Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation

Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and at...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 19; no. 5; pp. 1598 - 1609
Main Authors Roy, Snehashis, Qing He, Sweeney, Elizabeth, Carass, Aaron, Reich, Daniel S., Prince, Jerry L., Pham, Dzung L.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and atlas priors. Training data for the method consists of an atlas MR image, prior information maps depicting where different tissues are expected to be located, and a hard segmentation. Unlike most atlas-based classification methods that require deformable registration of the atlas priors to the subject, only affine registration is required between the subject and training atlas. A subject-specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches leading to tissue memberships at each voxel. The combination of prior information in an example-based framework enables us to distinguish tissues having similar intensities but different spatial locations. We demonstrate the efficacy of the approach on the application of whole-brain tissue segmentation in subjects with healthy anatomy and normal pressure hydrocephalus, as well as lesion segmentation in multiple sclerosis patients. For each application, quantitative comparisons are made against publicly available state-of-the art approaches.
AbstractList Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and atlas priors. Training data for the method consists of an atlas MR image, prior information maps depicting where different tissues are expected to be located, and a hard segmentation. Unlike most atlas-based classification methods that require deformable registration of the atlas priors to the subject, only affine registration is required between the subject and training atlas. A subject-specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches leading to tissue memberships at each voxel. The combination of prior information in an example-based framework enables us to distinguish tissues having similar intensities but different spatial locations. We demonstrate the efficacy of the approach on the application of whole-brain tissue segmentation in subjects with healthy anatomy and normal pressure hydrocephalus, as well as lesion segmentation in multiple sclerosis patients. For each application, quantitative comparisons are made against publicly available state-of-the art approaches.
Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and atlas priors. Training data for the method consists of an atlas MR image, prior information maps depicting where different tissues are expected to be located, and a hard segmentation. Unlike most atlas-based classification methods that require deformable registration of the atlas priors to the subject, only affine registration is required between the subject and training atlas. A subject specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches leading to tissue memberships at each voxel. The combination of prior information in an example-based framework enables us to distinguish tissues having similar intensities but different spatial locations. We demonstrate the efficacy of the approach on the application of whole brain tissue segmentation in subjects with healthy anatomy and normal pressure hydrocephalus, as well as lesion segmentation in multiple sclerosis patients. For each application, quantitative comparisons are made against publicly available, state-of-the art approaches.
Author Pham, Dzung L.
Reich, Daniel S.
Carass, Aaron
Roy, Snehashis
Sweeney, Elizabeth
Prince, Jerry L.
Qing He
Author_xml – sequence: 1
  givenname: Snehashis
  surname: Roy
  fullname: Roy, Snehashis
  email: snehashis.roy@nih.gov
  organization: Center for Neurosci. & Regenerative Med., Bethesda, MD, USA
– sequence: 2
  surname: Qing He
  fullname: Qing He
  email: qing.he@nih.gov
  organization: Center for Neurosci. & Regenerative Med., Bethesda, MD, USA
– sequence: 3
  givenname: Elizabeth
  surname: Sweeney
  fullname: Sweeney, Elizabeth
  email: elizabethmargaretsweeney@gmail.com
  organization: Dept. of Biostat., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 4
  givenname: Aaron
  surname: Carass
  fullname: Carass, Aaron
  email: aaron_carass@jhu.edu
  organization: Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 5
  givenname: Daniel S.
  surname: Reich
  fullname: Reich, Daniel S.
  email: daniel.reich@nih.gov
  organization: Translational Neuroradiology Unit, Nat. Inst. of Neurological Disorders & Stroke, Bethesda, MD, USA
– sequence: 6
  givenname: Jerry L.
  surname: Prince
  fullname: Prince, Jerry L.
  email: prince@jhu.edu
  organization: Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 7
  givenname: Dzung L.
  surname: Pham
  fullname: Pham, Dzung L.
  email: dzung.pham@nih.gov
  organization: Center for Neurosci. & Regenerative Med., Bethesda, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26340685$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtvGyEQRpGjOE3yA6pK1R57WWdgWZa9VIrdhx05ihQnZwR41iVasw6sK_XfF8uO1fQQDjCC7zHM94EMfOeRkI8URpRCfX07ns5GDGg5YryoGWcn5JxRIXPGQA5ea1rzIbmK8RnSkumqFmdkyETBQcjynDwstuYZbZ8vNmhd42y22OgQMfvmbO86r8OfbI46eOdXWdOF7KZvdczHOuIyGwftfHb3MMsWuFqj7_WOcklOG91GvDqcF-Tpx_fHyTSf3_-cTW7mueW07nNccqw0E2mXxVIaSF8xDEoUFGUFkmHZCFNoLY0xTMualoyXTICswdhGFhfk6153szVrXNrkH3SrNsGtU9eq0069ffHul1p1vxUvBQPBk8CXg0DoXrYYe7V20WLbao_dNipaQV1BBRwS9PO_XkeT10EmAN0DbOhiDNgcIRTULi-1y0vt8lKHvBKn-o9j3X6EqV3Xvsv8tGc6RDw6VZTyBCv-AocZoaU
CODEN IJBHA9
CitedBy_id crossref_primary_10_3389_fnins_2024_1366029
crossref_primary_10_1016_j_media_2016_08_014
crossref_primary_10_1016_j_dsp_2018_09_007
crossref_primary_10_1016_j_neuroimage_2018_08_003
crossref_primary_10_1016_j_neuroimage_2022_119486
crossref_primary_10_1007_s10278_022_00655_2
crossref_primary_10_1007_s11517_021_02414_x
crossref_primary_10_3389_fimmu_2021_700582
crossref_primary_10_1049_iet_ipr_2019_0942
crossref_primary_10_1109_TBME_2017_2783305
crossref_primary_10_1016_j_compbiomed_2021_104337
crossref_primary_10_1016_j_mri_2019_05_041
crossref_primary_10_1109_ACCESS_2023_3343155
crossref_primary_10_1007_s11831_020_09403_7
crossref_primary_10_1038_s41598_019_54527_x
crossref_primary_10_1016_j_heliyon_2019_e01226
crossref_primary_10_1016_j_compbiomed_2017_10_009
crossref_primary_10_1109_TMI_2018_2851607
crossref_primary_10_3174_ajnr_A5254
crossref_primary_10_1007_s11831_019_09383_3
crossref_primary_10_1109_JBHI_2015_2444011
crossref_primary_10_1007_s11760_020_01700_9
crossref_primary_10_1016_j_neuroimage_2016_12_064
crossref_primary_10_1002_acm2_14177
crossref_primary_10_1093_brain_awy245
crossref_primary_10_1007_s10278_020_00361_x
crossref_primary_10_1007_s11063_023_11232_1
crossref_primary_10_1109_ACCESS_2019_2902463
crossref_primary_10_3389_fninf_2018_00069
crossref_primary_10_1038_s41598_020_64803_w
crossref_primary_10_3233_NRE_161384
crossref_primary_10_1136_bmjopen_2020_042660
crossref_primary_10_1016_j_nicl_2019_101871
crossref_primary_10_1109_JBHI_2020_3019198
crossref_primary_10_1007_s11042_023_16292_y
crossref_primary_10_1016_j_neucom_2021_05_047
crossref_primary_10_3389_fimmu_2021_642167
crossref_primary_10_1016_j_nicl_2020_102256
crossref_primary_10_3389_fnins_2025_1540480
crossref_primary_10_1115_1_4040230
crossref_primary_10_1016_j_neuroimage_2016_11_017
crossref_primary_10_1109_TCYB_2020_2994235
crossref_primary_10_1146_annurev_bioeng_060418_052147
crossref_primary_10_3174_ajnr_A7165
crossref_primary_10_1002_acn3_734
crossref_primary_10_1016_j_patrec_2018_04_037
crossref_primary_10_1007_s11042_022_12162_1
Cites_doi 10.1371/journal.pone.0045081
10.1016/j.neuroimage.2009.09.005
10.1109/CVPR.2005.38
10.1016/j.neuroimage.2011.03.045
10.1109/TIT.2011.2173241
10.1109/TMI.2010.2050897
10.1109/TMI.2002.806283
10.1016/j.neuroimage.2010.09.018
10.1016/j.neuroimage.2005.02.018
10.1007/978-3-319-10581-9_31
10.1016/S1361-8415(01)00036-6
10.1109/TMI.2004.828354
10.1016/j.neuroimage.2010.04.193
10.1109/TMI.2013.2282126
10.1016/j.neuroimage.2011.03.080
10.1109/TPAMI.1980.4766964
10.1006/nimg.1995.1012
10.1109/42.906424
10.1523/JNEUROSCI.23-08-03295.2003
10.1016/j.neuroimage.2011.10.080
10.1016/j.neuroimage.2011.02.013
10.1002/hbm.460030304
10.1109/42.811270
10.1007/978-3-319-08849-5_14
10.1016/j.nicl.2013.03.002
10.1109/ISBI.2013.6556484
10.1145/383259.383295
10.1109/TMI.2011.2163944
10.1016/j.neuroimage.2013.11.040
10.1016/S0167-8655(98)00121-4
10.1016/j.neuroimage.2006.05.061
10.1016/j.acra.2007.10.012
10.1006/nimg.1998.0395
10.1016/S0042-6989(97)00169-7
10.1007/978-3-642-40811-3_92
10.1109/TMI.2010.2046908
10.1371/journal.pone.0037049
10.1007/978-3-319-02126-3_6
10.1109/TIT.2005.860430
10.1016/j.media.2008.06.008
10.1109/ISBI.2008.4541030
10.2307/1932409
10.1109/TPAMI.2012.143
10.1006/cviu.2001.0951
10.1016/j.neuroimage.2013.02.069
10.1109/ISBI.2009.5193070
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1109/JBHI.2015.2439242
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 1609
ExternalDocumentID PMC4562064
26340685
10_1109_JBHI_2015_2439242
7114201
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, N.I.H., Intramural
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Intramural Research Program of the NINDS/NIH
  grantid: NIH/NINDS R01NS070906; NIH/NIBIB R21EB012765; NIH/NIBIB 1R01EB017743; NIH/NIA T32AG021334; NIH/NINDS R01NS085211; NIH/NINDS R01NS060910
– fundername: Department of Defense at the Center for Neuroscience and Regenerative Medicine
– fundername: NIBIB NIH HHS
  grantid: 1R01EB017743
– fundername: NINDS NIH HHS
  grantid: R01 NS085211
– fundername: NIA NIH HHS
  grantid: T32 AG000247
– fundername: NIA NIH HHS
  grantid: T32AG021334
– fundername: NINDS NIH HHS
  grantid: R01 NS060910
– fundername: NINDS NIH HHS
  grantid: R01NS070906
– fundername: NIBIB NIH HHS
  grantid: R01 EB017743
– fundername: NINDS NIH HHS
  grantid: R01NS085211
– fundername: NIA NIH HHS
  grantid: P30 AG021334
– fundername: NIBIB NIH HHS
  grantid: R21EB012765
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c419t-ed4e7a264e783d8b0015b205e61e87082e5f6b3aa8bbb2a8915245260890bcf83
IEDL.DBID RIE
ISSN 2168-2194
IngestDate Thu Aug 21 18:41:48 EDT 2025
Fri Jul 11 11:44:02 EDT 2025
Mon Jul 21 05:39:13 EDT 2025
Tue Jul 01 02:59:53 EDT 2025
Thu Apr 24 22:55:06 EDT 2025
Tue Aug 26 16:38:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords magnetic resonance imaging (MRI)
Brain
dictionary
histogram matching
patches
segmentation
sparsity
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-ed4e7a264e783d8b0015b205e61e87082e5f6b3aa8bbb2a8915245260890bcf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4562064
PMID 26340685
PQID 1709707040
PQPubID 23479
PageCount 12
ParticipantIDs ieee_primary_7114201
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4562064
pubmed_primary_26340685
proquest_miscellaneous_1709707040
crossref_primary_10_1109_JBHI_2015_2439242
crossref_citationtrail_10_1109_JBHI_2015_2439242
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Sept.
2015-9-00
2015-Sep
20150901
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-Sept.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref12
ref15
ref55
ref11
ref54
ref10
roy (ref16) 0; 7623
ref17
ref19
ref18
souplet (ref51) 0
resnick (ref1) 2003; 23
ait (ref53) 0
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
lecoeur (ref52) 0
ref7
ref9
ref4
ref3
ref6
shiee (ref38) 0
ref5
ref40
cocosco (ref39) 1997; 5
ref35
ref34
ref37
leemput (ref28) 2006; 33
ref36
ref31
ref30
ref33
ref2
wang (ref32) 0
ref24
ref23
ref26
ref25
cao (ref20) 0
ref22
ref21
roy (ref14) 0
styner (ref48) 0
ref27
ref29
roy (ref56) 0; 9034
References_xml – ident: ref50
  doi: 10.1371/journal.pone.0045081
– ident: ref11
  doi: 10.1016/j.neuroimage.2009.09.005
– ident: ref18
  doi: 10.1109/CVPR.2005.38
– ident: ref45
  doi: 10.1016/j.neuroimage.2011.03.045
– start-page: 1
  year: 0
  ident: ref38
  article-title: Segmentation of brain images using adaptive atlases with application to ventriculomegaly
  publication-title: Proc Int Conf Inf Process Med Imag
– ident: ref49
  doi: 10.1109/TIT.2011.2173241
– ident: ref31
  doi: 10.1109/TMI.2010.2050897
– ident: ref55
  doi: 10.1109/TMI.2002.806283
– ident: ref24
  doi: 10.1016/j.neuroimage.2010.09.018
– volume: 7623
  start-page: 76230j
  year: 0
  ident: ref16
  article-title: Synthesizing MR contrast and resolution through a patch matching technique
  publication-title: Proc SPIE Int Soc Opt Eng
– ident: ref3
  doi: 10.1016/j.neuroimage.2005.02.018
– ident: ref33
  doi: 10.1007/978-3-319-10581-9_31
– ident: ref34
  doi: 10.1016/S1361-8415(01)00036-6
– ident: ref30
  doi: 10.1109/TMI.2004.828354
– ident: ref29
  doi: 10.1016/j.neuroimage.2010.04.193
– year: 0
  ident: ref20
  article-title: Registration for correlative microscopy using image analogies
  publication-title: Proc Workshop Biomed Image Registrat
– ident: ref19
  doi: 10.1109/TMI.2013.2282126
– ident: ref47
  doi: 10.1016/j.neuroimage.2011.03.080
– ident: ref42
  doi: 10.1109/TPAMI.1980.4766964
– ident: ref43
  doi: 10.1006/nimg.1995.1012
– ident: ref4
  doi: 10.1109/42.906424
– start-page: 409
  year: 0
  ident: ref53
  article-title: STREM: A robust multidimensional parametric method to segment MS lesions in MRI
  publication-title: Proc Med Image Comput Comput Asst Interv
– volume: 23
  start-page: 3295
  year: 2003
  ident: ref1
  article-title: Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-08-03295.2003
– ident: ref22
  doi: 10.1016/j.neuroimage.2011.10.080
– ident: ref6
  doi: 10.1016/j.neuroimage.2011.02.013
– ident: ref27
  doi: 10.1002/hbm.460030304
– ident: ref5
  doi: 10.1109/42.811270
– start-page: 1
  year: 0
  ident: ref48
  article-title: 3D Segmentation in the clinic: A grand challenge II: MS lesion segmentation
– start-page: 73
  year: 0
  ident: ref32
  article-title: Optimal weights for multi-atlas label fusion
  publication-title: Proc Int Conf Inf Proc Med Imaging
– ident: ref26
  doi: 10.1007/978-3-319-08849-5_14
– year: 0
  ident: ref51
  article-title: An automatic segmentation of T2-FLAIR multiple sclerosis lesions
– ident: ref40
  doi: 10.1016/j.nicl.2013.03.002
– ident: ref17
  doi: 10.1109/ISBI.2013.6556484
– ident: ref13
  doi: 10.1145/383259.383295
– ident: ref41
  doi: 10.1109/TMI.2011.2163944
– ident: ref25
  doi: 10.1016/j.neuroimage.2013.11.040
– ident: ref35
  doi: 10.1016/S0167-8655(98)00121-4
– volume: 33
  start-page: 115
  year: 2006
  ident: ref28
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.05.061
– ident: ref54
  doi: 10.1016/j.acra.2007.10.012
– ident: ref12
  doi: 10.1006/nimg.1998.0395
– ident: ref37
  doi: 10.1016/S0042-6989(97)00169-7
– volume: 5
  start-page: 425s
  year: 1997
  ident: ref39
  article-title: BrainWeb: Online interface to a 3-D MRI simulated brain database
  publication-title: NeuroImage
– ident: ref57
  doi: 10.1007/978-3-642-40811-3_92
– ident: ref44
  doi: 10.1109/TMI.2010.2046908
– start-page: 371
  year: 0
  ident: ref14
  article-title: A compressed sensing approach for MR tissue contrast synthesis
  publication-title: Proc 22nd Int Conf Inf Proc Med Imag
– ident: ref2
  doi: 10.1371/journal.pone.0037049
– ident: ref15
  doi: 10.1007/978-3-319-02126-3_6
– ident: ref36
  doi: 10.1109/TIT.2005.860430
– ident: ref10
  doi: 10.1016/j.media.2008.06.008
– ident: ref9
  doi: 10.1109/ISBI.2008.4541030
– ident: ref46
  doi: 10.2307/1932409
– year: 0
  ident: ref52
  article-title: Optimized supervised segmentation of MS lesions from multispectral MRIs
– ident: ref23
  doi: 10.1109/TPAMI.2012.143
– ident: ref8
  doi: 10.1006/cviu.2001.0951
– volume: 9034
  start-page: 90341y
  year: 0
  ident: ref56
  article-title: Example-based lesion segmentation
  publication-title: Proc SPIE Med Imag
– ident: ref21
  doi: 10.1016/j.neuroimage.2013.02.069
– ident: ref7
  doi: 10.1109/ISBI.2009.5193070
SSID ssj0000816896
Score 2.393109
Snippet Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease...
Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1598
SubjectTerms Adult
Aged
Algorithms
Biomedical imaging
brain
Brain - pathology
Brain modeling
Dictionaries
dictionary
Female
histogram matching
Humans
Hydrocephalus, Normal Pressure - pathology
Image Processing, Computer-Assisted - methods
Image segmentation
Lesions
Machine Learning
magnetic resonance imaging (MRI)
Magnetic Resonance Imaging - methods
Male
Manuals
Middle Aged
Multiple Sclerosis - pathology
patches
segmentation
sparsity
Training data
Young Adult
Title Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation
URI https://ieeexplore.ieee.org/document/7114201
https://www.ncbi.nlm.nih.gov/pubmed/26340685
https://www.proquest.com/docview/1709707040
https://pubmed.ncbi.nlm.nih.gov/PMC4562064
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAXCpRHeMlInBDeJo43cY5doNpWWg4tlXqLbGdSVtBsVbIH-PXMON6orSrEzVJsyfGMPZ89jw_gPfp02lSll60vjNSqQToHnZekWi0BAu9UxrnDi6_F_FQfnU3PtuDjmAuDiCH4DCfcDL78ZuXX_FS2V3LiJydr3aOL25CrNb6nBAKJQMelqCFpI-roxMzSau9oNj_kOK7pRJEFJrPERYCLnKwZkyhfs0iBYuUutHk7aPKaFTrYgcVm_kPwyY_JuncT_-dWacf__cFH8DDCUbE_6M9j2MLuCdxfRIf7LhzTwcIvNTLw1LdLL04u6SqM4vMyJETYq98ilmg9F4R_xX5PcFzOyDY2Ysb0E2JxfChO8PwiJjl1T-H04Mu3T3MZaRik11nVS2w0lpaAE5Ymb0yAWU6lUywypN1uFJJYXW6tcc4payqCBExcnpqKpN6a_Blsd6sOX4BolVNtYT2BBKt1axyBGe1cYXNVtmllEkg3oqh9rFHOVBk_63BXSauaBVmzIOsoyAQ-jEMuhwId_-q8y4s-dozrncC7jbxr2l3sMrEdrta_6qxMq5JORZ0m8HyQ_zh4oz8JlDc0Y-zAlbtvfumW30MFb752EhZ8efd0XsEDnvQQyfYatvurNb4h6NO7t0Hn_wKSbfze
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRQIuvAolPI3ECeGt47ycYxeodkvTQx9Sb5HtOGUFZKuSPcCvZ8bxRm1VIW6WYkuxZ-z57Hl8AO-dFVlTFpa3Nlc8lY3Dc9BYjqrVIiCwRsaUO1wd5rPTdP8sO9uAj2MujHPOB5-5CTW9L79Z2hU9le0UlPhJyVp30O5n8ZCtNb6oeAoJT8glscFxK6bBjRmLcmd_OptTJFc2kWiD0TBRGeA8QXtGNMpXbJInWbkNb94Mm7xih_YeQrWewRB-8n2y6s3E_rlR3PF_p_gIHgRAynYHDXoMG657Aner4HLfgiM8Wuithnum-nZh2fEFXoYd-7zwKRH68jcLRVrPGSJgttsjIOdTtI4NmxIBBauO5uzYnf8MaU7dUzjd-3LyacYDEQO3aVz23DWpKzRCJ1eopFEeaBkpMpfHDve7kg4FaxKtlTFGalUiKCDqcqFKlHurkmew2S079xxYK41sc20RJug0bZVBOJMak-tEFq0oVQRiLYrahirlRJbxo_a3FVHWJMiaBFkHQUbwYRxyMZTo-FfnLVr0sWNY7wjereVd4_4ip4nu3HL1q44LURZ4LqYigu1B_uPgtf5EUFzTjLED1e6-_qVbfPM1vOniiWjwxe2_8xbuzU6qg_pgfvj1JdynCQxxba9gs79cudcIhHrzxuv_X-feADY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject+Specific+Sparse+Dictionary+Learning+for+Atlas+Based+Brain+MRI+Segmentation&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Roy%2C+Snehashis&rft.au=He%2C+Qing&rft.au=Sweeney%2C+Elizabeth&rft.au=Carass%2C+Aaron&rft.date=2015-09-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=19&rft.issue=5&rft.spage=1598&rft.epage=1609&rft_id=info:doi/10.1109%2FJBHI.2015.2439242&rft_id=info%3Apmid%2F26340685&rft.externalDocID=PMC4562064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon