Metal immobilization and nitrate reduction in a contaminated soil amended with zero-valent iron (Fe0)

Technologies based on zero-valent iron (Fe0) are increasingly being used to immobilize metals in soils and remove metals and nitrate from waters. However, the impact of nitrate reduction on metal immobilization in metal contaminated soils has been poorly investigated so far. Here, different concentr...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 201; p. 110868
Main Authors Houben, David, Sonnet, Philippe
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.09.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Technologies based on zero-valent iron (Fe0) are increasingly being used to immobilize metals in soils and remove metals and nitrate from waters. However, the impact of nitrate reduction on metal immobilization in metal contaminated soils has been poorly investigated so far. Here, different concentrations of Fe0 filings (1%, 2% and 5%; wt%) were applied to a metal contaminated soil. The resulting nitrate reduction and metal (Cd and Zn) immobilization was investigated using a column leaching experiment for 12 weeks. Corrosion of Fe0 filings and precipitation of Fe oxyhydroxydes (FeOOH) on the surfaces of the filings were observed using SEM-EDS and EMPA-WDS at the end of the experiment. Compared to the untreated soil, total nitrate amounts released were lowered by 47%, 59% and 87% in the presence of 1%, 2% and 5% of Fe0, respectively. Concomitantly with nitrate reduction, Cd and Zn concentrations in leachates were strongly alleviated in the presence of Fe0, which was partly attributed to the rise of soil pH subsequent to nitrate reduction. More importantly, biotests with Lupinus albus L. revealed that the mechanisms involved in metal immobilization are stable to root-induced acidification. However, Fe0 was not efficient to reduce Cd concentration in Lolium multiflorum Lam., indicating that root processes other than acidification may re-mobilize metals. •Nitrate reduction and metal immobilization was studied in a soil amended with Fe0.•Corrosion of Fe0 filings formed a surface layer of Fe oxyhydroxides.•The application of Fe0 immobilized strongly and rapidly metals.•pH increase subsequent to nitrate reduction improved metal immobilization.•Immobilization mechanisms were stable under root-induced acidification.
AbstractList Technologies based on zero-valent iron (Fe0) are increasingly being used to immobilize metals in soils and remove metals and nitrate from waters. However, the impact of nitrate reduction on metal immobilization in metal contaminated soils has been poorly investigated so far. Here, different concentrations of Fe0 filings (1%, 2% and 5%; wt%) were applied to a metal contaminated soil. The resulting nitrate reduction and metal (Cd and Zn) immobilization was investigated using a column leaching experiment for 12 weeks. Corrosion of Fe0 filings and precipitation of Fe oxyhydroxydes (FeOOH) on the surfaces of the filings were observed using SEM-EDS and EMPA-WDS at the end of the experiment. Compared to the untreated soil, total nitrate amounts released were lowered by 47%, 59% and 87% in the presence of 1%, 2% and 5% of Fe0, respectively. Concomitantly with nitrate reduction, Cd and Zn concentrations in leachates were strongly alleviated in the presence of Fe0, which was partly attributed to the rise of soil pH subsequent to nitrate reduction. More importantly, biotests with Lupinus albus L. revealed that the mechanisms involved in metal immobilization are stable to root-induced acidification. However, Fe0 was not efficient to reduce Cd concentration in Lolium multiflorum Lam., indicating that root processes other than acidification may re-mobilize metals.Technologies based on zero-valent iron (Fe0) are increasingly being used to immobilize metals in soils and remove metals and nitrate from waters. However, the impact of nitrate reduction on metal immobilization in metal contaminated soils has been poorly investigated so far. Here, different concentrations of Fe0 filings (1%, 2% and 5%; wt%) were applied to a metal contaminated soil. The resulting nitrate reduction and metal (Cd and Zn) immobilization was investigated using a column leaching experiment for 12 weeks. Corrosion of Fe0 filings and precipitation of Fe oxyhydroxydes (FeOOH) on the surfaces of the filings were observed using SEM-EDS and EMPA-WDS at the end of the experiment. Compared to the untreated soil, total nitrate amounts released were lowered by 47%, 59% and 87% in the presence of 1%, 2% and 5% of Fe0, respectively. Concomitantly with nitrate reduction, Cd and Zn concentrations in leachates were strongly alleviated in the presence of Fe0, which was partly attributed to the rise of soil pH subsequent to nitrate reduction. More importantly, biotests with Lupinus albus L. revealed that the mechanisms involved in metal immobilization are stable to root-induced acidification. However, Fe0 was not efficient to reduce Cd concentration in Lolium multiflorum Lam., indicating that root processes other than acidification may re-mobilize metals.
Technologies based on zero-valent iron (Fe0) are increasingly being used to immobilize metals in soils and remove metals and nitrate from waters. However, the impact of nitrate reduction on metal immobilization in metal contaminated soils has been poorly investigated so far. Here, different concentrations of Fe0 filings (1%, 2% and 5%; wt%) were applied to a metal contaminated soil. The resulting nitrate reduction and metal (Cd and Zn) immobilization was investigated using a column leaching experiment for 12 weeks. Corrosion of Fe0 filings and precipitation of Fe oxyhydroxydes (FeOOH) on the surfaces of the filings were observed using SEM-EDS and EMPA-WDS at the end of the experiment. Compared to the untreated soil, total nitrate amounts released were lowered by 47%, 59% and 87% in the presence of 1%, 2% and 5% of Fe0, respectively. Concomitantly with nitrate reduction, Cd and Zn concentrations in leachates were strongly alleviated in the presence of Fe0, which was partly attributed to the rise of soil pH subsequent to nitrate reduction. More importantly, biotests with Lupinus albus L. revealed that the mechanisms involved in metal immobilization are stable to root-induced acidification. However, Fe0 was not efficient to reduce Cd concentration in Lolium multiflorum Lam., indicating that root processes other than acidification may re-mobilize metals. •Nitrate reduction and metal immobilization was studied in a soil amended with Fe0.•Corrosion of Fe0 filings formed a surface layer of Fe oxyhydroxides.•The application of Fe0 immobilized strongly and rapidly metals.•pH increase subsequent to nitrate reduction improved metal immobilization.•Immobilization mechanisms were stable under root-induced acidification.
ArticleNumber 110868
Author Sonnet, Philippe
Houben, David
Author_xml – sequence: 1
  givenname: David
  surname: Houben
  fullname: Houben, David
  email: david.houben@unilasalle.fr
  organization: UniLaSalle, AGHYLE, 19 Rue Pierre Waguet, 60026, Beauvais, France
– sequence: 2
  givenname: Philippe
  surname: Sonnet
  fullname: Sonnet, Philippe
  organization: Earth and Life Institute, Université Catholique de Louvain, Croix Du Sud 2/L7.05.10, 1348, Louvain-la-Neuve, Belgium
BackLink https://hal.science/hal-02900977$$DView record in HAL
BookMark eNqFUbtuFDEUtVCQ2AT-gMJlUsxy7fG8KJCiiBCkRTRQWx7PHeWuPHawvYuSr8ebQRQUUFk-L-mec87OfPDI2FsBWwGifbffog3oj1sJskAC-rZ_wTYCBqikEuqMbUCormobUb9i5yntAaCGptkw_ILZOE7LEkZy9GQyBc-Nn7inHE1GHnE62GeUCsFt8Nks5As18RTIcbOgn8rnJ-V7_oQxVEfj0GdOsZgubxGuXrOXs3EJ3_x-L9j324_fbu6q3ddPn2-ud5VVYsgVNkZBL-QITd-qepzUqLp6LNfMqhH9KKe-tb01sshGmOf2RI696VQnGwttfcGu1tx74_RDpMXERx0M6bvrnT5hIAeAoeuOomgvV-1DDD8OmLJeKFl0zngMh6RLcY0cJNSqSNUqtTGkFHH-ky1AnxbQe70uoE8L6HWBYnv_l81Sfi64NEvuf-YPqxlLX0fCqJMl9BYnimizngL9O-AXjMKlBQ
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_177381
crossref_primary_10_1021_acssuschemeng_3c01084
crossref_primary_10_1016_j_jechem_2025_01_075
crossref_primary_10_1007_s44169_022_00010_0
crossref_primary_10_1016_j_psep_2024_07_084
crossref_primary_10_1016_j_cej_2024_149218
crossref_primary_10_1016_j_scitotenv_2023_165386
crossref_primary_10_1007_s11270_023_06868_7
crossref_primary_10_1016_j_cej_2022_139136
crossref_primary_10_3390_geosciences12080287
crossref_primary_10_1016_j_ecoenv_2023_115691
crossref_primary_10_1016_j_ecoenv_2020_111847
Cites_doi 10.1016/j.gexplo.2011.10.004
10.1023/B:PLSO.0000030173.71500.e1
10.1111/j.1365-2389.1988.tb01192.x
10.1007/s11104-010-0634-5
10.1016/j.chemosphere.2017.06.081
10.1016/j.watres.2015.02.034
10.1016/j.cej.2011.12.074
10.1016/j.jhazmat.2014.08.040
10.1016/j.watres.2005.03.002
10.1038/35053080
10.1016/j.jenvman.2018.01.001
10.1016/j.ecoenv.2015.09.011
10.1016/S0043-1354(97)00464-8
10.1016/j.envint.2019.105046
10.1021/es991110c
10.1016/j.jhazmat.2012.06.042
10.1016/j.apgeochem.2018.12.003
10.1007/s11368-012-0546-5
10.1039/a807854h
10.1016/S0045-6535(97)00275-0
10.1016/j.watres.2019.115285
10.1016/S0045-6535(99)00506-8
10.1016/j.gca.2012.01.031
10.1021/es980543x
10.3390/su12062212
10.1046/j.1365-2389.2002.00425.x
10.1021/es034650p
10.1007/s00027-003-0690-5
10.1016/0043-1354(96)00105-4
10.1016/j.jcis.2014.04.014
10.1002/1522-2624(200012)163:6<623::AID-JPLN623>3.0.CO;2-C
10.1016/S0043-1354(02)00539-0
10.1016/S0269-7491(03)00250-1
10.2134/jeq2003.1306
10.1021/es026083w
10.1007/BF00279331
10.1007/s11356-013-1651-8
10.1080/01904168409363213
10.2136/sssaj1991.03615995005500050015x
10.1021/es025533h
10.1021/acs.est.8b01734
10.1071/EN19028
10.1016/j.jcis.2004.04.005
10.1016/j.envres.2018.01.030
10.1016/j.scitotenv.2012.02.023
10.2134/jeq1980.00472425000900040010x
10.1016/j.envpol.2012.07.045
10.1021/es0009931
10.1016/j.cej.2010.03.036
10.1023/A:1022371130939
10.1016/j.chemosphere.2018.07.118
10.1016/j.gca.2006.12.022
10.1093/jxb/erw270
10.1016/j.jhazmat.2013.12.062
10.1016/j.chemosphere.2011.07.034
10.1016/j.chemosphere.2018.01.017
10.1111/j.1469-8137.2005.01416.x
10.1111/j.1365-2389.2008.01028.x
10.1007/s003740000265
10.1016/j.scitotenv.2019.03.317
10.18637/jss.v014.i09
10.1021/es970262+
10.1007/BF00647667
10.1016/j.jhazmat.2017.06.028
10.1111/aab.12014
10.1016/j.chemosphere.2014.12.036
10.1016/j.psep.2020.05.008
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
1XC
VOOES
DOI 10.1016/j.ecoenv.2020.110868
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Ecology
Environmental Sciences
EISSN 1090-2414
ExternalDocumentID oai_HAL_hal_02900977v1
10_1016_j_ecoenv_2020_110868
S0147651320307077
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
J1W
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
ZU3
~G-
29G
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPKN
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
H~9
OK1
R2-
RIG
SEN
SEW
SSH
VH1
WUQ
XPP
ZMT
ZXP
~KM
7X8
EFKBS
1XC
VOOES
ID FETCH-LOGICAL-c419t-e5a40812b058643bd4b473b868f4518b2d86c8ca2a40b0ff673b8b8a74725c063
IEDL.DBID .~1
ISSN 0147-6513
1090-2414
IngestDate Fri May 09 12:13:20 EDT 2025
Mon Jul 21 10:06:07 EDT 2025
Tue Jul 01 04:00:16 EDT 2025
Thu Apr 24 23:10:10 EDT 2025
Fri Feb 23 02:47:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Immobilization
Pollution
Remediation
Nitrogen
Heavy metals
Zero-valent iron
Language English
License This is an open access article under the CC BY-NC-ND license.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-e5a40812b058643bd4b473b868f4518b2d86c8ca2a40b0ff673b8b8a74725c063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5891-5500
0000-0003-0574-3033
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0147651320307077
PQID 2415292034
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_02900977v1
proquest_miscellaneous_2415292034
crossref_primary_10_1016_j_ecoenv_2020_110868
crossref_citationtrail_10_1016_j_ecoenv_2020_110868
elsevier_sciencedirect_doi_10_1016_j_ecoenv_2020_110868
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-15
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Ecotoxicology and environmental safety
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References (bib53) 2017
Hart, Welch, Norvell, Clarke, Kochian (bib24) 2005; 167
Furukawa, Kim, Watkins, Wilkin (bib19) 2002; 36
Suzuki, Moribe, Oyama, Niinae (bib62) 2012; 183
Jiang, Zeng, Huang, Chen, Zhang, Huang, Wan (bib34) 2018; 163
Cheng, Muftikian, Fernando, Korte (bib12) 1997; 35
Kostov, Van Cleemput (bib37) 2001; 33
Kraemer (bib38) 2004; 66
Westerhoff, James (bib66) 2003; 37
Nozoye, Nagasaka, Kobayashi, Takahashi, Sato, Sato, Uozumi, Nakanishi, Nishizawa (bib49) 2010
Sarwar, Ishaq, Farid, Shaheen, Imran, Geng, Hussain (bib56) 2015; 122
Bae, Collins, Waite, Hanna (bib3) 2018; 52
Hanauer, Felix-Henningsen, Steffens, Kalandadze, Navrozashvili, Urushadze (bib23) 2011; 341
Hinsinger, Plassard, Tang, Jaillard (bib25) 2003; 248
Bruemmer, Gerth, Tiller (bib8) 1988; 39
Lambrechts, Gustot, Couder, Houben, Iserentant, Lutts (bib40) 2011; 85
Yeates, Orchard, Speir, Hunt, Hermans (bib70) 1994; 18
Lombi, Hamon, McGrath, McLaughlin (bib43) 2003; 37
Boparai, Joseph, O'Carroll (bib5) 2013; 20
Rauret, Lopez-Sanchez, Sahuquillo, Rubio, Davidson, Ure, Quevauviller (bib73) 1999; 1
Stahl, James (bib59) 1991; 55
Fu, Dionysiou, Liu (bib18) 2014; 267
Römer, Kang, Egle, Gerke, Keller (bib55) 2000; 163
Xue, Huang, Zeng, Wan, Zhang, Xu, Cheng, Deng (bib69) 2018; 341
Curie, Panaviene, Loulergue, Dellaporta, Briat, Walker (bib16) 2001; 409
Neubauer, Furrer, Schulin (bib48) 2002; 53
Cheng, Wang, Kopittke, Wang, Sale, Tang (bib13) 2016; 67
Palansooriya, Shaheen, Chen, Tsang, Hashimoto, Hou, Bolan, Rinklebe, Ok (bib50) 2020; 134
Cameron, Di, Moir (bib10) 2013; 162
Arshadi, Soleymanzadeh, Salvacion, SalimiVahid (bib1) 2014; 426
Baath (bib2) 1989; 47
Chang, Broadbent (bib11) 1980; 9
Bravin, Garnier, Lenoble, Gérard, Dudal, Hinsinger (bib7) 2012; 84
Jia, Liu, Kong, Li, Wu, Wu (bib33) 2020; 169
Martinez, McBride (bib46) 1998; 32
Buekers, Amery, Maes, Smolders (bib9) 2008; 59
Luo, Jin, Fallgren, Colberg, Johnson (bib45) 2010; 160
Khum-in, Suk-in, In-ai, Piaowan, Praimeesub, Supanpaiboon, Phenrat (bib35) 2020
Lindsay (bib41) 1979
Kumpiene, Antelo, Brännvall, Carabante, Ek, Komárek, Söderberg, Wårell (bib39) 2019; 100
Guan, Sun, Qin, Li, Lo, He, Dong (bib22) 2015; 75
McBride, Martinez (bib47) 2000; 34
Liu, Wang (bib42) 2019; 671
Young, Bungay, Brown, Parsons (bib71) 1964; 36
Phenrat, Hongkumnerd, Suk-in, Khum-in (bib52) 2019; 16
Huang, Zhang (bib31) 2005; 39
Trivedi, Axe (bib65) 2000; 34
Smith (bib58) 1996; 30
Su, Adeleye, Zhou, Dai, Zhang, Keller, Zhang (bib61) 2014; 280
Xu, Zeng, Huang, Feng, Hu, Zhao, Lai, Wei, Huang, Xie, Liu (bib67) 2012; 424
Houben, Sonnet (bib28) 2015; 139
Basta, McGowen (bib4) 2004; 127
Bradl (bib6) 2004; 277
Huang, Hu, Peng, Zeng, Chen, Zhang, Cheng, Wan, Wang, Qin (bib30) 2018; 210
Couder, Mattielli, Drouet, Smolders, Delvaux, Iserentant, Meeus, Maerschalk, Opfergelt, Houben (bib15) 2015; 347
Peng, Li, Song, Jiang, Liu, Fan (bib51) 2018; 197
Shokes, Moller (bib57) 1999; 33
Takagi, Nomoto, Takemoto (bib63) 1984; 7
Tang, Zhang, Sun (bib64) 2012; 231–232
Gil‐Díaz, Pérez‐Sanz, Vicente, Lobo (bib20) 2014; 42
Reichard, Kretzschmar, Kraemer (bib54) 2007; 71
Houben, Couder, Sonnet (bib26) 2013; 13
Gómez-Suárez, Nobile, Faucon, Pourret, Houben (bib21) 2020; 12
Su, Puls (bib60) 2004; 38
Xue, Huang, Zeng, Wan, Cheng, Zhang, Hu, Li (bib68) 2018; 210
Huang, Zhang, Shea, Comfort (bib32) 2003; 32
Houben, Pircar, Sonnet (bib27) 2012; 123
Loosemore, Straczek, Hinsinger, Jaillard, it (bib44) 2004; 260
Huang, Wang, Chiu (bib29) 1998; 32
Choe, Chang, Hwang, Khim (bib14) 2000; 41
Komárek, Vaněk, Ettler (bib36) 2013; 172
Fox (bib17) 2005; 14
Zhang, Bai, Tang, Zhang, Teng, Xu (bib72) 2017; 184
Kostov (10.1016/j.ecoenv.2020.110868_bib37) 2001; 33
Rauret (10.1016/j.ecoenv.2020.110868_bib73) 1999; 1
Chang (10.1016/j.ecoenv.2020.110868_bib11) 1980; 9
Phenrat (10.1016/j.ecoenv.2020.110868_bib52) 2019; 16
Westerhoff (10.1016/j.ecoenv.2020.110868_bib66) 2003; 37
Baath (10.1016/j.ecoenv.2020.110868_bib2) 1989; 47
Lindsay (10.1016/j.ecoenv.2020.110868_bib41) 1979
Young (10.1016/j.ecoenv.2020.110868_bib71) 1964; 36
Furukawa (10.1016/j.ecoenv.2020.110868_bib19) 2002; 36
Guan (10.1016/j.ecoenv.2020.110868_bib22) 2015; 75
Peng (10.1016/j.ecoenv.2020.110868_bib51) 2018; 197
Su (10.1016/j.ecoenv.2020.110868_bib61) 2014; 280
Gil‐Díaz (10.1016/j.ecoenv.2020.110868_bib20) 2014; 42
Yeates (10.1016/j.ecoenv.2020.110868_bib70) 1994; 18
Houben (10.1016/j.ecoenv.2020.110868_bib26) 2013; 13
Khum-in (10.1016/j.ecoenv.2020.110868_bib35) 2020
Nozoye (10.1016/j.ecoenv.2020.110868_bib49) 2010
Kumpiene (10.1016/j.ecoenv.2020.110868_bib39) 2019; 100
Reichard (10.1016/j.ecoenv.2020.110868_bib54) 2007; 71
Kraemer (10.1016/j.ecoenv.2020.110868_bib38) 2004; 66
Houben (10.1016/j.ecoenv.2020.110868_bib27) 2012; 123
Lambrechts (10.1016/j.ecoenv.2020.110868_bib40) 2011; 85
Couder (10.1016/j.ecoenv.2020.110868_bib15) 2015; 347
McBride (10.1016/j.ecoenv.2020.110868_bib47) 2000; 34
Buekers (10.1016/j.ecoenv.2020.110868_bib9) 2008; 59
Lombi (10.1016/j.ecoenv.2020.110868_bib43) 2003; 37
Römer (10.1016/j.ecoenv.2020.110868_bib55) 2000; 163
Hinsinger (10.1016/j.ecoenv.2020.110868_bib25) 2003; 248
Takagi (10.1016/j.ecoenv.2020.110868_bib63) 1984; 7
Cheng (10.1016/j.ecoenv.2020.110868_bib12) 1997; 35
Hart (10.1016/j.ecoenv.2020.110868_bib24) 2005; 167
Su (10.1016/j.ecoenv.2020.110868_bib60) 2004; 38
Bravin (10.1016/j.ecoenv.2020.110868_bib7) 2012; 84
Sarwar (10.1016/j.ecoenv.2020.110868_bib56) 2015; 122
Luo (10.1016/j.ecoenv.2020.110868_bib45) 2010; 160
Martinez (10.1016/j.ecoenv.2020.110868_bib46) 1998; 32
Xue (10.1016/j.ecoenv.2020.110868_bib69) 2018; 341
Smith (10.1016/j.ecoenv.2020.110868_bib58) 1996; 30
Stahl (10.1016/j.ecoenv.2020.110868_bib59) 1991; 55
Xu (10.1016/j.ecoenv.2020.110868_bib67) 2012; 424
Suzuki (10.1016/j.ecoenv.2020.110868_bib62) 2012; 183
Loosemore (10.1016/j.ecoenv.2020.110868_bib44) 2004; 260
(10.1016/j.ecoenv.2020.110868_bib53) 2017
Bradl (10.1016/j.ecoenv.2020.110868_bib6) 2004; 277
Basta (10.1016/j.ecoenv.2020.110868_bib4) 2004; 127
Liu (10.1016/j.ecoenv.2020.110868_bib42) 2019; 671
Huang (10.1016/j.ecoenv.2020.110868_bib32) 2003; 32
Choe (10.1016/j.ecoenv.2020.110868_bib14) 2000; 41
Cameron (10.1016/j.ecoenv.2020.110868_bib10) 2013; 162
Bruemmer (10.1016/j.ecoenv.2020.110868_bib8) 1988; 39
Houben (10.1016/j.ecoenv.2020.110868_bib28) 2015; 139
Palansooriya (10.1016/j.ecoenv.2020.110868_bib50) 2020; 134
Tang (10.1016/j.ecoenv.2020.110868_bib64) 2012; 231–232
Jia (10.1016/j.ecoenv.2020.110868_bib33) 2020; 169
Huang (10.1016/j.ecoenv.2020.110868_bib31) 2005; 39
Arshadi (10.1016/j.ecoenv.2020.110868_bib1) 2014; 426
Boparai (10.1016/j.ecoenv.2020.110868_bib5) 2013; 20
Curie (10.1016/j.ecoenv.2020.110868_bib16) 2001; 409
Fox (10.1016/j.ecoenv.2020.110868_bib17) 2005; 14
Xue (10.1016/j.ecoenv.2020.110868_bib68) 2018; 210
Huang (10.1016/j.ecoenv.2020.110868_bib29) 1998; 32
Huang (10.1016/j.ecoenv.2020.110868_bib30) 2018; 210
Shokes (10.1016/j.ecoenv.2020.110868_bib57) 1999; 33
Bae (10.1016/j.ecoenv.2020.110868_bib3) 2018; 52
Zhang (10.1016/j.ecoenv.2020.110868_bib72) 2017; 184
Jiang (10.1016/j.ecoenv.2020.110868_bib34) 2018; 163
Neubauer (10.1016/j.ecoenv.2020.110868_bib48) 2002; 53
Fu (10.1016/j.ecoenv.2020.110868_bib18) 2014; 267
Hanauer (10.1016/j.ecoenv.2020.110868_bib23) 2011; 341
Gómez-Suárez (10.1016/j.ecoenv.2020.110868_bib21) 2020; 12
Trivedi (10.1016/j.ecoenv.2020.110868_bib65) 2000; 34
Cheng (10.1016/j.ecoenv.2020.110868_bib13) 2016; 67
Komárek (10.1016/j.ecoenv.2020.110868_bib36) 2013; 172
References_xml – volume: 210
  start-page: 191
  year: 2018
  end-page: 200
  ident: bib30
  article-title: Cadmium immobilization in river sediment using stabilized nanoscale zero-valent iron with enhanced transport by polysaccharide coating
  publication-title: J. Environ. Manag.
– volume: 33
  start-page: 282
  year: 1999
  end-page: 287
  ident: bib57
  article-title: Removal of dissolved heavy metals from acid rock drainage using iron metal
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 469
  year: 1984
  end-page: 477
  ident: bib63
  article-title: Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants
  publication-title: J. Plant Nutr.
– volume: 134
  start-page: 105046
  year: 2020
  ident: bib50
  article-title: Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review
  publication-title: Environ. Int.
– volume: 32
  start-page: 2257
  year: 1998
  end-page: 2264
  ident: bib29
  article-title: Nitrate reduction by metallic iron
  publication-title: Water Res.
– volume: 13
  start-page: 543
  year: 2013
  end-page: 554
  ident: bib26
  article-title: Leachability of cadmium, lead, and zinc in a long-term spontaneously revegetated slag heap: implications for phytostabilization
  publication-title: J. Soils Sediments
– volume: 280
  start-page: 504
  year: 2014
  end-page: 513
  ident: bib61
  article-title: Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron
  publication-title: J. Hazard. Mater.
– volume: 163
  start-page: 217
  year: 2018
  end-page: 227
  ident: bib34
  article-title: Remediation of contaminated soils by enhanced nanoscale zero valent iron
  publication-title: Environ. Res.
– volume: 426
  start-page: 241
  year: 2014
  end-page: 251
  ident: bib1
  article-title: Nanoscale Zero-Valent Iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: kinetics, thermodynamic and mechanism
  publication-title: J. Colloid Interface Sci.
– volume: 12
  start-page: 2212
  year: 2020
  ident: bib21
  article-title: Fertilizer potential of struvite as affected by nitrogen form in the rhizosphere
  publication-title: Sustainability
– volume: 41
  start-page: 1307
  year: 2000
  end-page: 1311
  ident: bib14
  article-title: Kinetics of reductive denitrification by nanoscale zero-valent iron
  publication-title: Chemosphere
– volume: 52
  start-page: 12010
  year: 2018
  end-page: 12025
  ident: bib3
  article-title: Advances in surface passivation of nanoscale zerovalent iron: a critical review
  publication-title: Environ. Sci. Technol.
– volume: 127
  start-page: 73
  year: 2004
  end-page: 82
  ident: bib4
  article-title: Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil
  publication-title: Environ. Pollut.
– volume: 100
  start-page: 335
  year: 2019
  end-page: 351
  ident: bib39
  article-title: In situ chemical stabilization of trace element-contaminated soil – field demonstrations and barriers to transition from laboratory to the field – a review
  publication-title: Appl. Geochem.
– year: 2017
  ident: bib53
  article-title: R: A Language and Environment for Statistical Computing
– volume: 85
  start-page: 1290
  year: 2011
  end-page: 1298
  ident: bib40
  article-title: Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil
  publication-title: Chemosphere
– volume: 37
  start-page: 979
  year: 2003
  end-page: 984
  ident: bib43
  article-title: Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques
  publication-title: Environ. Sci. Technol.
– volume: 36
  start-page: 5469
  year: 2002
  end-page: 5475
  ident: bib19
  article-title: Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron
  publication-title: Environ. Sci. Technol.
– volume: 160
  start-page: 185
  year: 2010
  end-page: 189
  ident: bib45
  article-title: Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation
  publication-title: Chem. Eng. J.
– volume: 277
  start-page: 1
  year: 2004
  end-page: 18
  ident: bib6
  article-title: Adsorption of heavy metal ions on soils and soils constituents
  publication-title: J. Colloid Interface Sci.
– volume: 42
  start-page: 1776
  year: 2014
  end-page: 1784
  ident: bib20
  article-title: Immobilisation of Pb and Zn in soils using stabilised zero-valent iron nanoparticles: effects on soil properties
  publication-title: Clean
– volume: 33
  start-page: 10
  year: 2001
  end-page: 16
  ident: bib37
  article-title: Nitrogen transformations in copper-contaminated soils and effects of lime and compost application on soil resiliency
  publication-title: Biol. Fertil. Soils
– volume: 183
  start-page: 271
  year: 2012
  end-page: 277
  ident: bib62
  article-title: Mechanism of nitrate reduction by zero-valent iron: equilibrium and kinetics studies
  publication-title: Chem. Eng. J.
– volume: 231–232
  start-page: 114
  year: 2012
  end-page: 119
  ident: bib64
  article-title: Effect of common ions on nitrate removal by zero-valent iron from alkaline soil
  publication-title: J. Hazard. Mater.
– volume: 14
  start-page: 1
  year: 2005
  end-page: 42
  ident: bib17
  article-title: The R commander: a basic-statistics graphical user interface to R
  publication-title: J. Stat. Software
– volume: 75
  start-page: 224
  year: 2015
  end-page: 248
  ident: bib22
  article-title: The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014)
  publication-title: Water Res.
– volume: 9
  start-page: 587
  year: 1980
  end-page: 592
  ident: bib11
  article-title: Effect of nitrification on movement of trace metals in soil columns
  publication-title: J. Environ. Qual.
– volume: 267
  start-page: 194
  year: 2014
  end-page: 205
  ident: bib18
  article-title: The use of zero-valent iron for groundwater remediation and wastewater treatment: a review
  publication-title: J. Hazard. Mater.
– volume: 409
  start-page: 346
  year: 2001
  end-page: 349
  ident: bib16
  article-title: Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake
  publication-title: Nature
– volume: 53
  start-page: 45
  year: 2002
  end-page: 55
  ident: bib48
  article-title: Heavy metal sorption on soil minerals affected by the siderophore desferrioxamine B: the role of Fe(III) (hydr)oxides and dissolved Fe(III)
  publication-title: Eur. J. Soil Sci.
– volume: 16
  start-page: 446
  year: 2019
  end-page: 458
  ident: bib52
  article-title: Nanoscale zerovalent iron particles for magnet-assisted soil washing of cadmium-contaminated paddy soil: proof of concept
  publication-title: Environ. Chem.
– volume: 37
  start-page: 1818
  year: 2003
  end-page: 1830
  ident: bib66
  article-title: Nitrate removal in zero-valent iron packed columns
  publication-title: Water Res.
– volume: 184
  start-page: 892
  year: 2017
  end-page: 899
  ident: bib72
  article-title: Linking potential nitrification rates, nitrogen cycling genes and soil properties after remediating the agricultural soil contaminated with heavy metal and fungicide
  publication-title: Chemosphere
– volume: 55
  start-page: 1287
  year: 1991
  end-page: 1290
  ident: bib59
  article-title: Zinc sorption by iron-oxide-coated sand as a function of pH
  publication-title: Soil Sci. Soc. Am. J.
– volume: 32
  start-page: 743
  year: 1998
  end-page: 748
  ident: bib46
  article-title: Solubility of Cd2+, Cu2+, Pb2+, and Zn2+ in aged coprecipitates with amorphous iron hydroxides
  publication-title: Environ. Sci. Technol.
– volume: 671
  start-page: 388
  year: 2019
  end-page: 403
  ident: bib42
  article-title: Reduction of nitrate by zero valent iron (ZVI)-based materials: a review
  publication-title: Sci. Total Environ.
– volume: 123
  start-page: 87
  year: 2012
  end-page: 94
  ident: bib27
  article-title: Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability
  publication-title: J. Geochem. Explor.
– volume: 35
  start-page: 2689
  year: 1997
  end-page: 2695
  ident: bib12
  article-title: Reduction of nitrate to ammonia by zero-valent iron
  publication-title: Chemosphere
– volume: 197
  start-page: 33
  year: 2018
  end-page: 41
  ident: bib51
  article-title: Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides
  publication-title: Chemosphere
– volume: 347
  start-page: 386
  year: 2015
  end-page: 396
  ident: bib15
  article-title: Transpiration flow controls Zn transport in Brassica napus and Lolium multiflorum under toxic levels as evidenced from isotopic fractionation
  publication-title: Comptes Rendus Geosci., Geochemical and isotopic record of anthropogenic activities
– volume: 32
  start-page: 1306
  year: 2003
  end-page: 1315
  ident: bib32
  article-title: Effects of oxide coating and selected cations on nitrate reduction by iron metal
  publication-title: J. Environ. Qual.
– volume: 67
  start-page: 5041
  year: 2016
  end-page: 5050
  ident: bib13
  article-title: Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation
  publication-title: J. Exp. Bot.
– volume: 172
  start-page: 9
  year: 2013
  end-page: 22
  ident: bib36
  article-title: Chemical stabilization of metals and arsenic in contaminated soils using oxides – a review
  publication-title: Environ. Pollut.
– volume: 139
  start-page: 644
  year: 2015
  end-page: 651
  ident: bib28
  article-title: Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus
  publication-title: Chemosphere
– volume: 260
  start-page: 19
  year: 2004
  end-page: 32
  ident: bib44
  article-title: Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH
  publication-title: Plant Soil
– volume: 163
  start-page: 623
  year: 2000
  end-page: 628
  ident: bib55
  article-title: The acquisition of cadmium by Lupinus albus L., Lupinus angustifolius L., and Lolium multiflorum Lam
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 66
  start-page: 3
  year: 2004
  end-page: 18
  ident: bib38
  article-title: Iron oxide dissolution and solubility in the presence of siderophores
  publication-title: Aquat. Sci. - Res. Boundaries
– volume: 34
  start-page: 4386
  year: 2000
  end-page: 4391
  ident: bib47
  article-title: Copper phytotoxicity in a contaminated soil: remediation tests with adsorptive materials
  publication-title: Environ. Sci. Technol.
– volume: 39
  start-page: 1751
  year: 2005
  end-page: 1760
  ident: bib31
  article-title: Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+
  publication-title: Water Res.
– volume: 1
  start-page: 57
  year: 1999
  end-page: 61
  ident: bib73
  article-title: Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials
  publication-title: J. Environ. Monit.
– volume: 341
  start-page: 381
  year: 2018
  end-page: 389
  ident: bib69
  article-title: Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments
  publication-title: J. Hazard. Mater.
– volume: 30
  start-page: 2424
  year: 1996
  end-page: 2434
  ident: bib58
  article-title: Uptake of heavy metals in batch systems by a recycled iron-bearing material
  publication-title: Water Res.
– volume: 424
  start-page: 1
  year: 2012
  end-page: 10
  ident: bib67
  article-title: Use of iron oxide nanomaterials in wastewater treatment: a review
  publication-title: Sci. Total Environ.
– volume: 20
  start-page: 6210
  year: 2013
  end-page: 6221
  ident: bib5
  article-title: Cadmium (Cd2+) removal by nano zerovalent iron: surface analysis, effects of solution chemistry and surface complexation modeling
  publication-title: Environ. Sci. Pollut. Res.
– volume: 59
  start-page: 706
  year: 2008
  end-page: 715
  ident: bib9
  article-title: Long-term reactions of Ni, Zn and Cd with iron oxyhydroxides depend on crystallinity and structure and on metal concentrations
  publication-title: Eur. J. Soil Sci.
– volume: 84
  start-page: 256
  year: 2012
  end-page: 268
  ident: bib7
  article-title: Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere
  publication-title: Geochem. Cosmochim. Acta
– volume: 34
  start-page: 2215
  year: 2000
  end-page: 2223
  ident: bib65
  article-title: Modeling Cd and Zn sorption to hydrous metal oxides
  publication-title: Environ. Sci. Technol.
– volume: 18
  start-page: 200
  year: 1994
  end-page: 208
  ident: bib70
  article-title: Impact of pasture contamination by copper, chromium, arsenic timber preservative on soil biological activity
  publication-title: Biol. Fertil. Soils
– volume: 341
  start-page: 193
  year: 2011
  end-page: 208
  ident: bib23
  article-title: In situ stabilization of metals (Cu, Cd, and Zn) in contaminated soils in the region of Bolnisi, Georgia
  publication-title: Plant Soil
– year: 1979
  ident: bib41
  article-title: Chemical Equilibria in Soils
– volume: 39
  start-page: 37
  year: 1988
  end-page: 52
  ident: bib8
  article-title: Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals
  publication-title: J. Soil Sci.
– year: 2010
  ident: bib49
  article-title: Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants
  publication-title: J. Biol. Chem.
– volume: 47
  start-page: 335
  year: 1989
  end-page: 379
  ident: bib2
  article-title: Effects of heavy-metals in soil on microbial processes and populations (a review)
  publication-title: Water Air Soil Pollut.
– volume: 167
  start-page: 391
  year: 2005
  end-page: 401
  ident: bib24
  article-title: Zinc effects on cadmium accumulation and partitioning in near-isogenic lines of durum wheat that differ in grain cadmium concentration
  publication-title: New Phytol.
– volume: 210
  start-page: 1145
  year: 2018
  end-page: 1156
  ident: bib68
  article-title: Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: a review
  publication-title: Chemosphere
– volume: 248
  start-page: 43
  year: 2003
  end-page: 59
  ident: bib25
  article-title: Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review
  publication-title: Plant Soil
– volume: 162
  start-page: 145
  year: 2013
  end-page: 173
  ident: bib10
  article-title: Nitrogen losses from the soil/plant system: a review
  publication-title: Ann. Appl. Biol.
– volume: 122
  start-page: 528
  year: 2015
  end-page: 536
  ident: bib56
  article-title: Zinc–cadmium interactions: impact on wheat physiology and mineral acquisition
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 36
  start-page: 395
  year: 1964
  end-page: 398
  ident: bib71
  article-title: Chemical reduction of nitrate in water
  publication-title: J. Water Pollut. Control Fed.
– volume: 71
  start-page: 5635
  year: 2007
  end-page: 5650
  ident: bib54
  article-title: Dissolution mechanisms of goethite in the presence of siderophores and organic acids
  publication-title: Geochem. Cosmochim. Acta
– volume: 169
  start-page: 115285
  year: 2020
  ident: bib33
  article-title: Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater
  publication-title: Water Res.
– year: 2020
  ident: bib35
  article-title: Combining biochar and zerovalent iron (BZVI) as a paddy field soil amendment for heavy cadmium (Cd) contamination decreases Cd but increases zinc and iron concentrations in rice grains: a field-scale evaluation
  publication-title: Process Saf. Environ. Protect.
– volume: 38
  start-page: 2715
  year: 2004
  end-page: 2720
  ident: bib60
  article-title: Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate
  publication-title: Environ. Sci. Technol.
– volume: 123
  start-page: 87
  year: 2012
  ident: 10.1016/j.ecoenv.2020.110868_bib27
  article-title: Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2011.10.004
– volume: 260
  start-page: 19
  year: 2004
  ident: 10.1016/j.ecoenv.2020.110868_bib44
  article-title: Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH
  publication-title: Plant Soil
  doi: 10.1023/B:PLSO.0000030173.71500.e1
– volume: 39
  start-page: 37
  year: 1988
  ident: 10.1016/j.ecoenv.2020.110868_bib8
  article-title: Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1988.tb01192.x
– volume: 341
  start-page: 193
  year: 2011
  ident: 10.1016/j.ecoenv.2020.110868_bib23
  article-title: In situ stabilization of metals (Cu, Cd, and Zn) in contaminated soils in the region of Bolnisi, Georgia
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0634-5
– volume: 184
  start-page: 892
  year: 2017
  ident: 10.1016/j.ecoenv.2020.110868_bib72
  article-title: Linking potential nitrification rates, nitrogen cycling genes and soil properties after remediating the agricultural soil contaminated with heavy metal and fungicide
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.06.081
– volume: 75
  start-page: 224
  year: 2015
  ident: 10.1016/j.ecoenv.2020.110868_bib22
  article-title: The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014)
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.02.034
– volume: 183
  start-page: 271
  year: 2012
  ident: 10.1016/j.ecoenv.2020.110868_bib62
  article-title: Mechanism of nitrate reduction by zero-valent iron: equilibrium and kinetics studies
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.12.074
– volume: 280
  start-page: 504
  year: 2014
  ident: 10.1016/j.ecoenv.2020.110868_bib61
  article-title: Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.08.040
– volume: 39
  start-page: 1751
  year: 2005
  ident: 10.1016/j.ecoenv.2020.110868_bib31
  article-title: Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.03.002
– volume: 42
  start-page: 1776
  year: 2014
  ident: 10.1016/j.ecoenv.2020.110868_bib20
  article-title: Immobilisation of Pb and Zn in soils using stabilised zero-valent iron nanoparticles: effects on soil properties
  publication-title: Clean
– volume: 409
  start-page: 346
  year: 2001
  ident: 10.1016/j.ecoenv.2020.110868_bib16
  article-title: Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake
  publication-title: Nature
  doi: 10.1038/35053080
– volume: 210
  start-page: 191
  year: 2018
  ident: 10.1016/j.ecoenv.2020.110868_bib30
  article-title: Cadmium immobilization in river sediment using stabilized nanoscale zero-valent iron with enhanced transport by polysaccharide coating
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.01.001
– volume: 122
  start-page: 528
  year: 2015
  ident: 10.1016/j.ecoenv.2020.110868_bib56
  article-title: Zinc–cadmium interactions: impact on wheat physiology and mineral acquisition
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2015.09.011
– year: 2017
  ident: 10.1016/j.ecoenv.2020.110868_bib53
– volume: 32
  start-page: 2257
  year: 1998
  ident: 10.1016/j.ecoenv.2020.110868_bib29
  article-title: Nitrate reduction by metallic iron
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(97)00464-8
– volume: 36
  start-page: 395
  year: 1964
  ident: 10.1016/j.ecoenv.2020.110868_bib71
  article-title: Chemical reduction of nitrate in water
  publication-title: J. Water Pollut. Control Fed.
– volume: 134
  start-page: 105046
  year: 2020
  ident: 10.1016/j.ecoenv.2020.110868_bib50
  article-title: Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.105046
– volume: 34
  start-page: 2215
  year: 2000
  ident: 10.1016/j.ecoenv.2020.110868_bib65
  article-title: Modeling Cd and Zn sorption to hydrous metal oxides
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es991110c
– volume: 231–232
  start-page: 114
  year: 2012
  ident: 10.1016/j.ecoenv.2020.110868_bib64
  article-title: Effect of common ions on nitrate removal by zero-valent iron from alkaline soil
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.06.042
– volume: 100
  start-page: 335
  year: 2019
  ident: 10.1016/j.ecoenv.2020.110868_bib39
  article-title: In situ chemical stabilization of trace element-contaminated soil – field demonstrations and barriers to transition from laboratory to the field – a review
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2018.12.003
– volume: 13
  start-page: 543
  year: 2013
  ident: 10.1016/j.ecoenv.2020.110868_bib26
  article-title: Leachability of cadmium, lead, and zinc in a long-term spontaneously revegetated slag heap: implications for phytostabilization
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-012-0546-5
– volume: 1
  start-page: 57
  year: 1999
  ident: 10.1016/j.ecoenv.2020.110868_bib73
  article-title: Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials
  publication-title: J. Environ. Monit.
  doi: 10.1039/a807854h
– volume: 35
  start-page: 2689
  year: 1997
  ident: 10.1016/j.ecoenv.2020.110868_bib12
  article-title: Reduction of nitrate to ammonia by zero-valent iron
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(97)00275-0
– volume: 169
  start-page: 115285
  year: 2020
  ident: 10.1016/j.ecoenv.2020.110868_bib33
  article-title: Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.115285
– volume: 347
  start-page: 386
  year: 2015
  ident: 10.1016/j.ecoenv.2020.110868_bib15
  article-title: Transpiration flow controls Zn transport in Brassica napus and Lolium multiflorum under toxic levels as evidenced from isotopic fractionation
  publication-title: Comptes Rendus Geosci., Geochemical and isotopic record of anthropogenic activities
– volume: 41
  start-page: 1307
  year: 2000
  ident: 10.1016/j.ecoenv.2020.110868_bib14
  article-title: Kinetics of reductive denitrification by nanoscale zero-valent iron
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(99)00506-8
– volume: 84
  start-page: 256
  year: 2012
  ident: 10.1016/j.ecoenv.2020.110868_bib7
  article-title: Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2012.01.031
– volume: 33
  start-page: 282
  year: 1999
  ident: 10.1016/j.ecoenv.2020.110868_bib57
  article-title: Removal of dissolved heavy metals from acid rock drainage using iron metal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es980543x
– volume: 12
  start-page: 2212
  year: 2020
  ident: 10.1016/j.ecoenv.2020.110868_bib21
  article-title: Fertilizer potential of struvite as affected by nitrogen form in the rhizosphere
  publication-title: Sustainability
  doi: 10.3390/su12062212
– volume: 53
  start-page: 45
  year: 2002
  ident: 10.1016/j.ecoenv.2020.110868_bib48
  article-title: Heavy metal sorption on soil minerals affected by the siderophore desferrioxamine B: the role of Fe(III) (hydr)oxides and dissolved Fe(III)
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2002.00425.x
– volume: 38
  start-page: 2715
  year: 2004
  ident: 10.1016/j.ecoenv.2020.110868_bib60
  article-title: Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034650p
– volume: 66
  start-page: 3
  year: 2004
  ident: 10.1016/j.ecoenv.2020.110868_bib38
  article-title: Iron oxide dissolution and solubility in the presence of siderophores
  publication-title: Aquat. Sci. - Res. Boundaries
  doi: 10.1007/s00027-003-0690-5
– volume: 30
  start-page: 2424
  year: 1996
  ident: 10.1016/j.ecoenv.2020.110868_bib58
  article-title: Uptake of heavy metals in batch systems by a recycled iron-bearing material
  publication-title: Water Res.
  doi: 10.1016/0043-1354(96)00105-4
– volume: 426
  start-page: 241
  year: 2014
  ident: 10.1016/j.ecoenv.2020.110868_bib1
  article-title: Nanoscale Zero-Valent Iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: kinetics, thermodynamic and mechanism
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2014.04.014
– volume: 163
  start-page: 623
  year: 2000
  ident: 10.1016/j.ecoenv.2020.110868_bib55
  article-title: The acquisition of cadmium by Lupinus albus L., Lupinus angustifolius L., and Lolium multiflorum Lam
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/1522-2624(200012)163:6<623::AID-JPLN623>3.0.CO;2-C
– volume: 37
  start-page: 1818
  year: 2003
  ident: 10.1016/j.ecoenv.2020.110868_bib66
  article-title: Nitrate removal in zero-valent iron packed columns
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(02)00539-0
– volume: 127
  start-page: 73
  year: 2004
  ident: 10.1016/j.ecoenv.2020.110868_bib4
  article-title: Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(03)00250-1
– year: 1979
  ident: 10.1016/j.ecoenv.2020.110868_bib41
– volume: 32
  start-page: 1306
  year: 2003
  ident: 10.1016/j.ecoenv.2020.110868_bib32
  article-title: Effects of oxide coating and selected cations on nitrate reduction by iron metal
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2003.1306
– volume: 37
  start-page: 979
  year: 2003
  ident: 10.1016/j.ecoenv.2020.110868_bib43
  article-title: Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es026083w
– volume: 47
  start-page: 335
  year: 1989
  ident: 10.1016/j.ecoenv.2020.110868_bib2
  article-title: Effects of heavy-metals in soil on microbial processes and populations (a review)
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/BF00279331
– volume: 20
  start-page: 6210
  year: 2013
  ident: 10.1016/j.ecoenv.2020.110868_bib5
  article-title: Cadmium (Cd2+) removal by nano zerovalent iron: surface analysis, effects of solution chemistry and surface complexation modeling
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-013-1651-8
– volume: 7
  start-page: 469
  year: 1984
  ident: 10.1016/j.ecoenv.2020.110868_bib63
  article-title: Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904168409363213
– volume: 55
  start-page: 1287
  year: 1991
  ident: 10.1016/j.ecoenv.2020.110868_bib59
  article-title: Zinc sorption by iron-oxide-coated sand as a function of pH
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1991.03615995005500050015x
– volume: 36
  start-page: 5469
  year: 2002
  ident: 10.1016/j.ecoenv.2020.110868_bib19
  article-title: Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es025533h
– volume: 52
  start-page: 12010
  year: 2018
  ident: 10.1016/j.ecoenv.2020.110868_bib3
  article-title: Advances in surface passivation of nanoscale zerovalent iron: a critical review
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01734
– volume: 16
  start-page: 446
  year: 2019
  ident: 10.1016/j.ecoenv.2020.110868_bib52
  article-title: Nanoscale zerovalent iron particles for magnet-assisted soil washing of cadmium-contaminated paddy soil: proof of concept
  publication-title: Environ. Chem.
  doi: 10.1071/EN19028
– volume: 277
  start-page: 1
  year: 2004
  ident: 10.1016/j.ecoenv.2020.110868_bib6
  article-title: Adsorption of heavy metal ions on soils and soils constituents
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.04.005
– volume: 163
  start-page: 217
  year: 2018
  ident: 10.1016/j.ecoenv.2020.110868_bib34
  article-title: Remediation of contaminated soils by enhanced nanoscale zero valent iron
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2018.01.030
– volume: 424
  start-page: 1
  year: 2012
  ident: 10.1016/j.ecoenv.2020.110868_bib67
  article-title: Use of iron oxide nanomaterials in wastewater treatment: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.02.023
– volume: 9
  start-page: 587
  year: 1980
  ident: 10.1016/j.ecoenv.2020.110868_bib11
  article-title: Effect of nitrification on movement of trace metals in soil columns
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1980.00472425000900040010x
– volume: 172
  start-page: 9
  year: 2013
  ident: 10.1016/j.ecoenv.2020.110868_bib36
  article-title: Chemical stabilization of metals and arsenic in contaminated soils using oxides – a review
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2012.07.045
– volume: 34
  start-page: 4386
  year: 2000
  ident: 10.1016/j.ecoenv.2020.110868_bib47
  article-title: Copper phytotoxicity in a contaminated soil: remediation tests with adsorptive materials
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0009931
– volume: 160
  start-page: 185
  year: 2010
  ident: 10.1016/j.ecoenv.2020.110868_bib45
  article-title: Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.03.036
– volume: 248
  start-page: 43
  year: 2003
  ident: 10.1016/j.ecoenv.2020.110868_bib25
  article-title: Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review
  publication-title: Plant Soil
  doi: 10.1023/A:1022371130939
– volume: 210
  start-page: 1145
  year: 2018
  ident: 10.1016/j.ecoenv.2020.110868_bib68
  article-title: Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.07.118
– volume: 71
  start-page: 5635
  year: 2007
  ident: 10.1016/j.ecoenv.2020.110868_bib54
  article-title: Dissolution mechanisms of goethite in the presence of siderophores and organic acids
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.12.022
– volume: 67
  start-page: 5041
  year: 2016
  ident: 10.1016/j.ecoenv.2020.110868_bib13
  article-title: Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw270
– volume: 267
  start-page: 194
  year: 2014
  ident: 10.1016/j.ecoenv.2020.110868_bib18
  article-title: The use of zero-valent iron for groundwater remediation and wastewater treatment: a review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.12.062
– volume: 85
  start-page: 1290
  year: 2011
  ident: 10.1016/j.ecoenv.2020.110868_bib40
  article-title: Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.07.034
– volume: 197
  start-page: 33
  year: 2018
  ident: 10.1016/j.ecoenv.2020.110868_bib51
  article-title: Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.01.017
– volume: 167
  start-page: 391
  year: 2005
  ident: 10.1016/j.ecoenv.2020.110868_bib24
  article-title: Zinc effects on cadmium accumulation and partitioning in near-isogenic lines of durum wheat that differ in grain cadmium concentration
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2005.01416.x
– volume: 59
  start-page: 706
  year: 2008
  ident: 10.1016/j.ecoenv.2020.110868_bib9
  article-title: Long-term reactions of Ni, Zn and Cd with iron oxyhydroxides depend on crystallinity and structure and on metal concentrations
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2008.01028.x
– volume: 33
  start-page: 10
  year: 2001
  ident: 10.1016/j.ecoenv.2020.110868_bib37
  article-title: Nitrogen transformations in copper-contaminated soils and effects of lime and compost application on soil resiliency
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s003740000265
– volume: 671
  start-page: 388
  year: 2019
  ident: 10.1016/j.ecoenv.2020.110868_bib42
  article-title: Reduction of nitrate by zero valent iron (ZVI)-based materials: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.03.317
– volume: 14
  start-page: 1
  year: 2005
  ident: 10.1016/j.ecoenv.2020.110868_bib17
  article-title: The R commander: a basic-statistics graphical user interface to R
  publication-title: J. Stat. Software
  doi: 10.18637/jss.v014.i09
– volume: 32
  start-page: 743
  year: 1998
  ident: 10.1016/j.ecoenv.2020.110868_bib46
  article-title: Solubility of Cd2+, Cu2+, Pb2+, and Zn2+ in aged coprecipitates with amorphous iron hydroxides
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es970262+
– volume: 18
  start-page: 200
  year: 1994
  ident: 10.1016/j.ecoenv.2020.110868_bib70
  article-title: Impact of pasture contamination by copper, chromium, arsenic timber preservative on soil biological activity
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/BF00647667
– year: 2010
  ident: 10.1016/j.ecoenv.2020.110868_bib49
  article-title: Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants
  publication-title: J. Biol. Chem.
– volume: 341
  start-page: 381
  year: 2018
  ident: 10.1016/j.ecoenv.2020.110868_bib69
  article-title: Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.06.028
– volume: 162
  start-page: 145
  year: 2013
  ident: 10.1016/j.ecoenv.2020.110868_bib10
  article-title: Nitrogen losses from the soil/plant system: a review
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/aab.12014
– volume: 139
  start-page: 644
  year: 2015
  ident: 10.1016/j.ecoenv.2020.110868_bib28
  article-title: Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.12.036
– year: 2020
  ident: 10.1016/j.ecoenv.2020.110868_bib35
  article-title: Combining biochar and zerovalent iron (BZVI) as a paddy field soil amendment for heavy cadmium (Cd) contamination decreases Cd but increases zinc and iron concentrations in rice grains: a field-scale evaluation
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2020.05.008
SSID ssj0003055
Score 2.3844764
Snippet Technologies based on zero-valent iron (Fe0) are increasingly being used to immobilize metals in soils and remove metals and nitrate from waters. However, the...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110868
SubjectTerms Ecology, environment
Environment and Society
Environmental Engineering
Environmental Sciences
Heavy metals
Immobilization
Life Sciences
Nitrogen
Pollution
Remediation
Symbiosis
Zero-valent iron
Title Metal immobilization and nitrate reduction in a contaminated soil amended with zero-valent iron (Fe0)
URI https://dx.doi.org/10.1016/j.ecoenv.2020.110868
https://www.proquest.com/docview/2415292034
https://hal.science/hal-02900977
Volume 201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB62WwqFUtK0JdtHUEsP7cFdPyTZPi7LLm6bhFIayE1ItkxdEnvZFySH_PbMWPaGhEKgJ2NJtmTPWDMaffMZ4FMUiSKUofVkbih0IxPPEN1dEgURbeSU3FIc8vhEZqf8-5k4G8C0z4UhWGU397s5vZ2tu5Jx9zbHi6oaEywploJSgElvY8oo51iCOv31-hbmQYxWDsYYe9S6T59rMV64wrP1FleJocPDE-Hqv83Toz-Ek7w3Xbc2aL4HzzvnkU3c-F7AwNb78GTWEk9f7sMzF4NjLrXoJdhji641q1DVCALrEi6ZrguG3zFRRLAlEbe2pRVWMMKta8LGoBvKVk11zvRFGyJnFK5lV3bZeKiZaKcYZcexz3Prf3kFp_PZ72nmdb9V8HIepGvPCs3REQiNLxL0R0zBDY8jgw9fchEkJiwSmSe5DrGZ8ctSUqVJNC48QpGjS_MahnVT2wNgkU5NasrURjHepQgMLwJJvejSF1bLEUT921R5xzlOv744Vz247K9yMlAkA-VkMAJvd9XCcW480D7uBaXu6I5Cs_DAlR9RrrtOiGo7mxwpKvPDlHJc4m0wgg-92BV-e7ShomvbbFaq9X5S1D_-5r-H8Bae0hlBUALxDobr5ca-Rz9nbQ5bRT6Ex5Ppr6OfdPz2Izu5AYBr-94
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB21RQgkhKBQsXwaBBIc0k0c23EOHCroakt3e2ql3oydOGpQyVa726Jy4E_1D3YmTopASJWQerUTO_KMZ8aTN88Ab9NUllxxH6nCUepG6cgR3Z1Ok5R-5FTCUx5yuqfGB-LLoTxcgYu-FoZglZ3tDza9tdZdy7BbzeFJXQ8JlpQpSSXApLdZ1iErd_35Dzy3LT7ufEYhv-N8tL3_aRx1VwtEhUjyZeSlFegMuYulRp_sSuFEljqtdCVkoh0vtSp0YTk-5uKqUtTptMXgm8sC3TqOuwq3BJoLujZh89dvXAlRaAXcZBbR5_X1ei2oDI-UvjnDYykPAHxieP23P1w9ImDmX_6hdXqjB3C_i1bZVliQh7Dim3W4vd0yXZ-vw72Q9GOhlukR-KnHWJ7VqNuEuQ0Vnsw2JUPDQZwUbE5MsW1rjR2MgPKWwDgY97LFrD5m9nubk2eUH2Y__XwW4VZAx8ioHI-9H_n4w2M4uJHF3oC1Ztb4J8BSm7vcVblPMxylTJwoE0Wz2CqW3qoBpP1qmqIjOae7No5Nj2b7ZoIMDMnABBkMILp66ySQfFzzfNYLyvyhrAb90DVvvkG5Xk1C3N7jrYmhtpjnVFSTnSUDeN2L3eBmpz84tvGz04Vpw60cFV48_e9PeAV3xvvTiZns7O0-g7vUQ_iXRD6HteX81L_AIGvpXrZKzeDrTe-iSyiaNJo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+immobilization+and+nitrate+reduction+in+a+contaminated+soil+amended+with+zero-valent+iron+%28Fe0%29&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Houben%2C+David&rft.au=Sonnet%2C+Philippe&rft.date=2020-09-15&rft.issn=0147-6513&rft.volume=201&rft.spage=110868&rft_id=info:doi/10.1016%2Fj.ecoenv.2020.110868&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecoenv_2020_110868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon