Density of soil observations in digital soil mapping: A study in the Mayenne region, France
The density of soil observations is a major determinant of digital soil mapping (DSM) prediction accuracy. In this study, we investigated the effect of soil sampling density on the performance of DSM to predict topsoil particle-size distribution in the Mayenne region of France. We tested two predict...
Saved in:
Published in | Geoderma Regional Vol. 24; p. e00358 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The density of soil observations is a major determinant of digital soil mapping (DSM) prediction accuracy. In this study, we investigated the effect of soil sampling density on the performance of DSM to predict topsoil particle-size distribution in the Mayenne region of France. We tested two prediction algorithms, namely ordinary kriging (OK) and quantile random forest (QRF). The study area is a region of ~5000 km2 with the highest density of field soil observations in France (1 profile per 0.64 km2). The number of training sites was progressively reduced (from n = 7500 to n = 400, corresponding to 1 profile per 0.7 km2 to 1 profile per 13 km2) to simulate the different density of observations. For OK and QRF, we tested random subsampling for splitting the data into training and testing datasets using k-fold cross validation. For QRF we also tested conditioned Latin hypercube sampling based on the point coordinates or the covariates. The results indicated that, with increasing density of observations, OK performed as well or even better than QRF, depending on the particle-size fraction. For silt prediction, OK was systematically better than QRF. However, the prediction intervals were much larger for OK than for QRF, and OK did not seem to estimate uncertainty correctly. Overall, the performance indicators increased with the density of observations with a threshold at about 1 profile per 2 km2 which suggests that the main limitation of DSM prediction accuracy using QRF is the amount of data collected in the field, not the type of calibration sampling strategy. Future DSM activities should focus on gathering more field observations.
•Topsoil particle-size distribution was predicted using digital soil mapping in a French region.•The density of soil observations was the main determinant of prediction accuracy.•The predictions intervals were larger for ordinary kriging than for quantile random forest.•The performance increased with the training density with a threshold of ca 1sample/2 km2. |
---|---|
AbstractList | The density of soil observations is a major determinant of digital soil mapping (DSM) prediction accuracy. In this study, we investigated the effect of soil sampling density on the performance of DSM to predict topsoil particle-size distribution in the Mayenne region of France. We tested two prediction algorithms, namely ordinary kriging (OK) and quantile random forest (QRF). The study area is a region of ~5000 km² with the highest density of field soil observations in France (1 profile per 0.64 km²). The number of training sites was progressively reduced (from n = 7500 to n = 400, corresponding to 1 profile per 0.7 km² to 1 profile per 13 km²) to simulate the different density of observations. For OK and QRF, we tested random subsampling for splitting the data into training and testing datasets using k-fold cross validation. For QRF we also tested conditioned Latin hypercube sampling based on the point coordinates or the covariates. The results indicated that, with increasing density of observations, OK performed as well or even better than QRF, depending on the particle-size fraction. For silt prediction, OK was systematically better than QRF. However, the prediction intervals were much larger for OK than for QRF, and OK did not seem to estimate uncertainty correctly. Overall, the performance indicators increased with the density of observations with a threshold at about 1 profile per 2 km² which suggests that the main limitation of DSM prediction accuracy using QRF is the amount of data collected in the field, not the type of calibration sampling strategy. Future DSM activities should focus on gathering more field observations. The density of soil observations is a major determinant of digital soil mapping (DSM) prediction accuracy. In this study, we investigated the effect of soil sampling density on the performance of DSM to predict topsoil particle-size distribution in the Mayenne region of France. We tested two prediction algorithms, namely ordinary kriging (OK) and quantile random forest (QRF). The study area is a region of ~5000 km2 with the highest density of field soil observations in France (1 profile per 0.64 km2). The number of training sites was progressively reduced (from n = 7500 to n = 400, corresponding to 1 profile per 0.7 km2 to 1 profile per 13 km2) to simulate the different density of observations. For OK and QRF, we tested random subsampling for splitting the data into training and testing datasets using k-fold cross validation. For QRF we also tested conditioned Latin hypercube sampling based on the point coordinates or the covariates. The results indicated that, with increasing density of observations, OK performed as well or even better than QRF, depending on the particle-size fraction. For silt prediction, OK was systematically better than QRF. However, the prediction intervals were much larger for OK than for QRF, and OK did not seem to estimate uncertainty correctly. Overall, the performance indicators increased with the density of observations with a threshold at about 1 profile per 2 km2 which suggests that the main limitation of DSM prediction accuracy using QRF is the amount of data collected in the field, not the type of calibration sampling strategy. Future DSM activities should focus on gathering more field observations. The density of soil observations is a major determinant of digital soil mapping (DSM) prediction accuracy. In this study, we investigated the effect of soil sampling density on the performance of DSM to predict topsoil particle-size distribution in the Mayenne region of France. We tested two prediction algorithms, namely ordinary kriging (OK) and quantile random forest (QRF). The study area is a region of ~5000 km2 with the highest density of field soil observations in France (1 profile per 0.64 km2). The number of training sites was progressively reduced (from n = 7500 to n = 400, corresponding to 1 profile per 0.7 km2 to 1 profile per 13 km2) to simulate the different density of observations. For OK and QRF, we tested random subsampling for splitting the data into training and testing datasets using k-fold cross validation. For QRF we also tested conditioned Latin hypercube sampling based on the point coordinates or the covariates. The results indicated that, with increasing density of observations, OK performed as well or even better than QRF, depending on the particle-size fraction. For silt prediction, OK was systematically better than QRF. However, the prediction intervals were much larger for OK than for QRF, and OK did not seem to estimate uncertainty correctly. Overall, the performance indicators increased with the density of observations with a threshold at about 1 profile per 2 km2 which suggests that the main limitation of DSM prediction accuracy using QRF is the amount of data collected in the field, not the type of calibration sampling strategy. Future DSM activities should focus on gathering more field observations. •Topsoil particle-size distribution was predicted using digital soil mapping in a French region.•The density of soil observations was the main determinant of prediction accuracy.•The predictions intervals were larger for ordinary kriging than for quantile random forest.•The performance increased with the training density with a threshold of ca 1sample/2 km2. |
ArticleNumber | e00358 |
Author | Loiseau, Thomas Minasny, Budiman Lagacherie, Philippe Richer-de-Forges, Anne C. Arrouays, Dominique Ducommun, Christophe |
Author_xml | – sequence: 1 givenname: Thomas surname: Loiseau fullname: Loiseau, Thomas organization: INRAE, InfoSol, 45075, Orléans, France – sequence: 2 givenname: Dominique surname: Arrouays fullname: Arrouays, Dominique email: dominique.arrouays@inrae.fr organization: INRAE, InfoSol, 45075, Orléans, France – sequence: 3 givenname: Anne C. surname: Richer-de-Forges fullname: Richer-de-Forges, Anne C. organization: INRAE, InfoSol, 45075, Orléans, France – sequence: 4 givenname: Philippe surname: Lagacherie fullname: Lagacherie, Philippe organization: LISAH, University of Montpellier, INRA, IRD, Montpellier SupAgro, 34060 Montpellier, France – sequence: 5 givenname: Christophe surname: Ducommun fullname: Ducommun, Christophe organization: Agrocampus-Ouest, 2, rue Le Nôtre, 49045 Angers cedex 01, France – sequence: 6 givenname: Budiman surname: Minasny fullname: Minasny, Budiman organization: Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia |
BackLink | https://hal.inrae.fr/hal-03134713$$DView record in HAL |
BookMark | eNqFkMtKAzEUhoNUsF7ewEWWCrbmMpemC6HUS4WKG125CGlypqZMk5qkhb69M4yIuNDVCSff_8P5jlHPeQcInVMypIQW16vhErwJccgIo0MghOejA9RnPGcDQkTW-_E-QmcxrgghTOS8LFgfvd2Cizbtsa9w9LbGfhEh7FSy3kVsHTZ2aZOqu8-12mysW47xBMe0NfsWSO-An9QenAMcYNnkrvB9UE7DKTqsVB3h7GueoNf7u5fpbDB_fnicTuYDnVGRBhVUowUFzQ1nphIjLhRhC85NpYAyqgojCg65FqxgoqQLNaLNPQVTJTGaUsFP0GXX-65quQl2rcJeemXlbDKX7Y5wyrOS8h1t2IuO3QT_sYWY5NpGDXWtHPhtlCxnGScFL8oGzTpUBx9jgOq7mxLZqpcr2amXrXrZqW9i418x3QhsfaagbP1f-KYLQ-NrZyHIqC00Lo0NoJM03v5d8AkyuaLx |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2022_116052 crossref_primary_10_1016_j_geoderma_2025_117208 crossref_primary_10_1038_s41598_025_91335_y crossref_primary_10_18599_grs_2022_1_8 crossref_primary_10_1016_j_geoderma_2022_116054 crossref_primary_10_1016_j_geodrs_2024_e00905 crossref_primary_10_1002_ldr_5573 crossref_primary_10_3390_land13030365 crossref_primary_10_1016_j_geoderma_2022_115723 crossref_primary_10_1111_ejss_13226 crossref_primary_10_3390_rs15123070 crossref_primary_10_3390_rs15153719 crossref_primary_10_1016_j_catena_2024_107813 crossref_primary_10_1016_j_compag_2023_108466 crossref_primary_10_1016_j_catena_2022_106024 crossref_primary_10_1016_j_atech_2022_100106 crossref_primary_10_1016_j_geoderma_2024_116840 crossref_primary_10_3390_rs16152712 crossref_primary_10_1016_j_geoderma_2024_116888 crossref_primary_10_1111_ejss_13463 crossref_primary_10_3390_land14030545 crossref_primary_10_1007_s11119_024_10200_6 crossref_primary_10_1016_j_catena_2025_108718 crossref_primary_10_3390_land13070915 crossref_primary_10_1007_s10661_021_09348_9 crossref_primary_10_3390_land13101615 crossref_primary_10_1016_j_jsames_2023_104498 |
Cites_doi | 10.1080/02693798908941518 10.1016/j.geoderma.2020.114503 10.1016/j.geoderma.2016.12.017 10.1016/j.geoderma.2018.08.024 10.5194/soil-5-79-2019 10.1016/j.geoderma.2015.07.006 10.1016/j.geoderma.2019.02.036 10.4000/cybergeo.23155 10.1111/j.2517-6161.1982.tb01195.x 10.2136/sssaj2016.11.0376 10.1016/B978-0-12-800137-0.00003-0 10.5194/soil-6-565-2020 10.3390/su11102940 10.1016/j.geoderma.2019.113913 10.5194/soil-6-35-2020 10.1016/j.neunet.2006.01.012 10.2307/2532051 10.1590/1678-992x-2017-0430 10.1016/j.grj.2017.06.001 10.1111/j.1365-2389.2006.00866.x 10.1016/j.cageo.2005.12.009 10.1016/j.scitotenv.2007.10.046 10.1016/j.geoderma.2014.12.017 |
ContentType | Journal Article |
Copyright | 2021 Attribution - NonCommercial - NoDerivatives |
Copyright_xml | – notice: 2021 – notice: Attribution - NonCommercial - NoDerivatives |
DBID | AAYXX CITATION 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.geodrs.2021.e00358 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | oai_HAL_hal_03134713v1 10_1016_j_geodrs_2021_e00358 S2352009421000031 |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c419t-fef8b1ec3d32df9839a02b33dfae121a6d963e5c9262971ba8135262a70dc1193 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Fri May 09 12:14:09 EDT 2025 Fri Jul 11 10:48:55 EDT 2025 Thu Apr 24 23:12:06 EDT 2025 Tue Jul 01 02:07:18 EDT 2025 Fri Feb 23 02:44:44 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sampling strategy Prediction performance Digital soil mapping Sampling density Multiple soil classes France Topsoil particle-size distribution |
Language | English |
License | Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-fef8b1ec3d32df9839a02b33dfae121a6d963e5c9262971ba8135262a70dc1193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2948-1966 0000-0002-3170-4014 0000-0001-7062-6058 0000-0002-6878-6498 0000-0002-1182-2371 |
OpenAccessLink | https://hal.inrae.fr/hal-03134713 |
PQID | 2524306367 |
PQPubID | 24069 |
ParticipantIDs | hal_primary_oai_HAL_hal_03134713v1 proquest_miscellaneous_2524306367 crossref_primary_10_1016_j_geodrs_2021_e00358 crossref_citationtrail_10_1016_j_geodrs_2021_e00358 elsevier_sciencedirect_doi_10_1016_j_geodrs_2021_e00358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 20210301 2021-03 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Shrestha, Solomatine (bb0165) 2006; 19 Loiseau, Chen, Mulder, Román Dobarco, Richer-de-Forges, Lehmann, Bourenanne, Saby, Martin, Vaudour, Gomez, Lagacherie, Arrouays (bb0095) 2019; 82 Vernhet (bb0180) 2010 Laroche, Richer-de-Forges, Leménager, Arrouays, Schnebelen, Eimberck, Chenu (bb0090) 2014; 21 Román Dobarco, Bourennane, Arrouays, Saby, Cousin, Martin (bb0150) 2019; 344 Joly, Brossart, Cardot, Cavailhes, Hilal, Wavresky (bb0070) 2010 Voltz, Arrouays, Bispo, Lagacherie, Laroche, Lemercier, Richer-de-Forges, Sauter, Schnebelen (bb0185) 2020; 23 Meinshausen (bb0105) 2006; 7 Ng, Minasny, de Sousa Mendes, Melo Demattê (bb0125) 2020; 6 Ballabio, Panagos, Montanarella (bb0025) 2016; 261 Loiseau, Richer-de-Forges, Martelet, Bialkowski, Nehlig, Arrouays (bb0100) 2020; 22 Padarian, Minasny, McBratney (bb0135) 2020; 6 Samuel-Rosa, Dalmolin, Moura-Bueno, Teixeira, Filippini Albad (bb0160) 2020; 77 Bonijoly, Perrin, Truffert, Asfirane (bb0035) 1999 Wadoux, Brus, Heuvelink (bb0190) 2019; 335 Padarian, Minasny, McBratney (bb0130) 2019; 5 Lagacherie, Arrouays, Bourennane, Gomez, Martin, Saby (bb0075) 2019; 337 Arrouays, McBratney, Minasny, Hempel, Heuvelink, Mac Millan, Hartemink, Lagacherie, McKenzie (bb0015) 2014 Robinson (bb0145) 1933; 26 Bialkowski, Tourlière, Bernachot, Chêne, Bauer, Bernard (bb0030) 2019 Arrouays, Leenaars, Richer-de-Forges, Adhikari, Ballabio, Greve, Grundy, Guerrero, Hempel, Hengl, Heuvelink, Batjes, Carvalho, Hartemink, Hewitt, Hong, Krasilnikov, Lagacherie, Lelyk, Libohova, Lilly, McBratney, Mckenzie, Vasques, Mulder, Minasny, Montanarella, Odeh, Padarian, Poggio, Roudier, Saby, Savin, Searle, Stolbovoy, Thompson, Smith, Sulaeman, Vintila, Viscarra Rossel, Wilson, Zhang, Swerts, van Oorts, Karklins, Feng, Ibelles Navarro, Levin, Laktionova, Dell'Acqua, Suvannang, Ruam, Prasad, Patil, Husnjak, Pásztor, Okx, Hallet, Keay, Farewell, Lilja, Juilleret, Marx, Takata, Kayusuki, Mansuy, Panagos, van Liedekerke, Skalsky, Sobocka, Kobza, Eftekhari, Kazem Alavipanah, Moussadek, Badraoui, da Silva, Paterson, da Conceição Gonçalves, Theocharopoulos, Yemefack, Tedou, Vrscaj, Grob, Kozak, Boruvka, Dobos, Taboada, Moretti, Rodriguez (bb0020) 2017; 14 Morvan, Saby, Arrouays, Le Bas, Jones, Verheijen, Bellamy, Stephens, Kibblewhite (bb0120) 2008; 391 Minasny, McBratney (bb0115) 2010 IGN (bb0055) 2014 Lark, Bishop (bb0085) 2007; 58 Vaysse, Lagacherie (bb0175) 2017; 291 Minasny, McBratney (bb0110) 2006; 32 CESBIO (bb0045) 2016 Inventaire Forestier National (bb0065) 2006 Lin (bb6005) 1989; 45 Samuel-Rosa, Heuvelink, Vasques, Anjos (bb0155) 2015; 243 Arrouays, Grundy, Hartemink, Hempel, Heuvelink, Hong, Lagacherie, Lelyk, McBratney, McKenzie, Mendonça-Santos, Minasny, Montanarella, Odeh, Sanchez, Thompson, Zhang (bb0010) 2014; 125 Lagacherie, Arrouays, Bourennane, Gomez, Nkuba-kasanda (bb0080) 2020; 375 Somarathna, Minasny, Malone (bb0170) 2017; 81 Richer-de-Forges, Arrouays, Bardy, Bispo, Lagacherie, Laroche, Lemercier, Sauter, Voltz (bb0140) 2019; 11 Aitchison (bb0005) 1982; 44 InfoSol (bb0060) 2005 BRGM (bb0040) 2014 Heuvelink, Burrough, Stein (bb0050) 1989; 3 Lagacherie (10.1016/j.geodrs.2021.e00358_bb0075) 2019; 337 Padarian (10.1016/j.geodrs.2021.e00358_bb0130) 2019; 5 Samuel-Rosa (10.1016/j.geodrs.2021.e00358_bb0155) 2015; 243 Meinshausen (10.1016/j.geodrs.2021.e00358_bb0105) 2006; 7 InfoSol (10.1016/j.geodrs.2021.e00358_bb0060) 2005 Loiseau (10.1016/j.geodrs.2021.e00358_bb0095) 2019; 82 Bialkowski (10.1016/j.geodrs.2021.e00358_bb0030) 2019 Shrestha (10.1016/j.geodrs.2021.e00358_bb0165) 2006; 19 Morvan (10.1016/j.geodrs.2021.e00358_bb0120) 2008; 391 Román Dobarco (10.1016/j.geodrs.2021.e00358_bb0150) 2019; 344 Bonijoly (10.1016/j.geodrs.2021.e00358_bb0035) 1999 Padarian (10.1016/j.geodrs.2021.e00358_bb0135) 2020; 6 Minasny (10.1016/j.geodrs.2021.e00358_bb0115) 2010 Richer-de-Forges (10.1016/j.geodrs.2021.e00358_bb0140) 2019; 11 Vernhet (10.1016/j.geodrs.2021.e00358_bb0180) 2010 Laroche (10.1016/j.geodrs.2021.e00358_bb0090) 2014; 21 Aitchison (10.1016/j.geodrs.2021.e00358_bb0005) 1982; 44 Lagacherie (10.1016/j.geodrs.2021.e00358_bb0080) 2020; 375 Arrouays (10.1016/j.geodrs.2021.e00358_bb0010) 2014; 125 BRGM (10.1016/j.geodrs.2021.e00358_bb0040) 2014 Joly (10.1016/j.geodrs.2021.e00358_bb0070) 2010 Lin (10.1016/j.geodrs.2021.e00358_bb6005) 1989; 45 Robinson (10.1016/j.geodrs.2021.e00358_bb0145) 1933; 26 Somarathna (10.1016/j.geodrs.2021.e00358_bb0170) 2017; 81 IGN (10.1016/j.geodrs.2021.e00358_bb0055) Heuvelink (10.1016/j.geodrs.2021.e00358_bb0050) 1989; 3 Minasny (10.1016/j.geodrs.2021.e00358_bb0110) 2006; 32 CESBIO (10.1016/j.geodrs.2021.e00358_bb0045) 2016 Lark (10.1016/j.geodrs.2021.e00358_bb0085) 2007; 58 Arrouays (10.1016/j.geodrs.2021.e00358_bb0020) 2017; 14 Ng (10.1016/j.geodrs.2021.e00358_bb0125) 2020; 6 Arrouays (10.1016/j.geodrs.2021.e00358_bb0015) 2014 Ballabio (10.1016/j.geodrs.2021.e00358_bb0025) 2016; 261 Inventaire Forestier National (10.1016/j.geodrs.2021.e00358_bb0065) Voltz (10.1016/j.geodrs.2021.e00358_bb0185) 2020; 23 Wadoux (10.1016/j.geodrs.2021.e00358_bb0190) 2019; 335 Samuel-Rosa (10.1016/j.geodrs.2021.e00358_bb0160) 2020; 77 Vaysse (10.1016/j.geodrs.2021.e00358_bb0175) 2017; 291 Loiseau (10.1016/j.geodrs.2021.e00358_bb0100) 2020; 22 |
References_xml | – volume: 81 start-page: 1413 year: 2017 end-page: 1426 ident: bb0170 article-title: More data or a better model? Figuring out what matters most for the spatial prediction of soil carbon publication-title: Soil Sci. Soc. Am. J. – volume: 22 year: 2020 ident: bb0100 article-title: Could airborne gamma-spectrometric data replace lithological maps as co-variates for digital soil mapping of topsoil particle-size distribution? A case study in Western France publication-title: Geoderma. Reg. – volume: 291 start-page: 55 year: 2017 end-page: 64 ident: bb0175 article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products publication-title: Geoderma – year: 2014 ident: bb0055 article-title: BD ALTI® – year: 2019 ident: bb0030 article-title: Carte lithologique harmonisée et hiérarchisée V0 (niveau 3) de la Mayenne à l’échelle 1:50 000 publication-title: BRGM – start-page: 2016 year: 2016 ident: bb0045 article-title: Carte d’occupation des sols – volume: 335 start-page: 113913 year: 2019 ident: bb0190 article-title: Sampling design optimization for soil mapping with random forest publication-title: Geoderma. – volume: 14 start-page: 1 year: 2017 end-page: 19 ident: bb0020 article-title: Soil legacy data rescue via GlobalSoilMap and other international and national initiatives publication-title: GeoRes. J. – year: 1999 ident: bb0035 article-title: Couverture géophysique aéroportée du Massif armoricain - Rap – year: 2006 ident: bb0065 article-title: BD Forêt® – volume: 243 start-page: 214 year: 2015 end-page: 227 ident: bb0155 article-title: Do more detailed environmental covariates deliver more accurate soil maps? publication-title: Geoderma – volume: 3 start-page: 303 year: 1989 end-page: 322 ident: bb0050 article-title: Propagation of errors in spatial modelling with GIS publication-title: Int. J. Geogr. Inf. Syst. – volume: 125 start-page: 93 year: 2014 end-page: 134 ident: bb0010 article-title: GlobalSoilMap: towards a fine-resolution global grid of soil properties publication-title: Adv. Agron. – volume: 44 start-page: 139 year: 1982 end-page: 177 ident: bb0005 article-title: The statistical analysis of compositional data publication-title: J. R. Stat. Soc. Ser. B Methodol. – volume: 58 start-page: 763 year: 2007 end-page: 774 ident: bb0085 article-title: Cokriging particle size fractions of the soil publication-title: Eur. J. Soil Sci. – volume: 344 start-page: 14 year: 2019 end-page: 30 ident: bb0150 article-title: Uncertainty assessment of GlobalSoilMap soil available water capacity products: a French case study publication-title: Geoderma – volume: 77 year: 2020 ident: bb0160 article-title: Open legacy soil survey data in Brazil: geospatial data quality and how to improve it publication-title: Sci. Agric. – volume: 26 start-page: 27 year: 1933 end-page: 28 ident: bb0145 article-title: The dispersion of soils in mechanical analysis publication-title: Bur. Soil Sci. Tech. Commun. – volume: 7 start-page: 983 year: 2006 end-page: 999 ident: bb0105 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – volume: 375 start-page: 114503 year: 2020 ident: bb0080 article-title: Analysing the impact of soil spatial sampling on the performances of digital soil mapping models and their evaluation : a numerical experiment on quantile random Forest using clay contents obtained from Vis-NIR-SWIR hyperspectral imagery publication-title: Geoderma – volume: 21 start-page: 125 year: 2014 end-page: 140 ident: bb0090 article-title: Le programme Inventaire Gestion et Conservation des Sols. Volet Référentiel Régional Pédologique. publication-title: Etude et Gestion Sols – volume: 261 start-page: 110 year: 2016 end-page: 123 ident: bb0025 article-title: Mapping topsoil physical properties at European scale using the LUCAS database publication-title: Geoderma – start-page: 9 year: 2014 end-page: 13 ident: bb0015 article-title: The GlobalSoilMap project specifications publication-title: GlobalSoilMap. Basis of the Global Spatial Soil Information System – volume: 337 start-page: 1320 year: 2019 end-page: 1328 ident: bb0075 article-title: How far can the uncertainty on a digital soil map be known?: a numerical experiment using pseudo values of clay content obtained from Vis-SWIR hyperspectral imagery publication-title: Geoderma – year: 2014 ident: bb0040 article-title: Indice de développement et de persistance des réseaux (IDPR). Info Terre-Site cartographique de référence sur les géosciences – year: 2010 ident: bb0115 article-title: Methodologies for global soil mapping publication-title: Digital Soil Mapping – Bridging Research, Environmental Application, and Operation. Progress in Soil Science – volume: 391 start-page: 1 year: 2008 end-page: 12 ident: bb0120 article-title: Soil monitoring in Europe: a review of existing systems and requirements for harmonisation publication-title: Sci. Total Environ. – start-page: 213 year: 2010 ident: bb0180 article-title: Carte géologique harmonisée du département de la Mayenne. Notice technique. Rapport final. BRGM/RP-58050-FR – year: 2005 ident: bb0060 article-title: Référentiel Régional Pédologique: Cahier des Clauses Techniques Général – volume: 6 start-page: 565 year: 2020 end-page: 578 ident: bb0125 article-title: The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data publication-title: SOIL – volume: 82 year: 2019 ident: bb0095 article-title: Satellite data integration for soil clay content modelling, at a national scale publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 5 start-page: 79 year: 2019 end-page: 89 ident: bb0130 article-title: Using deep learning for digital soil mapping publication-title: Soil – volume: 45 start-page: 255 year: 1989 end-page: 268 ident: bb6005 article-title: A Concordance Correlation Coefficient to Evaluate Reproducibility publication-title: Biometrics – volume: 6 start-page: 35 year: 2020 end-page: 52 ident: bb0135 article-title: Machine learning and soil sciences: a review aided by machine learning tools publication-title: Soil – volume: 23 year: 2020 ident: bb0185 article-title: Possible futures of soil-mapping in France publication-title: Geoderma. Reg. – volume: 11 start-page: 2940 year: 2019 ident: bb0140 article-title: Mapping of soils and land-related environmental attributes in France: analysis of end-users’ needs publication-title: Sustainability – volume: 32 start-page: 1378 year: 2006 end-page: 1388 ident: bb0110 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. – year: 2010 ident: bb0070 article-title: Types of climates on continental France, a spatial construction publication-title: Cybergeo: Eur. J. Geogr. – volume: 19 start-page: 225 year: 2006 end-page: 235 ident: bb0165 article-title: Machine learning approaches for estimation of prediction interval for the model output publication-title: Neural Netw. – volume: 22 year: 2020 ident: 10.1016/j.geodrs.2021.e00358_bb0100 article-title: Could airborne gamma-spectrometric data replace lithological maps as co-variates for digital soil mapping of topsoil particle-size distribution? A case study in Western France publication-title: Geoderma. Reg. – volume: 23 year: 2020 ident: 10.1016/j.geodrs.2021.e00358_bb0185 article-title: Possible futures of soil-mapping in France publication-title: Geoderma. Reg. – volume: 3 start-page: 303 issue: 4 year: 1989 ident: 10.1016/j.geodrs.2021.e00358_bb0050 article-title: Propagation of errors in spatial modelling with GIS publication-title: Int. J. Geogr. Inf. Syst. doi: 10.1080/02693798908941518 – volume: 375 start-page: 114503 year: 2020 ident: 10.1016/j.geodrs.2021.e00358_bb0080 article-title: Analysing the impact of soil spatial sampling on the performances of digital soil mapping models and their evaluation : a numerical experiment on quantile random Forest using clay contents obtained from Vis-NIR-SWIR hyperspectral imagery publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114503 – volume: 291 start-page: 55 year: 2017 ident: 10.1016/j.geodrs.2021.e00358_bb0175 article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products publication-title: Geoderma doi: 10.1016/j.geoderma.2016.12.017 – ident: 10.1016/j.geodrs.2021.e00358_bb0055 – volume: 337 start-page: 1320 year: 2019 ident: 10.1016/j.geodrs.2021.e00358_bb0075 article-title: How far can the uncertainty on a digital soil map be known?: a numerical experiment using pseudo values of clay content obtained from Vis-SWIR hyperspectral imagery publication-title: Geoderma doi: 10.1016/j.geoderma.2018.08.024 – volume: 5 start-page: 79 issue: 1 year: 2019 ident: 10.1016/j.geodrs.2021.e00358_bb0130 article-title: Using deep learning for digital soil mapping publication-title: Soil doi: 10.5194/soil-5-79-2019 – volume: 82 year: 2019 ident: 10.1016/j.geodrs.2021.e00358_bb0095 article-title: Satellite data integration for soil clay content modelling, at a national scale publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 261 start-page: 110 year: 2016 ident: 10.1016/j.geodrs.2021.e00358_bb0025 article-title: Mapping topsoil physical properties at European scale using the LUCAS database publication-title: Geoderma doi: 10.1016/j.geoderma.2015.07.006 – volume: 7 start-page: 983 year: 2006 ident: 10.1016/j.geodrs.2021.e00358_bb0105 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – volume: 344 start-page: 14 year: 2019 ident: 10.1016/j.geodrs.2021.e00358_bb0150 article-title: Uncertainty assessment of GlobalSoilMap soil available water capacity products: a French case study publication-title: Geoderma doi: 10.1016/j.geoderma.2019.02.036 – year: 2010 ident: 10.1016/j.geodrs.2021.e00358_bb0070 article-title: Types of climates on continental France, a spatial construction publication-title: Cybergeo: Eur. J. Geogr. doi: 10.4000/cybergeo.23155 – year: 2005 ident: 10.1016/j.geodrs.2021.e00358_bb0060 – start-page: 213 year: 2010 ident: 10.1016/j.geodrs.2021.e00358_bb0180 – volume: 44 start-page: 139 issue: 2 year: 1982 ident: 10.1016/j.geodrs.2021.e00358_bb0005 article-title: The statistical analysis of compositional data publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1982.tb01195.x – volume: 81 start-page: 1413 issue: 6 year: 2017 ident: 10.1016/j.geodrs.2021.e00358_bb0170 article-title: More data or a better model? Figuring out what matters most for the spatial prediction of soil carbon publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2016.11.0376 – year: 2010 ident: 10.1016/j.geodrs.2021.e00358_bb0115 article-title: Methodologies for global soil mapping – volume: 125 start-page: 93 year: 2014 ident: 10.1016/j.geodrs.2021.e00358_bb0010 article-title: GlobalSoilMap: towards a fine-resolution global grid of soil properties publication-title: Adv. Agron. doi: 10.1016/B978-0-12-800137-0.00003-0 – year: 1999 ident: 10.1016/j.geodrs.2021.e00358_bb0035 – volume: 6 start-page: 565 year: 2020 ident: 10.1016/j.geodrs.2021.e00358_bb0125 article-title: The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data publication-title: SOIL doi: 10.5194/soil-6-565-2020 – volume: 11 start-page: 2940 year: 2019 ident: 10.1016/j.geodrs.2021.e00358_bb0140 article-title: Mapping of soils and land-related environmental attributes in France: analysis of end-users’ needs publication-title: Sustainability doi: 10.3390/su11102940 – volume: 335 start-page: 113913 year: 2019 ident: 10.1016/j.geodrs.2021.e00358_bb0190 article-title: Sampling design optimization for soil mapping with random forest publication-title: Geoderma. doi: 10.1016/j.geoderma.2019.113913 – volume: 21 start-page: 125 year: 2014 ident: 10.1016/j.geodrs.2021.e00358_bb0090 article-title: Le programme Inventaire Gestion et Conservation des Sols. Volet Référentiel Régional Pédologique. publication-title: Etude et Gestion Sols – year: 2014 ident: 10.1016/j.geodrs.2021.e00358_bb0040 – volume: 6 start-page: 35 year: 2020 ident: 10.1016/j.geodrs.2021.e00358_bb0135 article-title: Machine learning and soil sciences: a review aided by machine learning tools publication-title: Soil doi: 10.5194/soil-6-35-2020 – volume: 19 start-page: 225 issue: 2 year: 2006 ident: 10.1016/j.geodrs.2021.e00358_bb0165 article-title: Machine learning approaches for estimation of prediction interval for the model output publication-title: Neural Netw. doi: 10.1016/j.neunet.2006.01.012 – volume: 45 start-page: 255 year: 1989 ident: 10.1016/j.geodrs.2021.e00358_bb6005 article-title: A Concordance Correlation Coefficient to Evaluate Reproducibility publication-title: Biometrics doi: 10.2307/2532051 – volume: 77 issue: 1 year: 2020 ident: 10.1016/j.geodrs.2021.e00358_bb0160 article-title: Open legacy soil survey data in Brazil: geospatial data quality and how to improve it publication-title: Sci. Agric. doi: 10.1590/1678-992x-2017-0430 – ident: 10.1016/j.geodrs.2021.e00358_bb0065 – volume: 14 start-page: 1 year: 2017 ident: 10.1016/j.geodrs.2021.e00358_bb0020 article-title: Soil legacy data rescue via GlobalSoilMap and other international and national initiatives publication-title: GeoRes. J. doi: 10.1016/j.grj.2017.06.001 – volume: 26 start-page: 27 year: 1933 ident: 10.1016/j.geodrs.2021.e00358_bb0145 article-title: The dispersion of soils in mechanical analysis publication-title: Bur. Soil Sci. Tech. Commun. – volume: 58 start-page: 763 issue: 3 year: 2007 ident: 10.1016/j.geodrs.2021.e00358_bb0085 article-title: Cokriging particle size fractions of the soil publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2006.00866.x – start-page: 9 year: 2014 ident: 10.1016/j.geodrs.2021.e00358_bb0015 article-title: The GlobalSoilMap project specifications – year: 2019 ident: 10.1016/j.geodrs.2021.e00358_bb0030 article-title: Carte lithologique harmonisée et hiérarchisée V0 (niveau 3) de la Mayenne à l’échelle 1:50 000 publication-title: BRGM – volume: 32 start-page: 1378 year: 2006 ident: 10.1016/j.geodrs.2021.e00358_bb0110 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.12.009 – volume: 391 start-page: 1 year: 2008 ident: 10.1016/j.geodrs.2021.e00358_bb0120 article-title: Soil monitoring in Europe: a review of existing systems and requirements for harmonisation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2007.10.046 – start-page: 2016 year: 2016 ident: 10.1016/j.geodrs.2021.e00358_bb0045 – volume: 243 start-page: 214 year: 2015 ident: 10.1016/j.geodrs.2021.e00358_bb0155 article-title: Do more detailed environmental covariates deliver more accurate soil maps? publication-title: Geoderma doi: 10.1016/j.geoderma.2014.12.017 |
SSID | ssj0002953762 |
Score | 2.3702223 |
Snippet | The density of soil observations is a major determinant of digital soil mapping (DSM) prediction accuracy. In this study, we investigated the effect of soil... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00358 |
SubjectTerms | Agricultural sciences calibration data collection Digital soil mapping France kriging Life Sciences Multiple soil classes particle size particle size distribution prediction Prediction performance Sampling density Sampling strategy silt Soil study topsoil Topsoil particle-size distribution uncertainty |
Title | Density of soil observations in digital soil mapping: A study in the Mayenne region, France |
URI | https://dx.doi.org/10.1016/j.geodrs.2021.e00358 https://www.proquest.com/docview/2524306367 https://hal.inrae.fr/hal-03134713 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaW5cIFUVHEQqlc1GPdjV95cFtB0dLtcqBFIHGwHD-WoG2CYEHaf48nj5WKhJB6iuLYiTW2x1_GM98g9NVwIWRAxiRPHSfCWEpSa1PirJFCUxunBqKRp-fx-FL8vJbXPXTcxcKAW2Wr-xudXmvrtmTYSnN4XxTD34zXlEGC1SZqiKVeZzyLw9ReH51NxucrUwvLgLOE1WnmJCPQpguiqz29Zq6yD0Ddzeh3B0dr6Vub1NoteEu-Utr1TnS6hTZbCIlHTS8_oJ4rt9HNCXiiL5a48vixKua4ylf21kdclNgWM8gP0jz8q4GWYXaER7jml4UKAQniqV6C4sWQrqEqv-E67Yb7iC5Pf_w5HpM2cQIxgmYL4p1Pc-oMt5xZnwUMpCOWc269dpRRHduw7Jw0wBWYJTTXKQWafKaTyBoaIN0O6pdV6XYR5tKLyEeRkc6IPNF5amPrk4DDqOfOywHinaSUaVnFIbnFXHXuY3eqka8C-apGvgNEVq3uG1aNd-on3SCof2aHCor_nZaHYcxWHwEy7fHol4IyYK0MWzN_pgP0pRtSFVYXHJno0lVP4U2SifBTxeNk77-7sI824K5xXPuE-ouHJ3cQkMwi_9zOVLhOLq4mL79K8uc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZoONALakUrApSaqkdM1q_dDbcoFC2Q5FKQkDhYXj_CVnQXQUDi3-PZRyQqVZG4-rXW2B5_O575BqGfhgshAzImeeo4EcZSklqbEmeNFJraODUQjTydxdmVOL-W12to3MXCgFtlq_sbnV5r67Zk0EpzcF8Ug9-M15RBgtUmaoilXgd2KtlD66Ozi2y2NLWwIXCWsDrNnGQE-nRBdLWn19xV9gGouxk9cvC0lv7vkvpwC96S_yjt-iY6_YQ2WwiJR80sP6M1V26hmxPwRF-84Mrjx6q4w1W-tLc-4qLEtphDfpCm8q8GWob5MR7hml8WGgQkiKf6BRQvhnQNVXmI67Qb7gu6Ov11Oc5ImziBGEGHC-KdT3PqDLecWT8MGEhHLOfceu0oozq24dg5aYArcJjQXKcUaPKZTiJraIB0X1GvrEq3jTCXXkQ-iox0RuSJzlMbW58EHEY9d172Ee8kpUzLKg7JLe5U5z72RzXyVSBf1ci3j8iy133DqrGifdItgnqzO1RQ_Ct6_ghrtvwIkGlno4mCMmCtDFczf6Z9dNAtqQqnC55MdOmqpzCSZCL8VPE42Xn3FL6jjexyOlGTs9nFLvoINY0T2x7qLR6e3LeAahb5frtrXwGUX_Qq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density+of+soil+observations+in+digital+soil+mapping%3A+A+study+in+the+Mayenne+region%2C+France&rft.jtitle=Geoderma+Regional&rft.au=Loiseau%2C+Thomas&rft.au=Arrouays%2C+Dominique&rft.au=Richer-de-Forges%2C+Anne+C.&rft.au=Lagacherie%2C+Philippe&rft.date=2021-03-01&rft.pub=Elsevier+B.V&rft.issn=2352-0094&rft.volume=24&rft_id=info:doi/10.1016%2Fj.geodrs.2021.e00358&rft.externalDocID=S2352009421000031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |