Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation
Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and at...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 19; no. 5; pp. 1598 - 1609 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and atlas priors. Training data for the method consists of an atlas MR image, prior information maps depicting where different tissues are expected to be located, and a hard segmentation. Unlike most atlas-based classification methods that require deformable registration of the atlas priors to the subject, only affine registration is required between the subject and training atlas. A subject-specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches leading to tissue memberships at each voxel. The combination of prior information in an example-based framework enables us to distinguish tissues having similar intensities but different spatial locations. We demonstrate the efficacy of the approach on the application of whole-brain tissue segmentation in subjects with healthy anatomy and normal pressure hydrocephalus, as well as lesion segmentation in multiple sclerosis patients. For each application, quantitative comparisons are made against publicly available state-of-the art approaches. |
---|---|
AbstractList | Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and atlas priors. Training data for the method consists of an atlas MR image, prior information maps depicting where different tissues are expected to be located, and a hard segmentation. Unlike most atlas-based classification methods that require deformable registration of the atlas priors to the subject, only affine registration is required between the subject and training atlas. A subject-specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches leading to tissue memberships at each voxel. The combination of prior information in an example-based framework enables us to distinguish tissues having similar intensities but different spatial locations. We demonstrate the efficacy of the approach on the application of whole-brain tissue segmentation in subjects with healthy anatomy and normal pressure hydrocephalus, as well as lesion segmentation in multiple sclerosis patients. For each application, quantitative comparisons are made against publicly available state-of-the art approaches. Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and atlas priors. Training data for the method consists of an atlas MR image, prior information maps depicting where different tissues are expected to be located, and a hard segmentation. Unlike most atlas-based classification methods that require deformable registration of the atlas priors to the subject, only affine registration is required between the subject and training atlas. A subject specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches leading to tissue memberships at each voxel. The combination of prior information in an example-based framework enables us to distinguish tissues having similar intensities but different spatial locations. We demonstrate the efficacy of the approach on the application of whole brain tissue segmentation in subjects with healthy anatomy and normal pressure hydrocephalus, as well as lesion segmentation in multiple sclerosis patients. For each application, quantitative comparisons are made against publicly available, state-of-the art approaches. |
Author | Pham, Dzung L. Reich, Daniel S. Carass, Aaron Roy, Snehashis Sweeney, Elizabeth Prince, Jerry L. Qing He |
Author_xml | – sequence: 1 givenname: Snehashis surname: Roy fullname: Roy, Snehashis email: snehashis.roy@nih.gov organization: Center for Neurosci. & Regenerative Med., Bethesda, MD, USA – sequence: 2 surname: Qing He fullname: Qing He email: qing.he@nih.gov organization: Center for Neurosci. & Regenerative Med., Bethesda, MD, USA – sequence: 3 givenname: Elizabeth surname: Sweeney fullname: Sweeney, Elizabeth email: elizabethmargaretsweeney@gmail.com organization: Dept. of Biostat., Johns Hopkins Univ., Baltimore, MD, USA – sequence: 4 givenname: Aaron surname: Carass fullname: Carass, Aaron email: aaron_carass@jhu.edu organization: Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA – sequence: 5 givenname: Daniel S. surname: Reich fullname: Reich, Daniel S. email: daniel.reich@nih.gov organization: Translational Neuroradiology Unit, Nat. Inst. of Neurological Disorders & Stroke, Bethesda, MD, USA – sequence: 6 givenname: Jerry L. surname: Prince fullname: Prince, Jerry L. email: prince@jhu.edu organization: Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA – sequence: 7 givenname: Dzung L. surname: Pham fullname: Pham, Dzung L. email: dzung.pham@nih.gov organization: Center for Neurosci. & Regenerative Med., Bethesda, MD, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26340685$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtvGyEQRpGjOE3yA6pK1R57WWdgWZa9VIrdhx05ihQnZwR41iVasw6sK_XfF8uO1fQQDjCC7zHM94EMfOeRkI8URpRCfX07ns5GDGg5YryoGWcn5JxRIXPGQA5ea1rzIbmK8RnSkumqFmdkyETBQcjynDwstuYZbZ8vNmhd42y22OgQMfvmbO86r8OfbI46eOdXWdOF7KZvdczHOuIyGwftfHb3MMsWuFqj7_WOcklOG91GvDqcF-Tpx_fHyTSf3_-cTW7mueW07nNccqw0E2mXxVIaSF8xDEoUFGUFkmHZCFNoLY0xTMualoyXTICswdhGFhfk6153szVrXNrkH3SrNsGtU9eq0069ffHul1p1vxUvBQPBk8CXg0DoXrYYe7V20WLbao_dNipaQV1BBRwS9PO_XkeT10EmAN0DbOhiDNgcIRTULi-1y0vt8lKHvBKn-o9j3X6EqV3Xvsv8tGc6RDw6VZTyBCv-AocZoaU |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_3389_fnins_2024_1366029 crossref_primary_10_1016_j_media_2016_08_014 crossref_primary_10_1016_j_dsp_2018_09_007 crossref_primary_10_1016_j_neuroimage_2018_08_003 crossref_primary_10_1016_j_neuroimage_2022_119486 crossref_primary_10_1007_s10278_022_00655_2 crossref_primary_10_1007_s11517_021_02414_x crossref_primary_10_3389_fimmu_2021_700582 crossref_primary_10_1049_iet_ipr_2019_0942 crossref_primary_10_1109_TBME_2017_2783305 crossref_primary_10_1016_j_compbiomed_2021_104337 crossref_primary_10_1016_j_mri_2019_05_041 crossref_primary_10_1109_ACCESS_2023_3343155 crossref_primary_10_1007_s11831_020_09403_7 crossref_primary_10_1038_s41598_019_54527_x crossref_primary_10_1016_j_heliyon_2019_e01226 crossref_primary_10_1016_j_compbiomed_2017_10_009 crossref_primary_10_1109_TMI_2018_2851607 crossref_primary_10_3174_ajnr_A5254 crossref_primary_10_1007_s11831_019_09383_3 crossref_primary_10_1109_JBHI_2015_2444011 crossref_primary_10_1007_s11760_020_01700_9 crossref_primary_10_1016_j_neuroimage_2016_12_064 crossref_primary_10_1002_acm2_14177 crossref_primary_10_1093_brain_awy245 crossref_primary_10_1007_s10278_020_00361_x crossref_primary_10_1007_s11063_023_11232_1 crossref_primary_10_1109_ACCESS_2019_2902463 crossref_primary_10_3389_fninf_2018_00069 crossref_primary_10_1038_s41598_020_64803_w crossref_primary_10_3233_NRE_161384 crossref_primary_10_1136_bmjopen_2020_042660 crossref_primary_10_1016_j_nicl_2019_101871 crossref_primary_10_1109_JBHI_2020_3019198 crossref_primary_10_1007_s11042_023_16292_y crossref_primary_10_1016_j_neucom_2021_05_047 crossref_primary_10_3389_fimmu_2021_642167 crossref_primary_10_1016_j_nicl_2020_102256 crossref_primary_10_3389_fnins_2025_1540480 crossref_primary_10_1115_1_4040230 crossref_primary_10_1016_j_neuroimage_2016_11_017 crossref_primary_10_1109_TCYB_2020_2994235 crossref_primary_10_1146_annurev_bioeng_060418_052147 crossref_primary_10_3174_ajnr_A7165 crossref_primary_10_1002_acn3_734 crossref_primary_10_1016_j_patrec_2018_04_037 crossref_primary_10_1007_s11042_022_12162_1 |
Cites_doi | 10.1371/journal.pone.0045081 10.1016/j.neuroimage.2009.09.005 10.1109/CVPR.2005.38 10.1016/j.neuroimage.2011.03.045 10.1109/TIT.2011.2173241 10.1109/TMI.2010.2050897 10.1109/TMI.2002.806283 10.1016/j.neuroimage.2010.09.018 10.1016/j.neuroimage.2005.02.018 10.1007/978-3-319-10581-9_31 10.1016/S1361-8415(01)00036-6 10.1109/TMI.2004.828354 10.1016/j.neuroimage.2010.04.193 10.1109/TMI.2013.2282126 10.1016/j.neuroimage.2011.03.080 10.1109/TPAMI.1980.4766964 10.1006/nimg.1995.1012 10.1109/42.906424 10.1523/JNEUROSCI.23-08-03295.2003 10.1016/j.neuroimage.2011.10.080 10.1016/j.neuroimage.2011.02.013 10.1002/hbm.460030304 10.1109/42.811270 10.1007/978-3-319-08849-5_14 10.1016/j.nicl.2013.03.002 10.1109/ISBI.2013.6556484 10.1145/383259.383295 10.1109/TMI.2011.2163944 10.1016/j.neuroimage.2013.11.040 10.1016/S0167-8655(98)00121-4 10.1016/j.neuroimage.2006.05.061 10.1016/j.acra.2007.10.012 10.1006/nimg.1998.0395 10.1016/S0042-6989(97)00169-7 10.1007/978-3-642-40811-3_92 10.1109/TMI.2010.2046908 10.1371/journal.pone.0037049 10.1007/978-3-319-02126-3_6 10.1109/TIT.2005.860430 10.1016/j.media.2008.06.008 10.1109/ISBI.2008.4541030 10.2307/1932409 10.1109/TPAMI.2012.143 10.1006/cviu.2001.0951 10.1016/j.neuroimage.2013.02.069 10.1109/ISBI.2009.5193070 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1109/JBHI.2015.2439242 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 1609 |
ExternalDocumentID | PMC4562064 26340685 10_1109_JBHI_2015_2439242 7114201 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, N.I.H., Intramural Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Intramural Research Program of the NINDS/NIH grantid: NIH/NINDS R01NS070906; NIH/NIBIB R21EB012765; NIH/NIBIB 1R01EB017743; NIH/NIA T32AG021334; NIH/NINDS R01NS085211; NIH/NINDS R01NS060910 – fundername: Department of Defense at the Center for Neuroscience and Regenerative Medicine – fundername: NIBIB NIH HHS grantid: 1R01EB017743 – fundername: NINDS NIH HHS grantid: R01 NS085211 – fundername: NIA NIH HHS grantid: T32 AG000247 – fundername: NIA NIH HHS grantid: T32AG021334 – fundername: NINDS NIH HHS grantid: R01 NS060910 – fundername: NINDS NIH HHS grantid: R01NS070906 – fundername: NIBIB NIH HHS grantid: R01 EB017743 – fundername: NINDS NIH HHS grantid: R01NS085211 – fundername: NIA NIH HHS grantid: P30 AG021334 – fundername: NIBIB NIH HHS grantid: R21EB012765 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c419t-ed4e7a264e783d8b0015b205e61e87082e5f6b3aa8bbb2a8915245260890bcf83 |
IEDL.DBID | RIE |
ISSN | 2168-2194 |
IngestDate | Thu Aug 21 18:41:48 EDT 2025 Fri Jul 11 11:44:02 EDT 2025 Mon Jul 21 05:39:13 EDT 2025 Tue Jul 01 02:59:53 EDT 2025 Thu Apr 24 22:55:06 EDT 2025 Tue Aug 26 16:38:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | magnetic resonance imaging (MRI) Brain dictionary histogram matching patches segmentation sparsity |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-ed4e7a264e783d8b0015b205e61e87082e5f6b3aa8bbb2a8915245260890bcf83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4562064 |
PMID | 26340685 |
PQID | 1709707040 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | ieee_primary_7114201 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4562064 pubmed_primary_26340685 proquest_miscellaneous_1709707040 crossref_primary_10_1109_JBHI_2015_2439242 crossref_citationtrail_10_1109_JBHI_2015_2439242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Sept. 2015-9-00 2015-Sep 20150901 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-Sept. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref57 ref13 ref12 ref15 ref55 ref11 ref54 ref10 roy (ref16) 0; 7623 ref17 ref19 ref18 souplet (ref51) 0 resnick (ref1) 2003; 23 ait (ref53) 0 ref50 ref46 ref45 ref47 ref42 ref41 ref44 ref43 ref49 ref8 lecoeur (ref52) 0 ref7 ref9 ref4 ref3 ref6 shiee (ref38) 0 ref5 ref40 cocosco (ref39) 1997; 5 ref35 ref34 ref37 leemput (ref28) 2006; 33 ref36 ref31 ref30 ref33 ref2 wang (ref32) 0 ref24 ref23 ref26 ref25 cao (ref20) 0 ref22 ref21 roy (ref14) 0 styner (ref48) 0 ref27 ref29 roy (ref56) 0; 9034 |
References_xml | – ident: ref50 doi: 10.1371/journal.pone.0045081 – ident: ref11 doi: 10.1016/j.neuroimage.2009.09.005 – ident: ref18 doi: 10.1109/CVPR.2005.38 – ident: ref45 doi: 10.1016/j.neuroimage.2011.03.045 – start-page: 1 year: 0 ident: ref38 article-title: Segmentation of brain images using adaptive atlases with application to ventriculomegaly publication-title: Proc Int Conf Inf Process Med Imag – ident: ref49 doi: 10.1109/TIT.2011.2173241 – ident: ref31 doi: 10.1109/TMI.2010.2050897 – ident: ref55 doi: 10.1109/TMI.2002.806283 – ident: ref24 doi: 10.1016/j.neuroimage.2010.09.018 – volume: 7623 start-page: 76230j year: 0 ident: ref16 article-title: Synthesizing MR contrast and resolution through a patch matching technique publication-title: Proc SPIE Int Soc Opt Eng – ident: ref3 doi: 10.1016/j.neuroimage.2005.02.018 – ident: ref33 doi: 10.1007/978-3-319-10581-9_31 – ident: ref34 doi: 10.1016/S1361-8415(01)00036-6 – ident: ref30 doi: 10.1109/TMI.2004.828354 – ident: ref29 doi: 10.1016/j.neuroimage.2010.04.193 – year: 0 ident: ref20 article-title: Registration for correlative microscopy using image analogies publication-title: Proc Workshop Biomed Image Registrat – ident: ref19 doi: 10.1109/TMI.2013.2282126 – ident: ref47 doi: 10.1016/j.neuroimage.2011.03.080 – ident: ref42 doi: 10.1109/TPAMI.1980.4766964 – ident: ref43 doi: 10.1006/nimg.1995.1012 – ident: ref4 doi: 10.1109/42.906424 – start-page: 409 year: 0 ident: ref53 article-title: STREM: A robust multidimensional parametric method to segment MS lesions in MRI publication-title: Proc Med Image Comput Comput Asst Interv – volume: 23 start-page: 3295 year: 2003 ident: ref1 article-title: Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-08-03295.2003 – ident: ref22 doi: 10.1016/j.neuroimage.2011.10.080 – ident: ref6 doi: 10.1016/j.neuroimage.2011.02.013 – ident: ref27 doi: 10.1002/hbm.460030304 – ident: ref5 doi: 10.1109/42.811270 – start-page: 1 year: 0 ident: ref48 article-title: 3D Segmentation in the clinic: A grand challenge II: MS lesion segmentation – start-page: 73 year: 0 ident: ref32 article-title: Optimal weights for multi-atlas label fusion publication-title: Proc Int Conf Inf Proc Med Imaging – ident: ref26 doi: 10.1007/978-3-319-08849-5_14 – year: 0 ident: ref51 article-title: An automatic segmentation of T2-FLAIR multiple sclerosis lesions – ident: ref40 doi: 10.1016/j.nicl.2013.03.002 – ident: ref17 doi: 10.1109/ISBI.2013.6556484 – ident: ref13 doi: 10.1145/383259.383295 – ident: ref41 doi: 10.1109/TMI.2011.2163944 – ident: ref25 doi: 10.1016/j.neuroimage.2013.11.040 – ident: ref35 doi: 10.1016/S0167-8655(98)00121-4 – volume: 33 start-page: 115 year: 2006 ident: ref28 article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.05.061 – ident: ref54 doi: 10.1016/j.acra.2007.10.012 – ident: ref12 doi: 10.1006/nimg.1998.0395 – ident: ref37 doi: 10.1016/S0042-6989(97)00169-7 – volume: 5 start-page: 425s year: 1997 ident: ref39 article-title: BrainWeb: Online interface to a 3-D MRI simulated brain database publication-title: NeuroImage – ident: ref57 doi: 10.1007/978-3-642-40811-3_92 – ident: ref44 doi: 10.1109/TMI.2010.2046908 – start-page: 371 year: 0 ident: ref14 article-title: A compressed sensing approach for MR tissue contrast synthesis publication-title: Proc 22nd Int Conf Inf Proc Med Imag – ident: ref2 doi: 10.1371/journal.pone.0037049 – ident: ref15 doi: 10.1007/978-3-319-02126-3_6 – ident: ref36 doi: 10.1109/TIT.2005.860430 – ident: ref10 doi: 10.1016/j.media.2008.06.008 – ident: ref9 doi: 10.1109/ISBI.2008.4541030 – ident: ref46 doi: 10.2307/1932409 – year: 0 ident: ref52 article-title: Optimized supervised segmentation of MS lesions from multispectral MRIs – ident: ref23 doi: 10.1109/TPAMI.2012.143 – ident: ref8 doi: 10.1006/cviu.2001.0951 – volume: 9034 start-page: 90341y year: 0 ident: ref56 article-title: Example-based lesion segmentation publication-title: Proc SPIE Med Imag – ident: ref21 doi: 10.1016/j.neuroimage.2013.02.069 – ident: ref7 doi: 10.1109/ISBI.2009.5193070 |
SSID | ssj0000816896 |
Score | 2.393109 |
Snippet | Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease... Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1598 |
SubjectTerms | Adult Aged Algorithms Biomedical imaging brain Brain - pathology Brain modeling Dictionaries dictionary Female histogram matching Humans Hydrocephalus, Normal Pressure - pathology Image Processing, Computer-Assisted - methods Image segmentation Lesions Machine Learning magnetic resonance imaging (MRI) Magnetic Resonance Imaging - methods Male Manuals Middle Aged Multiple Sclerosis - pathology patches segmentation sparsity Training data Young Adult |
Title | Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation |
URI | https://ieeexplore.ieee.org/document/7114201 https://www.ncbi.nlm.nih.gov/pubmed/26340685 https://www.proquest.com/docview/1709707040 https://pubmed.ncbi.nlm.nih.gov/PMC4562064 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAXCpRHeMlInBDeJo43cY5doNpWWg4tlXqLbGdSVtBsVbIH-PXMON6orSrEzVJsyfGMPZ89jw_gPfp02lSll60vjNSqQToHnZekWi0BAu9UxrnDi6_F_FQfnU3PtuDjmAuDiCH4DCfcDL78ZuXX_FS2V3LiJydr3aOL25CrNb6nBAKJQMelqCFpI-roxMzSau9oNj_kOK7pRJEFJrPERYCLnKwZkyhfs0iBYuUutHk7aPKaFTrYgcVm_kPwyY_JuncT_-dWacf__cFH8DDCUbE_6M9j2MLuCdxfRIf7LhzTwcIvNTLw1LdLL04u6SqM4vMyJETYq98ilmg9F4R_xX5PcFzOyDY2Ysb0E2JxfChO8PwiJjl1T-H04Mu3T3MZaRik11nVS2w0lpaAE5Ymb0yAWU6lUywypN1uFJJYXW6tcc4payqCBExcnpqKpN6a_Blsd6sOX4BolVNtYT2BBKt1axyBGe1cYXNVtmllEkg3oqh9rFHOVBk_63BXSauaBVmzIOsoyAQ-jEMuhwId_-q8y4s-dozrncC7jbxr2l3sMrEdrta_6qxMq5JORZ0m8HyQ_zh4oz8JlDc0Y-zAlbtvfumW30MFb752EhZ8efd0XsEDnvQQyfYatvurNb4h6NO7t0Hn_wKSbfze |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRQIuvAolPI3ECeGt47ycYxeodkvTQx9Sb5HtOGUFZKuSPcCvZ8bxRm1VIW6WYkuxZ-z57Hl8AO-dFVlTFpa3Nlc8lY3Dc9BYjqrVIiCwRsaUO1wd5rPTdP8sO9uAj2MujHPOB5-5CTW9L79Z2hU9le0UlPhJyVp30O5n8ZCtNb6oeAoJT8glscFxK6bBjRmLcmd_OptTJFc2kWiD0TBRGeA8QXtGNMpXbJInWbkNb94Mm7xih_YeQrWewRB-8n2y6s3E_rlR3PF_p_gIHgRAynYHDXoMG657Aner4HLfgiM8Wuithnum-nZh2fEFXoYd-7zwKRH68jcLRVrPGSJgttsjIOdTtI4NmxIBBauO5uzYnf8MaU7dUzjd-3LyacYDEQO3aVz23DWpKzRCJ1eopFEeaBkpMpfHDve7kg4FaxKtlTFGalUiKCDqcqFKlHurkmew2S079xxYK41sc20RJug0bZVBOJMak-tEFq0oVQRiLYrahirlRJbxo_a3FVHWJMiaBFkHQUbwYRxyMZTo-FfnLVr0sWNY7wjereVd4_4ip4nu3HL1q44LURZ4LqYigu1B_uPgtf5EUFzTjLED1e6-_qVbfPM1vOniiWjwxe2_8xbuzU6qg_pgfvj1JdynCQxxba9gs79cudcIhHrzxuv_X-feADY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject+Specific+Sparse+Dictionary+Learning+for+Atlas+Based+Brain+MRI+Segmentation&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Roy%2C+Snehashis&rft.au=He%2C+Qing&rft.au=Sweeney%2C+Elizabeth&rft.au=Carass%2C+Aaron&rft.date=2015-09-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=19&rft.issue=5&rft.spage=1598&rft.epage=1609&rft_id=info:doi/10.1109%2FJBHI.2015.2439242&rft_id=info%3Apmid%2F26340685&rft.externalDocID=PMC4562064 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |