Fault diagnosis in industrial rotating equipment based on permutation entropy, signal processing and multi-output neuro-fuzzy classifier

Rotating equipment is considered as a key component in several industrial sectors. In fact, the continuous operation of many industrial machines such as sub-sea pumps and gas turbines relies on the correct performance of their rotating equipment. In order to reduce the probability of malfunctions in...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 206; p. 117754
Main Authors Rajabi, Saeed, Saman Azari, Mehdi, Santini, Stefania, Flammini, Francesco
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rotating equipment is considered as a key component in several industrial sectors. In fact, the continuous operation of many industrial machines such as sub-sea pumps and gas turbines relies on the correct performance of their rotating equipment. In order to reduce the probability of malfunctions in this equipment, condition monitoring, and fault diagnosis systems are essential. In this work, a novel approach is proposed to perform fault diagnosis in rotating equipment based on permutation entropy, signal processing, and artificial intelligence. To that aim, vibration signals are employed for an indication of bearing performance. In order to facilitate fault diagnosis, fault detection and isolation are performed in two separate steps. As first, once a vibration signal is received, the faulty state of the bearing is determined by permutation entropy. In case a faulty state is detected, the fault type is determined using an approach based on signal processing and artificial intelligence. Wavelet packet transform and envelope analysis of the vibration signals are utilized to extract the frequency components of the fault. The proposed approach allows for the automatic selection of a frequency band that includes the characteristic resonance frequency of the fault, which is subject to change in different operational conditions. The method works by extracting the proper features of the signals that are used to decide about the faulty bearing’s condition by a multi-output adaptive neuro-fuzzy inference system classifier. The effectiveness of the approach is assessed by the Case Western Reserve University dataset: the analysis demonstrates the proposed method’s capabilities in accurately diagnosing faults in rotating equipment as compared to existing approaches. •Novel approach combining permutation entropy and MANFIS to diagnose bearing faults.•The approach is automated and its performance is not sensitive to imbalanced data.•The approach allows automatic selection of defect frequency bands.•The approach combines higher accuracy with more efficient implementation compared to other methods.
AbstractList Rotating equipment is considered as a key component in several industrial sectors. In fact, the continuous operation of many industrial machines such as sub-sea pumps and gas turbines relies on the correct performance of their rotating equipment. In order to reduce the probability of malfunctions in this equipment, condition monitoring, and fault diagnosis systems are essential. In this work, a novel approach is proposed to perform fault diagnosis in rotating equipment based on permutation entropy, signal processing, and artificial intelligence. To that aim, vibration signals are employed for an indication of bearing performance. In order to facilitate fault diagnosis, fault detection and isolation are performed in two separate steps. As first, once a vibration signal is received, the faulty state of the bearing is determined by permutation entropy. In case a faulty state is detected, the fault type is determined using an approach based on signal processing and artificial intelligence. Wavelet packet transform and envelope analysis of the vibration signals are utilized to extract the frequency components of the fault. The proposed approach allows for the automatic selection of a frequency band that includes the characteristic resonance frequency of the fault, which is subject to change in different operational conditions. The method works by extracting the proper features of the signals that are used to decide about the faulty bearing’s condition by a multi-output adaptive neuro-fuzzy inference system classifier. The effectiveness of the approach is assessed by the Case Western Reserve University dataset: the analysis demonstrates the proposed method’s capabilities in accurately diagnosing faults in rotating equipment as compared to existing approaches.
Rotating equipment is considered as a key component in several industrial sectors. In fact, the continuous operation of many industrial machines such as sub-sea pumps and gas turbines relies on the correct performance of their rotating equipment. In order to reduce the probability of malfunctions in this equipment, condition monitoring, and fault diagnosis systems are essential. In this work, a novel approach is proposed to perform fault diagnosis in rotating equipment based on permutation entropy, signal processing, and artificial intelligence. To that aim, vibration signals are employed for an indication of bearing performance. In order to facilitate fault diagnosis, fault detection and isolation are performed in two separate steps. As first, once a vibration signal is received, the faulty state of the bearing is determined by permutation entropy. In case a faulty state is detected, the fault type is determined using an approach based on signal processing and artificial intelligence. Wavelet packet transform and envelope analysis of the vibration signals are utilized to extract the frequency components of the fault. The proposed approach allows for the automatic selection of a frequency band that includes the characteristic resonance frequency of the fault, which is subject to change in different operational conditions. The method works by extracting the proper features of the signals that are used to decide about the faulty bearing’s condition by a multi-output adaptive neuro-fuzzy inference system classifier. The effectiveness of the approach is assessed by the Case Western Reserve University dataset: the analysis demonstrates the proposed method’s capabilities in accurately diagnosing faults in rotating equipment as compared to existing approaches. •Novel approach combining permutation entropy and MANFIS to diagnose bearing faults.•The approach is automated and its performance is not sensitive to imbalanced data.•The approach allows automatic selection of defect frequency bands.•The approach combines higher accuracy with more efficient implementation compared to other methods.
Rotating equipment is considered as a key component in several industrial sectors. In fact, the continuous operation of many industrial machines such as sub-sea pumps and gas turbines relies on the correct performance of their rotating equipment. In order to reduce the probability of malfunctions in this equipment, condition monitoring, and fault diagnosis systems are essential. In this work, a novel approach is proposed to perform fault diagnosis in rotating equipment based on permutation entropy, signal processing, and artificial intelligence. To that aim, vibration signals are employed for an indication of bearing performance. In order to facilitate fault diagnosis, fault detection and isolation are performed in two separate steps. As first, once a vibration signal is received, the faulty state of the bearing is determined by permutation entropy. In case a faulty state is detected, the fault type is determined using an approach based on signal processing and artificial intelligence. Wavelet packet transform and envelope analysis of the vibration signals are utilized to extract the frequency components of the fault. The proposed approach allows for the automatic selection of a frequency band that includes the characteristic resonance frequency of the fault, which is subject to change in different operational conditions. The method works by extracting the proper features of the signals that are used to decide about the faulty bearing's condition by a multi-output adaptive neuro-fuzzy inference system classifier. The effectiveness of the approach is assessed by the Case Western Reserve University dataset: the analysis demonstrates the proposed method's capabilities in accurately diagnosing faults in rotating equipment as compared to existing approaches. 
ArticleNumber 117754
Author Flammini, Francesco
Rajabi, Saeed
Saman Azari, Mehdi
Santini, Stefania
Author_xml – sequence: 1
  givenname: Saeed
  orcidid: 0000-0002-8241-5802
  surname: Rajabi
  fullname: Rajabi, Saeed
  email: s.rajabi@modares.ac.ir
  organization: Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
– sequence: 2
  givenname: Mehdi
  orcidid: 0000-0003-0348-4429
  surname: Saman Azari
  fullname: Saman Azari, Mehdi
  email: mehdi.samanazari@lnu.se
  organization: Department of Computer Science and Media Technology, Linnaeus University, Växjo, Sweden
– sequence: 3
  givenname: Stefania
  orcidid: 0000-0002-0754-6271
  surname: Santini
  fullname: Santini, Stefania
  email: stefania.santini@unina.it
  organization: Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
– sequence: 4
  givenname: Francesco
  orcidid: 0000-0002-2833-7196
  surname: Flammini
  fullname: Flammini, Francesco
  email: francesco.flammini@mdu.se
  organization: Department of Computer Science and Media Technology, Linnaeus University, Växjo, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-115923$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-59530$$DView record from Swedish Publication Index
BookMark eNqFkctq3DAUhkVJoJPLC3SlB4inkmVbNnQT0qYtBLppsxWydDTVYEuuLg2TJ-hjV8aliy5SEEhwvk8H_v8CnTnvAKE3lOwpod3b4x7ik9zXpK73lHLeNq_QjvacVR0f2BnakaHlVUN58xpdxHgkhHJC-A79upd5SlhbeXA-2oitK0fnmIKVEw4-yWTdAcOPbJcZXMKjjKCxd3iBMOd1XN5lEPxyusHRHlzxluAVxLia0mk8lx228jktOWEHOfjK5OfnE1aTLJSxEK7QuZFThOs_9yX6dv_h692n6uHLx893tw-VauiQKtA9axsODRtM24-aGKCSdUZ1jZKtHnsNnGlmJDWKSc66Xmpa04Ew2o1Nbdglutn-jU-w5FEswc4ynISXVry3j7fCh4OY9XfRDi0jBa_-j08uC0rboWaFrzdeBR9jAPPXoESsVYmjWKsSa1Viq6pI_T-SsluwKUg7vay-21Qomf0sOYqoLDgF2gZQSWhvX9J_A2g6txs
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124189
crossref_primary_10_1016_j_ress_2024_110560
crossref_primary_10_1016_j_cnsns_2024_107917
crossref_primary_10_1007_s42417_024_01358_4
crossref_primary_10_1016_j_eswa_2024_123536
crossref_primary_10_1007_s11071_024_10451_y
crossref_primary_10_3390_info15050259
crossref_primary_10_1109_ACCESS_2023_3239784
crossref_primary_10_1016_j_aei_2023_101985
crossref_primary_10_3390_s22249662
crossref_primary_10_3390_su142214677
crossref_primary_10_1007_s11465_023_0748_0
crossref_primary_10_1016_j_psep_2023_07_083
crossref_primary_10_24017_science_2025_1_2
crossref_primary_10_1016_j_aei_2023_102075
crossref_primary_10_1109_TMC_2024_3463955
crossref_primary_10_1080_15435075_2024_2449155
crossref_primary_10_1109_TIM_2024_3502734
crossref_primary_10_1088_1361_6501_acbecf
crossref_primary_10_1109_TIM_2023_3348892
crossref_primary_10_1088_1361_6501_ada633
crossref_primary_10_3390_applmech4010020
crossref_primary_10_1016_j_inffus_2023_02_012
crossref_primary_10_3390_en17225538
crossref_primary_10_1007_s12008_024_02050_3
crossref_primary_10_1016_j_eswa_2024_123801
crossref_primary_10_1088_1361_6501_ad6784
crossref_primary_10_3390_s22166281
crossref_primary_10_1088_1361_6501_ad11ca
crossref_primary_10_1109_ACCESS_2023_3318319
crossref_primary_10_1016_j_apacoust_2025_110599
crossref_primary_10_1109_TICPS_2024_3490502
crossref_primary_10_1016_j_ijmecsci_2023_108509
crossref_primary_10_1016_j_energy_2023_128835
crossref_primary_10_1177_09544054241261738
crossref_primary_10_1016_j_eswa_2022_119304
crossref_primary_10_1016_j_aei_2024_102365
crossref_primary_10_1155_2024_8296809
crossref_primary_10_1016_j_ijfatigue_2023_107642
crossref_primary_10_1016_j_eswa_2023_121762
crossref_primary_10_1088_1361_6501_ad1f2d
crossref_primary_10_1016_j_eswa_2024_126110
crossref_primary_10_1177_00202940241231473
crossref_primary_10_1016_j_engappai_2023_106548
crossref_primary_10_1016_j_eswa_2023_121095
crossref_primary_10_1080_10589759_2024_2304265
crossref_primary_10_1088_2631_8695_adb4bd
crossref_primary_10_1016_j_measurement_2024_114243
crossref_primary_10_1016_j_measurement_2025_117359
crossref_primary_10_3390_batteries9060323
crossref_primary_10_3390_s23021021
crossref_primary_10_1177_09544089231180538
crossref_primary_10_3934_mbe_2024216
crossref_primary_10_1109_OJITS_2023_3266267
crossref_primary_10_3390_a17100441
crossref_primary_10_3390_s24051680
crossref_primary_10_1007_s12008_023_01542_y
crossref_primary_10_1177_14759217241296804
crossref_primary_10_3390_w15244227
crossref_primary_10_1016_j_eswa_2024_125497
crossref_primary_10_1016_j_renene_2023_119310
crossref_primary_10_3390_e26040299
crossref_primary_10_1007_s10845_023_02103_6
crossref_primary_10_1007_s11071_024_10212_x
crossref_primary_10_1109_TII_2024_3366993
crossref_primary_10_1016_j_eswa_2023_121817
crossref_primary_10_1088_1742_6596_2492_1_012010
crossref_primary_10_1016_j_eswa_2023_122910
crossref_primary_10_1016_j_jmsy_2024_10_007
crossref_primary_10_3390_machines10121215
crossref_primary_10_1016_j_eswa_2023_120696
crossref_primary_10_1016_j_compag_2023_108556
crossref_primary_10_1016_j_eswa_2023_122078
crossref_primary_10_1016_j_knosys_2022_110172
crossref_primary_10_3390_en18061342
crossref_primary_10_1016_j_eswa_2024_125441
Cites_doi 10.3390/sym12081295
10.1103/PhysRevLett.88.174102
10.1016/j.asoc.2007.03.010
10.3390/app9152950
10.1007/s00521-020-05244-4
10.1109/21.256541
10.3390/mca22040043
10.1016/j.neucom.2020.05.040
10.1016/j.neucom.2015.07.020
10.1016/j.ymssp.2013.07.009
10.1016/j.isatra.2018.04.005
10.1016/S0301-679X(99)00077-8
10.3390/sym11101212
10.1016/j.measurement.2020.108502
10.1016/j.ymssp.2006.02.009
10.1016/j.future.2019.09.004
10.1007/s40430-020-02561-6
10.1109/TIE.2017.2774777
10.1016/j.ymssp.2011.11.022
10.1155/2014/154291
10.1016/j.eswa.2020.114022
10.1016/j.neucom.2018.02.083
10.1016/j.ymssp.2006.12.004
10.1007/s11668-016-0080-7
10.1016/j.ymssp.2018.05.050
10.1016/j.inffus.2013.10.002
10.1006/jsvi.2001.4085
10.1152/ajpheart.2000.278.6.H2039
10.1016/j.ymssp.2015.04.021
10.1109/ACCESS.2020.2990528
10.1109/JSEN.2020.2999107
10.1016/j.ymssp.2010.07.017
10.1016/j.ymssp.2020.107233
10.1016/j.eswa.2011.09.040
10.1016/j.ymssp.2018.05.015
10.1016/j.jsv.2015.09.016
10.1016/j.ymssp.2010.12.011
10.1016/j.compag.2018.03.032
10.1109/ACCESS.2019.2938227
10.1016/j.measurement.2015.03.017
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTPV
AGRUY
AOWAS
D8T
D92
ZZAVC
DF7
DOI 10.1016/j.eswa.2022.117754
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SwePub
SWEPUB Linnéuniversitetet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Linnéuniversitetet
SwePub Articles full text
SWEPUB Mälardalens högskola
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID oai_DiVA_org_mdh_59530
oai_DiVA_org_lnu_115923
10_1016_j_eswa_2022_117754
S0957417422010326
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
ADTPV
AGRUY
AOWAS
D8T
D92
EFKBS
ZZAVC
DF7
ID FETCH-LOGICAL-c419t-ed83547e439f58bd0fe1a36fc64ca5db8de73d3fa1fc3a7368ad12190316b42f3
IEDL.DBID .~1
ISSN 0957-4174
1873-6793
IngestDate Thu Jul 03 04:35:39 EDT 2025
Thu Aug 21 06:52:47 EDT 2025
Tue Jul 01 04:06:02 EDT 2025
Thu Apr 24 22:53:39 EDT 2025
Fri Feb 23 02:40:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Permutation entropy
Wavelet transform
Multi output adaptive neuro-fuzzy inference system
Rolling element bearing
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-ed83547e439f58bd0fe1a36fc64ca5db8de73d3fa1fc3a7368ad12190316b42f3
ORCID 0000-0002-8241-5802
0000-0002-2833-7196
0000-0003-0348-4429
0000-0002-0754-6271
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0957417422010326
ParticipantIDs swepub_primary_oai_DiVA_org_mdh_59530
swepub_primary_oai_DiVA_org_lnu_115923
crossref_primary_10_1016_j_eswa_2022_117754
crossref_citationtrail_10_1016_j_eswa_2022_117754
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117754
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-15
PublicationDateYYYYMMDD 2022-11-15
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Smith, Randall (b38) 2015; 64
Hoang, Kang (b15) 2018
Buragohain, Mahanta (b6) 2008; 8
Liu, Zhou, Zheng, Jiang, Zhang (b23) 2018; 77
Yan, Gao (b46) 2007; 21
Zheng, Cheng, Yang (b51) 2014; 2014
Cheng, Zhou, Ma, Wu, Yuan (b9) 2020; 409
Zhang, Zhang, Wang, Habetler (b49) 2019
Zhao, Yan, Chen, Mao, Wang, Gao (b50) 2019; 115
Rauber, da Silva Loca, de Assis Boldt, Rodrigues, Varejão (b33) 2021; 167
Fattahi, Agah, Soleimanpourmoghadam (b10) 2018; 6
Mao, Feng, Liu, Zhang, Liang (b24) 2021; 150
Peng, Chu, He (b28) 2002; 253
Rajabi, Samanazari, Momeni, Ramezani (b31) 2016
Wen, Li, Gao, Zhang (b43) 2017; 65
Guo, Lei, Li, Yan, Li (b13) 2018; 292
Flammini (b11) 2021; 379
Lee, Pack, Lee (b19) 2019; 9
Rai, Mohanty (b30) 2007; 21
Castejón, Gómez, Garcia-Prada, Ordonez, Rubio (b8) 2015; 20
Neupane, Seok (b27) 2020; 8
Safizadeh, Latifi (b35) 2014; 18
Yan, Liu, Gao (b47) 2012; 29
Westlake, Cai, Hall (b44) 2016
Zhang, Liang, Zhou (b48) 2015; 69
Qu, Zhang, Gong (b29) 2016; 171
Han, Tian, Yin, Tan (b14) 2020; 42
Lei, Lin, He, Zi (b20) 2011; 25
Huang, Cheng, Yang (b17) 2019; 114
Li, Xu, Wang, Huang (b21) 2016; 360
Jang (b18) 1993; 23
Benmiloud (b4) 2010
Too, Yujian, Njuki, Yingchun (b40) 2019; 161
(b26) 1985; 1
Melin, Soto, Castillo, Soria (b25) 2012; 39
Boudiaf, Moussaoui, Dahane, Atoui (b5) 2016; 16
Liang, Zhao, Lin, Ding, Jiao, Zhang (b22) 2020; 20
Wang, Liu, Bi, Bi, Shao (b42) 2013; 41
Xu, Li, Wang, Li, Sarkodie-Gyan, Feng (b45) 2021; 169
Richman, Moorman (b34) 2000; 278
Wang, Dun, Liu, Xue, Li, Han (b41) 2018; 2018
Azari, Flammini, Caporuscio, Santini (b2) 2019
Armaghani, Asteris (b1) 2021; 33
Tandon, Choudhury (b39) 1999; 32
Gkountakou, Papadopoulos (b12) 2020; 12
Randall, Antoni (b32) 2011; 25
Hsueh, Ittangihal, Wu, Chang, Kuo (b16) 2019; 11
Caporuscio, Flammini, Khakpour, Singh, Thornadtsson (b7) 2020; 111
Saufi, Ahmad, Leong, Lim (b37) 2019; 7
Bandt, Pompe (b3) 2002; 88
Şahin, Erol (b36) 2017; 22
Buragohain (10.1016/j.eswa.2022.117754_b6) 2008; 8
Peng (10.1016/j.eswa.2022.117754_b28) 2002; 253
Cheng (10.1016/j.eswa.2022.117754_b9) 2020; 409
Melin (10.1016/j.eswa.2022.117754_b25) 2012; 39
Zhang (10.1016/j.eswa.2022.117754_b49) 2019
Guo (10.1016/j.eswa.2022.117754_b13) 2018; 292
Han (10.1016/j.eswa.2022.117754_b14) 2020; 42
Zhao (10.1016/j.eswa.2022.117754_b50) 2019; 115
Castejón (10.1016/j.eswa.2022.117754_b8) 2015; 20
Zheng (10.1016/j.eswa.2022.117754_b51) 2014; 2014
Azari (10.1016/j.eswa.2022.117754_b2) 2019
Şahin (10.1016/j.eswa.2022.117754_b36) 2017; 22
Tandon (10.1016/j.eswa.2022.117754_b39) 1999; 32
Benmiloud (10.1016/j.eswa.2022.117754_b4) 2010
Wen (10.1016/j.eswa.2022.117754_b43) 2017; 65
Randall (10.1016/j.eswa.2022.117754_b32) 2011; 25
(10.1016/j.eswa.2022.117754_b26) 1985; 1
Lei (10.1016/j.eswa.2022.117754_b20) 2011; 25
Smith (10.1016/j.eswa.2022.117754_b38) 2015; 64
Fattahi (10.1016/j.eswa.2022.117754_b10) 2018; 6
Armaghani (10.1016/j.eswa.2022.117754_b1) 2021; 33
Too (10.1016/j.eswa.2022.117754_b40) 2019; 161
Westlake (10.1016/j.eswa.2022.117754_b44) 2016
Rajabi (10.1016/j.eswa.2022.117754_b31) 2016
Boudiaf (10.1016/j.eswa.2022.117754_b5) 2016; 16
Lee (10.1016/j.eswa.2022.117754_b19) 2019; 9
Huang (10.1016/j.eswa.2022.117754_b17) 2019; 114
Neupane (10.1016/j.eswa.2022.117754_b27) 2020; 8
Yan (10.1016/j.eswa.2022.117754_b46) 2007; 21
Rai (10.1016/j.eswa.2022.117754_b30) 2007; 21
Mao (10.1016/j.eswa.2022.117754_b24) 2021; 150
Flammini (10.1016/j.eswa.2022.117754_b11) 2021; 379
Caporuscio (10.1016/j.eswa.2022.117754_b7) 2020; 111
Hoang (10.1016/j.eswa.2022.117754_b15) 2018
Zhang (10.1016/j.eswa.2022.117754_b48) 2015; 69
Jang (10.1016/j.eswa.2022.117754_b18) 1993; 23
Qu (10.1016/j.eswa.2022.117754_b29) 2016; 171
Richman (10.1016/j.eswa.2022.117754_b34) 2000; 278
Wang (10.1016/j.eswa.2022.117754_b41) 2018; 2018
Gkountakou (10.1016/j.eswa.2022.117754_b12) 2020; 12
Hsueh (10.1016/j.eswa.2022.117754_b16) 2019; 11
Wang (10.1016/j.eswa.2022.117754_b42) 2013; 41
Liang (10.1016/j.eswa.2022.117754_b22) 2020; 20
Yan (10.1016/j.eswa.2022.117754_b47) 2012; 29
Li (10.1016/j.eswa.2022.117754_b21) 2016; 360
Saufi (10.1016/j.eswa.2022.117754_b37) 2019; 7
Rauber (10.1016/j.eswa.2022.117754_b33) 2021; 167
Xu (10.1016/j.eswa.2022.117754_b45) 2021; 169
Bandt (10.1016/j.eswa.2022.117754_b3) 2002; 88
Liu (10.1016/j.eswa.2022.117754_b23) 2018; 77
Safizadeh (10.1016/j.eswa.2022.117754_b35) 2014; 18
References_xml – volume: 11
  start-page: 1212
  year: 2019
  ident: b16
  article-title: Fault diagnosis system for induction motors by CNN using empirical wavelet transform
  publication-title: Symmetry
– volume: 1
  start-page: 865
  year: 1985
  end-page: 872
  ident: b26
  article-title: Report of large motor reliability survey of industrial and commercial installations, Part I
  publication-title: IEEE Transactions on Industry Applications
– volume: 12
  start-page: 1295
  year: 2020
  ident: b12
  article-title: The use of fuzzy linear regression and ANFIS methods to predict the compressive strength of cement
  publication-title: Symmetry
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: b18
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– start-page: 841
  year: 2018
  end-page: 846
  ident: b15
  article-title: Deep belief network and dempster-shafer evidence theory for bearing fault diagnosis
  publication-title: 2018 IEEE 27th international symposium on industrial electronics (ISIE)
– year: 2019
  ident: b49
  article-title: Machine learning and deep learning algorithms for bearing fault diagnostics–a comprehensive review
– volume: 114
  start-page: 165
  year: 2019
  end-page: 188
  ident: b17
  article-title: Rolling bearing fault diagnosis and performance degradation assessment under variable operation conditions based on nuisance attribute projection
  publication-title: Mechanical Systems and Signal Processing
– volume: 409
  start-page: 35
  year: 2020
  end-page: 45
  ident: b9
  article-title: Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data
  publication-title: Neurocomputing
– volume: 33
  start-page: 4501
  year: 2021
  end-page: 4532
  ident: b1
  article-title: A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength
  publication-title: Neural Computing and Applications
– volume: 42
  start-page: 1
  year: 2020
  end-page: 10
  ident: b14
  article-title: Bearing fault identification based on convolutional neural network by different input modes
  publication-title: Journal of the Brazilian Society of Mechanical Sciences and Engineering
– volume: 21
  start-page: 824
  year: 2007
  end-page: 839
  ident: b46
  article-title: Approximate entropy as a diagnostic tool for machine health monitoring
  publication-title: Mechanical Systems and Signal Processing
– volume: 379
  year: 2021
  ident: b11
  article-title: Digital twins as run-time predictive models for the resilience of cyber-physical systems: a conceptual framework
  publication-title: Philosophical Transactions of the Royal Society of London A (Mathematical and Physical Sciences)
– start-page: 345
  year: 2019
  end-page: 354
  ident: b2
  article-title: Data-driven fault diagnosis of once-through benson boilers
  publication-title: 2019 4th international conference on system reliability and safety (ICSRS)
– volume: 32
  start-page: 469
  year: 1999
  end-page: 480
  ident: b39
  article-title: A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings
  publication-title: Tribology International
– start-page: 1757
  year: 2016
  end-page: 1762
  ident: b31
  article-title: Automated fault diagnosis of rolling element bearings based on morphological operators and M-ANFIS
  publication-title: 2016 24th Iranian conference on electrical engineering (ICEE)
– volume: 2018
  year: 2018
  ident: b41
  article-title: An enhancement deep feature extraction method for bearing fault diagnosis based on kernel function and autoencoder
  publication-title: Shock and Vibration
– volume: 29
  start-page: 474
  year: 2012
  end-page: 484
  ident: b47
  article-title: Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines
  publication-title: Mechanical Systems and Signal Processing
– volume: 8
  start-page: 609
  year: 2008
  end-page: 625
  ident: b6
  article-title: A novel approach for ANFIS modelling based on full factorial design
  publication-title: Applied Soft Computing
– volume: 64
  start-page: 100
  year: 2015
  end-page: 131
  ident: b38
  article-title: Rolling element bearing diagnostics using the case western reserve university data: A benchmark study
  publication-title: Mechanical Systems and Signal Processing
– volume: 39
  start-page: 3494
  year: 2012
  end-page: 3506
  ident: b25
  article-title: A new approach for time series prediction using ensembles of ANFIS models
  publication-title: Expert Systems with Applications
– volume: 161
  start-page: 272
  year: 2019
  end-page: 279
  ident: b40
  article-title: A comparative study of fine-tuning deep learning models for plant disease identification
  publication-title: Computers and Electronics in Agriculture
– volume: 77
  start-page: 167
  year: 2018
  end-page: 178
  ident: b23
  article-title: Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders
  publication-title: ISA Transactions
– volume: 111
  start-page: 681
  year: 2020
  end-page: 697
  ident: b7
  article-title: Smart-troubleshooting connected devices: Concept, challenges and opportunities
  publication-title: Future Generation Computer Systems
– volume: 69
  start-page: 164
  year: 2015
  end-page: 179
  ident: b48
  article-title: A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM
  publication-title: Measurement
– volume: 292
  start-page: 142
  year: 2018
  end-page: 150
  ident: b13
  article-title: Machinery health indicator construction based on convolutional neural networks considering trend burr
  publication-title: Neurocomputing
– volume: 253
  start-page: 1087
  year: 2002
  end-page: 1100
  ident: b28
  article-title: Vibration signal analysis and feature extraction based on reassigned wavelet scalogram
  publication-title: Journal of Sound and Vibration
– volume: 8
  start-page: 93155
  year: 2020
  end-page: 93178
  ident: b27
  article-title: Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review
  publication-title: IEEE Access
– volume: 65
  start-page: 5990
  year: 2017
  end-page: 5998
  ident: b43
  article-title: A new convolutional neural network-based data-driven fault diagnosis method
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 25
  start-page: 1738
  year: 2011
  end-page: 1749
  ident: b20
  article-title: Application of an improved kurtogram method for fault diagnosis of rolling element bearings
  publication-title: Mechanical Systems and Signal Processing
– volume: 16
  start-page: 271
  year: 2016
  end-page: 284
  ident: b5
  article-title: A comparative study of various methods of bearing faults diagnosis using the case western reserve university data
  publication-title: Journal of Failure Analysis and Prevention
– volume: 18
  start-page: 1
  year: 2014
  end-page: 8
  ident: b35
  article-title: Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell
  publication-title: Information Fusion
– volume: 2014
  year: 2014
  ident: b51
  article-title: Multiscale permutation entropy based rolling bearing fault diagnosis
  publication-title: Shock and Vibration
– volume: 167
  year: 2021
  ident: b33
  article-title: An experimental methodology to evaluate machine learning methods for fault diagnosis based on vibration signals
  publication-title: Expert Systems with Applications
– start-page: 94
  year: 2010
  end-page: 98
  ident: b4
  article-title: Multi-output adaptive neuro-fuzzy inference system
  publication-title: WSEAS international conference on neural networks, vol. 11
– volume: 6
  start-page: 121
  year: 2018
  end-page: 132
  ident: b10
  article-title: Multi-output adaptive neuro-fuzzy inference system for prediction of dissolved metal levels in acid rock drainage: a case study
  publication-title: Journal of AI and Data Mining
– volume: 7
  start-page: 122644
  year: 2019
  end-page: 122662
  ident: b37
  article-title: Challenges and opportunities of deep learning models for machinery fault detection and diagnosis: A review
  publication-title: IEEE Access
– volume: 88
  year: 2002
  ident: b3
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Physical Review Letters
– volume: 278
  start-page: H2039
  year: 2000
  end-page: H2049
  ident: b34
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: American Journal of Physiology-Heart and Circulatory Physiology
– volume: 360
  start-page: 277
  year: 2016
  end-page: 299
  ident: b21
  article-title: A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy
  publication-title: Journal of Sound and Vibration
– volume: 20
  start-page: 12252
  year: 2020
  end-page: 12261
  ident: b22
  article-title: A novel indicator to improve fast kurtogram for the health monitoring of rolling bearing
  publication-title: IEEE Sensors Journal
– volume: 21
  start-page: 2607
  year: 2007
  end-page: 2615
  ident: b30
  article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform
  publication-title: Mechanical Systems and Signal Processing
– start-page: 825
  year: 2016
  end-page: 841
  ident: b44
  article-title: Detecting people in artwork with CNNs
  publication-title: European conference on computer vision
– volume: 22
  start-page: 43
  year: 2017
  ident: b36
  article-title: A comparative study of neural networks and ANFIS for forecasting attendance rate of soccer games
  publication-title: Mathematical and Computational Applications
– volume: 41
  start-page: 581
  year: 2013
  end-page: 597
  ident: b42
  article-title: Fault diagnosis of diesel engine based on adaptive wavelet packets and EEMD-fractal dimension
  publication-title: Mechanical Systems and Signal Processing
– volume: 115
  start-page: 213
  year: 2019
  end-page: 237
  ident: b50
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mechanical Systems and Signal Processing
– volume: 9
  start-page: 2950
  year: 2019
  ident: b19
  article-title: Fault diagnosis of induction motor using convolutional neural network
  publication-title: Applied Sciences
– volume: 171
  start-page: 837
  year: 2016
  end-page: 853
  ident: b29
  article-title: A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion
  publication-title: Neurocomputing
– volume: 150
  year: 2021
  ident: b24
  article-title: A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis
  publication-title: Mechanical Systems and Signal Processing
– volume: 169
  year: 2021
  ident: b45
  article-title: A hybrid deep-learning model for fault diagnosis of rolling bearings
  publication-title: Measurement
– volume: 20
  start-page: 95
  year: 2015
  end-page: 100
  ident: b8
  article-title: Automatic selection of the WPT decomposition level for condition monitoring of rotor elements based on the sensitivity analysis of the wavelet energy
  publication-title: The International Journal of Acoustics and Vibration
– volume: 25
  start-page: 485
  year: 2011
  end-page: 520
  ident: b32
  article-title: Rolling element bearing diagnostics—A tutorial
  publication-title: Mechanical Systems and Signal Processing
– start-page: 94
  year: 2010
  ident: 10.1016/j.eswa.2022.117754_b4
  article-title: Multi-output adaptive neuro-fuzzy inference system
– volume: 12
  start-page: 1295
  issue: 8
  year: 2020
  ident: 10.1016/j.eswa.2022.117754_b12
  article-title: The use of fuzzy linear regression and ANFIS methods to predict the compressive strength of cement
  publication-title: Symmetry
  doi: 10.3390/sym12081295
– volume: 6
  start-page: 121
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2022.117754_b10
  article-title: Multi-output adaptive neuro-fuzzy inference system for prediction of dissolved metal levels in acid rock drainage: a case study
  publication-title: Journal of AI and Data Mining
– volume: 88
  issue: 17
  year: 2002
  ident: 10.1016/j.eswa.2022.117754_b3
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.88.174102
– volume: 8
  start-page: 609
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2022.117754_b6
  article-title: A novel approach for ANFIS modelling based on full factorial design
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.03.010
– volume: 9
  start-page: 2950
  issue: 15
  year: 2019
  ident: 10.1016/j.eswa.2022.117754_b19
  article-title: Fault diagnosis of induction motor using convolutional neural network
  publication-title: Applied Sciences
  doi: 10.3390/app9152950
– volume: 2018
  year: 2018
  ident: 10.1016/j.eswa.2022.117754_b41
  article-title: An enhancement deep feature extraction method for bearing fault diagnosis based on kernel function and autoencoder
  publication-title: Shock and Vibration
– volume: 33
  start-page: 4501
  issue: 9
  year: 2021
  ident: 10.1016/j.eswa.2022.117754_b1
  article-title: A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-05244-4
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 10.1016/j.eswa.2022.117754_b18
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/21.256541
– volume: 22
  start-page: 43
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2022.117754_b36
  article-title: A comparative study of neural networks and ANFIS for forecasting attendance rate of soccer games
  publication-title: Mathematical and Computational Applications
  doi: 10.3390/mca22040043
– volume: 409
  start-page: 35
  year: 2020
  ident: 10.1016/j.eswa.2022.117754_b9
  article-title: Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.040
– volume: 171
  start-page: 837
  year: 2016
  ident: 10.1016/j.eswa.2022.117754_b29
  article-title: A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.020
– start-page: 1757
  year: 2016
  ident: 10.1016/j.eswa.2022.117754_b31
  article-title: Automated fault diagnosis of rolling element bearings based on morphological operators and M-ANFIS
– volume: 41
  start-page: 581
  issue: 1–2
  year: 2013
  ident: 10.1016/j.eswa.2022.117754_b42
  article-title: Fault diagnosis of diesel engine based on adaptive wavelet packets and EEMD-fractal dimension
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2013.07.009
– start-page: 825
  year: 2016
  ident: 10.1016/j.eswa.2022.117754_b44
  article-title: Detecting people in artwork with CNNs
– volume: 77
  start-page: 167
  year: 2018
  ident: 10.1016/j.eswa.2022.117754_b23
  article-title: Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2018.04.005
– volume: 32
  start-page: 469
  issue: 8
  year: 1999
  ident: 10.1016/j.eswa.2022.117754_b39
  article-title: A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings
  publication-title: Tribology International
  doi: 10.1016/S0301-679X(99)00077-8
– volume: 11
  start-page: 1212
  issue: 10
  year: 2019
  ident: 10.1016/j.eswa.2022.117754_b16
  article-title: Fault diagnosis system for induction motors by CNN using empirical wavelet transform
  publication-title: Symmetry
  doi: 10.3390/sym11101212
– volume: 169
  year: 2021
  ident: 10.1016/j.eswa.2022.117754_b45
  article-title: A hybrid deep-learning model for fault diagnosis of rolling bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108502
– volume: 21
  start-page: 824
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2022.117754_b46
  article-title: Approximate entropy as a diagnostic tool for machine health monitoring
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2006.02.009
– volume: 379
  issue: 2207
  year: 2021
  ident: 10.1016/j.eswa.2022.117754_b11
  article-title: Digital twins as run-time predictive models for the resilience of cyber-physical systems: a conceptual framework
  publication-title: Philosophical Transactions of the Royal Society of London A (Mathematical and Physical Sciences)
– volume: 111
  start-page: 681
  year: 2020
  ident: 10.1016/j.eswa.2022.117754_b7
  article-title: Smart-troubleshooting connected devices: Concept, challenges and opportunities
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.09.004
– volume: 42
  start-page: 1
  issue: 9
  year: 2020
  ident: 10.1016/j.eswa.2022.117754_b14
  article-title: Bearing fault identification based on convolutional neural network by different input modes
  publication-title: Journal of the Brazilian Society of Mechanical Sciences and Engineering
  doi: 10.1007/s40430-020-02561-6
– volume: 65
  start-page: 5990
  issue: 7
  year: 2017
  ident: 10.1016/j.eswa.2022.117754_b43
  article-title: A new convolutional neural network-based data-driven fault diagnosis method
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2017.2774777
– volume: 29
  start-page: 474
  year: 2012
  ident: 10.1016/j.eswa.2022.117754_b47
  article-title: Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2011.11.022
– volume: 2014
  year: 2014
  ident: 10.1016/j.eswa.2022.117754_b51
  article-title: Multiscale permutation entropy based rolling bearing fault diagnosis
  publication-title: Shock and Vibration
  doi: 10.1155/2014/154291
– volume: 167
  year: 2021
  ident: 10.1016/j.eswa.2022.117754_b33
  article-title: An experimental methodology to evaluate machine learning methods for fault diagnosis based on vibration signals
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114022
– start-page: 345
  year: 2019
  ident: 10.1016/j.eswa.2022.117754_b2
  article-title: Data-driven fault diagnosis of once-through benson boilers
– volume: 292
  start-page: 142
  year: 2018
  ident: 10.1016/j.eswa.2022.117754_b13
  article-title: Machinery health indicator construction based on convolutional neural networks considering trend burr
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.083
– volume: 21
  start-page: 2607
  issue: 6
  year: 2007
  ident: 10.1016/j.eswa.2022.117754_b30
  article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2006.12.004
– volume: 16
  start-page: 271
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2022.117754_b5
  article-title: A comparative study of various methods of bearing faults diagnosis using the case western reserve university data
  publication-title: Journal of Failure Analysis and Prevention
  doi: 10.1007/s11668-016-0080-7
– volume: 115
  start-page: 213
  year: 2019
  ident: 10.1016/j.eswa.2022.117754_b50
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 18
  start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2022.117754_b35
  article-title: Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2013.10.002
– volume: 253
  start-page: 1087
  issue: 5
  year: 2002
  ident: 10.1016/j.eswa.2022.117754_b28
  article-title: Vibration signal analysis and feature extraction based on reassigned wavelet scalogram
  publication-title: Journal of Sound and Vibration
  doi: 10.1006/jsvi.2001.4085
– year: 2019
  ident: 10.1016/j.eswa.2022.117754_b49
– volume: 278
  start-page: H2039
  issue: 6
  year: 2000
  ident: 10.1016/j.eswa.2022.117754_b34
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: American Journal of Physiology-Heart and Circulatory Physiology
  doi: 10.1152/ajpheart.2000.278.6.H2039
– volume: 64
  start-page: 100
  year: 2015
  ident: 10.1016/j.eswa.2022.117754_b38
  article-title: Rolling element bearing diagnostics using the case western reserve university data: A benchmark study
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2015.04.021
– volume: 8
  start-page: 93155
  year: 2020
  ident: 10.1016/j.eswa.2022.117754_b27
  article-title: Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990528
– volume: 20
  start-page: 12252
  issue: 20
  year: 2020
  ident: 10.1016/j.eswa.2022.117754_b22
  article-title: A novel indicator to improve fast kurtogram for the health monitoring of rolling bearing
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2020.2999107
– volume: 25
  start-page: 485
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2022.117754_b32
  article-title: Rolling element bearing diagnostics—A tutorial
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2010.07.017
– volume: 150
  year: 2021
  ident: 10.1016/j.eswa.2022.117754_b24
  article-title: A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2020.107233
– volume: 20
  start-page: 95
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2022.117754_b8
  article-title: Automatic selection of the WPT decomposition level for condition monitoring of rotor elements based on the sensitivity analysis of the wavelet energy
  publication-title: The International Journal of Acoustics and Vibration
– volume: 39
  start-page: 3494
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2022.117754_b25
  article-title: A new approach for time series prediction using ensembles of ANFIS models
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.09.040
– volume: 114
  start-page: 165
  year: 2019
  ident: 10.1016/j.eswa.2022.117754_b17
  article-title: Rolling bearing fault diagnosis and performance degradation assessment under variable operation conditions based on nuisance attribute projection
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.05.015
– volume: 1
  start-page: 865
  issue: 4
  year: 1985
  ident: 10.1016/j.eswa.2022.117754_b26
  article-title: Report of large motor reliability survey of industrial and commercial installations, Part I
  publication-title: IEEE Transactions on Industry Applications
– volume: 360
  start-page: 277
  year: 2016
  ident: 10.1016/j.eswa.2022.117754_b21
  article-title: A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2015.09.016
– volume: 25
  start-page: 1738
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2022.117754_b20
  article-title: Application of an improved kurtogram method for fault diagnosis of rolling element bearings
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2010.12.011
– start-page: 841
  year: 2018
  ident: 10.1016/j.eswa.2022.117754_b15
  article-title: Deep belief network and dempster-shafer evidence theory for bearing fault diagnosis
– volume: 161
  start-page: 272
  year: 2019
  ident: 10.1016/j.eswa.2022.117754_b40
  article-title: A comparative study of fine-tuning deep learning models for plant disease identification
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.03.032
– volume: 7
  start-page: 122644
  year: 2019
  ident: 10.1016/j.eswa.2022.117754_b37
  article-title: Challenges and opportunities of deep learning models for machinery fault detection and diagnosis: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2938227
– volume: 69
  start-page: 164
  year: 2015
  ident: 10.1016/j.eswa.2022.117754_b48
  article-title: A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.03.017
SSID ssj0017007
Score 2.6237
Snippet Rotating equipment is considered as a key component in several industrial sectors. In fact, the continuous operation of many industrial machines such as...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 117754
SubjectTerms Computer Science
Datavetenskap
Fault diagnosis
Multi output adaptive neuro-fuzzy inference system
Permutation entropy
Rolling element bearing
Wavelet transform
Title Fault diagnosis in industrial rotating equipment based on permutation entropy, signal processing and multi-output neuro-fuzzy classifier
URI https://dx.doi.org/10.1016/j.eswa.2022.117754
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-115923
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-59530
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuHCG7EFKh-AC5hN1nacPa4KqwVEL1DUm-X4UYK2SdgmQu2h5_5sZuJkBQf2QJSLo7HieJyZsWfmG0JeiCTAriRwltk8MGGSguU2SZhNglLzLIBWwXznz8fZ6kR8PJWne-RozIXBsMpB9keZ3kvr4cl0mM1pU5bTL2AcgDqErR06dMEKwQx2oXCVv73ehnkg_JyKeHuKIfWQOBNjvPzFL8Qems1636UU_1ROf6KI9ppneY_cGUxGuoijuk_2fPWA3B3LMdDh73xIbpamW7fUxeC58oKWFdxjZQ66qdHrXp1R_7Mr-yghiirM0bqiDcjnLjrlKR731s3lG4qhHdCviakE2NNUjvYRiKzuWng77dEwWeiuri6pRTu8DPAlj8jJ8v3XoxUbCi0wK9J5y7zD4x_lwTgJMi9cEnxqeBZsJqyRrsidV9zxYNJguVE8y41LQdSBQMgKAZx-TParuvJPCJXcA5ut8XAJnhdArTiHNliC3s_shKTjDGs7oJBjMYy1HsPNfmjkikau6MiVCXm97dNEDI6d1HJknP5rJWlQEjv7vYpc3r4Dkbffld8Wut6c6XXVAaEEe3hCXu4iPHfftZxLnhz850CektvYwoTHVD4j--2m88_B8mmLw35pH5Jbiw-fVse_Ac0ECMc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07c9QwENaEUEBDwmtyCQEVhAbE2ZZl-wqKDOHmQh4NCZNO2HoEM4ft3NmTuRTU_B_-ILuWfQMFVzATjxvbkvVYaXclfbtLyMvQs7AqsZxFKrEsTL2MJcrzmPJsHI8iC1IF7Z1PTqPJefjxQlyskV-9LQzCKjve73h6y627N8OuN4dVng8_gXIA4hCWdnigC1pIh6w8MotrWLfN3x0eAJH3gmD84ez9hHWhBZgK_VHNjMYNj9iAOLYiybRnjZ_yyKooVKnQWaJNzDW3qW8VT2MeJan2YXLDFIiyENoG_71D7obALjBswtsfS1wJ-ruLnYO_mGH1OksdByoz82t0dhQE7WGpCP8pDf90W9qKuvEmedDpqHTfdcNDsmaKR2Sjj_9AO3bwmPwcp820ptqh9fI5zQu4-1AgdFbiMX9xSc1Vk7ewJIoyU9OyoBUIhMahACjuL5fV4g1FLAnkq5ztAuZMC01byCMrmxpKp637TWabm5sFVaj45xZa8oSc30r3PyXrRVmYLUIFNzCuVGrgCnmSQeqYc3gG1dOYQA2I3_ewVJ3bc4y-MZU9vu2bRKpIpIp0VBmQ18s8lXP6sTK16Akn_xq6EqTSynyvHJWXZaCr74P8874sZ5dyWjSQUIACPiB7qxJ-11-lGAnubf9nRV6Qe5Ozk2N5fHh6tEPu4xe0tvTFM7JezxqzC2pXnT1vhzklX257Xv0G4WVFTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+diagnosis+in+industrial+rotating+equipment+based+on+permutation+entropy%2C+signal+processing+and+multi-output+neuro-fuzzy+classifier&rft.jtitle=Expert+systems+with+applications&rft.au=Rajabi%2C+Saeed&rft.au=Saman+Azari%2C+Mehdi&rft.au=Santini%2C+Stefania&rft.au=Flammini%2C+Francesco&rft.date=2022-11-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=206&rft_id=info:doi/10.1016%2Fj.eswa.2022.117754&rft.externalDocID=S0957417422010326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon