Density of soil observations in digital soil mapping: A study in the Mayenne region, France

The density of soil observations is a major determinant of digital soil mapping (DSM) prediction accuracy. In this study, we investigated the effect of soil sampling density on the performance of DSM to predict topsoil particle-size distribution in the Mayenne region of France. We tested two predict...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 24; p. e00358
Main Authors Loiseau, Thomas, Arrouays, Dominique, Richer-de-Forges, Anne C., Lagacherie, Philippe, Ducommun, Christophe, Minasny, Budiman
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The density of soil observations is a major determinant of digital soil mapping (DSM) prediction accuracy. In this study, we investigated the effect of soil sampling density on the performance of DSM to predict topsoil particle-size distribution in the Mayenne region of France. We tested two prediction algorithms, namely ordinary kriging (OK) and quantile random forest (QRF). The study area is a region of ~5000 km2 with the highest density of field soil observations in France (1 profile per 0.64 km2). The number of training sites was progressively reduced (from n = 7500 to n = 400, corresponding to 1 profile per 0.7 km2 to 1 profile per 13 km2) to simulate the different density of observations. For OK and QRF, we tested random subsampling for splitting the data into training and testing datasets using k-fold cross validation. For QRF we also tested conditioned Latin hypercube sampling based on the point coordinates or the covariates. The results indicated that, with increasing density of observations, OK performed as well or even better than QRF, depending on the particle-size fraction. For silt prediction, OK was systematically better than QRF. However, the prediction intervals were much larger for OK than for QRF, and OK did not seem to estimate uncertainty correctly. Overall, the performance indicators increased with the density of observations with a threshold at about 1 profile per 2 km2 which suggests that the main limitation of DSM prediction accuracy using QRF is the amount of data collected in the field, not the type of calibration sampling strategy. Future DSM activities should focus on gathering more field observations. •Topsoil particle-size distribution was predicted using digital soil mapping in a French region.•The density of soil observations was the main determinant of prediction accuracy.•The predictions intervals were larger for ordinary kriging than for quantile random forest.•The performance increased with the training density with a threshold of ca 1sample/2 km2.
AbstractList The density of soil observations is a major determinant of digital soil mapping (DSM) prediction accuracy. In this study, we investigated the effect of soil sampling density on the performance of DSM to predict topsoil particle-size distribution in the Mayenne region of France. We tested two prediction algorithms, namely ordinary kriging (OK) and quantile random forest (QRF). The study area is a region of ~5000 km² with the highest density of field soil observations in France (1 profile per 0.64 km²). The number of training sites was progressively reduced (from n = 7500 to n = 400, corresponding to 1 profile per 0.7 km² to 1 profile per 13 km²) to simulate the different density of observations. For OK and QRF, we tested random subsampling for splitting the data into training and testing datasets using k-fold cross validation. For QRF we also tested conditioned Latin hypercube sampling based on the point coordinates or the covariates. The results indicated that, with increasing density of observations, OK performed as well or even better than QRF, depending on the particle-size fraction. For silt prediction, OK was systematically better than QRF. However, the prediction intervals were much larger for OK than for QRF, and OK did not seem to estimate uncertainty correctly. Overall, the performance indicators increased with the density of observations with a threshold at about 1 profile per 2 km² which suggests that the main limitation of DSM prediction accuracy using QRF is the amount of data collected in the field, not the type of calibration sampling strategy. Future DSM activities should focus on gathering more field observations.
The density of soil observations is a major determinant of digital soil mapping (DSM) prediction accuracy. In this study, we investigated the effect of soil sampling density on the performance of DSM to predict topsoil particle-size distribution in the Mayenne region of France. We tested two prediction algorithms, namely ordinary kriging (OK) and quantile random forest (QRF). The study area is a region of ~5000 km2 with the highest density of field soil observations in France (1 profile per 0.64 km2). The number of training sites was progressively reduced (from n = 7500 to n = 400, corresponding to 1 profile per 0.7 km2 to 1 profile per 13 km2) to simulate the different density of observations. For OK and QRF, we tested random subsampling for splitting the data into training and testing datasets using k-fold cross validation. For QRF we also tested conditioned Latin hypercube sampling based on the point coordinates or the covariates. The results indicated that, with increasing density of observations, OK performed as well or even better than QRF, depending on the particle-size fraction. For silt prediction, OK was systematically better than QRF. However, the prediction intervals were much larger for OK than for QRF, and OK did not seem to estimate uncertainty correctly. Overall, the performance indicators increased with the density of observations with a threshold at about 1 profile per 2 km2 which suggests that the main limitation of DSM prediction accuracy using QRF is the amount of data collected in the field, not the type of calibration sampling strategy. Future DSM activities should focus on gathering more field observations.
The density of soil observations is a major determinant of digital soil mapping (DSM) prediction accuracy. In this study, we investigated the effect of soil sampling density on the performance of DSM to predict topsoil particle-size distribution in the Mayenne region of France. We tested two prediction algorithms, namely ordinary kriging (OK) and quantile random forest (QRF). The study area is a region of ~5000 km2 with the highest density of field soil observations in France (1 profile per 0.64 km2). The number of training sites was progressively reduced (from n = 7500 to n = 400, corresponding to 1 profile per 0.7 km2 to 1 profile per 13 km2) to simulate the different density of observations. For OK and QRF, we tested random subsampling for splitting the data into training and testing datasets using k-fold cross validation. For QRF we also tested conditioned Latin hypercube sampling based on the point coordinates or the covariates. The results indicated that, with increasing density of observations, OK performed as well or even better than QRF, depending on the particle-size fraction. For silt prediction, OK was systematically better than QRF. However, the prediction intervals were much larger for OK than for QRF, and OK did not seem to estimate uncertainty correctly. Overall, the performance indicators increased with the density of observations with a threshold at about 1 profile per 2 km2 which suggests that the main limitation of DSM prediction accuracy using QRF is the amount of data collected in the field, not the type of calibration sampling strategy. Future DSM activities should focus on gathering more field observations. •Topsoil particle-size distribution was predicted using digital soil mapping in a French region.•The density of soil observations was the main determinant of prediction accuracy.•The predictions intervals were larger for ordinary kriging than for quantile random forest.•The performance increased with the training density with a threshold of ca 1sample/2 km2.
ArticleNumber e00358
Author Loiseau, Thomas
Minasny, Budiman
Lagacherie, Philippe
Richer-de-Forges, Anne C.
Arrouays, Dominique
Ducommun, Christophe
Author_xml – sequence: 1
  givenname: Thomas
  surname: Loiseau
  fullname: Loiseau, Thomas
  organization: INRAE, InfoSol, 45075, Orléans, France
– sequence: 2
  givenname: Dominique
  surname: Arrouays
  fullname: Arrouays, Dominique
  email: dominique.arrouays@inrae.fr
  organization: INRAE, InfoSol, 45075, Orléans, France
– sequence: 3
  givenname: Anne C.
  surname: Richer-de-Forges
  fullname: Richer-de-Forges, Anne C.
  organization: INRAE, InfoSol, 45075, Orléans, France
– sequence: 4
  givenname: Philippe
  surname: Lagacherie
  fullname: Lagacherie, Philippe
  organization: LISAH, University of Montpellier, INRA, IRD, Montpellier SupAgro, 34060 Montpellier, France
– sequence: 5
  givenname: Christophe
  surname: Ducommun
  fullname: Ducommun, Christophe
  organization: Agrocampus-Ouest, 2, rue Le Nôtre, 49045 Angers cedex 01, France
– sequence: 6
  givenname: Budiman
  surname: Minasny
  fullname: Minasny, Budiman
  organization: Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
BackLink https://hal.inrae.fr/hal-03134713$$DView record in HAL
BookMark eNqFkMtKAzEUhoNUsF7ewEWWCrbmMpemC6HUS4WKG125CGlypqZMk5qkhb69M4yIuNDVCSff_8P5jlHPeQcInVMypIQW16vhErwJccgIo0MghOejA9RnPGcDQkTW-_E-QmcxrgghTOS8LFgfvd2Cizbtsa9w9LbGfhEh7FSy3kVsHTZ2aZOqu8-12mysW47xBMe0NfsWSO-An9QenAMcYNnkrvB9UE7DKTqsVB3h7GueoNf7u5fpbDB_fnicTuYDnVGRBhVUowUFzQ1nphIjLhRhC85NpYAyqgojCg65FqxgoqQLNaLNPQVTJTGaUsFP0GXX-65quQl2rcJeemXlbDKX7Y5wyrOS8h1t2IuO3QT_sYWY5NpGDXWtHPhtlCxnGScFL8oGzTpUBx9jgOq7mxLZqpcr2amXrXrZqW9i418x3QhsfaagbP1f-KYLQ-NrZyHIqC00Lo0NoJM03v5d8AkyuaLx
CitedBy_id crossref_primary_10_1016_j_geoderma_2022_116052
crossref_primary_10_1016_j_geoderma_2025_117208
crossref_primary_10_1038_s41598_025_91335_y
crossref_primary_10_18599_grs_2022_1_8
crossref_primary_10_1016_j_geoderma_2022_116054
crossref_primary_10_1016_j_geodrs_2024_e00905
crossref_primary_10_1002_ldr_5573
crossref_primary_10_3390_land13030365
crossref_primary_10_1016_j_geoderma_2022_115723
crossref_primary_10_1111_ejss_13226
crossref_primary_10_3390_rs15123070
crossref_primary_10_3390_rs15153719
crossref_primary_10_1016_j_catena_2024_107813
crossref_primary_10_1016_j_compag_2023_108466
crossref_primary_10_1016_j_catena_2022_106024
crossref_primary_10_1016_j_atech_2022_100106
crossref_primary_10_1016_j_geoderma_2024_116840
crossref_primary_10_3390_rs16152712
crossref_primary_10_1016_j_geoderma_2024_116888
crossref_primary_10_1111_ejss_13463
crossref_primary_10_3390_land14030545
crossref_primary_10_1007_s11119_024_10200_6
crossref_primary_10_1016_j_catena_2025_108718
crossref_primary_10_3390_land13070915
crossref_primary_10_1007_s10661_021_09348_9
crossref_primary_10_3390_land13101615
crossref_primary_10_1016_j_jsames_2023_104498
Cites_doi 10.1080/02693798908941518
10.1016/j.geoderma.2020.114503
10.1016/j.geoderma.2016.12.017
10.1016/j.geoderma.2018.08.024
10.5194/soil-5-79-2019
10.1016/j.geoderma.2015.07.006
10.1016/j.geoderma.2019.02.036
10.4000/cybergeo.23155
10.1111/j.2517-6161.1982.tb01195.x
10.2136/sssaj2016.11.0376
10.1016/B978-0-12-800137-0.00003-0
10.5194/soil-6-565-2020
10.3390/su11102940
10.1016/j.geoderma.2019.113913
10.5194/soil-6-35-2020
10.1016/j.neunet.2006.01.012
10.2307/2532051
10.1590/1678-992x-2017-0430
10.1016/j.grj.2017.06.001
10.1111/j.1365-2389.2006.00866.x
10.1016/j.cageo.2005.12.009
10.1016/j.scitotenv.2007.10.046
10.1016/j.geoderma.2014.12.017
ContentType Journal Article
Copyright 2021
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: 2021
– notice: Attribution - NonCommercial - NoDerivatives
DBID AAYXX
CITATION
7S9
L.6
1XC
VOOES
DOI 10.1016/j.geodrs.2021.e00358
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID oai_HAL_hal_03134713v1
10_1016_j_geodrs_2021_e00358
S2352009421000031
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c419t-fef8b1ec3d32df9839a02b33dfae121a6d963e5c9262971ba8135262a70dc1193
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Fri May 09 12:14:09 EDT 2025
Fri Jul 11 10:48:55 EDT 2025
Thu Apr 24 23:12:06 EDT 2025
Tue Jul 01 02:07:18 EDT 2025
Fri Feb 23 02:44:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sampling strategy
Prediction performance
Digital soil mapping
Sampling density
Multiple soil classes
France
Topsoil particle-size distribution
Language English
License Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-fef8b1ec3d32df9839a02b33dfae121a6d963e5c9262971ba8135262a70dc1193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2948-1966
0000-0002-3170-4014
0000-0001-7062-6058
0000-0002-6878-6498
0000-0002-1182-2371
OpenAccessLink https://hal.inrae.fr/hal-03134713
PQID 2524306367
PQPubID 24069
ParticipantIDs hal_primary_oai_HAL_hal_03134713v1
proquest_miscellaneous_2524306367
crossref_primary_10_1016_j_geodrs_2021_e00358
crossref_citationtrail_10_1016_j_geodrs_2021_e00358
elsevier_sciencedirect_doi_10_1016_j_geodrs_2021_e00358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
20210301
2021-03
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Shrestha, Solomatine (bb0165) 2006; 19
Loiseau, Chen, Mulder, Román Dobarco, Richer-de-Forges, Lehmann, Bourenanne, Saby, Martin, Vaudour, Gomez, Lagacherie, Arrouays (bb0095) 2019; 82
Vernhet (bb0180) 2010
Laroche, Richer-de-Forges, Leménager, Arrouays, Schnebelen, Eimberck, Chenu (bb0090) 2014; 21
Román Dobarco, Bourennane, Arrouays, Saby, Cousin, Martin (bb0150) 2019; 344
Joly, Brossart, Cardot, Cavailhes, Hilal, Wavresky (bb0070) 2010
Voltz, Arrouays, Bispo, Lagacherie, Laroche, Lemercier, Richer-de-Forges, Sauter, Schnebelen (bb0185) 2020; 23
Meinshausen (bb0105) 2006; 7
Ng, Minasny, de Sousa Mendes, Melo Demattê (bb0125) 2020; 6
Ballabio, Panagos, Montanarella (bb0025) 2016; 261
Loiseau, Richer-de-Forges, Martelet, Bialkowski, Nehlig, Arrouays (bb0100) 2020; 22
Padarian, Minasny, McBratney (bb0135) 2020; 6
Samuel-Rosa, Dalmolin, Moura-Bueno, Teixeira, Filippini Albad (bb0160) 2020; 77
Bonijoly, Perrin, Truffert, Asfirane (bb0035) 1999
Wadoux, Brus, Heuvelink (bb0190) 2019; 335
Padarian, Minasny, McBratney (bb0130) 2019; 5
Lagacherie, Arrouays, Bourennane, Gomez, Martin, Saby (bb0075) 2019; 337
Arrouays, McBratney, Minasny, Hempel, Heuvelink, Mac Millan, Hartemink, Lagacherie, McKenzie (bb0015) 2014
Robinson (bb0145) 1933; 26
Bialkowski, Tourlière, Bernachot, Chêne, Bauer, Bernard (bb0030) 2019
Arrouays, Leenaars, Richer-de-Forges, Adhikari, Ballabio, Greve, Grundy, Guerrero, Hempel, Hengl, Heuvelink, Batjes, Carvalho, Hartemink, Hewitt, Hong, Krasilnikov, Lagacherie, Lelyk, Libohova, Lilly, McBratney, Mckenzie, Vasques, Mulder, Minasny, Montanarella, Odeh, Padarian, Poggio, Roudier, Saby, Savin, Searle, Stolbovoy, Thompson, Smith, Sulaeman, Vintila, Viscarra Rossel, Wilson, Zhang, Swerts, van Oorts, Karklins, Feng, Ibelles Navarro, Levin, Laktionova, Dell'Acqua, Suvannang, Ruam, Prasad, Patil, Husnjak, Pásztor, Okx, Hallet, Keay, Farewell, Lilja, Juilleret, Marx, Takata, Kayusuki, Mansuy, Panagos, van Liedekerke, Skalsky, Sobocka, Kobza, Eftekhari, Kazem Alavipanah, Moussadek, Badraoui, da Silva, Paterson, da Conceição Gonçalves, Theocharopoulos, Yemefack, Tedou, Vrscaj, Grob, Kozak, Boruvka, Dobos, Taboada, Moretti, Rodriguez (bb0020) 2017; 14
Morvan, Saby, Arrouays, Le Bas, Jones, Verheijen, Bellamy, Stephens, Kibblewhite (bb0120) 2008; 391
Minasny, McBratney (bb0115) 2010
IGN (bb0055) 2014
Lark, Bishop (bb0085) 2007; 58
Vaysse, Lagacherie (bb0175) 2017; 291
Minasny, McBratney (bb0110) 2006; 32
CESBIO (bb0045) 2016
Inventaire Forestier National (bb0065) 2006
Lin (bb6005) 1989; 45
Samuel-Rosa, Heuvelink, Vasques, Anjos (bb0155) 2015; 243
Arrouays, Grundy, Hartemink, Hempel, Heuvelink, Hong, Lagacherie, Lelyk, McBratney, McKenzie, Mendonça-Santos, Minasny, Montanarella, Odeh, Sanchez, Thompson, Zhang (bb0010) 2014; 125
Lagacherie, Arrouays, Bourennane, Gomez, Nkuba-kasanda (bb0080) 2020; 375
Somarathna, Minasny, Malone (bb0170) 2017; 81
Richer-de-Forges, Arrouays, Bardy, Bispo, Lagacherie, Laroche, Lemercier, Sauter, Voltz (bb0140) 2019; 11
Aitchison (bb0005) 1982; 44
InfoSol (bb0060) 2005
BRGM (bb0040) 2014
Heuvelink, Burrough, Stein (bb0050) 1989; 3
Lagacherie (10.1016/j.geodrs.2021.e00358_bb0075) 2019; 337
Padarian (10.1016/j.geodrs.2021.e00358_bb0130) 2019; 5
Samuel-Rosa (10.1016/j.geodrs.2021.e00358_bb0155) 2015; 243
Meinshausen (10.1016/j.geodrs.2021.e00358_bb0105) 2006; 7
InfoSol (10.1016/j.geodrs.2021.e00358_bb0060) 2005
Loiseau (10.1016/j.geodrs.2021.e00358_bb0095) 2019; 82
Bialkowski (10.1016/j.geodrs.2021.e00358_bb0030) 2019
Shrestha (10.1016/j.geodrs.2021.e00358_bb0165) 2006; 19
Morvan (10.1016/j.geodrs.2021.e00358_bb0120) 2008; 391
Román Dobarco (10.1016/j.geodrs.2021.e00358_bb0150) 2019; 344
Bonijoly (10.1016/j.geodrs.2021.e00358_bb0035) 1999
Padarian (10.1016/j.geodrs.2021.e00358_bb0135) 2020; 6
Minasny (10.1016/j.geodrs.2021.e00358_bb0115) 2010
Richer-de-Forges (10.1016/j.geodrs.2021.e00358_bb0140) 2019; 11
Vernhet (10.1016/j.geodrs.2021.e00358_bb0180) 2010
Laroche (10.1016/j.geodrs.2021.e00358_bb0090) 2014; 21
Aitchison (10.1016/j.geodrs.2021.e00358_bb0005) 1982; 44
Lagacherie (10.1016/j.geodrs.2021.e00358_bb0080) 2020; 375
Arrouays (10.1016/j.geodrs.2021.e00358_bb0010) 2014; 125
BRGM (10.1016/j.geodrs.2021.e00358_bb0040) 2014
Joly (10.1016/j.geodrs.2021.e00358_bb0070) 2010
Lin (10.1016/j.geodrs.2021.e00358_bb6005) 1989; 45
Robinson (10.1016/j.geodrs.2021.e00358_bb0145) 1933; 26
Somarathna (10.1016/j.geodrs.2021.e00358_bb0170) 2017; 81
IGN (10.1016/j.geodrs.2021.e00358_bb0055)
Heuvelink (10.1016/j.geodrs.2021.e00358_bb0050) 1989; 3
Minasny (10.1016/j.geodrs.2021.e00358_bb0110) 2006; 32
CESBIO (10.1016/j.geodrs.2021.e00358_bb0045) 2016
Lark (10.1016/j.geodrs.2021.e00358_bb0085) 2007; 58
Arrouays (10.1016/j.geodrs.2021.e00358_bb0020) 2017; 14
Ng (10.1016/j.geodrs.2021.e00358_bb0125) 2020; 6
Arrouays (10.1016/j.geodrs.2021.e00358_bb0015) 2014
Ballabio (10.1016/j.geodrs.2021.e00358_bb0025) 2016; 261
Inventaire Forestier National (10.1016/j.geodrs.2021.e00358_bb0065)
Voltz (10.1016/j.geodrs.2021.e00358_bb0185) 2020; 23
Wadoux (10.1016/j.geodrs.2021.e00358_bb0190) 2019; 335
Samuel-Rosa (10.1016/j.geodrs.2021.e00358_bb0160) 2020; 77
Vaysse (10.1016/j.geodrs.2021.e00358_bb0175) 2017; 291
Loiseau (10.1016/j.geodrs.2021.e00358_bb0100) 2020; 22
References_xml – volume: 81
  start-page: 1413
  year: 2017
  end-page: 1426
  ident: bb0170
  article-title: More data or a better model? Figuring out what matters most for the spatial prediction of soil carbon
  publication-title: Soil Sci. Soc. Am. J.
– volume: 22
  year: 2020
  ident: bb0100
  article-title: Could airborne gamma-spectrometric data replace lithological maps as co-variates for digital soil mapping of topsoil particle-size distribution? A case study in Western France
  publication-title: Geoderma. Reg.
– volume: 291
  start-page: 55
  year: 2017
  end-page: 64
  ident: bb0175
  article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products
  publication-title: Geoderma
– year: 2014
  ident: bb0055
  article-title: BD ALTI®
– year: 2019
  ident: bb0030
  article-title: Carte lithologique harmonisée et hiérarchisée V0 (niveau 3) de la Mayenne à l’échelle 1:50 000
  publication-title: BRGM
– start-page: 2016
  year: 2016
  ident: bb0045
  article-title: Carte d’occupation des sols
– volume: 335
  start-page: 113913
  year: 2019
  ident: bb0190
  article-title: Sampling design optimization for soil mapping with random forest
  publication-title: Geoderma.
– volume: 14
  start-page: 1
  year: 2017
  end-page: 19
  ident: bb0020
  article-title: Soil legacy data rescue via GlobalSoilMap and other international and national initiatives
  publication-title: GeoRes. J.
– year: 1999
  ident: bb0035
  article-title: Couverture géophysique aéroportée du Massif armoricain - Rap
– year: 2006
  ident: bb0065
  article-title: BD Forêt®
– volume: 243
  start-page: 214
  year: 2015
  end-page: 227
  ident: bb0155
  article-title: Do more detailed environmental covariates deliver more accurate soil maps?
  publication-title: Geoderma
– volume: 3
  start-page: 303
  year: 1989
  end-page: 322
  ident: bb0050
  article-title: Propagation of errors in spatial modelling with GIS
  publication-title: Int. J. Geogr. Inf. Syst.
– volume: 125
  start-page: 93
  year: 2014
  end-page: 134
  ident: bb0010
  article-title: GlobalSoilMap: towards a fine-resolution global grid of soil properties
  publication-title: Adv. Agron.
– volume: 44
  start-page: 139
  year: 1982
  end-page: 177
  ident: bb0005
  article-title: The statistical analysis of compositional data
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 58
  start-page: 763
  year: 2007
  end-page: 774
  ident: bb0085
  article-title: Cokriging particle size fractions of the soil
  publication-title: Eur. J. Soil Sci.
– volume: 344
  start-page: 14
  year: 2019
  end-page: 30
  ident: bb0150
  article-title: Uncertainty assessment of GlobalSoilMap soil available water capacity products: a French case study
  publication-title: Geoderma
– volume: 77
  year: 2020
  ident: bb0160
  article-title: Open legacy soil survey data in Brazil: geospatial data quality and how to improve it
  publication-title: Sci. Agric.
– volume: 26
  start-page: 27
  year: 1933
  end-page: 28
  ident: bb0145
  article-title: The dispersion of soils in mechanical analysis
  publication-title: Bur. Soil Sci. Tech. Commun.
– volume: 7
  start-page: 983
  year: 2006
  end-page: 999
  ident: bb0105
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– volume: 375
  start-page: 114503
  year: 2020
  ident: bb0080
  article-title: Analysing the impact of soil spatial sampling on the performances of digital soil mapping models and their evaluation : a numerical experiment on quantile random Forest using clay contents obtained from Vis-NIR-SWIR hyperspectral imagery
  publication-title: Geoderma
– volume: 21
  start-page: 125
  year: 2014
  end-page: 140
  ident: bb0090
  article-title: Le programme Inventaire Gestion et Conservation des Sols. Volet Référentiel Régional Pédologique.
  publication-title: Etude et Gestion Sols
– volume: 261
  start-page: 110
  year: 2016
  end-page: 123
  ident: bb0025
  article-title: Mapping topsoil physical properties at European scale using the LUCAS database
  publication-title: Geoderma
– start-page: 9
  year: 2014
  end-page: 13
  ident: bb0015
  article-title: The GlobalSoilMap project specifications
  publication-title: GlobalSoilMap. Basis of the Global Spatial Soil Information System
– volume: 337
  start-page: 1320
  year: 2019
  end-page: 1328
  ident: bb0075
  article-title: How far can the uncertainty on a digital soil map be known?: a numerical experiment using pseudo values of clay content obtained from Vis-SWIR hyperspectral imagery
  publication-title: Geoderma
– year: 2014
  ident: bb0040
  article-title: Indice de développement et de persistance des réseaux (IDPR). Info Terre-Site cartographique de référence sur les géosciences
– year: 2010
  ident: bb0115
  article-title: Methodologies for global soil mapping
  publication-title: Digital Soil Mapping – Bridging Research, Environmental Application, and Operation. Progress in Soil Science
– volume: 391
  start-page: 1
  year: 2008
  end-page: 12
  ident: bb0120
  article-title: Soil monitoring in Europe: a review of existing systems and requirements for harmonisation
  publication-title: Sci. Total Environ.
– start-page: 213
  year: 2010
  ident: bb0180
  article-title: Carte géologique harmonisée du département de la Mayenne. Notice technique. Rapport final. BRGM/RP-58050-FR
– year: 2005
  ident: bb0060
  article-title: Référentiel Régional Pédologique: Cahier des Clauses Techniques Général
– volume: 6
  start-page: 565
  year: 2020
  end-page: 578
  ident: bb0125
  article-title: The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data
  publication-title: SOIL
– volume: 82
  year: 2019
  ident: bb0095
  article-title: Satellite data integration for soil clay content modelling, at a national scale
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 5
  start-page: 79
  year: 2019
  end-page: 89
  ident: bb0130
  article-title: Using deep learning for digital soil mapping
  publication-title: Soil
– volume: 45
  start-page: 255
  year: 1989
  end-page: 268
  ident: bb6005
  article-title: A Concordance Correlation Coefficient to Evaluate Reproducibility
  publication-title: Biometrics
– volume: 6
  start-page: 35
  year: 2020
  end-page: 52
  ident: bb0135
  article-title: Machine learning and soil sciences: a review aided by machine learning tools
  publication-title: Soil
– volume: 23
  year: 2020
  ident: bb0185
  article-title: Possible futures of soil-mapping in France
  publication-title: Geoderma. Reg.
– volume: 11
  start-page: 2940
  year: 2019
  ident: bb0140
  article-title: Mapping of soils and land-related environmental attributes in France: analysis of end-users’ needs
  publication-title: Sustainability
– volume: 32
  start-page: 1378
  year: 2006
  end-page: 1388
  ident: bb0110
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
– year: 2010
  ident: bb0070
  article-title: Types of climates on continental France, a spatial construction
  publication-title: Cybergeo: Eur. J. Geogr.
– volume: 19
  start-page: 225
  year: 2006
  end-page: 235
  ident: bb0165
  article-title: Machine learning approaches for estimation of prediction interval for the model output
  publication-title: Neural Netw.
– volume: 22
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00358_bb0100
  article-title: Could airborne gamma-spectrometric data replace lithological maps as co-variates for digital soil mapping of topsoil particle-size distribution? A case study in Western France
  publication-title: Geoderma. Reg.
– volume: 23
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00358_bb0185
  article-title: Possible futures of soil-mapping in France
  publication-title: Geoderma. Reg.
– volume: 3
  start-page: 303
  issue: 4
  year: 1989
  ident: 10.1016/j.geodrs.2021.e00358_bb0050
  article-title: Propagation of errors in spatial modelling with GIS
  publication-title: Int. J. Geogr. Inf. Syst.
  doi: 10.1080/02693798908941518
– volume: 375
  start-page: 114503
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00358_bb0080
  article-title: Analysing the impact of soil spatial sampling on the performances of digital soil mapping models and their evaluation : a numerical experiment on quantile random Forest using clay contents obtained from Vis-NIR-SWIR hyperspectral imagery
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114503
– volume: 291
  start-page: 55
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00358_bb0175
  article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.12.017
– ident: 10.1016/j.geodrs.2021.e00358_bb0055
– volume: 337
  start-page: 1320
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00358_bb0075
  article-title: How far can the uncertainty on a digital soil map be known?: a numerical experiment using pseudo values of clay content obtained from Vis-SWIR hyperspectral imagery
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.08.024
– volume: 5
  start-page: 79
  issue: 1
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00358_bb0130
  article-title: Using deep learning for digital soil mapping
  publication-title: Soil
  doi: 10.5194/soil-5-79-2019
– volume: 82
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00358_bb0095
  article-title: Satellite data integration for soil clay content modelling, at a national scale
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 261
  start-page: 110
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00358_bb0025
  article-title: Mapping topsoil physical properties at European scale using the LUCAS database
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.006
– volume: 7
  start-page: 983
  year: 2006
  ident: 10.1016/j.geodrs.2021.e00358_bb0105
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– volume: 344
  start-page: 14
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00358_bb0150
  article-title: Uncertainty assessment of GlobalSoilMap soil available water capacity products: a French case study
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.02.036
– year: 2010
  ident: 10.1016/j.geodrs.2021.e00358_bb0070
  article-title: Types of climates on continental France, a spatial construction
  publication-title: Cybergeo: Eur. J. Geogr.
  doi: 10.4000/cybergeo.23155
– year: 2005
  ident: 10.1016/j.geodrs.2021.e00358_bb0060
– start-page: 213
  year: 2010
  ident: 10.1016/j.geodrs.2021.e00358_bb0180
– volume: 44
  start-page: 139
  issue: 2
  year: 1982
  ident: 10.1016/j.geodrs.2021.e00358_bb0005
  article-title: The statistical analysis of compositional data
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1982.tb01195.x
– volume: 81
  start-page: 1413
  issue: 6
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00358_bb0170
  article-title: More data or a better model? Figuring out what matters most for the spatial prediction of soil carbon
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2016.11.0376
– year: 2010
  ident: 10.1016/j.geodrs.2021.e00358_bb0115
  article-title: Methodologies for global soil mapping
– volume: 125
  start-page: 93
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00358_bb0010
  article-title: GlobalSoilMap: towards a fine-resolution global grid of soil properties
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-800137-0.00003-0
– year: 1999
  ident: 10.1016/j.geodrs.2021.e00358_bb0035
– volume: 6
  start-page: 565
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00358_bb0125
  article-title: The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data
  publication-title: SOIL
  doi: 10.5194/soil-6-565-2020
– volume: 11
  start-page: 2940
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00358_bb0140
  article-title: Mapping of soils and land-related environmental attributes in France: analysis of end-users’ needs
  publication-title: Sustainability
  doi: 10.3390/su11102940
– volume: 335
  start-page: 113913
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00358_bb0190
  article-title: Sampling design optimization for soil mapping with random forest
  publication-title: Geoderma.
  doi: 10.1016/j.geoderma.2019.113913
– volume: 21
  start-page: 125
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00358_bb0090
  article-title: Le programme Inventaire Gestion et Conservation des Sols. Volet Référentiel Régional Pédologique.
  publication-title: Etude et Gestion Sols
– year: 2014
  ident: 10.1016/j.geodrs.2021.e00358_bb0040
– volume: 6
  start-page: 35
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00358_bb0135
  article-title: Machine learning and soil sciences: a review aided by machine learning tools
  publication-title: Soil
  doi: 10.5194/soil-6-35-2020
– volume: 19
  start-page: 225
  issue: 2
  year: 2006
  ident: 10.1016/j.geodrs.2021.e00358_bb0165
  article-title: Machine learning approaches for estimation of prediction interval for the model output
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2006.01.012
– volume: 45
  start-page: 255
  year: 1989
  ident: 10.1016/j.geodrs.2021.e00358_bb6005
  article-title: A Concordance Correlation Coefficient to Evaluate Reproducibility
  publication-title: Biometrics
  doi: 10.2307/2532051
– volume: 77
  issue: 1
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00358_bb0160
  article-title: Open legacy soil survey data in Brazil: geospatial data quality and how to improve it
  publication-title: Sci. Agric.
  doi: 10.1590/1678-992x-2017-0430
– ident: 10.1016/j.geodrs.2021.e00358_bb0065
– volume: 14
  start-page: 1
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00358_bb0020
  article-title: Soil legacy data rescue via GlobalSoilMap and other international and national initiatives
  publication-title: GeoRes. J.
  doi: 10.1016/j.grj.2017.06.001
– volume: 26
  start-page: 27
  year: 1933
  ident: 10.1016/j.geodrs.2021.e00358_bb0145
  article-title: The dispersion of soils in mechanical analysis
  publication-title: Bur. Soil Sci. Tech. Commun.
– volume: 58
  start-page: 763
  issue: 3
  year: 2007
  ident: 10.1016/j.geodrs.2021.e00358_bb0085
  article-title: Cokriging particle size fractions of the soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2006.00866.x
– start-page: 9
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00358_bb0015
  article-title: The GlobalSoilMap project specifications
– year: 2019
  ident: 10.1016/j.geodrs.2021.e00358_bb0030
  article-title: Carte lithologique harmonisée et hiérarchisée V0 (niveau 3) de la Mayenne à l’échelle 1:50 000
  publication-title: BRGM
– volume: 32
  start-page: 1378
  year: 2006
  ident: 10.1016/j.geodrs.2021.e00358_bb0110
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.12.009
– volume: 391
  start-page: 1
  year: 2008
  ident: 10.1016/j.geodrs.2021.e00358_bb0120
  article-title: Soil monitoring in Europe: a review of existing systems and requirements for harmonisation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2007.10.046
– start-page: 2016
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00358_bb0045
– volume: 243
  start-page: 214
  year: 2015
  ident: 10.1016/j.geodrs.2021.e00358_bb0155
  article-title: Do more detailed environmental covariates deliver more accurate soil maps?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.12.017
SSID ssj0002953762
Score 2.3702223
Snippet The density of soil observations is a major determinant of digital soil mapping (DSM) prediction accuracy. In this study, we investigated the effect of soil...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00358
SubjectTerms Agricultural sciences
calibration
data collection
Digital soil mapping
France
kriging
Life Sciences
Multiple soil classes
particle size
particle size distribution
prediction
Prediction performance
Sampling density
Sampling strategy
silt
Soil study
topsoil
Topsoil particle-size distribution
uncertainty
Title Density of soil observations in digital soil mapping: A study in the Mayenne region, France
URI https://dx.doi.org/10.1016/j.geodrs.2021.e00358
https://www.proquest.com/docview/2524306367
https://hal.inrae.fr/hal-03134713
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaW5cIFUVHEQqlc1GPdjV95cFtB0dLtcqBFIHGwHD-WoG2CYEHaf48nj5WKhJB6iuLYiTW2x1_GM98g9NVwIWRAxiRPHSfCWEpSa1PirJFCUxunBqKRp-fx-FL8vJbXPXTcxcKAW2Wr-xudXmvrtmTYSnN4XxTD34zXlEGC1SZqiKVeZzyLw9ReH51NxucrUwvLgLOE1WnmJCPQpguiqz29Zq6yD0Ddzeh3B0dr6Vub1NoteEu-Utr1TnS6hTZbCIlHTS8_oJ4rt9HNCXiiL5a48vixKua4ylf21kdclNgWM8gP0jz8q4GWYXaER7jml4UKAQniqV6C4sWQrqEqv-E67Yb7iC5Pf_w5HpM2cQIxgmYL4p1Pc-oMt5xZnwUMpCOWc269dpRRHduw7Jw0wBWYJTTXKQWafKaTyBoaIN0O6pdV6XYR5tKLyEeRkc6IPNF5amPrk4DDqOfOywHinaSUaVnFIbnFXHXuY3eqka8C-apGvgNEVq3uG1aNd-on3SCof2aHCor_nZaHYcxWHwEy7fHol4IyYK0MWzN_pgP0pRtSFVYXHJno0lVP4U2SifBTxeNk77-7sI824K5xXPuE-ouHJ3cQkMwi_9zOVLhOLq4mL79K8uc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZoONALakUrApSaqkdM1q_dDbcoFC2Q5FKQkDhYXj_CVnQXQUDi3-PZRyQqVZG4-rXW2B5_O575BqGfhgshAzImeeo4EcZSklqbEmeNFJraODUQjTydxdmVOL-W12to3MXCgFtlq_sbnV5r67Zk0EpzcF8Ug9-M15RBgtUmaoilXgd2KtlD66Ozi2y2NLWwIXCWsDrNnGQE-nRBdLWn19xV9gGouxk9cvC0lv7vkvpwC96S_yjt-iY6_YQ2WwiJR80sP6M1V26hmxPwRF-84Mrjx6q4w1W-tLc-4qLEtphDfpCm8q8GWob5MR7hml8WGgQkiKf6BRQvhnQNVXmI67Qb7gu6Ov11Oc5ImziBGEGHC-KdT3PqDLecWT8MGEhHLOfceu0oozq24dg5aYArcJjQXKcUaPKZTiJraIB0X1GvrEq3jTCXXkQ-iox0RuSJzlMbW58EHEY9d172Ee8kpUzLKg7JLe5U5z72RzXyVSBf1ci3j8iy133DqrGifdItgnqzO1RQ_Ct6_ghrtvwIkGlno4mCMmCtDFczf6Z9dNAtqQqnC55MdOmqpzCSZCL8VPE42Xn3FL6jjexyOlGTs9nFLvoINY0T2x7qLR6e3LeAahb5frtrXwGUX_Qq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density+of+soil+observations+in+digital+soil+mapping%3A+A+study+in+the+Mayenne+region%2C+France&rft.jtitle=Geoderma+Regional&rft.au=Loiseau%2C+Thomas&rft.au=Arrouays%2C+Dominique&rft.au=Richer-de-Forges%2C+Anne+C.&rft.au=Lagacherie%2C+Philippe&rft.date=2021-03-01&rft.pub=Elsevier+B.V&rft.issn=2352-0094&rft.volume=24&rft_id=info:doi/10.1016%2Fj.geodrs.2021.e00358&rft.externalDocID=S2352009421000031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon