A novel approach for automatic annotation of human actions in 3D point clouds for flexible collaborative tasks with industrial robots
Manual annotation for human action recognition with content semantics using 3D Point Cloud (3D-PC) in industrial environments consumes a lot of time and resources. This work aims to recognize, analyze, and model human actions to develop a framework for automatically extracting content semantics. Mai...
Saved in:
Published in | Frontiers in robotics and AI Vol. 10; p. 1028329 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
15.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-9144 2296-9144 |
DOI | 10.3389/frobt.2023.1028329 |
Cover
Loading…
Abstract | Manual annotation for human action recognition with content semantics using 3D Point Cloud (3D-PC) in industrial environments consumes a lot of time and resources. This work aims to recognize, analyze, and model human actions to develop a framework for automatically extracting content semantics. Main Contributions of this work: 1. design a multi-layer structure of various DNN classifiers to detect and extract humans and dynamic objects using 3D-PC preciously, 2. empirical experiments with over 10 subjects for collecting datasets of human actions and activities in one industrial setting, 3. development of an intuitive GUI to verify human actions and its interaction activities with the environment, 4. design and implement a methodology for automatic sequence matching of human actions in 3D-PC. All these procedures are merged in the proposed framework and evaluated in one industrial Use-Case with flexible patch sizes. Comparing the new approach with standard methods has shown that the annotation process can be accelerated by 5.2 times through automation. |
---|---|
AbstractList | Manual annotation for human action recognition with content semantics using 3D Point Cloud (3D-PC) in industrial environments consumes a lot of time and resources. This work aims to recognize, analyze, and model human actions to develop a framework for automatically extracting content semantics. Main Contributions of this work: 1. design a multi-layer structure of various DNN classifiers to detect and extract humans and dynamic objects using 3D-PC preciously, 2. empirical experiments with over 10 subjects for collecting datasets of human actions and activities in one industrial setting, 3. development of an intuitive GUI to verify human actions and its interaction activities with the environment, 4. design and implement a methodology for automatic sequence matching of human actions in 3D-PC. All these procedures are merged in the proposed framework and evaluated in one industrial Use-Case with flexible patch sizes. Comparing the new approach with standard methods has shown that the annotation process can be accelerated by 5.2 times through automation. Manual annotation for human action recognition with content semantics using 3D Point Cloud (3D-PC) in industrial environments consumes a lot of time and resources. This work aims to recognize, analyze, and model human actions to develop a framework for automatically extracting content semantics. Main Contributions of this work: 1. design a multi-layer structure of various DNN classifiers to detect and extract humans and dynamic objects using 3D-PC preciously, 2. empirical experiments with over 10 subjects for collecting datasets of human actions and activities in one industrial setting, 3. development of an intuitive GUI to verify human actions and its interaction activities with the environment, 4. design and implement a methodology for automatic sequence matching of human actions in 3D-PC. All these procedures are merged in the proposed framework and evaluated in one industrial Use-Case with flexible patch sizes. Comparing the new approach with standard methods has shown that the annotation process can be accelerated by 5.2 times through automation.Manual annotation for human action recognition with content semantics using 3D Point Cloud (3D-PC) in industrial environments consumes a lot of time and resources. This work aims to recognize, analyze, and model human actions to develop a framework for automatically extracting content semantics. Main Contributions of this work: 1. design a multi-layer structure of various DNN classifiers to detect and extract humans and dynamic objects using 3D-PC preciously, 2. empirical experiments with over 10 subjects for collecting datasets of human actions and activities in one industrial setting, 3. development of an intuitive GUI to verify human actions and its interaction activities with the environment, 4. design and implement a methodology for automatic sequence matching of human actions in 3D-PC. All these procedures are merged in the proposed framework and evaluated in one industrial Use-Case with flexible patch sizes. Comparing the new approach with standard methods has shown that the annotation process can be accelerated by 5.2 times through automation. |
Author | Bdiwi, Mohamad Al Naser, Ibrahim Ihlenfeldt, Steffen Krusche, Sebastian |
AuthorAffiliation | Department of Production System and Factory Automation , Fraunhofer Institute for Machine Tools and Forming Technology , Chemnitz , Germany |
AuthorAffiliation_xml | – name: Department of Production System and Factory Automation , Fraunhofer Institute for Machine Tools and Forming Technology , Chemnitz , Germany |
Author_xml | – sequence: 1 givenname: Sebastian surname: Krusche fullname: Krusche, Sebastian – sequence: 2 givenname: Ibrahim surname: Al Naser fullname: Al Naser, Ibrahim – sequence: 3 givenname: Mohamad surname: Bdiwi fullname: Bdiwi, Mohamad – sequence: 4 givenname: Steffen surname: Ihlenfeldt fullname: Ihlenfeldt, Steffen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36873582$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUsluFDEQtVAQCUN-gAPykcsMXrrb7QtSFLZIkbjA2XJ7yXRwuxrbPcAH8N94FqLk5HL5Larye4nOIkSH0GtKNpz38p1PMJQNI4xvKGE9Z_IZumBMdmtJm-bsUX2OLnO-J4TQtm-4EC_QOe96wdueXaC_VzjCzgWs5zmBNlvsIWG9FJh0GQ3WMUKpFUQMHm-XSUeszf6e8Rgx_4BnGGPBJsBi84Hsg_s9DsFhAyHoAVKl7xwuOv_I-NdYtpVol1zSqAOuU0DJr9Bzr0N2l6dzhb5_-vjt-sv69uvnm-ur27VpqCxr55l2zFs2EMs8Z53kVLhGai5awr1hvGuMtV3fU0G5GVhrnfCt4Xow3ErHV-jmqGtB36s5jZNOfxToUR0akO6UTnXs4BT1zrS-aVtNZVNtBtORQYqBNISZ3tuq9f6oNS_D5KxxsSQdnog-fYnjVt3BTkkpWl73v0JvTwIJfi4uFzWN2bi6s-hgyYqJngtJOiIr9M1jrweT__9YAewIMAlyTs4_QChR-7yoQ17UPi_qlBf-D9jtt5s |
Cites_doi | 10.1038/nmeth.2281 10.1016/j.simpa.2022.100278 10.3389/frobt.2022.1001955 10.1109/tpami.2019.2916873 10.1109/TASE.2020.3045655 10.1109/CVPR.2016.213 10.48550/arXiv.1711.09561 10.1007/s11263-019-01255-4 10.1109/tpami.2016.2640292 10.1007/978-3-030-58545-7_12 10.1016/j.cviu.2014.06.015 10.1007/s00371-015-1066-2 10.1109/TFUZZ.2022.3157075 10.1007/s11263-020-01316-z 10.1007/978-3-030-01252-6_26 10.1109/CVPR.2018.00762 10.1145/3132734.3132739 10.1007/978-3-030-01231-1_29 10.1007/s11263-012-0564-1 10.1109/CVPR.2019.00584 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Krusche, Al Naser, Bdiwi and Ihlenfeldt. Copyright © 2023 Krusche, Al Naser, Bdiwi and Ihlenfeldt. 2023 Krusche, Al Naser, Bdiwi and Ihlenfeldt |
Copyright_xml | – notice: Copyright © 2023 Krusche, Al Naser, Bdiwi and Ihlenfeldt. – notice: Copyright © 2023 Krusche, Al Naser, Bdiwi and Ihlenfeldt. 2023 Krusche, Al Naser, Bdiwi and Ihlenfeldt |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/frobt.2023.1028329 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Krusche et al |
EISSN | 2296-9144 |
ExternalDocumentID | oai_doaj_org_article_1fec5f455a194317bc60b97b0402c8fd PMC9975387 36873582 10_3389_frobt_2023_1028329 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 PGMZT RPM IAO ICD IEA IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c419t-ef2ae2fd2b0d2f3269317e49a37503fc2364cdd6881713cb25de7f5c3abc3d9e3 |
IEDL.DBID | DOA |
ISSN | 2296-9144 |
IngestDate | Wed Aug 27 01:22:00 EDT 2025 Thu Aug 21 18:38:45 EDT 2025 Fri Jul 11 01:45:36 EDT 2025 Thu Jan 02 22:52:54 EST 2025 Tue Jul 01 03:44:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | point cloud annotation robotics deep learning data labeling human activity recognition |
Language | English |
License | Copyright © 2023 Krusche, Al Naser, Bdiwi and Ihlenfeldt. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-ef2ae2fd2b0d2f3269317e49a37503fc2364cdd6881713cb25de7f5c3abc3d9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Robotic Control Systems, a section of the journal Frontiers in Robotics and AI Edited by: Jose Luis Sanchez-Lopez, University of Luxembourg, Luxembourg Hang Su, Fondazione Politecnico di Milano, Italy Reviewed by: Yong-Guk Kim, Sejong University, Republic of Korea |
OpenAccessLink | https://doaj.org/article/1fec5f455a194317bc60b97b0402c8fd |
PMID | 36873582 |
PQID | 2783790609 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1fec5f455a194317bc60b97b0402c8fd pubmedcentral_primary_oai_pubmedcentral_nih_gov_9975387 proquest_miscellaneous_2783790609 pubmed_primary_36873582 crossref_primary_10_3389_frobt_2023_1028329 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-15 |
PublicationDateYYYYMMDD | 2023-02-15 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in robotics and AI |
PublicationTitleAlternate | Front Robot AI |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Yuen (B73) 2009 Bradski (B9) 2000 Dutta (B20) 2019 Rashid (B57) 2020 Güler (B24) 2018 Gygli (B25) 2020; 128 Hintjens (B28) 2011 Gu (B23) 2018 Carreira (B13) 2019 Kay (B34) 2017 Jin (B32) 2020 Riegler (B59) 2014 Sun (B67) 2019 Gkioxari (B22) 2017 B72 B74 B30 Li (B38) 2018 Das Dawn (B18) 2016; 32 Heilbron (B27) 2015 B39 Barsoum (B5) 2017 Biresaw (B8) 2016 Kuznetsova (B37) 2020; 128 Punnakkal (B54) 2021 B1 Halim (B26) 2022; 9 B2 Kocabas (B35) 2018 B4 Rai (B56) 2021 Su (B65) 2021; 18 Andriluka (B3) 2017 Lucas (B45) 2020 Xiao (B71) 2018 Wang (B70) 2014 Cheng (B14) 2019 da Silva (B16) 2020 Li (B40) 2021 B41 B42 David (B19) 2000 B46 B47 Quan (B55) 2022; 12 B48 Trong (B68) 2017 Liu (B44) 2020; 42 Bianco (B7) 2015; 131 Paszke (B52) 2019 Cai (B10) 2019 Feichtenhofer (B21) 2016 Carreira (B12) 2018 Kreiss (B36) 2021 Papadopoulos (B51) 2016 Su (B66) 2022; 30 B50 B53 B58 B15 B17 Cao (B11) 2016 Bdiwi (B6) 2016 Morais (B49) 2020 Schroeder (B62) 2006 Kabra (B33) 2013; 10 Jang (B31) 2020 Shahroudy (B63) 2016 Hu (B29) 2017; 39 Liu (B43) 2017; 17 Shao (B64) 2020 B60 B61 Vondrick (B69) 2012; 101 |
References_xml | – ident: B60 – start-page: 1451 year: 2009 ident: B73 article-title: LabelMe video: Building a video database with human annotations – volume-title: We don't need no bounding-boxes: Training object class detectors using only human verification year: 2016 ident: B51 – year: 2017 ident: B34 article-title: The kinetics human action video dataset – ident: B41 – start-page: 8024 volume-title: Advances in neural information processing systems 32 year: 2019 ident: B52 article-title: PyTorch: An imperative style, high-performance deep learning library – start-page: 1010 year: 2016 ident: B63 article-title: Ntu RGB+D: A large scale dataset for 3D human activity analysis – volume: 10 start-page: 64 year: 2013 ident: B33 article-title: Jaaba: Interactive machine learning for automatic annotation of animal behavior publication-title: Nat. Methods doi: 10.1038/nmeth.2281 – volume-title: Learning to abstract and predict human actions year: 2020 ident: B49 – volume: 12 start-page: 100278 year: 2022 ident: B55 article-title: Havptat: A human activity video pose tracking annotation tool publication-title: Softw. Impacts doi: 10.1016/j.simpa.2022.100278 – volume: 9 start-page: 1001955 year: 2022 ident: B26 article-title: No-Code robotic programming for agile production: A new markerless-approach for multimodal natural interaction in a human-robot collaboration context publication-title: Front. robotics AI doi: 10.3389/frobt.2022.1001955 – volume: 42 start-page: 2684 year: 2020 ident: B44 article-title: Ntu RGB+D 120: A large-scale benchmark for 3D human activity understanding publication-title: IEEE Trans. pattern analysis Mach. Intell. doi: 10.1109/tpami.2019.2916873 – ident: B50 – year: 2011 ident: B28 article-title: 0MQ - the guide – volume: 18 start-page: 484 year: 2021 ident: B65 article-title: Toward teaching by demonstration for robot-assisted minimally invasive surgery publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.3045655 – start-page: 356 year: 2020 ident: B16 article-title: Open source multipurpose multimedia annotation tool,” in image analysis and recognition – volume-title: The VGG image annotator (VIA) year: 2019 ident: B20 – start-page: 2272 year: 2019 ident: B10 article-title: Exploiting spatial-temporal relationships for 3D pose estimation via graph convolutional networks – ident: B58 – volume-title: Convolutional two-stream network fusion for video action recognition year: 2016 ident: B21 doi: 10.1109/CVPR.2016.213 – ident: B39 – ident: B61 – year: 2018 ident: B38 article-title: CrowdPose: Efficient crowded scenes pose estimation and A new benchmark – year: 2017 ident: B5 article-title: HP-GAN: Probabilistic 3D human motion prediction via gan doi: 10.48550/arXiv.1711.09561 – ident: B2 – volume: 128 start-page: 1061 year: 2020 ident: B25 article-title: Efficient object annotation via speaking and pointing publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01255-4 – volume: 39 start-page: 2186 year: 2017 ident: B29 article-title: Jointly learning heterogeneous features for RGB-D activity recognition publication-title: IEEE Trans. pattern analysis Mach. Intell. doi: 10.1109/tpami.2016.2640292 – start-page: 6047 year: 2018 ident: B23 article-title: Ava: A video dataset of spatio-temporally localized atomic visual actions – start-page: 167 year: 2000 ident: B19 article-title: Doermann and David Mihalcik, “Tools and techniques for video performance evaluation – year: 2020 ident: B32 article-title: Whole-body human pose estimation in the wild doi: 10.1007/978-3-030-58545-7_12 – ident: B48 – year: 2021 ident: B36 article-title: OpenPifPaf: Composite fields for semantic keypoint detection and spatio-temporal association – volume: 131 start-page: 88 year: 2015 ident: B7 article-title: An interactive tool for manual, semi-automatic and automatic video annotation publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2014.06.015 – start-page: 295 year: 2016 ident: B8 article-title: ViTBAT: Video tracking and behavior annotation tool – ident: B17 – start-page: 2613 year: 2020 ident: B64 article-title: FineGym: A hierarchical video dataset for fine-grained action understanding – year: 2019 ident: B13 article-title: A short note on the kinetics-700 human action dataset – volume: 32 start-page: 289 year: 2016 ident: B18 article-title: A comprehensive survey of human action recognition with spatio-temporal interest point (STIP) detector publication-title: Vis. Comput. doi: 10.1007/s00371-015-1066-2 – ident: B30 – volume: 30 start-page: 1564 year: 2022 ident: B66 article-title: Fuzzy approximation-based task-space control of robot manipulators with remote center of motion constraint publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2022.3157075 – year: 2016 ident: B11 article-title: Realtime multi-person 2D pose estimation using Part Affinity fields – volume: 128 start-page: 1956 year: 2020 ident: B37 article-title: The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-020-01316-z – year: 2020 ident: B45 article-title: A short note on the kinetics-700-2020 human action dataset – ident: B72 – year: 2018 ident: B35 article-title: MultiPoseNet: Fast multi-person pose estimation using pose residual network doi: 10.1007/978-3-030-01252-6_26 – start-page: 2500 year: 2016 ident: B6 article-title: Autonomous disassembly of electric vehicle motors based on robot cognition – volume-title: The OpenCV library year: 2000 ident: B9 – year: 2018 ident: B24 article-title: DensePose: Dense human pose estimation in the wild doi: 10.1109/CVPR.2018.00762 – ident: B1 – year: 2019 ident: B14 article-title: HigherHRNet: Scale-Aware representation learning for bottom-up human pose estimation – start-page: 2649 year: 2014 ident: B70 article-title: Cross-view action modeling, learning, and recognition – ident: B47 – volume: 17 year: 2017 ident: B43 article-title: PKU-MMD: A large scale benchmark for skeleton-based human action understanding publication-title: VSCC doi: 10.1145/3132734.3132739 – start-page: 354 year: 2020 ident: B57 article-title: Local and global sensors for collision avoidance – start-page: 16261 year: 2021 ident: B40 article-title: UAV-human: A large benchmark for human behavior understanding with unmanned aerial vehicles – start-page: 10990 year: 2020 ident: B31 article-title: ETRI-Activity3D: A large-scale RGB-D dataset for robots to recognize daily activities of the elderly – year: 2018 ident: B12 article-title: A short note about kinetics-600 – start-page: 961 year: 2015 ident: B27 article-title: ActivityNet: A large-scale video benchmark for human activity understanding – ident: B42 – year: 2018 ident: B71 article-title: Simple baselines for human pose estimation and tracking doi: 10.1007/978-3-030-01231-1_29 – ident: B4 – ident: B46 – volume-title: Detecting and recognizing human-object interactions year: 2017 ident: B22 – start-page: 722 year: 2021 ident: B54 article-title: Black max planck institute for intelligent systems, and universität konstanz, “BABEL: Bodies, action and behavior with English labels – start-page: 11179 year: 2021 ident: B56 article-title: Home action genome: Cooperative compositional action understanding – volume: 101 start-page: 184 year: 2012 ident: B69 article-title: Efficiently scaling up crowdsourced video annotation publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-012-0564-1 – year: 2017 ident: B3 article-title: PoseTrack: A benchmark for human pose estimation and tracking – ident: B15 – year: 2019 ident: B67 article-title: Deep high-resolution representation learning for human pose estimation doi: 10.1109/CVPR.2019.00584 – ident: B74 – ident: B53 – volume-title: The visualization toolkit‐an object-oriented approach to 3D graphics year: 2006 ident: B62 – year: 2014 ident: B59 article-title: Mathias lux, vincent charvillat, axel carlier, raynor vliegendhart, and martha larson, “VideoJot: A multifunctional video annotation tool – start-page: 411 volume-title: Lecture notes in computer science, computational science and its applications – iccsa 2017 year: 2017 ident: B68 article-title: A comprehensive survey on human activity prediction |
SSID | ssj0001584377 |
Score | 2.2113016 |
Snippet | Manual annotation for human action recognition with content semantics using 3D Point Cloud (3D-PC) in industrial environments consumes a lot of time and... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1028329 |
SubjectTerms | data labeling deep learning human activity recognition point cloud annotation robotics Robotics and AI |
Title | A novel approach for automatic annotation of human actions in 3D point clouds for flexible collaborative tasks with industrial robots |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36873582 https://www.proquest.com/docview/2783790609 https://pubmed.ncbi.nlm.nih.gov/PMC9975387 https://doaj.org/article/1fec5f455a194317bc60b97b0402c8fd |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT-WAaHktBTRI3FBo1nHs-FgeVYUEJyr1ZvkpVqzsqsn2H_C_Gdu7JYuQuHBNMrLjmWS-sWe-IeQN92GQDIMcwyRrGA2skaanTdAcna1FRFL2O7585ReX7PNVfzVr9ZVzwio9cF2402Xwtg-s7zWG2-jsjOWtkcKg8VE7BJf_vujzZsFUrQ8eWCdErZLBKEyehptkcu4k7d4Vn1ow5W9PVAj7_4Yy_0yWnHmf84fkwRY2wlmd7hG55-MxuT8jE3xEfp5BTLd-DTuacEA8CnozpcLKCjrGVM_dIQUovfmgVjWMsIrQfYTrtIoT2HXauLEIh8yWadYeZtZy62HS448R8g4uCu46fwC-eZrGx-Ty_NO3DxfNtslCY9lSTo0PVHsaHDWtowHBnMRF9kzqLp9wBpsJ5q1zfBiWGM9aQ3vnRehtp43tnPTdE3IQU_TPCFjuggjBeY4yziL0cTZIjQKsHTR3C_J2t-DqunJpKIxBsnpUUY_K6lFb9SzI-6yTuyczD3a5gNahttah_mUdC_J6p1GF300-DNHRp82ococRIVve4kBPq4bvhur4IHIF8YKIPd3vzWX_Tlx9L9zcMhcqD-L5_5j8CTnMC5JzxJf9C3Iw3Wz8S4RAk3lVrP0XqFoJEw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+approach+for+automatic+annotation+of+human+actions+in+3D+point+clouds+for+flexible+collaborative+tasks+with+industrial+robots&rft.jtitle=Frontiers+in+robotics+and+AI&rft.au=Krusche%2C+Sebastian&rft.au=Al+Naser%2C+Ibrahim&rft.au=Bdiwi%2C+Mohamad&rft.au=Ihlenfeldt%2C+Steffen&rft.date=2023-02-15&rft.issn=2296-9144&rft.eissn=2296-9144&rft.volume=10&rft.spage=1028329&rft_id=info:doi/10.3389%2Ffrobt.2023.1028329&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-9144&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-9144&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-9144&client=summon |