyeLXFeha6l1s5oyS3LBY6Zw1xUdA2wso7rNTPaEOcoaGzpGD0e-u6C_-ltTGrbRGPbVnfW91GJmgPBWIrsfDjrpExwBpRk4_2JceP70OUrlKgwZRLqfTc4mEzwMQbr1C40Wx1-FQa1J68yebUnr47kc6Q6iZgmZai-S0E37bng3SHYWGv_5zCJCWWc_gFWL5Dk |
CODEN | ISPLEM |
CitedBy_id | crossref_primary_10_1142_S0129065721500301 crossref_primary_10_1109_TFUZZ_2016_2633379 crossref_primary_10_1109_ACCESS_2020_3045225 crossref_primary_10_1109_TBME_2024_3356665 crossref_primary_10_1016_j_bspc_2022_104433 crossref_primary_10_1109_TNSRE_2020_2985996 crossref_primary_10_3389_fnins_2021_733546 crossref_primary_10_3389_fnhum_2018_00439 crossref_primary_10_1016_j_bpj_2019_09_038 crossref_primary_10_1007_s11227_022_05026_w crossref_primary_10_1016_j_neunet_2024_106497 crossref_primary_10_1016_j_compbiomed_2015_03_023 crossref_primary_10_1109_MCI_2015_2501545 crossref_primary_10_1080_03772063_2019_1670106 crossref_primary_10_1088_1741_2552_aa8232 crossref_primary_10_1109_TBME_2010_2082540 crossref_primary_10_3390_electronics13112174 crossref_primary_10_1007_s00521_013_1523_7 crossref_primary_10_1109_TBME_2019_2954470 crossref_primary_10_3390_e19030089 crossref_primary_10_1016_j_jneumeth_2020_108855 crossref_primary_10_1109_TAI_2021_3097307 crossref_primary_10_3390_s20072034 crossref_primary_10_1016_j_neucom_2016_10_055 crossref_primary_10_1109_TNSRE_2020_2980299 crossref_primary_10_1109_ACCESS_2020_3048683 crossref_primary_10_1109_MSP_2023_3278074 crossref_primary_10_3390_sci5020023 crossref_primary_10_1007_s11042_024_18698_8 crossref_primary_10_3390_s21165436 crossref_primary_10_1109_TFUZZ_2016_2540072 crossref_primary_10_1109_TNSRE_2019_2923315 crossref_primary_10_3390_app13179825 crossref_primary_10_1038_s41598_022_06805_4 crossref_primary_10_1142_S0129065714500038 crossref_primary_10_1007_s10710_019_09352_6 crossref_primary_10_3390_s22134939 crossref_primary_10_1109_ACCESS_2020_2979074 crossref_primary_10_1016_j_neucom_2023_126659 crossref_primary_10_1109_JBHI_2020_3025865 crossref_primary_10_3390_e21121199 crossref_primary_10_1109_TCYB_2020_2968625 crossref_primary_10_1007_s11571_023_10053_1 crossref_primary_10_1016_j_bspc_2020_102101 crossref_primary_10_1007_s12204_022_2488_4 crossref_primary_10_1109_ACCESS_2019_2909058 crossref_primary_10_3390_e20010007 crossref_primary_10_1109_TBME_2019_2913914 crossref_primary_10_3389_fncom_2019_00087 crossref_primary_10_1016_j_neucom_2024_129010 crossref_primary_10_3389_fnins_2017_00226 crossref_primary_10_1016_j_compbiomed_2024_109260 crossref_primary_10_1109_TSMC_2019_2958647 crossref_primary_10_1109_TBME_2013_2253608 crossref_primary_10_1088_1741_2552_ad593b crossref_primary_10_3390_s20216321 crossref_primary_10_1016_j_bspc_2024_106044 crossref_primary_10_1088_1741_2560_12_4_046006 crossref_primary_10_1109_JBHI_2019_2934172 crossref_primary_10_1109_ACCESS_2019_2913154 crossref_primary_10_1007_s11571_021_09676_z crossref_primary_10_1109_RBME_2013_2290621 crossref_primary_10_1109_TCDS_2023_3279262 crossref_primary_10_1109_MSP_2012_2219675 crossref_primary_10_1109_ACCESS_2019_2956018 crossref_primary_10_1109_TNSRE_2017_2778178 crossref_primary_10_1016_j_compbiomed_2024_108619 crossref_primary_10_1016_j_bspc_2021_102930 crossref_primary_10_1016_j_compeleceng_2024_109680 crossref_primary_10_1007_s11571_016_9417_x crossref_primary_10_1016_j_cmpb_2010_11_014 crossref_primary_10_1109_LSP_2021_3087099 crossref_primary_10_1007_s11517_018_1917_x crossref_primary_10_1109_TNSRE_2016_2544108 crossref_primary_10_1155_2018_9871603 crossref_primary_10_1162_NECO_a_00544 crossref_primary_10_1109_TCDS_2021_3137530 crossref_primary_10_1016_j_bspc_2020_101917 crossref_primary_10_1088_1741_2552_ab6df3 crossref_primary_10_1109_TNNLS_2020_3015505 crossref_primary_10_1007_s00521_010_0481_6 crossref_primary_10_1142_S0129065720500094 crossref_primary_10_3389_fnins_2020_00918 crossref_primary_10_3389_fnins_2022_1044631 crossref_primary_10_1007_s12559_017_9533_x crossref_primary_10_1080_10255842_2024_2404541 crossref_primary_10_3389_fnbot_2024_1343249 crossref_primary_10_3389_fninf_2019_00047 crossref_primary_10_1080_2326263X_2021_1943955 crossref_primary_10_1186_s12859_024_06024_w crossref_primary_10_1109_ACCESS_2023_3339665 crossref_primary_10_1109_LSP_2024_3465348 crossref_primary_10_3389_fnins_2021_779231 crossref_primary_10_1109_TCDS_2018_2826840 crossref_primary_10_1016_j_neunet_2019_07_008 crossref_primary_10_1109_ACCESS_2020_2971600 crossref_primary_10_1016_j_bspc_2024_106092 crossref_primary_10_3390_s20195528 crossref_primary_10_1109_JPROC_2015_2413993 crossref_primary_10_3390_s24186110 crossref_primary_10_1088_1741_2552_aab2f2 crossref_primary_10_1016_j_neucom_2020_03_055 crossref_primary_10_1088_1741_2560_12_4_046027 crossref_primary_10_1016_j_neucom_2020_09_017 crossref_primary_10_1109_TCYB_2020_2982901 crossref_primary_10_1088_1741_2552_ab64a0 crossref_primary_10_1109_TNSRE_2021_3059166 crossref_primary_10_1007_s11517_017_1611_4 crossref_primary_10_1016_j_compbiomed_2022_106420 crossref_primary_10_1109_TNSRE_2023_3236372 crossref_primary_10_1016_j_compbiomed_2022_106267 crossref_primary_10_1088_2057_1976_ad90e8 crossref_primary_10_1109_TNSRE_2023_3265304 crossref_primary_10_1109_JBHI_2018_2832538 crossref_primary_10_1109_TNSRE_2022_3207494 crossref_primary_10_1016_j_neucom_2013_03_027 crossref_primary_10_1016_j_neunet_2014_05_012 crossref_primary_10_1080_2326263X_2020_1801112 crossref_primary_10_1016_j_bspc_2019_01_006 crossref_primary_10_1016_j_neunet_2023_08_008 crossref_primary_10_1088_1741_2552_ad2496 crossref_primary_10_1109_ACCESS_2022_3178100 crossref_primary_10_1007_s11517_023_02967_z crossref_primary_10_1109_JPROC_2015_2404941 crossref_primary_10_1016_j_cmpb_2021_106150 crossref_primary_10_1016_j_eswa_2020_114031 crossref_primary_10_1109_TETCI_2022_3147030 crossref_primary_10_1109_TCDS_2021_3099988 crossref_primary_10_3389_fnhum_2023_1070404 crossref_primary_10_1016_j_jneumeth_2024_110332 crossref_primary_10_1109_TPAMI_2014_2330598 crossref_primary_10_1142_S0218126619501238 crossref_primary_10_1016_j_imu_2018_07_003 crossref_primary_10_1109_TNNLS_2020_3010780 crossref_primary_10_1109_TNNLS_2024_3350085 crossref_primary_10_1109_ACCESS_2019_2939288 crossref_primary_10_1088_1741_2552_ab2373 crossref_primary_10_1109_JBHI_2013_2285232 crossref_primary_10_1109_TCDS_2022_3209801 crossref_primary_10_1016_j_neunet_2023_06_005 crossref_primary_10_1007_s11571_024_10136_7 crossref_primary_10_1371_journal_pone_0276133 crossref_primary_10_3390_s19030522 crossref_primary_10_1007_s12021_018_9396_7 crossref_primary_10_1155_2018_6323414 crossref_primary_10_1109_TBME_2010_2082539 crossref_primary_10_1088_1741_2560_13_4_046003 crossref_primary_10_3389_fnins_2020_629572 crossref_primary_10_1007_s00521_022_07833_x crossref_primary_10_1109_JSEN_2021_3101684 crossref_primary_10_1088_1741_2560_8_2_025012 crossref_primary_10_1109_ACCESS_2019_2908851 |
Cites_doi | 10.1016/j.jneumeth.2003.10.009 10.1016/S1388-2457(02)00057-3 10.1109/MSP.2003.1166626 10.1109/TNSRE.2006.875642 10.1109/86.895946 10.1109/T-C.1970.222918 10.1016/0013-4694(91)90163-X 10.1109/MC.2008.431 10.1016/S1388-2457(98)00038-8 10.1109/MSP.2008.4408441 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/LSP.2009.2022557 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2361 |
EndPage | 686 |
ExternalDocumentID | 2316968221 10_1109_LSP_2009_2022557 4912345 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c419t-ff6f467462c000919903d9aafca95e4746514f15863d00bef5ad4cac2ff30a1e3 |
IEDL.DBID | RIE |
ISSN | 1070-9908 |
IngestDate | Thu Jul 10 17:42:14 EDT 2025 Fri Jul 11 12:07:00 EDT 2025 Sun Jun 29 16:12:39 EDT 2025 Tue Jul 01 00:42:05 EDT 2025 Thu Apr 24 23:07:51 EDT 2025 Tue Aug 26 16:39:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-ff6f467462c000919903d9aafca95e4746514f15863d00bef5ad4cac2ff30a1e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
PQID | 861349078 |
PQPubID | 23500 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_34854032 proquest_journals_861349078 crossref_primary_10_1109_LSP_2009_2022557 ieee_primary_4912345 crossref_citationtrail_10_1109_LSP_2009_2022557 proquest_miscellaneous_875021198 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-08-01 |
PublicationDateYYYYMMDD | 2009-08-01 |
PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE signal processing letters |
PublicationTitleAbbrev | LSP |
PublicationYear | 2009 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref7 ref9 ref4 ref3 ref6 ref5 wolpaw (ref10) 2002; 113 ref2 ref1 mller-gerking (ref8) 0; 110 |
References_xml | – ident: ref4 doi: 10.1016/j.jneumeth.2003.10.009 – volume: 113 start-page: 767 year: 2002 ident: ref10 article-title: brain-computer interfaces for communication and control publication-title: Clin Neurophys doi: 10.1016/S1388-2457(02)00057-3 – ident: ref5 doi: 10.1109/MSP.2003.1166626 – ident: ref1 doi: 10.1109/TNSRE.2006.875642 – ident: ref9 doi: 10.1109/86.895946 – ident: ref6 doi: 10.1109/T-C.1970.222918 – ident: ref7 doi: 10.1016/0013-4694(91)90163-X – ident: ref3 doi: 10.1109/MC.2008.431 – volume: 110 start-page: 787 year: 0 ident: ref8 article-title: designing optimal spatial filters for single-trial eeg classification in a movement task publication-title: Clin Neurophys doi: 10.1016/S1388-2457(98)00038-8 – ident: ref2 doi: 10.1109/MSP.2008.4408441 |
SSID | ssj0008185 |
Score | 2.3824077 |
Snippet | Common spatial pattern (CSP) is a popular feature extraction method for electroencephalogram (EEG) classification. Most of existing CSP-based methods exploit... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 683 |
SubjectTerms | Brain computer interface Brain computer interfaces Classification common spatial pattern Computer interfaces Control systems Covariance Covariance matrix EEG classification Electric potential Electroencephalography Feature extraction Mathematical analysis Mathematical models Matrices Matrix methods Scalp Spatial filters transfer learning Wheelchairs |
Title | Composite Common Spatial Pattern for Subject-to-Subject Transfer |
URI | https://ieeexplore.ieee.org/document/4912345 https://www.proquest.com/docview/861349078 https://www.proquest.com/docview/34854032 https://www.proquest.com/docview/875021198 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-UwEB_Ukx78XNn6mcNeBPte2iZpc1NEEVERVsFbSdPkstIu2nfZv96ZtK-4ui7eAk1pOpPM_CbzBfCDp85UOaV9JFUeU9xFXCgfoixSVbgkVTllI9_cqssHcfUoHxfgeMyFcc6F4DM3oWHw5detndFV2VRolLNCLsIiGm59rtYodUnx9PGFPEYJW8xdklxPr3_e9YUp0dBHBJ3_pYJCT5UPgjhol4s1uJmvqw8q-TWZddXE_nlXsvGrC1-H1QFmstN-X2zAgms2YeVN8cEtOCFRQCFbjlGWSNswak-M25HdhZqbDUM8y1Cw0E1N3LXxMGRBvXn3_A0eLs7vzy7joZ9CbEWiu9h75am5iEotQasEyZTV2hhvjZZO5NQWXfhEFiqrOa-cl6YW1tjU-4ybxGXbsNS0jfsOTCFwSRD7aCu9KKSoEm2Uk8YUupbI3gimcxKXdig2Tj0vnspgdHBdIlOoBaYuB6ZEcDS-8bsvtPGfuVtE43HeQN4IdudcLIeT-FIWigowIhCK4HB8ikeI_CKmce3spczoD3iWRsA-mYFGHadSeMXOv7-8C8u9l4kCA_dgqXueuX0EK111EHbpK-ts48c |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoAeyqMg0gL1AQ4csus4tjc-IIGAaku3VSVaqbfgJPYFlFTdrBD9Lf0r_DdmnIcqXrdK3CLFcWR7PDP2fPMNwAsunC1mlPaRFLOYcBdxpn1AWQiduUToGWUjHx7p-an8eKbO1uBqzIVxzgXwmZvQY4jlV025oquyqTSoZ-UAoTxw37_hAW35ev89ruZLIfY-nLybx30NgbiUiWlj77WnghpalOROJKh808pY60trlJMzKgUufaIynVacF84rW8nSlsL7lNvEpdjvLbiNfoYSXXbYqOfJ1HWIRh5jt9kQBOVmuvh03FFhCjSRikzfNaMXqrj8pvqDPdu7Bz-GmehgLF8mq7aYlJe_kET-r1N1HzZ7R5q97ST_Aay5-iFsXKNX3II3pOwIlOYY5cE0NaMCzLjh2HFgFa0ZeuwMVSfdRcVtE_ePLBhw7y4ewemNDOExrNdN7Z4A0-iaJejdmVJ5mSlZJMZqp6zNTKVQgCOYDkualz2dOlX1-JqHYxU3OQoBFfk0eS8EEbwavzjvqET-0XaL1nRs1y9nBDuD1OS9rlnmmSaKSXT1Itgd36KSoMiPrV2zWuYpjYCnIgL2lxZ4bOVE9pdt__nPu3BnfnK4yBf7Rwc7cLeLqREM8imstxcr9wxds7Z4HnYIg883LWc_AU63QX8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Composite+Common+Spatial+Pattern+for+Subject-to-Subject+Transfer&rft.jtitle=IEEE+signal+processing+letters&rft.au=Kang%2C+Hyohyeong&rft.au=Nam%2C+Yunjun&rft.au=Choi%2C+Seungjin&rft.date=2009-08-01&rft.issn=1070-9908&rft.volume=16&rft.issue=8&rft_id=info:doi/10.1109%2FLSP.2009.2022557&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |