Metal immobilization and nitrate reduction in a contaminated soil amended with zero-valent iron (Fe0)
Technologies based on zero-valent iron (Fe0) are increasingly being used to immobilize metals in soils and remove metals and nitrate from waters. However, the impact of nitrate reduction on metal immobilization in metal contaminated soils has been poorly investigated so far. Here, different concentr...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 201; p. 110868 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.09.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Technologies based on zero-valent iron (Fe0) are increasingly being used to immobilize metals in soils and remove metals and nitrate from waters. However, the impact of nitrate reduction on metal immobilization in metal contaminated soils has been poorly investigated so far. Here, different concentrations of Fe0 filings (1%, 2% and 5%; wt%) were applied to a metal contaminated soil. The resulting nitrate reduction and metal (Cd and Zn) immobilization was investigated using a column leaching experiment for 12 weeks. Corrosion of Fe0 filings and precipitation of Fe oxyhydroxydes (FeOOH) on the surfaces of the filings were observed using SEM-EDS and EMPA-WDS at the end of the experiment. Compared to the untreated soil, total nitrate amounts released were lowered by 47%, 59% and 87% in the presence of 1%, 2% and 5% of Fe0, respectively. Concomitantly with nitrate reduction, Cd and Zn concentrations in leachates were strongly alleviated in the presence of Fe0, which was partly attributed to the rise of soil pH subsequent to nitrate reduction. More importantly, biotests with Lupinus albus L. revealed that the mechanisms involved in metal immobilization are stable to root-induced acidification. However, Fe0 was not efficient to reduce Cd concentration in Lolium multiflorum Lam., indicating that root processes other than acidification may re-mobilize metals.
•Nitrate reduction and metal immobilization was studied in a soil amended with Fe0.•Corrosion of Fe0 filings formed a surface layer of Fe oxyhydroxides.•The application of Fe0 immobilized strongly and rapidly metals.•pH increase subsequent to nitrate reduction improved metal immobilization.•Immobilization mechanisms were stable under root-induced acidification. |
---|---|
AbstractList | Technologies based on zero-valent iron (Fe0) are increasingly being used to immobilize metals in soils and remove metals and nitrate from waters. However, the impact of nitrate reduction on metal immobilization in metal contaminated soils has been poorly investigated so far. Here, different concentrations of Fe0 filings (1%, 2% and 5%; wt%) were applied to a metal contaminated soil. The resulting nitrate reduction and metal (Cd and Zn) immobilization was investigated using a column leaching experiment for 12 weeks. Corrosion of Fe0 filings and precipitation of Fe oxyhydroxydes (FeOOH) on the surfaces of the filings were observed using SEM-EDS and EMPA-WDS at the end of the experiment. Compared to the untreated soil, total nitrate amounts released were lowered by 47%, 59% and 87% in the presence of 1%, 2% and 5% of Fe0, respectively. Concomitantly with nitrate reduction, Cd and Zn concentrations in leachates were strongly alleviated in the presence of Fe0, which was partly attributed to the rise of soil pH subsequent to nitrate reduction. More importantly, biotests with Lupinus albus L. revealed that the mechanisms involved in metal immobilization are stable to root-induced acidification. However, Fe0 was not efficient to reduce Cd concentration in Lolium multiflorum Lam., indicating that root processes other than acidification may re-mobilize metals.Technologies based on zero-valent iron (Fe0) are increasingly being used to immobilize metals in soils and remove metals and nitrate from waters. However, the impact of nitrate reduction on metal immobilization in metal contaminated soils has been poorly investigated so far. Here, different concentrations of Fe0 filings (1%, 2% and 5%; wt%) were applied to a metal contaminated soil. The resulting nitrate reduction and metal (Cd and Zn) immobilization was investigated using a column leaching experiment for 12 weeks. Corrosion of Fe0 filings and precipitation of Fe oxyhydroxydes (FeOOH) on the surfaces of the filings were observed using SEM-EDS and EMPA-WDS at the end of the experiment. Compared to the untreated soil, total nitrate amounts released were lowered by 47%, 59% and 87% in the presence of 1%, 2% and 5% of Fe0, respectively. Concomitantly with nitrate reduction, Cd and Zn concentrations in leachates were strongly alleviated in the presence of Fe0, which was partly attributed to the rise of soil pH subsequent to nitrate reduction. More importantly, biotests with Lupinus albus L. revealed that the mechanisms involved in metal immobilization are stable to root-induced acidification. However, Fe0 was not efficient to reduce Cd concentration in Lolium multiflorum Lam., indicating that root processes other than acidification may re-mobilize metals. Technologies based on zero-valent iron (Fe0) are increasingly being used to immobilize metals in soils and remove metals and nitrate from waters. However, the impact of nitrate reduction on metal immobilization in metal contaminated soils has been poorly investigated so far. Here, different concentrations of Fe0 filings (1%, 2% and 5%; wt%) were applied to a metal contaminated soil. The resulting nitrate reduction and metal (Cd and Zn) immobilization was investigated using a column leaching experiment for 12 weeks. Corrosion of Fe0 filings and precipitation of Fe oxyhydroxydes (FeOOH) on the surfaces of the filings were observed using SEM-EDS and EMPA-WDS at the end of the experiment. Compared to the untreated soil, total nitrate amounts released were lowered by 47%, 59% and 87% in the presence of 1%, 2% and 5% of Fe0, respectively. Concomitantly with nitrate reduction, Cd and Zn concentrations in leachates were strongly alleviated in the presence of Fe0, which was partly attributed to the rise of soil pH subsequent to nitrate reduction. More importantly, biotests with Lupinus albus L. revealed that the mechanisms involved in metal immobilization are stable to root-induced acidification. However, Fe0 was not efficient to reduce Cd concentration in Lolium multiflorum Lam., indicating that root processes other than acidification may re-mobilize metals. •Nitrate reduction and metal immobilization was studied in a soil amended with Fe0.•Corrosion of Fe0 filings formed a surface layer of Fe oxyhydroxides.•The application of Fe0 immobilized strongly and rapidly metals.•pH increase subsequent to nitrate reduction improved metal immobilization.•Immobilization mechanisms were stable under root-induced acidification. |
ArticleNumber | 110868 |
Author | Sonnet, Philippe Houben, David |
Author_xml | – sequence: 1 givenname: David surname: Houben fullname: Houben, David email: david.houben@unilasalle.fr organization: UniLaSalle, AGHYLE, 19 Rue Pierre Waguet, 60026, Beauvais, France – sequence: 2 givenname: Philippe surname: Sonnet fullname: Sonnet, Philippe organization: Earth and Life Institute, Université Catholique de Louvain, Croix Du Sud 2/L7.05.10, 1348, Louvain-la-Neuve, Belgium |
BackLink | https://hal.science/hal-02900977$$DView record in HAL |
BookMark | eNqFUbtuFDEUtVCQ2AT-gMJlUsxy7fG8KJCiiBCkRTRQWx7PHeWuPHawvYuSr8ebQRQUUFk-L-mec87OfPDI2FsBWwGifbffog3oj1sJskAC-rZ_wTYCBqikEuqMbUCormobUb9i5yntAaCGptkw_ILZOE7LEkZy9GQyBc-Nn7inHE1GHnE62GeUCsFt8Nks5As18RTIcbOgn8rnJ-V7_oQxVEfj0GdOsZgubxGuXrOXs3EJ3_x-L9j324_fbu6q3ddPn2-ud5VVYsgVNkZBL-QITd-qepzUqLp6LNfMqhH9KKe-tb01sshGmOf2RI696VQnGwttfcGu1tx74_RDpMXERx0M6bvrnT5hIAeAoeuOomgvV-1DDD8OmLJeKFl0zngMh6RLcY0cJNSqSNUqtTGkFHH-ky1AnxbQe70uoE8L6HWBYnv_l81Sfi64NEvuf-YPqxlLX0fCqJMl9BYnimizngL9O-AXjMKlBQ |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_177381 crossref_primary_10_1021_acssuschemeng_3c01084 crossref_primary_10_1016_j_jechem_2025_01_075 crossref_primary_10_1007_s44169_022_00010_0 crossref_primary_10_1016_j_psep_2024_07_084 crossref_primary_10_1016_j_cej_2024_149218 crossref_primary_10_1016_j_scitotenv_2023_165386 crossref_primary_10_1007_s11270_023_06868_7 crossref_primary_10_1016_j_cej_2022_139136 crossref_primary_10_3390_geosciences12080287 crossref_primary_10_1016_j_ecoenv_2023_115691 crossref_primary_10_1016_j_ecoenv_2020_111847 |
Cites_doi | 10.1016/j.gexplo.2011.10.004 10.1023/B:PLSO.0000030173.71500.e1 10.1111/j.1365-2389.1988.tb01192.x 10.1007/s11104-010-0634-5 10.1016/j.chemosphere.2017.06.081 10.1016/j.watres.2015.02.034 10.1016/j.cej.2011.12.074 10.1016/j.jhazmat.2014.08.040 10.1016/j.watres.2005.03.002 10.1038/35053080 10.1016/j.jenvman.2018.01.001 10.1016/j.ecoenv.2015.09.011 10.1016/S0043-1354(97)00464-8 10.1016/j.envint.2019.105046 10.1021/es991110c 10.1016/j.jhazmat.2012.06.042 10.1016/j.apgeochem.2018.12.003 10.1007/s11368-012-0546-5 10.1039/a807854h 10.1016/S0045-6535(97)00275-0 10.1016/j.watres.2019.115285 10.1016/S0045-6535(99)00506-8 10.1016/j.gca.2012.01.031 10.1021/es980543x 10.3390/su12062212 10.1046/j.1365-2389.2002.00425.x 10.1021/es034650p 10.1007/s00027-003-0690-5 10.1016/0043-1354(96)00105-4 10.1016/j.jcis.2014.04.014 10.1002/1522-2624(200012)163:6<623::AID-JPLN623>3.0.CO;2-C 10.1016/S0043-1354(02)00539-0 10.1016/S0269-7491(03)00250-1 10.2134/jeq2003.1306 10.1021/es026083w 10.1007/BF00279331 10.1007/s11356-013-1651-8 10.1080/01904168409363213 10.2136/sssaj1991.03615995005500050015x 10.1021/es025533h 10.1021/acs.est.8b01734 10.1071/EN19028 10.1016/j.jcis.2004.04.005 10.1016/j.envres.2018.01.030 10.1016/j.scitotenv.2012.02.023 10.2134/jeq1980.00472425000900040010x 10.1016/j.envpol.2012.07.045 10.1021/es0009931 10.1016/j.cej.2010.03.036 10.1023/A:1022371130939 10.1016/j.chemosphere.2018.07.118 10.1016/j.gca.2006.12.022 10.1093/jxb/erw270 10.1016/j.jhazmat.2013.12.062 10.1016/j.chemosphere.2011.07.034 10.1016/j.chemosphere.2018.01.017 10.1111/j.1469-8137.2005.01416.x 10.1111/j.1365-2389.2008.01028.x 10.1007/s003740000265 10.1016/j.scitotenv.2019.03.317 10.18637/jss.v014.i09 10.1021/es970262+ 10.1007/BF00647667 10.1016/j.jhazmat.2017.06.028 10.1111/aab.12014 10.1016/j.chemosphere.2014.12.036 10.1016/j.psep.2020.05.008 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION 7X8 1XC VOOES |
DOI | 10.1016/j.ecoenv.2020.110868 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology Environmental Sciences |
EISSN | 1090-2414 |
ExternalDocumentID | oai_HAL_hal_02900977v1 10_1016_j_ecoenv_2020_110868 S0147651320307077 |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSJ SSZ T5K ZU3 ~G- 29G 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPKN AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ H~9 OK1 R2- RIG SEN SEW SSH VH1 WUQ XPP ZMT ZXP ~KM 7X8 EFKBS 1XC VOOES |
ID | FETCH-LOGICAL-c419t-e5a40812b058643bd4b473b868f4518b2d86c8ca2a40b0ff673b8b8a74725c063 |
IEDL.DBID | .~1 |
ISSN | 0147-6513 1090-2414 |
IngestDate | Fri May 09 12:13:20 EDT 2025 Mon Jul 21 10:06:07 EDT 2025 Tue Jul 01 04:00:16 EDT 2025 Thu Apr 24 23:10:10 EDT 2025 Fri Feb 23 02:47:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Immobilization Pollution Remediation Nitrogen Heavy metals Zero-valent iron |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-e5a40812b058643bd4b473b868f4518b2d86c8ca2a40b0ff673b8b8a74725c063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5891-5500 0000-0003-0574-3033 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0147651320307077 |
PQID | 2415292034 |
PQPubID | 23479 |
ParticipantIDs | hal_primary_oai_HAL_hal_02900977v1 proquest_miscellaneous_2415292034 crossref_primary_10_1016_j_ecoenv_2020_110868 crossref_citationtrail_10_1016_j_ecoenv_2020_110868 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2020_110868 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-15 |
PublicationDateYYYYMMDD | 2020-09-15 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | (bib53) 2017 Hart, Welch, Norvell, Clarke, Kochian (bib24) 2005; 167 Furukawa, Kim, Watkins, Wilkin (bib19) 2002; 36 Suzuki, Moribe, Oyama, Niinae (bib62) 2012; 183 Jiang, Zeng, Huang, Chen, Zhang, Huang, Wan (bib34) 2018; 163 Cheng, Muftikian, Fernando, Korte (bib12) 1997; 35 Kostov, Van Cleemput (bib37) 2001; 33 Kraemer (bib38) 2004; 66 Westerhoff, James (bib66) 2003; 37 Nozoye, Nagasaka, Kobayashi, Takahashi, Sato, Sato, Uozumi, Nakanishi, Nishizawa (bib49) 2010 Sarwar, Ishaq, Farid, Shaheen, Imran, Geng, Hussain (bib56) 2015; 122 Bae, Collins, Waite, Hanna (bib3) 2018; 52 Hanauer, Felix-Henningsen, Steffens, Kalandadze, Navrozashvili, Urushadze (bib23) 2011; 341 Hinsinger, Plassard, Tang, Jaillard (bib25) 2003; 248 Bruemmer, Gerth, Tiller (bib8) 1988; 39 Lambrechts, Gustot, Couder, Houben, Iserentant, Lutts (bib40) 2011; 85 Yeates, Orchard, Speir, Hunt, Hermans (bib70) 1994; 18 Lombi, Hamon, McGrath, McLaughlin (bib43) 2003; 37 Boparai, Joseph, O'Carroll (bib5) 2013; 20 Rauret, Lopez-Sanchez, Sahuquillo, Rubio, Davidson, Ure, Quevauviller (bib73) 1999; 1 Stahl, James (bib59) 1991; 55 Fu, Dionysiou, Liu (bib18) 2014; 267 Römer, Kang, Egle, Gerke, Keller (bib55) 2000; 163 Xue, Huang, Zeng, Wan, Zhang, Xu, Cheng, Deng (bib69) 2018; 341 Curie, Panaviene, Loulergue, Dellaporta, Briat, Walker (bib16) 2001; 409 Neubauer, Furrer, Schulin (bib48) 2002; 53 Cheng, Wang, Kopittke, Wang, Sale, Tang (bib13) 2016; 67 Palansooriya, Shaheen, Chen, Tsang, Hashimoto, Hou, Bolan, Rinklebe, Ok (bib50) 2020; 134 Cameron, Di, Moir (bib10) 2013; 162 Arshadi, Soleymanzadeh, Salvacion, SalimiVahid (bib1) 2014; 426 Baath (bib2) 1989; 47 Chang, Broadbent (bib11) 1980; 9 Bravin, Garnier, Lenoble, Gérard, Dudal, Hinsinger (bib7) 2012; 84 Jia, Liu, Kong, Li, Wu, Wu (bib33) 2020; 169 Martinez, McBride (bib46) 1998; 32 Buekers, Amery, Maes, Smolders (bib9) 2008; 59 Luo, Jin, Fallgren, Colberg, Johnson (bib45) 2010; 160 Khum-in, Suk-in, In-ai, Piaowan, Praimeesub, Supanpaiboon, Phenrat (bib35) 2020 Lindsay (bib41) 1979 Kumpiene, Antelo, Brännvall, Carabante, Ek, Komárek, Söderberg, Wårell (bib39) 2019; 100 Guan, Sun, Qin, Li, Lo, He, Dong (bib22) 2015; 75 McBride, Martinez (bib47) 2000; 34 Liu, Wang (bib42) 2019; 671 Young, Bungay, Brown, Parsons (bib71) 1964; 36 Phenrat, Hongkumnerd, Suk-in, Khum-in (bib52) 2019; 16 Huang, Zhang (bib31) 2005; 39 Trivedi, Axe (bib65) 2000; 34 Smith (bib58) 1996; 30 Su, Adeleye, Zhou, Dai, Zhang, Keller, Zhang (bib61) 2014; 280 Xu, Zeng, Huang, Feng, Hu, Zhao, Lai, Wei, Huang, Xie, Liu (bib67) 2012; 424 Houben, Sonnet (bib28) 2015; 139 Basta, McGowen (bib4) 2004; 127 Bradl (bib6) 2004; 277 Huang, Hu, Peng, Zeng, Chen, Zhang, Cheng, Wan, Wang, Qin (bib30) 2018; 210 Couder, Mattielli, Drouet, Smolders, Delvaux, Iserentant, Meeus, Maerschalk, Opfergelt, Houben (bib15) 2015; 347 Peng, Li, Song, Jiang, Liu, Fan (bib51) 2018; 197 Shokes, Moller (bib57) 1999; 33 Takagi, Nomoto, Takemoto (bib63) 1984; 7 Tang, Zhang, Sun (bib64) 2012; 231–232 Gil‐Díaz, Pérez‐Sanz, Vicente, Lobo (bib20) 2014; 42 Reichard, Kretzschmar, Kraemer (bib54) 2007; 71 Houben, Couder, Sonnet (bib26) 2013; 13 Gómez-Suárez, Nobile, Faucon, Pourret, Houben (bib21) 2020; 12 Su, Puls (bib60) 2004; 38 Xue, Huang, Zeng, Wan, Cheng, Zhang, Hu, Li (bib68) 2018; 210 Huang, Zhang, Shea, Comfort (bib32) 2003; 32 Houben, Pircar, Sonnet (bib27) 2012; 123 Loosemore, Straczek, Hinsinger, Jaillard, it (bib44) 2004; 260 Huang, Wang, Chiu (bib29) 1998; 32 Choe, Chang, Hwang, Khim (bib14) 2000; 41 Komárek, Vaněk, Ettler (bib36) 2013; 172 Fox (bib17) 2005; 14 Zhang, Bai, Tang, Zhang, Teng, Xu (bib72) 2017; 184 Kostov (10.1016/j.ecoenv.2020.110868_bib37) 2001; 33 Rauret (10.1016/j.ecoenv.2020.110868_bib73) 1999; 1 Chang (10.1016/j.ecoenv.2020.110868_bib11) 1980; 9 Phenrat (10.1016/j.ecoenv.2020.110868_bib52) 2019; 16 Westerhoff (10.1016/j.ecoenv.2020.110868_bib66) 2003; 37 Baath (10.1016/j.ecoenv.2020.110868_bib2) 1989; 47 Lindsay (10.1016/j.ecoenv.2020.110868_bib41) 1979 Young (10.1016/j.ecoenv.2020.110868_bib71) 1964; 36 Furukawa (10.1016/j.ecoenv.2020.110868_bib19) 2002; 36 Guan (10.1016/j.ecoenv.2020.110868_bib22) 2015; 75 Peng (10.1016/j.ecoenv.2020.110868_bib51) 2018; 197 Su (10.1016/j.ecoenv.2020.110868_bib61) 2014; 280 Gil‐Díaz (10.1016/j.ecoenv.2020.110868_bib20) 2014; 42 Yeates (10.1016/j.ecoenv.2020.110868_bib70) 1994; 18 Houben (10.1016/j.ecoenv.2020.110868_bib26) 2013; 13 Khum-in (10.1016/j.ecoenv.2020.110868_bib35) 2020 Nozoye (10.1016/j.ecoenv.2020.110868_bib49) 2010 Kumpiene (10.1016/j.ecoenv.2020.110868_bib39) 2019; 100 Reichard (10.1016/j.ecoenv.2020.110868_bib54) 2007; 71 Kraemer (10.1016/j.ecoenv.2020.110868_bib38) 2004; 66 Houben (10.1016/j.ecoenv.2020.110868_bib27) 2012; 123 Lambrechts (10.1016/j.ecoenv.2020.110868_bib40) 2011; 85 Couder (10.1016/j.ecoenv.2020.110868_bib15) 2015; 347 McBride (10.1016/j.ecoenv.2020.110868_bib47) 2000; 34 Buekers (10.1016/j.ecoenv.2020.110868_bib9) 2008; 59 Lombi (10.1016/j.ecoenv.2020.110868_bib43) 2003; 37 Römer (10.1016/j.ecoenv.2020.110868_bib55) 2000; 163 Hinsinger (10.1016/j.ecoenv.2020.110868_bib25) 2003; 248 Takagi (10.1016/j.ecoenv.2020.110868_bib63) 1984; 7 Cheng (10.1016/j.ecoenv.2020.110868_bib12) 1997; 35 Hart (10.1016/j.ecoenv.2020.110868_bib24) 2005; 167 Su (10.1016/j.ecoenv.2020.110868_bib60) 2004; 38 Bravin (10.1016/j.ecoenv.2020.110868_bib7) 2012; 84 Sarwar (10.1016/j.ecoenv.2020.110868_bib56) 2015; 122 Luo (10.1016/j.ecoenv.2020.110868_bib45) 2010; 160 Martinez (10.1016/j.ecoenv.2020.110868_bib46) 1998; 32 Xue (10.1016/j.ecoenv.2020.110868_bib69) 2018; 341 Smith (10.1016/j.ecoenv.2020.110868_bib58) 1996; 30 Stahl (10.1016/j.ecoenv.2020.110868_bib59) 1991; 55 Xu (10.1016/j.ecoenv.2020.110868_bib67) 2012; 424 Suzuki (10.1016/j.ecoenv.2020.110868_bib62) 2012; 183 Loosemore (10.1016/j.ecoenv.2020.110868_bib44) 2004; 260 (10.1016/j.ecoenv.2020.110868_bib53) 2017 Bradl (10.1016/j.ecoenv.2020.110868_bib6) 2004; 277 Basta (10.1016/j.ecoenv.2020.110868_bib4) 2004; 127 Liu (10.1016/j.ecoenv.2020.110868_bib42) 2019; 671 Huang (10.1016/j.ecoenv.2020.110868_bib32) 2003; 32 Choe (10.1016/j.ecoenv.2020.110868_bib14) 2000; 41 Cameron (10.1016/j.ecoenv.2020.110868_bib10) 2013; 162 Bruemmer (10.1016/j.ecoenv.2020.110868_bib8) 1988; 39 Houben (10.1016/j.ecoenv.2020.110868_bib28) 2015; 139 Palansooriya (10.1016/j.ecoenv.2020.110868_bib50) 2020; 134 Tang (10.1016/j.ecoenv.2020.110868_bib64) 2012; 231–232 Jia (10.1016/j.ecoenv.2020.110868_bib33) 2020; 169 Huang (10.1016/j.ecoenv.2020.110868_bib31) 2005; 39 Arshadi (10.1016/j.ecoenv.2020.110868_bib1) 2014; 426 Boparai (10.1016/j.ecoenv.2020.110868_bib5) 2013; 20 Curie (10.1016/j.ecoenv.2020.110868_bib16) 2001; 409 Fox (10.1016/j.ecoenv.2020.110868_bib17) 2005; 14 Xue (10.1016/j.ecoenv.2020.110868_bib68) 2018; 210 Huang (10.1016/j.ecoenv.2020.110868_bib29) 1998; 32 Huang (10.1016/j.ecoenv.2020.110868_bib30) 2018; 210 Shokes (10.1016/j.ecoenv.2020.110868_bib57) 1999; 33 Bae (10.1016/j.ecoenv.2020.110868_bib3) 2018; 52 Zhang (10.1016/j.ecoenv.2020.110868_bib72) 2017; 184 Jiang (10.1016/j.ecoenv.2020.110868_bib34) 2018; 163 Neubauer (10.1016/j.ecoenv.2020.110868_bib48) 2002; 53 Fu (10.1016/j.ecoenv.2020.110868_bib18) 2014; 267 Hanauer (10.1016/j.ecoenv.2020.110868_bib23) 2011; 341 Gómez-Suárez (10.1016/j.ecoenv.2020.110868_bib21) 2020; 12 Trivedi (10.1016/j.ecoenv.2020.110868_bib65) 2000; 34 Cheng (10.1016/j.ecoenv.2020.110868_bib13) 2016; 67 Komárek (10.1016/j.ecoenv.2020.110868_bib36) 2013; 172 |
References_xml | – volume: 210 start-page: 191 year: 2018 end-page: 200 ident: bib30 article-title: Cadmium immobilization in river sediment using stabilized nanoscale zero-valent iron with enhanced transport by polysaccharide coating publication-title: J. Environ. Manag. – volume: 33 start-page: 282 year: 1999 end-page: 287 ident: bib57 article-title: Removal of dissolved heavy metals from acid rock drainage using iron metal publication-title: Environ. Sci. Technol. – volume: 7 start-page: 469 year: 1984 end-page: 477 ident: bib63 article-title: Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants publication-title: J. Plant Nutr. – volume: 134 start-page: 105046 year: 2020 ident: bib50 article-title: Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review publication-title: Environ. Int. – volume: 32 start-page: 2257 year: 1998 end-page: 2264 ident: bib29 article-title: Nitrate reduction by metallic iron publication-title: Water Res. – volume: 13 start-page: 543 year: 2013 end-page: 554 ident: bib26 article-title: Leachability of cadmium, lead, and zinc in a long-term spontaneously revegetated slag heap: implications for phytostabilization publication-title: J. Soils Sediments – volume: 280 start-page: 504 year: 2014 end-page: 513 ident: bib61 article-title: Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron publication-title: J. Hazard. Mater. – volume: 163 start-page: 217 year: 2018 end-page: 227 ident: bib34 article-title: Remediation of contaminated soils by enhanced nanoscale zero valent iron publication-title: Environ. Res. – volume: 426 start-page: 241 year: 2014 end-page: 251 ident: bib1 article-title: Nanoscale Zero-Valent Iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: kinetics, thermodynamic and mechanism publication-title: J. Colloid Interface Sci. – volume: 12 start-page: 2212 year: 2020 ident: bib21 article-title: Fertilizer potential of struvite as affected by nitrogen form in the rhizosphere publication-title: Sustainability – volume: 41 start-page: 1307 year: 2000 end-page: 1311 ident: bib14 article-title: Kinetics of reductive denitrification by nanoscale zero-valent iron publication-title: Chemosphere – volume: 52 start-page: 12010 year: 2018 end-page: 12025 ident: bib3 article-title: Advances in surface passivation of nanoscale zerovalent iron: a critical review publication-title: Environ. Sci. Technol. – volume: 127 start-page: 73 year: 2004 end-page: 82 ident: bib4 article-title: Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil publication-title: Environ. Pollut. – volume: 100 start-page: 335 year: 2019 end-page: 351 ident: bib39 article-title: In situ chemical stabilization of trace element-contaminated soil – field demonstrations and barriers to transition from laboratory to the field – a review publication-title: Appl. Geochem. – year: 2017 ident: bib53 article-title: R: A Language and Environment for Statistical Computing – volume: 85 start-page: 1290 year: 2011 end-page: 1298 ident: bib40 article-title: Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil publication-title: Chemosphere – volume: 37 start-page: 979 year: 2003 end-page: 984 ident: bib43 article-title: Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques publication-title: Environ. Sci. Technol. – volume: 36 start-page: 5469 year: 2002 end-page: 5475 ident: bib19 article-title: Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron publication-title: Environ. Sci. Technol. – volume: 160 start-page: 185 year: 2010 end-page: 189 ident: bib45 article-title: Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation publication-title: Chem. Eng. J. – volume: 277 start-page: 1 year: 2004 end-page: 18 ident: bib6 article-title: Adsorption of heavy metal ions on soils and soils constituents publication-title: J. Colloid Interface Sci. – volume: 42 start-page: 1776 year: 2014 end-page: 1784 ident: bib20 article-title: Immobilisation of Pb and Zn in soils using stabilised zero-valent iron nanoparticles: effects on soil properties publication-title: Clean – volume: 33 start-page: 10 year: 2001 end-page: 16 ident: bib37 article-title: Nitrogen transformations in copper-contaminated soils and effects of lime and compost application on soil resiliency publication-title: Biol. Fertil. Soils – volume: 183 start-page: 271 year: 2012 end-page: 277 ident: bib62 article-title: Mechanism of nitrate reduction by zero-valent iron: equilibrium and kinetics studies publication-title: Chem. Eng. J. – volume: 231–232 start-page: 114 year: 2012 end-page: 119 ident: bib64 article-title: Effect of common ions on nitrate removal by zero-valent iron from alkaline soil publication-title: J. Hazard. Mater. – volume: 14 start-page: 1 year: 2005 end-page: 42 ident: bib17 article-title: The R commander: a basic-statistics graphical user interface to R publication-title: J. Stat. Software – volume: 75 start-page: 224 year: 2015 end-page: 248 ident: bib22 article-title: The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014) publication-title: Water Res. – volume: 9 start-page: 587 year: 1980 end-page: 592 ident: bib11 article-title: Effect of nitrification on movement of trace metals in soil columns publication-title: J. Environ. Qual. – volume: 267 start-page: 194 year: 2014 end-page: 205 ident: bib18 article-title: The use of zero-valent iron for groundwater remediation and wastewater treatment: a review publication-title: J. Hazard. Mater. – volume: 409 start-page: 346 year: 2001 end-page: 349 ident: bib16 article-title: Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake publication-title: Nature – volume: 53 start-page: 45 year: 2002 end-page: 55 ident: bib48 article-title: Heavy metal sorption on soil minerals affected by the siderophore desferrioxamine B: the role of Fe(III) (hydr)oxides and dissolved Fe(III) publication-title: Eur. J. Soil Sci. – volume: 16 start-page: 446 year: 2019 end-page: 458 ident: bib52 article-title: Nanoscale zerovalent iron particles for magnet-assisted soil washing of cadmium-contaminated paddy soil: proof of concept publication-title: Environ. Chem. – volume: 37 start-page: 1818 year: 2003 end-page: 1830 ident: bib66 article-title: Nitrate removal in zero-valent iron packed columns publication-title: Water Res. – volume: 184 start-page: 892 year: 2017 end-page: 899 ident: bib72 article-title: Linking potential nitrification rates, nitrogen cycling genes and soil properties after remediating the agricultural soil contaminated with heavy metal and fungicide publication-title: Chemosphere – volume: 55 start-page: 1287 year: 1991 end-page: 1290 ident: bib59 article-title: Zinc sorption by iron-oxide-coated sand as a function of pH publication-title: Soil Sci. Soc. Am. J. – volume: 32 start-page: 743 year: 1998 end-page: 748 ident: bib46 article-title: Solubility of Cd2+, Cu2+, Pb2+, and Zn2+ in aged coprecipitates with amorphous iron hydroxides publication-title: Environ. Sci. Technol. – volume: 671 start-page: 388 year: 2019 end-page: 403 ident: bib42 article-title: Reduction of nitrate by zero valent iron (ZVI)-based materials: a review publication-title: Sci. Total Environ. – volume: 123 start-page: 87 year: 2012 end-page: 94 ident: bib27 article-title: Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability publication-title: J. Geochem. Explor. – volume: 35 start-page: 2689 year: 1997 end-page: 2695 ident: bib12 article-title: Reduction of nitrate to ammonia by zero-valent iron publication-title: Chemosphere – volume: 197 start-page: 33 year: 2018 end-page: 41 ident: bib51 article-title: Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides publication-title: Chemosphere – volume: 347 start-page: 386 year: 2015 end-page: 396 ident: bib15 article-title: Transpiration flow controls Zn transport in Brassica napus and Lolium multiflorum under toxic levels as evidenced from isotopic fractionation publication-title: Comptes Rendus Geosci., Geochemical and isotopic record of anthropogenic activities – volume: 32 start-page: 1306 year: 2003 end-page: 1315 ident: bib32 article-title: Effects of oxide coating and selected cations on nitrate reduction by iron metal publication-title: J. Environ. Qual. – volume: 67 start-page: 5041 year: 2016 end-page: 5050 ident: bib13 article-title: Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation publication-title: J. Exp. Bot. – volume: 172 start-page: 9 year: 2013 end-page: 22 ident: bib36 article-title: Chemical stabilization of metals and arsenic in contaminated soils using oxides – a review publication-title: Environ. Pollut. – volume: 139 start-page: 644 year: 2015 end-page: 651 ident: bib28 article-title: Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus publication-title: Chemosphere – volume: 260 start-page: 19 year: 2004 end-page: 32 ident: bib44 article-title: Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH publication-title: Plant Soil – volume: 163 start-page: 623 year: 2000 end-page: 628 ident: bib55 article-title: The acquisition of cadmium by Lupinus albus L., Lupinus angustifolius L., and Lolium multiflorum Lam publication-title: J. Plant Nutr. Soil Sci. – volume: 66 start-page: 3 year: 2004 end-page: 18 ident: bib38 article-title: Iron oxide dissolution and solubility in the presence of siderophores publication-title: Aquat. Sci. - Res. Boundaries – volume: 34 start-page: 4386 year: 2000 end-page: 4391 ident: bib47 article-title: Copper phytotoxicity in a contaminated soil: remediation tests with adsorptive materials publication-title: Environ. Sci. Technol. – volume: 39 start-page: 1751 year: 2005 end-page: 1760 ident: bib31 article-title: Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+ publication-title: Water Res. – volume: 1 start-page: 57 year: 1999 end-page: 61 ident: bib73 article-title: Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials publication-title: J. Environ. Monit. – volume: 341 start-page: 381 year: 2018 end-page: 389 ident: bib69 article-title: Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments publication-title: J. Hazard. Mater. – volume: 30 start-page: 2424 year: 1996 end-page: 2434 ident: bib58 article-title: Uptake of heavy metals in batch systems by a recycled iron-bearing material publication-title: Water Res. – volume: 424 start-page: 1 year: 2012 end-page: 10 ident: bib67 article-title: Use of iron oxide nanomaterials in wastewater treatment: a review publication-title: Sci. Total Environ. – volume: 20 start-page: 6210 year: 2013 end-page: 6221 ident: bib5 article-title: Cadmium (Cd2+) removal by nano zerovalent iron: surface analysis, effects of solution chemistry and surface complexation modeling publication-title: Environ. Sci. Pollut. Res. – volume: 59 start-page: 706 year: 2008 end-page: 715 ident: bib9 article-title: Long-term reactions of Ni, Zn and Cd with iron oxyhydroxides depend on crystallinity and structure and on metal concentrations publication-title: Eur. J. Soil Sci. – volume: 84 start-page: 256 year: 2012 end-page: 268 ident: bib7 article-title: Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere publication-title: Geochem. Cosmochim. Acta – volume: 34 start-page: 2215 year: 2000 end-page: 2223 ident: bib65 article-title: Modeling Cd and Zn sorption to hydrous metal oxides publication-title: Environ. Sci. Technol. – volume: 18 start-page: 200 year: 1994 end-page: 208 ident: bib70 article-title: Impact of pasture contamination by copper, chromium, arsenic timber preservative on soil biological activity publication-title: Biol. Fertil. Soils – volume: 341 start-page: 193 year: 2011 end-page: 208 ident: bib23 article-title: In situ stabilization of metals (Cu, Cd, and Zn) in contaminated soils in the region of Bolnisi, Georgia publication-title: Plant Soil – year: 1979 ident: bib41 article-title: Chemical Equilibria in Soils – volume: 39 start-page: 37 year: 1988 end-page: 52 ident: bib8 article-title: Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals publication-title: J. Soil Sci. – year: 2010 ident: bib49 article-title: Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants publication-title: J. Biol. Chem. – volume: 47 start-page: 335 year: 1989 end-page: 379 ident: bib2 article-title: Effects of heavy-metals in soil on microbial processes and populations (a review) publication-title: Water Air Soil Pollut. – volume: 167 start-page: 391 year: 2005 end-page: 401 ident: bib24 article-title: Zinc effects on cadmium accumulation and partitioning in near-isogenic lines of durum wheat that differ in grain cadmium concentration publication-title: New Phytol. – volume: 210 start-page: 1145 year: 2018 end-page: 1156 ident: bib68 article-title: Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: a review publication-title: Chemosphere – volume: 248 start-page: 43 year: 2003 end-page: 59 ident: bib25 article-title: Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review publication-title: Plant Soil – volume: 162 start-page: 145 year: 2013 end-page: 173 ident: bib10 article-title: Nitrogen losses from the soil/plant system: a review publication-title: Ann. Appl. Biol. – volume: 122 start-page: 528 year: 2015 end-page: 536 ident: bib56 article-title: Zinc–cadmium interactions: impact on wheat physiology and mineral acquisition publication-title: Ecotoxicol. Environ. Saf. – volume: 36 start-page: 395 year: 1964 end-page: 398 ident: bib71 article-title: Chemical reduction of nitrate in water publication-title: J. Water Pollut. Control Fed. – volume: 71 start-page: 5635 year: 2007 end-page: 5650 ident: bib54 article-title: Dissolution mechanisms of goethite in the presence of siderophores and organic acids publication-title: Geochem. Cosmochim. Acta – volume: 169 start-page: 115285 year: 2020 ident: bib33 article-title: Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater publication-title: Water Res. – year: 2020 ident: bib35 article-title: Combining biochar and zerovalent iron (BZVI) as a paddy field soil amendment for heavy cadmium (Cd) contamination decreases Cd but increases zinc and iron concentrations in rice grains: a field-scale evaluation publication-title: Process Saf. Environ. Protect. – volume: 38 start-page: 2715 year: 2004 end-page: 2720 ident: bib60 article-title: Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate publication-title: Environ. Sci. Technol. – volume: 123 start-page: 87 year: 2012 ident: 10.1016/j.ecoenv.2020.110868_bib27 article-title: Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2011.10.004 – volume: 260 start-page: 19 year: 2004 ident: 10.1016/j.ecoenv.2020.110868_bib44 article-title: Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH publication-title: Plant Soil doi: 10.1023/B:PLSO.0000030173.71500.e1 – volume: 39 start-page: 37 year: 1988 ident: 10.1016/j.ecoenv.2020.110868_bib8 article-title: Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1988.tb01192.x – volume: 341 start-page: 193 year: 2011 ident: 10.1016/j.ecoenv.2020.110868_bib23 article-title: In situ stabilization of metals (Cu, Cd, and Zn) in contaminated soils in the region of Bolnisi, Georgia publication-title: Plant Soil doi: 10.1007/s11104-010-0634-5 – volume: 184 start-page: 892 year: 2017 ident: 10.1016/j.ecoenv.2020.110868_bib72 article-title: Linking potential nitrification rates, nitrogen cycling genes and soil properties after remediating the agricultural soil contaminated with heavy metal and fungicide publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.06.081 – volume: 75 start-page: 224 year: 2015 ident: 10.1016/j.ecoenv.2020.110868_bib22 article-title: The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014) publication-title: Water Res. doi: 10.1016/j.watres.2015.02.034 – volume: 183 start-page: 271 year: 2012 ident: 10.1016/j.ecoenv.2020.110868_bib62 article-title: Mechanism of nitrate reduction by zero-valent iron: equilibrium and kinetics studies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.12.074 – volume: 280 start-page: 504 year: 2014 ident: 10.1016/j.ecoenv.2020.110868_bib61 article-title: Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.08.040 – volume: 39 start-page: 1751 year: 2005 ident: 10.1016/j.ecoenv.2020.110868_bib31 article-title: Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+ publication-title: Water Res. doi: 10.1016/j.watres.2005.03.002 – volume: 42 start-page: 1776 year: 2014 ident: 10.1016/j.ecoenv.2020.110868_bib20 article-title: Immobilisation of Pb and Zn in soils using stabilised zero-valent iron nanoparticles: effects on soil properties publication-title: Clean – volume: 409 start-page: 346 year: 2001 ident: 10.1016/j.ecoenv.2020.110868_bib16 article-title: Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake publication-title: Nature doi: 10.1038/35053080 – volume: 210 start-page: 191 year: 2018 ident: 10.1016/j.ecoenv.2020.110868_bib30 article-title: Cadmium immobilization in river sediment using stabilized nanoscale zero-valent iron with enhanced transport by polysaccharide coating publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.01.001 – volume: 122 start-page: 528 year: 2015 ident: 10.1016/j.ecoenv.2020.110868_bib56 article-title: Zinc–cadmium interactions: impact on wheat physiology and mineral acquisition publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2015.09.011 – year: 2017 ident: 10.1016/j.ecoenv.2020.110868_bib53 – volume: 32 start-page: 2257 year: 1998 ident: 10.1016/j.ecoenv.2020.110868_bib29 article-title: Nitrate reduction by metallic iron publication-title: Water Res. doi: 10.1016/S0043-1354(97)00464-8 – volume: 36 start-page: 395 year: 1964 ident: 10.1016/j.ecoenv.2020.110868_bib71 article-title: Chemical reduction of nitrate in water publication-title: J. Water Pollut. Control Fed. – volume: 134 start-page: 105046 year: 2020 ident: 10.1016/j.ecoenv.2020.110868_bib50 article-title: Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review publication-title: Environ. Int. doi: 10.1016/j.envint.2019.105046 – volume: 34 start-page: 2215 year: 2000 ident: 10.1016/j.ecoenv.2020.110868_bib65 article-title: Modeling Cd and Zn sorption to hydrous metal oxides publication-title: Environ. Sci. Technol. doi: 10.1021/es991110c – volume: 231–232 start-page: 114 year: 2012 ident: 10.1016/j.ecoenv.2020.110868_bib64 article-title: Effect of common ions on nitrate removal by zero-valent iron from alkaline soil publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.06.042 – volume: 100 start-page: 335 year: 2019 ident: 10.1016/j.ecoenv.2020.110868_bib39 article-title: In situ chemical stabilization of trace element-contaminated soil – field demonstrations and barriers to transition from laboratory to the field – a review publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2018.12.003 – volume: 13 start-page: 543 year: 2013 ident: 10.1016/j.ecoenv.2020.110868_bib26 article-title: Leachability of cadmium, lead, and zinc in a long-term spontaneously revegetated slag heap: implications for phytostabilization publication-title: J. Soils Sediments doi: 10.1007/s11368-012-0546-5 – volume: 1 start-page: 57 year: 1999 ident: 10.1016/j.ecoenv.2020.110868_bib73 article-title: Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials publication-title: J. Environ. Monit. doi: 10.1039/a807854h – volume: 35 start-page: 2689 year: 1997 ident: 10.1016/j.ecoenv.2020.110868_bib12 article-title: Reduction of nitrate to ammonia by zero-valent iron publication-title: Chemosphere doi: 10.1016/S0045-6535(97)00275-0 – volume: 169 start-page: 115285 year: 2020 ident: 10.1016/j.ecoenv.2020.110868_bib33 article-title: Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater publication-title: Water Res. doi: 10.1016/j.watres.2019.115285 – volume: 347 start-page: 386 year: 2015 ident: 10.1016/j.ecoenv.2020.110868_bib15 article-title: Transpiration flow controls Zn transport in Brassica napus and Lolium multiflorum under toxic levels as evidenced from isotopic fractionation publication-title: Comptes Rendus Geosci., Geochemical and isotopic record of anthropogenic activities – volume: 41 start-page: 1307 year: 2000 ident: 10.1016/j.ecoenv.2020.110868_bib14 article-title: Kinetics of reductive denitrification by nanoscale zero-valent iron publication-title: Chemosphere doi: 10.1016/S0045-6535(99)00506-8 – volume: 84 start-page: 256 year: 2012 ident: 10.1016/j.ecoenv.2020.110868_bib7 article-title: Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2012.01.031 – volume: 33 start-page: 282 year: 1999 ident: 10.1016/j.ecoenv.2020.110868_bib57 article-title: Removal of dissolved heavy metals from acid rock drainage using iron metal publication-title: Environ. Sci. Technol. doi: 10.1021/es980543x – volume: 12 start-page: 2212 year: 2020 ident: 10.1016/j.ecoenv.2020.110868_bib21 article-title: Fertilizer potential of struvite as affected by nitrogen form in the rhizosphere publication-title: Sustainability doi: 10.3390/su12062212 – volume: 53 start-page: 45 year: 2002 ident: 10.1016/j.ecoenv.2020.110868_bib48 article-title: Heavy metal sorption on soil minerals affected by the siderophore desferrioxamine B: the role of Fe(III) (hydr)oxides and dissolved Fe(III) publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2002.00425.x – volume: 38 start-page: 2715 year: 2004 ident: 10.1016/j.ecoenv.2020.110868_bib60 article-title: Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate publication-title: Environ. Sci. Technol. doi: 10.1021/es034650p – volume: 66 start-page: 3 year: 2004 ident: 10.1016/j.ecoenv.2020.110868_bib38 article-title: Iron oxide dissolution and solubility in the presence of siderophores publication-title: Aquat. Sci. - Res. Boundaries doi: 10.1007/s00027-003-0690-5 – volume: 30 start-page: 2424 year: 1996 ident: 10.1016/j.ecoenv.2020.110868_bib58 article-title: Uptake of heavy metals in batch systems by a recycled iron-bearing material publication-title: Water Res. doi: 10.1016/0043-1354(96)00105-4 – volume: 426 start-page: 241 year: 2014 ident: 10.1016/j.ecoenv.2020.110868_bib1 article-title: Nanoscale Zero-Valent Iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: kinetics, thermodynamic and mechanism publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2014.04.014 – volume: 163 start-page: 623 year: 2000 ident: 10.1016/j.ecoenv.2020.110868_bib55 article-title: The acquisition of cadmium by Lupinus albus L., Lupinus angustifolius L., and Lolium multiflorum Lam publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/1522-2624(200012)163:6<623::AID-JPLN623>3.0.CO;2-C – volume: 37 start-page: 1818 year: 2003 ident: 10.1016/j.ecoenv.2020.110868_bib66 article-title: Nitrate removal in zero-valent iron packed columns publication-title: Water Res. doi: 10.1016/S0043-1354(02)00539-0 – volume: 127 start-page: 73 year: 2004 ident: 10.1016/j.ecoenv.2020.110868_bib4 article-title: Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(03)00250-1 – year: 1979 ident: 10.1016/j.ecoenv.2020.110868_bib41 – volume: 32 start-page: 1306 year: 2003 ident: 10.1016/j.ecoenv.2020.110868_bib32 article-title: Effects of oxide coating and selected cations on nitrate reduction by iron metal publication-title: J. Environ. Qual. doi: 10.2134/jeq2003.1306 – volume: 37 start-page: 979 year: 2003 ident: 10.1016/j.ecoenv.2020.110868_bib43 article-title: Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques publication-title: Environ. Sci. Technol. doi: 10.1021/es026083w – volume: 47 start-page: 335 year: 1989 ident: 10.1016/j.ecoenv.2020.110868_bib2 article-title: Effects of heavy-metals in soil on microbial processes and populations (a review) publication-title: Water Air Soil Pollut. doi: 10.1007/BF00279331 – volume: 20 start-page: 6210 year: 2013 ident: 10.1016/j.ecoenv.2020.110868_bib5 article-title: Cadmium (Cd2+) removal by nano zerovalent iron: surface analysis, effects of solution chemistry and surface complexation modeling publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-013-1651-8 – volume: 7 start-page: 469 year: 1984 ident: 10.1016/j.ecoenv.2020.110868_bib63 article-title: Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants publication-title: J. Plant Nutr. doi: 10.1080/01904168409363213 – volume: 55 start-page: 1287 year: 1991 ident: 10.1016/j.ecoenv.2020.110868_bib59 article-title: Zinc sorption by iron-oxide-coated sand as a function of pH publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1991.03615995005500050015x – volume: 36 start-page: 5469 year: 2002 ident: 10.1016/j.ecoenv.2020.110868_bib19 article-title: Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron publication-title: Environ. Sci. Technol. doi: 10.1021/es025533h – volume: 52 start-page: 12010 year: 2018 ident: 10.1016/j.ecoenv.2020.110868_bib3 article-title: Advances in surface passivation of nanoscale zerovalent iron: a critical review publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01734 – volume: 16 start-page: 446 year: 2019 ident: 10.1016/j.ecoenv.2020.110868_bib52 article-title: Nanoscale zerovalent iron particles for magnet-assisted soil washing of cadmium-contaminated paddy soil: proof of concept publication-title: Environ. Chem. doi: 10.1071/EN19028 – volume: 277 start-page: 1 year: 2004 ident: 10.1016/j.ecoenv.2020.110868_bib6 article-title: Adsorption of heavy metal ions on soils and soils constituents publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.04.005 – volume: 163 start-page: 217 year: 2018 ident: 10.1016/j.ecoenv.2020.110868_bib34 article-title: Remediation of contaminated soils by enhanced nanoscale zero valent iron publication-title: Environ. Res. doi: 10.1016/j.envres.2018.01.030 – volume: 424 start-page: 1 year: 2012 ident: 10.1016/j.ecoenv.2020.110868_bib67 article-title: Use of iron oxide nanomaterials in wastewater treatment: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.02.023 – volume: 9 start-page: 587 year: 1980 ident: 10.1016/j.ecoenv.2020.110868_bib11 article-title: Effect of nitrification on movement of trace metals in soil columns publication-title: J. Environ. Qual. doi: 10.2134/jeq1980.00472425000900040010x – volume: 172 start-page: 9 year: 2013 ident: 10.1016/j.ecoenv.2020.110868_bib36 article-title: Chemical stabilization of metals and arsenic in contaminated soils using oxides – a review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2012.07.045 – volume: 34 start-page: 4386 year: 2000 ident: 10.1016/j.ecoenv.2020.110868_bib47 article-title: Copper phytotoxicity in a contaminated soil: remediation tests with adsorptive materials publication-title: Environ. Sci. Technol. doi: 10.1021/es0009931 – volume: 160 start-page: 185 year: 2010 ident: 10.1016/j.ecoenv.2020.110868_bib45 article-title: Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.03.036 – volume: 248 start-page: 43 year: 2003 ident: 10.1016/j.ecoenv.2020.110868_bib25 article-title: Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review publication-title: Plant Soil doi: 10.1023/A:1022371130939 – volume: 210 start-page: 1145 year: 2018 ident: 10.1016/j.ecoenv.2020.110868_bib68 article-title: Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.07.118 – volume: 71 start-page: 5635 year: 2007 ident: 10.1016/j.ecoenv.2020.110868_bib54 article-title: Dissolution mechanisms of goethite in the presence of siderophores and organic acids publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2006.12.022 – volume: 67 start-page: 5041 year: 2016 ident: 10.1016/j.ecoenv.2020.110868_bib13 article-title: Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw270 – volume: 267 start-page: 194 year: 2014 ident: 10.1016/j.ecoenv.2020.110868_bib18 article-title: The use of zero-valent iron for groundwater remediation and wastewater treatment: a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.12.062 – volume: 85 start-page: 1290 year: 2011 ident: 10.1016/j.ecoenv.2020.110868_bib40 article-title: Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.07.034 – volume: 197 start-page: 33 year: 2018 ident: 10.1016/j.ecoenv.2020.110868_bib51 article-title: Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.01.017 – volume: 167 start-page: 391 year: 2005 ident: 10.1016/j.ecoenv.2020.110868_bib24 article-title: Zinc effects on cadmium accumulation and partitioning in near-isogenic lines of durum wheat that differ in grain cadmium concentration publication-title: New Phytol. doi: 10.1111/j.1469-8137.2005.01416.x – volume: 59 start-page: 706 year: 2008 ident: 10.1016/j.ecoenv.2020.110868_bib9 article-title: Long-term reactions of Ni, Zn and Cd with iron oxyhydroxides depend on crystallinity and structure and on metal concentrations publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2008.01028.x – volume: 33 start-page: 10 year: 2001 ident: 10.1016/j.ecoenv.2020.110868_bib37 article-title: Nitrogen transformations in copper-contaminated soils and effects of lime and compost application on soil resiliency publication-title: Biol. Fertil. Soils doi: 10.1007/s003740000265 – volume: 671 start-page: 388 year: 2019 ident: 10.1016/j.ecoenv.2020.110868_bib42 article-title: Reduction of nitrate by zero valent iron (ZVI)-based materials: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.317 – volume: 14 start-page: 1 year: 2005 ident: 10.1016/j.ecoenv.2020.110868_bib17 article-title: The R commander: a basic-statistics graphical user interface to R publication-title: J. Stat. Software doi: 10.18637/jss.v014.i09 – volume: 32 start-page: 743 year: 1998 ident: 10.1016/j.ecoenv.2020.110868_bib46 article-title: Solubility of Cd2+, Cu2+, Pb2+, and Zn2+ in aged coprecipitates with amorphous iron hydroxides publication-title: Environ. Sci. Technol. doi: 10.1021/es970262+ – volume: 18 start-page: 200 year: 1994 ident: 10.1016/j.ecoenv.2020.110868_bib70 article-title: Impact of pasture contamination by copper, chromium, arsenic timber preservative on soil biological activity publication-title: Biol. Fertil. Soils doi: 10.1007/BF00647667 – year: 2010 ident: 10.1016/j.ecoenv.2020.110868_bib49 article-title: Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants publication-title: J. Biol. Chem. – volume: 341 start-page: 381 year: 2018 ident: 10.1016/j.ecoenv.2020.110868_bib69 article-title: Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.06.028 – volume: 162 start-page: 145 year: 2013 ident: 10.1016/j.ecoenv.2020.110868_bib10 article-title: Nitrogen losses from the soil/plant system: a review publication-title: Ann. Appl. Biol. doi: 10.1111/aab.12014 – volume: 139 start-page: 644 year: 2015 ident: 10.1016/j.ecoenv.2020.110868_bib28 article-title: Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.12.036 – year: 2020 ident: 10.1016/j.ecoenv.2020.110868_bib35 article-title: Combining biochar and zerovalent iron (BZVI) as a paddy field soil amendment for heavy cadmium (Cd) contamination decreases Cd but increases zinc and iron concentrations in rice grains: a field-scale evaluation publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2020.05.008 |
SSID | ssj0003055 |
Score | 2.3844764 |
Snippet | Technologies based on zero-valent iron (Fe0) are increasingly being used to immobilize metals in soils and remove metals and nitrate from waters. However, the... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110868 |
SubjectTerms | Ecology, environment Environment and Society Environmental Engineering Environmental Sciences Heavy metals Immobilization Life Sciences Nitrogen Pollution Remediation Symbiosis Zero-valent iron |
Title | Metal immobilization and nitrate reduction in a contaminated soil amended with zero-valent iron (Fe0) |
URI | https://dx.doi.org/10.1016/j.ecoenv.2020.110868 https://www.proquest.com/docview/2415292034 https://hal.science/hal-02900977 |
Volume | 201 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB62WwqFUtK0JdtHUEsP7cFdPyTZPi7LLm6bhFIayE1ItkxdEnvZFySH_PbMWPaGhEKgJ2NJtmTPWDMaffMZ4FMUiSKUofVkbih0IxPPEN1dEgURbeSU3FIc8vhEZqf8-5k4G8C0z4UhWGU397s5vZ2tu5Jx9zbHi6oaEywploJSgElvY8oo51iCOv31-hbmQYxWDsYYe9S6T59rMV64wrP1FleJocPDE-Hqv83Toz-Ek7w3Xbc2aL4HzzvnkU3c-F7AwNb78GTWEk9f7sMzF4NjLrXoJdhji641q1DVCALrEi6ZrguG3zFRRLAlEbe2pRVWMMKta8LGoBvKVk11zvRFGyJnFK5lV3bZeKiZaKcYZcexz3Prf3kFp_PZ72nmdb9V8HIepGvPCs3REQiNLxL0R0zBDY8jgw9fchEkJiwSmSe5DrGZ8ctSUqVJNC48QpGjS_MahnVT2wNgkU5NasrURjHepQgMLwJJvejSF1bLEUT921R5xzlOv744Vz247K9yMlAkA-VkMAJvd9XCcW480D7uBaXu6I5Cs_DAlR9RrrtOiGo7mxwpKvPDlHJc4m0wgg-92BV-e7ShomvbbFaq9X5S1D_-5r-H8Bae0hlBUALxDobr5ca-Rz9nbQ5bRT6Ex5Ppr6OfdPz2Izu5AYBr-94 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB21RQgkhKBQsXwaBBIc0k0c23EOHCroakt3e2ql3oydOGpQyVa726Jy4E_1D3YmTopASJWQerUTO_KMZ8aTN88Ab9NUllxxH6nCUepG6cgR3Z1Ok5R-5FTCUx5yuqfGB-LLoTxcgYu-FoZglZ3tDza9tdZdy7BbzeFJXQ8JlpQpSSXApLdZ1iErd_35Dzy3LT7ufEYhv-N8tL3_aRx1VwtEhUjyZeSlFegMuYulRp_sSuFEljqtdCVkoh0vtSp0YTk-5uKqUtTptMXgm8sC3TqOuwq3BJoLujZh89dvXAlRaAXcZBbR5_X1ei2oDI-UvjnDYykPAHxieP23P1w9ImDmX_6hdXqjB3C_i1bZVliQh7Dim3W4vd0yXZ-vw72Q9GOhlukR-KnHWJ7VqNuEuQ0Vnsw2JUPDQZwUbE5MsW1rjR2MgPKWwDgY97LFrD5m9nubk2eUH2Y__XwW4VZAx8ioHI-9H_n4w2M4uJHF3oC1Ztb4J8BSm7vcVblPMxylTJwoE0Wz2CqW3qoBpP1qmqIjOae7No5Nj2b7ZoIMDMnABBkMILp66ySQfFzzfNYLyvyhrAb90DVvvkG5Xk1C3N7jrYmhtpjnVFSTnSUDeN2L3eBmpz84tvGz04Vpw60cFV48_e9PeAV3xvvTiZns7O0-g7vUQ_iXRD6HteX81L_AIGvpXrZKzeDrTe-iSyiaNJo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+immobilization+and+nitrate+reduction+in+a+contaminated+soil+amended+with+zero-valent+iron+%28Fe0%29&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Houben%2C+David&rft.au=Sonnet%2C+Philippe&rft.date=2020-09-15&rft.issn=0147-6513&rft.volume=201&rft.spage=110868&rft_id=info:doi/10.1016%2Fj.ecoenv.2020.110868&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecoenv_2020_110868 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |