Composite Common Spatial Pattern for Subject-to-Subject Transfer

Common spatial pattern (CSP) is a popular feature extraction method for electroencephalogram (EEG) classification. Most of existing CSP-based methods exploit covariance matrices on a subject-by-subject basis so that inter-subject information is neglected. In this paper we present modifications of CS...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 16; no. 8; pp. 683 - 686
Main Authors Hyohyeong Kang, Hyohyeong Kang, Yunjun Nam, Yunjun Nam, Seungjin Choi, Seungjin Choi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Common spatial pattern (CSP) is a popular feature extraction method for electroencephalogram (EEG) classification. Most of existing CSP-based methods exploit covariance matrices on a subject-by-subject basis so that inter-subject information is neglected. In this paper we present modifications of CSP for subject-to-subject transfer, where we exploit a linear combination of covariance matrices of subjects in consideration. We develop two methods to determine a composite covariance matrix that is a weighted sum of covariance matrices involving subjects, leading to composite CSP . Numerical experiments on dataset IVa in BCI competition III confirm that our composite CSP methods improve classification performance over the standard CSP (on a subject-by-subject basis), especially in the case of subjects with fewer number of training samples.
AbstractList Common spatial pattern (CSP) is a popular feature extraction method for electroencephalogram (EEG) classification. Most of existing CSP-based methods exploit covariance matrices on a subject-by-subject basis so that inter-subject information is neglected. In this paper we present modifications of CSP for subject- to-subject transfer, where we exploit a linear combination of covariance matrices of subjects in consideration. We develop two methods to determine a composite covariance matrix that is a weighted sum of covariance matrices involving subjects, leading to composite CSP. Numerical experiments on dataset IVa in BCI competition III confirm that our composite CSP methods improve classification performance over the standard CSP (on a subject-by-subject basis), especially in the case of subjects with fewer number of training samples.
Author Hyohyeong Kang
Seungjin Choi
Yunjun Nam
Author_xml – sequence: 1
  givenname: Hyohyeong Kang
  surname: Hyohyeong Kang
  fullname: Hyohyeong Kang, Hyohyeong Kang
– sequence: 2
  givenname: Yunjun Nam
  surname: Yunjun Nam
  fullname: Yunjun Nam, Yunjun Nam
– sequence: 3
  givenname: Seungjin Choi
  surname: Seungjin Choi
  fullname: Seungjin Choi, Seungjin Choi
BookMark eNp9kEtrAjEUhUOxULXdF7oZumhXY29eM8muRfoCoYJ2HWJMYGSc2CSz6L9vROnChZvkwD3nPr4RGnS-swjdYphgDPJptphPCIDMDyGc1xdoiDkXJaEVHmQNNZRSgrhCoxg3ACCw4EP0PPXbnY9NskVWW98Vi51OjW6LuU7Jhq5wPhSLfrWxJpXJl0dZLIPuorPhGl063UZ7c_zH6PvtdTn9KGdf75_Tl1lpGJapdK5yrKpZRUyeLXFeha6l1s5oyS3LBY6Zw1xUdA2wso7rNTPaEOcoaGzpGD0e-u6C_-ltTGrbRGPbVnfW91GJmgPBWIrsfDjrpExwBpRk4_2JceP70OUrlKgwZRLqfTc4mEzwMQbr1C40Wx1-FQa1J68yebUnr47kc6Q6iZgmZai-S0E37bng3SHYWGv_5zCJCWWc_gFWL5Dk
CODEN ISPLEM
CitedBy_id crossref_primary_10_1142_S0129065721500301
crossref_primary_10_1109_TFUZZ_2016_2633379
crossref_primary_10_1109_ACCESS_2020_3045225
crossref_primary_10_1109_TBME_2024_3356665
crossref_primary_10_1016_j_bspc_2022_104433
crossref_primary_10_1109_TNSRE_2020_2985996
crossref_primary_10_3389_fnins_2021_733546
crossref_primary_10_3389_fnhum_2018_00439
crossref_primary_10_1016_j_bpj_2019_09_038
crossref_primary_10_1007_s11227_022_05026_w
crossref_primary_10_1016_j_neunet_2024_106497
crossref_primary_10_1016_j_compbiomed_2015_03_023
crossref_primary_10_1109_MCI_2015_2501545
crossref_primary_10_1080_03772063_2019_1670106
crossref_primary_10_1088_1741_2552_aa8232
crossref_primary_10_1109_TBME_2010_2082540
crossref_primary_10_3390_electronics13112174
crossref_primary_10_1007_s00521_013_1523_7
crossref_primary_10_1109_TBME_2019_2954470
crossref_primary_10_3390_e19030089
crossref_primary_10_1016_j_jneumeth_2020_108855
crossref_primary_10_1109_TAI_2021_3097307
crossref_primary_10_3390_s20072034
crossref_primary_10_1016_j_neucom_2016_10_055
crossref_primary_10_1109_TNSRE_2020_2980299
crossref_primary_10_1109_ACCESS_2020_3048683
crossref_primary_10_1109_MSP_2023_3278074
crossref_primary_10_3390_sci5020023
crossref_primary_10_1007_s11042_024_18698_8
crossref_primary_10_3390_s21165436
crossref_primary_10_1109_TFUZZ_2016_2540072
crossref_primary_10_1109_TNSRE_2019_2923315
crossref_primary_10_3390_app13179825
crossref_primary_10_1038_s41598_022_06805_4
crossref_primary_10_1142_S0129065714500038
crossref_primary_10_1007_s10710_019_09352_6
crossref_primary_10_3390_s22134939
crossref_primary_10_1109_ACCESS_2020_2979074
crossref_primary_10_1016_j_neucom_2023_126659
crossref_primary_10_1109_JBHI_2020_3025865
crossref_primary_10_3390_e21121199
crossref_primary_10_1109_TCYB_2020_2968625
crossref_primary_10_1007_s11571_023_10053_1
crossref_primary_10_1016_j_bspc_2020_102101
crossref_primary_10_1007_s12204_022_2488_4
crossref_primary_10_1109_ACCESS_2019_2909058
crossref_primary_10_3390_e20010007
crossref_primary_10_1109_TBME_2019_2913914
crossref_primary_10_3389_fncom_2019_00087
crossref_primary_10_1016_j_neucom_2024_129010
crossref_primary_10_3389_fnins_2017_00226
crossref_primary_10_1016_j_compbiomed_2024_109260
crossref_primary_10_1109_TSMC_2019_2958647
crossref_primary_10_1109_TBME_2013_2253608
crossref_primary_10_1088_1741_2552_ad593b
crossref_primary_10_3390_s20216321
crossref_primary_10_1016_j_bspc_2024_106044
crossref_primary_10_1088_1741_2560_12_4_046006
crossref_primary_10_1109_JBHI_2019_2934172
crossref_primary_10_1109_ACCESS_2019_2913154
crossref_primary_10_1007_s11571_021_09676_z
crossref_primary_10_1109_RBME_2013_2290621
crossref_primary_10_1109_TCDS_2023_3279262
crossref_primary_10_1109_MSP_2012_2219675
crossref_primary_10_1109_ACCESS_2019_2956018
crossref_primary_10_1109_TNSRE_2017_2778178
crossref_primary_10_1016_j_compbiomed_2024_108619
crossref_primary_10_1016_j_bspc_2021_102930
crossref_primary_10_1016_j_compeleceng_2024_109680
crossref_primary_10_1007_s11571_016_9417_x
crossref_primary_10_1016_j_cmpb_2010_11_014
crossref_primary_10_1109_LSP_2021_3087099
crossref_primary_10_1007_s11517_018_1917_x
crossref_primary_10_1109_TNSRE_2016_2544108
crossref_primary_10_1155_2018_9871603
crossref_primary_10_1162_NECO_a_00544
crossref_primary_10_1109_TCDS_2021_3137530
crossref_primary_10_1016_j_bspc_2020_101917
crossref_primary_10_1088_1741_2552_ab6df3
crossref_primary_10_1109_TNNLS_2020_3015505
crossref_primary_10_1007_s00521_010_0481_6
crossref_primary_10_1142_S0129065720500094
crossref_primary_10_3389_fnins_2020_00918
crossref_primary_10_3389_fnins_2022_1044631
crossref_primary_10_1007_s12559_017_9533_x
crossref_primary_10_1080_10255842_2024_2404541
crossref_primary_10_3389_fnbot_2024_1343249
crossref_primary_10_3389_fninf_2019_00047
crossref_primary_10_1080_2326263X_2021_1943955
crossref_primary_10_1186_s12859_024_06024_w
crossref_primary_10_1109_ACCESS_2023_3339665
crossref_primary_10_1109_LSP_2024_3465348
crossref_primary_10_3389_fnins_2021_779231
crossref_primary_10_1109_TCDS_2018_2826840
crossref_primary_10_1016_j_neunet_2019_07_008
crossref_primary_10_1109_ACCESS_2020_2971600
crossref_primary_10_1016_j_bspc_2024_106092
crossref_primary_10_3390_s20195528
crossref_primary_10_1109_JPROC_2015_2413993
crossref_primary_10_3390_s24186110
crossref_primary_10_1088_1741_2552_aab2f2
crossref_primary_10_1016_j_neucom_2020_03_055
crossref_primary_10_1088_1741_2560_12_4_046027
crossref_primary_10_1016_j_neucom_2020_09_017
crossref_primary_10_1109_TCYB_2020_2982901
crossref_primary_10_1088_1741_2552_ab64a0
crossref_primary_10_1109_TNSRE_2021_3059166
crossref_primary_10_1007_s11517_017_1611_4
crossref_primary_10_1016_j_compbiomed_2022_106420
crossref_primary_10_1109_TNSRE_2023_3236372
crossref_primary_10_1016_j_compbiomed_2022_106267
crossref_primary_10_1088_2057_1976_ad90e8
crossref_primary_10_1109_TNSRE_2023_3265304
crossref_primary_10_1109_JBHI_2018_2832538
crossref_primary_10_1109_TNSRE_2022_3207494
crossref_primary_10_1016_j_neucom_2013_03_027
crossref_primary_10_1016_j_neunet_2014_05_012
crossref_primary_10_1080_2326263X_2020_1801112
crossref_primary_10_1016_j_bspc_2019_01_006
crossref_primary_10_1016_j_neunet_2023_08_008
crossref_primary_10_1088_1741_2552_ad2496
crossref_primary_10_1109_ACCESS_2022_3178100
crossref_primary_10_1007_s11517_023_02967_z
crossref_primary_10_1109_JPROC_2015_2404941
crossref_primary_10_1016_j_cmpb_2021_106150
crossref_primary_10_1016_j_eswa_2020_114031
crossref_primary_10_1109_TETCI_2022_3147030
crossref_primary_10_1109_TCDS_2021_3099988
crossref_primary_10_3389_fnhum_2023_1070404
crossref_primary_10_1016_j_jneumeth_2024_110332
crossref_primary_10_1109_TPAMI_2014_2330598
crossref_primary_10_1142_S0218126619501238
crossref_primary_10_1016_j_imu_2018_07_003
crossref_primary_10_1109_TNNLS_2020_3010780
crossref_primary_10_1109_TNNLS_2024_3350085
crossref_primary_10_1109_ACCESS_2019_2939288
crossref_primary_10_1088_1741_2552_ab2373
crossref_primary_10_1109_JBHI_2013_2285232
crossref_primary_10_1109_TCDS_2022_3209801
crossref_primary_10_1016_j_neunet_2023_06_005
crossref_primary_10_1007_s11571_024_10136_7
crossref_primary_10_1371_journal_pone_0276133
crossref_primary_10_3390_s19030522
crossref_primary_10_1007_s12021_018_9396_7
crossref_primary_10_1155_2018_6323414
crossref_primary_10_1109_TBME_2010_2082539
crossref_primary_10_1088_1741_2560_13_4_046003
crossref_primary_10_3389_fnins_2020_629572
crossref_primary_10_1007_s00521_022_07833_x
crossref_primary_10_1109_JSEN_2021_3101684
crossref_primary_10_1088_1741_2560_8_2_025012
crossref_primary_10_1109_ACCESS_2019_2908851
Cites_doi 10.1016/j.jneumeth.2003.10.009
10.1016/S1388-2457(02)00057-3
10.1109/MSP.2003.1166626
10.1109/TNSRE.2006.875642
10.1109/86.895946
10.1109/T-C.1970.222918
10.1016/0013-4694(91)90163-X
10.1109/MC.2008.431
10.1016/S1388-2457(98)00038-8
10.1109/MSP.2008.4408441
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/LSP.2009.2022557
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 686
ExternalDocumentID 2316968221
10_1109_LSP_2009_2022557
4912345
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c419t-ff6f467462c000919903d9aafca95e4746514f15863d00bef5ad4cac2ff30a1e3
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Thu Jul 10 17:42:14 EDT 2025
Fri Jul 11 12:07:00 EDT 2025
Sun Jun 29 16:12:39 EDT 2025
Tue Jul 01 00:42:05 EDT 2025
Thu Apr 24 23:07:51 EDT 2025
Tue Aug 26 16:39:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-ff6f467462c000919903d9aafca95e4746514f15863d00bef5ad4cac2ff30a1e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 861349078
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_34854032
proquest_journals_861349078
crossref_primary_10_1109_LSP_2009_2022557
ieee_primary_4912345
crossref_citationtrail_10_1109_LSP_2009_2022557
proquest_miscellaneous_875021198
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-01
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2009
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref7
ref9
ref4
ref3
ref6
ref5
wolpaw (ref10) 2002; 113
ref2
ref1
mller-gerking (ref8) 0; 110
References_xml – ident: ref4
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 113
  start-page: 767
  year: 2002
  ident: ref10
  article-title: brain-computer interfaces for communication and control
  publication-title: Clin Neurophys
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref5
  doi: 10.1109/MSP.2003.1166626
– ident: ref1
  doi: 10.1109/TNSRE.2006.875642
– ident: ref9
  doi: 10.1109/86.895946
– ident: ref6
  doi: 10.1109/T-C.1970.222918
– ident: ref7
  doi: 10.1016/0013-4694(91)90163-X
– ident: ref3
  doi: 10.1109/MC.2008.431
– volume: 110
  start-page: 787
  year: 0
  ident: ref8
  article-title: designing optimal spatial filters for single-trial eeg classification in a movement task
  publication-title: Clin Neurophys
  doi: 10.1016/S1388-2457(98)00038-8
– ident: ref2
  doi: 10.1109/MSP.2008.4408441
SSID ssj0008185
Score 2.3824077
Snippet Common spatial pattern (CSP) is a popular feature extraction method for electroencephalogram (EEG) classification. Most of existing CSP-based methods exploit...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 683
SubjectTerms Brain computer interface
Brain computer interfaces
Classification
common spatial pattern
Computer interfaces
Control systems
Covariance
Covariance matrix
EEG classification
Electric potential
Electroencephalography
Feature extraction
Mathematical analysis
Mathematical models
Matrices
Matrix methods
Scalp
Spatial filters
transfer learning
Wheelchairs
Title Composite Common Spatial Pattern for Subject-to-Subject Transfer
URI https://ieeexplore.ieee.org/document/4912345
https://www.proquest.com/docview/861349078
https://www.proquest.com/docview/34854032
https://www.proquest.com/docview/875021198
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-UwEB_Ukx78XNn6mcNeBPte2iZpc1NEEVERVsFbSdPkstIu2nfZv96ZtK-4ui7eAk1pOpPM_CbzBfCDp85UOaV9JFUeU9xFXCgfoixSVbgkVTllI9_cqssHcfUoHxfgeMyFcc6F4DM3oWHw5detndFV2VRolLNCLsIiGm59rtYodUnx9PGFPEYJW8xdklxPr3_e9YUp0dBHBJ3_pYJCT5UPgjhol4s1uJmvqw8q-TWZddXE_nlXsvGrC1-H1QFmstN-X2zAgms2YeVN8cEtOCFRQCFbjlGWSNswak-M25HdhZqbDUM8y1Cw0E1N3LXxMGRBvXn3_A0eLs7vzy7joZ9CbEWiu9h75am5iEotQasEyZTV2hhvjZZO5NQWXfhEFiqrOa-cl6YW1tjU-4ybxGXbsNS0jfsOTCFwSRD7aCu9KKSoEm2Uk8YUupbI3gimcxKXdig2Tj0vnspgdHBdIlOoBaYuB6ZEcDS-8bsvtPGfuVtE43HeQN4IdudcLIeT-FIWigowIhCK4HB8ikeI_CKmce3spczoD3iWRsA-mYFGHadSeMXOv7-8C8u9l4kCA_dgqXueuX0EK111EHbpK-ts48c
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoAeyqMg0gL1AQ4csus4tjc-IIGAaku3VSVaqbfgJPYFlFTdrBD9Lf0r_DdmnIcqXrdK3CLFcWR7PDP2fPMNwAsunC1mlPaRFLOYcBdxpn1AWQiduUToGWUjHx7p-an8eKbO1uBqzIVxzgXwmZvQY4jlV025oquyqTSoZ-UAoTxw37_hAW35ev89ruZLIfY-nLybx30NgbiUiWlj77WnghpalOROJKh808pY60trlJMzKgUufaIynVacF84rW8nSlsL7lNvEpdjvLbiNfoYSXXbYqOfJ1HWIRh5jt9kQBOVmuvh03FFhCjSRikzfNaMXqrj8pvqDPdu7Bz-GmehgLF8mq7aYlJe_kET-r1N1HzZ7R5q97ST_Aay5-iFsXKNX3II3pOwIlOYY5cE0NaMCzLjh2HFgFa0ZeuwMVSfdRcVtE_ePLBhw7y4ewemNDOExrNdN7Z4A0-iaJejdmVJ5mSlZJMZqp6zNTKVQgCOYDkualz2dOlX1-JqHYxU3OQoBFfk0eS8EEbwavzjvqET-0XaL1nRs1y9nBDuD1OS9rlnmmSaKSXT1Itgd36KSoMiPrV2zWuYpjYCnIgL2lxZ4bOVE9pdt__nPu3BnfnK4yBf7Rwc7cLeLqREM8imstxcr9wxds7Z4HnYIg883LWc_AU63QX8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Composite+Common+Spatial+Pattern+for+Subject-to-Subject+Transfer&rft.jtitle=IEEE+signal+processing+letters&rft.au=Kang%2C+Hyohyeong&rft.au=Nam%2C+Yunjun&rft.au=Choi%2C+Seungjin&rft.date=2009-08-01&rft.issn=1070-9908&rft.volume=16&rft.issue=8&rft_id=info:doi/10.1109%2FLSP.2009.2022557&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon