Extraction of Airways From CT (EXACT'09)
This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate 15 different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard f...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 31; no. 11; pp. 2093 - 2107 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2012
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2012.2209674 |
Cover
Loading…
Abstract | This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate 15 different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard from scratch, we propose to construct the reference using results from all algorithms that are to be evaluated. We start by subdividing each segmented airway tree into its individual branch segments. Each branch segment is then visually scored by trained observers to determine whether or not it is a correctly segmented part of the airway tree. Finally, the reference airway trees are constructed by taking the union of all correctly extracted branch segments. Fifteen airway tree extraction algorithms from different research groups are evaluated on a diverse set of 20 chest computed tomography (CT) scans of subjects ranging from healthy volunteers to patients with severe pathologies, scanned at different sites, with different CT scanner brands, models, and scanning protocols. Three performance measures covering different aspects of segmentation quality were computed for all participating algorithms. Results from the evaluation showed that no single algorithm could extract more than an average of 74% of the total length of all branches in the reference standard, indicating substantial differences between the algorithms. A fusion scheme that obtained superior results is presented, demonstrating that there is complementary information provided by the different algorithms and there is still room for further improvements in airway segmentation algorithms. |
---|---|
AbstractList | This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate fifteen different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard from scratch, we propose to construct the reference using results from all algorithms that are to be evaluated. We start by subdividing each segmented airway tree into its individual branch segments. Each branch segment is then visually scored by trained observers to determine whether or not it is a correctly segmented part of the airway tree. Finally, the reference airway trees are constructed by taking the union of all correctly extracted branch segments. Fifteen airway tree extraction algorithms from different research groups are evaluated on a diverse set of twenty chest computed tomography (CT) scans of subjects ranging from healthy volunteers to patients with severe pathologies, scanned at different sites, with different CT scanner brands, models, and scanning protocols. Three performance measures covering different aspects of segmentation quality were computed for all participating algorithms. Results from the evaluation showed that no single algorithm could extract more than an average of 74% of the total length of all branches in the reference standard, indicating substantial differences between the algorithms. A fusion scheme that obtained superior results is presented, demonstrating that there is complementary information provided by the different algorithms and there is still room for further improvements in airway segmentation algorithms.This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate fifteen different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard from scratch, we propose to construct the reference using results from all algorithms that are to be evaluated. We start by subdividing each segmented airway tree into its individual branch segments. Each branch segment is then visually scored by trained observers to determine whether or not it is a correctly segmented part of the airway tree. Finally, the reference airway trees are constructed by taking the union of all correctly extracted branch segments. Fifteen airway tree extraction algorithms from different research groups are evaluated on a diverse set of twenty chest computed tomography (CT) scans of subjects ranging from healthy volunteers to patients with severe pathologies, scanned at different sites, with different CT scanner brands, models, and scanning protocols. Three performance measures covering different aspects of segmentation quality were computed for all participating algorithms. Results from the evaluation showed that no single algorithm could extract more than an average of 74% of the total length of all branches in the reference standard, indicating substantial differences between the algorithms. A fusion scheme that obtained superior results is presented, demonstrating that there is complementary information provided by the different algorithms and there is still room for further improvements in airway segmentation algorithms. This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate fifteen different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard from scratch, we propose to construct the reference using results from all algorithms that are to be evaluated. We start by subdividing each segmented airway tree into its individual branch segments. Each branch segment is then visually scored by trained observers to determine whether or not it is a correctly segmented part of the airway tree. Finally, the reference airway trees are constructed by taking the union of all correctly extracted branch segments. Fifteen airway tree extraction algorithms from different research groups are evaluated on a diverse set of twenty chest computed tomography (CT) scans of subjects ranging from healthy volunteers to patients with severe pathologies, scanned at different sites, with different CT scanner brands, models, and scanning protocols. Three performance measures covering different aspects of segmentation quality were computed for all participating algorithms. Results from the evaluation showed that no single algorithm could extract more than an average of 74% of the total length of all branches in the reference standard, indicating substantial differences between the algorithms. A fusion scheme that obtained superior results is presented, demonstrating that there is complementary information provided by the different algorithms and there is still room for further improvements in airway segmentation algorithms. This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate 15 different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard from scratch, we propose to construct the reference using results from all algorithms that are to be evaluated. We start by subdividing each segmented airway tree into its individual branch segments. Each branch segment is then visually scored by trained observers to determine whether or not it is a correctly segmented part of the airway tree. Finally, the reference airway trees are constructed by taking the union of all correctly extracted branch segments. Fifteen airway tree extraction algorithms from different research groups are evaluated on a diverse set of 20 chest computed tomography (CT) scans of subjects ranging from healthy volunteers to patients with severe pathologies, scanned at different sites, with different CT scanner brands, models, and scanning protocols. Three performance measures covering different aspects of segmentation quality were computed for all participating algorithms. Results from the evaluation showed that no single algorithm could extract more than an average of 74% of the total length of all branches in the reference standard, indicating substantial differences between the algorithms. A fusion scheme that obtained superior results is presented, demonstrating that there is complementary information provided by the different algorithms and there is still room for further improvements in airway segmentation algorithms. |
Author | Lo, Pechin Tschirren, Juerg Fetita, Catalin Mori, Ken Feuerstein, Marco Reinhardt, Joseph M. de Bruijne, Marleen Fabijanska, Anna Lee, Jaesung Sijbers, Jan Reeves, Anthony P. van Rikxoort, Eva M. van Ginneken, Bram Born, Silvia Pinho, Rômulo de Jong, Pim A. Bauer, Christian Mendoza, Carlos S. Hartmann, Ieneke Weinheimer, Oliver Pedersen, Jesper H. Naidich, David P. Prokop, Mathias Wiemker, Rafael Hoffman, Eric A. Yavarna, Tarunashree Odry, Benjamin Irving, Benjamin Ortner, Margarete Beichel, Reinhard |
Author_xml | – sequence: 1 givenname: Pechin surname: Lo fullname: Lo, Pechin organization: Image Group, Department of Computer Science, University of Copenhagen, Denmark – sequence: 2 givenname: Bram surname: van Ginneken fullname: van Ginneken, Bram organization: Diagnostic Image Analysis Group, Radboud University Nijmegen Medical Centre, The Netherlands – sequence: 3 givenname: Joseph M. surname: Reinhardt fullname: Reinhardt, Joseph M. organization: Department of Biomedical Engineering, The University of Iowa, USA – sequence: 4 givenname: Tarunashree surname: Yavarna fullname: Yavarna, Tarunashree organization: Dept. of Biomedical Engineering, The University of Iowa, USA – sequence: 5 givenname: Pim A. surname: de Jong fullname: de Jong, Pim A. organization: University Medical Center Utrecht, Utrecht, The Netherlands – sequence: 6 givenname: Benjamin surname: Irving fullname: Irving, Benjamin organization: University College London, UK – sequence: 7 givenname: Catalin surname: Fetita fullname: Fetita, Catalin organization: Institut TELECOM/Telecom SudParis, Evry – sequence: 8 givenname: Margarete surname: Ortner fullname: Ortner, Margarete organization: Institut TELECOM/Telecom SudParis, Evry – sequence: 9 givenname: Rômulo surname: Pinho fullname: Pinho, Rômulo organization: Léon Bérard Cancer Centre, Univeristy of Lyon, Lyon, France – sequence: 10 givenname: Jan surname: Sijbers fullname: Sijbers, Jan organization: University of Antwerp, Belgium – sequence: 11 givenname: Marco surname: Feuerstein fullname: Feuerstein, Marco organization: microDimensions, Technische Universität München, Germany – sequence: 12 givenname: Anna surname: Fabijanska fullname: Fabijanska, Anna organization: Department of Computer Engineering, Technical University of Lodz, Poland – sequence: 13 givenname: Christian surname: Bauer fullname: Bauer, Christian organization: Institute for Computer Graphics and Vision, Graz University of Technology, Austria – sequence: 14 givenname: Reinhard surname: Beichel fullname: Beichel, Reinhard organization: Department of Electrical and Computer Engineering, The University of Iowa – sequence: 15 givenname: Carlos S. surname: Mendoza fullname: Mendoza, Carlos S. organization: Department of Signal Processing and Communications, Universidad de Sevilla, Spain – sequence: 16 givenname: Rafael surname: Wiemker fullname: Wiemker, Rafael organization: Philips Research Laboratories Hamburg, Germany – sequence: 17 givenname: Jaesung surname: Lee fullname: Lee, Jaesung organization: School of Electrical and Computer Engineering, Cornell University, USA – sequence: 18 givenname: Anthony P. surname: Reeves fullname: Reeves, Anthony P. organization: School of Electrical and Computer Engineering, Cornell University, USA – sequence: 19 givenname: Silvia surname: Born fullname: Born, Silvia organization: Visual Computing, ICCAS, Universität Leipzig, Germany – sequence: 20 givenname: Oliver surname: Weinheimer fullname: Weinheimer, Oliver organization: Department of Diagnostic and Interventional Radiology, Johannes Gutenberg University of Mainz, Germany – sequence: 21 givenname: Eva M. surname: van Rikxoort fullname: van Rikxoort, Eva M. organization: Diagnostic Image Analysis Group, Radboud University Nijmegen Medical Centre, The Netherlands – sequence: 22 givenname: Juerg surname: Tschirren fullname: Tschirren, Juerg organization: VIDA Diagnostics, Inc., USA – sequence: 23 givenname: Ken surname: Mori fullname: Mori, Ken organization: Information and Communications Headquarters, Nagoya University, Hirotsugu Takabatake, Minami Sanjo Hospital, Japan – sequence: 24 givenname: Benjamin surname: Odry fullname: Odry, Benjamin organization: Corporate Research, Siemens Corporation, USA – sequence: 25 givenname: David P. surname: Naidich fullname: Naidich, David P. organization: Department of Radiology, New York University Medical Center, USA – sequence: 26 givenname: Ieneke surname: Hartmann fullname: Hartmann, Ieneke organization: Department of Radiology, Erasmus MC, University Medical Center Rotterdam, The Netherlands – sequence: 27 givenname: Eric A. surname: Hoffman fullname: Hoffman, Eric A. organization: Department of Radiology, The University of Iowa, USA – sequence: 28 givenname: Mathias surname: Prokop fullname: Prokop, Mathias organization: Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands – sequence: 29 givenname: Jesper H. surname: Pedersen fullname: Pedersen, Jesper H. organization: Department of Cardio Thoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Denmark – sequence: 30 givenname: Marleen surname: de Bruijne fullname: de Bruijne, Marleen organization: Image Group, Department of Computer Science, University of Copenhagen, Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22855226$$D View this record in MEDLINE/PubMed https://hal.science/hal-00940864$$DView record in HAL |
BookMark | eNp9kM9LwzAYhoNM3A-9C4L05nbo_JImaXIsY3ODiZcKu4U0TbHSrbPp1P33tnTu4MHTBy_P-37wDFFvV-4sQrcYphiDfIyfV1MCmEwJAclDeoEGmDHhE0Y3PTQAEgofgJM-Gjr3DoApA3mF-oQIxgjhAzSef9eVNnVe7rwy86K8-tJH5y2qcuvNYm8830Sz-AHk5BpdZrpw9uZ0R-h1MY9nS3_98rSaRWvfUCxrP7UJQECB6pQnApowTa0QWRrKRFBgVlIWkCAT3ABhHAeSJyCoDoURhhgRjNCk233ThdpX-VZXR1XqXC2jtWozAElBcPqJG3bcsfuq_DhYV6tt7owtCr2z5cEpTINmO4SAN-j9CT0kW5uel39NNAB0gKlK5yqbnREMqpWtGtmqla1OspsK_1Mxea1blY3SvPiveNcVc2vt-Q8nVIaCBj9Pz4Wz |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107144 crossref_primary_10_1088_1402_4896_ad1668 crossref_primary_10_1016_j_prime_2023_100242 crossref_primary_10_1007_s10278_018_0158_8 crossref_primary_10_1007_s10489_022_04380_9 crossref_primary_10_1002_ima_23188 crossref_primary_10_1007_s00034_024_02991_w crossref_primary_10_1016_j_artmed_2023_102637 crossref_primary_10_1016_j_cmpb_2021_106610 crossref_primary_10_1097_RTI_0000000000000387 crossref_primary_10_1117_1_JMI_2_2_020103 crossref_primary_10_1118_1_4941692 crossref_primary_10_26782_jmcms_2020_08_00062 crossref_primary_10_1109_TMI_2014_2374615 crossref_primary_10_1002_mp_13711 crossref_primary_10_1016_j_media_2014_07_003 crossref_primary_10_1109_TMI_2024_3419707 crossref_primary_10_1002_mp_12751 crossref_primary_10_1115_1_4054106 crossref_primary_10_1088_1361_6560_ad1d6c crossref_primary_10_1016_j_bspc_2024_106849 crossref_primary_10_1016_j_asoc_2017_07_010 crossref_primary_10_1186_s41747_021_00247_9 crossref_primary_10_1109_TMI_2012_2209674 crossref_primary_10_1371_journal_pone_0144282 crossref_primary_10_3390_diagnostics14171979 crossref_primary_10_1109_TMI_2021_3097665 crossref_primary_10_1109_TMI_2014_2377694 crossref_primary_10_1016_j_bspc_2024_106183 crossref_primary_10_1109_TMI_2021_3062280 crossref_primary_10_7599_hmr_2017_37_2_61 crossref_primary_10_1016_j_media_2016_11_001 crossref_primary_10_1016_j_media_2013_09_001 crossref_primary_10_1049_htl_2018_5074 crossref_primary_10_1088_1361_6560_aad2a1 crossref_primary_10_1109_TCSVT_2021_3092163 crossref_primary_10_1109_TIP_2015_2493446 crossref_primary_10_1007_s11548_016_1492_2 crossref_primary_10_1016_j_media_2014_05_007 crossref_primary_10_1007_s11548_022_02582_7 crossref_primary_10_3389_fonc_2022_868186 crossref_primary_10_1016_j_media_2023_102957 crossref_primary_10_1117_1_JMI_3_4_044506 crossref_primary_10_1109_TMI_2014_2380991 crossref_primary_10_1148_radiol_2015141579 crossref_primary_10_2174_1573405618666220630151409 crossref_primary_10_3390_s24165104 crossref_primary_10_1371_journal_pone_0230259 crossref_primary_10_1088_0031_9155_58_17_R187 crossref_primary_10_1007_s00034_021_01723_8 crossref_primary_10_1109_TMI_2014_2316115 crossref_primary_10_1109_TMI_2010_2076300 crossref_primary_10_1049_iet_ipr_2019_1024 crossref_primary_10_1118_1_4921139 crossref_primary_10_1007_s12194_017_0394_5 crossref_primary_10_1080_21681163_2024_2325361 crossref_primary_10_1109_TVLSI_2023_3342122 crossref_primary_10_1259_bjro_20210026 crossref_primary_10_1016_j_compeleceng_2018_01_027 crossref_primary_10_3233_XST_190627 crossref_primary_10_1080_21681163_2017_1332531 crossref_primary_10_1109_ACCESS_2021_3059680 crossref_primary_10_1109_TMI_2016_2578680 crossref_primary_10_1016_j_cmpb_2016_04_021 crossref_primary_10_3390_diagnostics13132161 crossref_primary_10_1016_j_compeleceng_2021_106992 crossref_primary_10_1016_j_media_2016_09_002 crossref_primary_10_1016_j_media_2015_05_003 crossref_primary_10_1016_j_compbiomed_2022_106241 crossref_primary_10_1016_j_media_2015_05_008 crossref_primary_10_1152_ajplung_00341_2021 crossref_primary_10_1016_j_patcog_2016_07_023 crossref_primary_10_1109_TFUZZ_2024_3433506 crossref_primary_10_1016_j_patcog_2024_111302 crossref_primary_10_1109_JBHI_2016_2623840 crossref_primary_10_1109_JBHI_2023_3290136 crossref_primary_10_1109_TMM_2016_2602062 crossref_primary_10_1172_JCI120693 crossref_primary_10_1007_s11042_019_7697_y crossref_primary_10_1109_JBHI_2023_3324080 crossref_primary_10_1007_s11042_020_10415_5 crossref_primary_10_1109_TMI_2024_3448468 crossref_primary_10_1109_TVLSI_2022_3213186 crossref_primary_10_1016_j_media_2020_101751 crossref_primary_10_1007_s00330_014_3261_3 crossref_primary_10_1007_s00330_023_09615_y crossref_primary_10_1177_1556984519826321 crossref_primary_10_1007_s11042_017_5341_2 crossref_primary_10_1007_s11263_015_0856_3 crossref_primary_10_1109_TVCG_2021_3114851 crossref_primary_10_1007_s11548_024_03243_7 crossref_primary_10_1016_j_media_2018_10_006 crossref_primary_10_1016_j_media_2024_103253 crossref_primary_10_1038_s41598_021_95364_1 crossref_primary_10_1007_s11548_023_02946_7 crossref_primary_10_1016_j_compmedimag_2015_11_002 crossref_primary_10_1186_s40537_024_00974_x crossref_primary_10_1109_TBME_2013_2285627 crossref_primary_10_1109_TNNLS_2023_3269223 crossref_primary_10_1016_j_artmed_2024_102930 crossref_primary_10_1371_journal_pone_0297437 crossref_primary_10_1016_j_bspc_2025_107648 crossref_primary_10_1088_1361_6560_ad4300 crossref_primary_10_1186_s12938_015_0060_2 crossref_primary_10_1145_3615862 crossref_primary_10_1183_13993003_01601_2015 crossref_primary_10_1016_j_media_2014_02_004 crossref_primary_10_1049_iet_ipr_2019_0252 crossref_primary_10_1109_TCSII_2022_3174183 crossref_primary_10_1117_1_JMI_4_2_024505 crossref_primary_10_1016_j_acra_2014_12_026 crossref_primary_10_1007_s11548_021_02466_2 crossref_primary_10_1038_s44172_024_00296_z crossref_primary_10_1118_1_4963214 crossref_primary_10_1109_ACCESS_2024_3431637 crossref_primary_10_1007_s11548_024_03215_x crossref_primary_10_4103_digm_digm_1_19 crossref_primary_10_1109_TVCG_2015_2467413 crossref_primary_10_1109_TPAMI_2012_265 crossref_primary_10_1016_j_meddos_2020_09_004 crossref_primary_10_1109_TMI_2021_3078828 crossref_primary_10_1109_TMI_2020_3029013 crossref_primary_10_1002_mp_13773 crossref_primary_10_1089_ten_tec_2019_0052 crossref_primary_10_1016_j_media_2024_103355 crossref_primary_10_1007_s00371_022_02446_w crossref_primary_10_1038_s41467_018_07619_7 |
Cites_doi | 10.1109/TMI.2005.857654 10.1109/IEMBS.2010.5627401 10.1117/12.655090 10.1109/TMI.2010.2076300 10.1109/83.661186 10.1016/j.media.2010.03.004 10.1109/TMI.2010.2044799 10.1148/radiol.2353040121 10.1117/12.467061 10.1016/j.compmedimag.2009.04.012 10.1109/TMI.2012.2209674 10.1164/ajrccm.162.3.9907120 10.1109/TMI.2004.826945 10.1109/TMI.2009.2013851 10.1097/RTI.0b013e3181d7e721 10.1109/9.412624 10.1016/j.compmedimag.2006.06.002 10.1016/S1076-6332(03)80517-2 10.1007/978-3-540-30136-3_118 10.1109/ICIP.1996.559540 10.1117/12.773281 10.1109/ICBBE.2009.5162427 10.1109/VISUAL.2003.1250370 10.1109/TMI.2003.815905 10.1109/TMI.2010.2072789 10.1109/ISBI.2010.5490282 10.1109/TMI.2009.2035813 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC |
DOI | 10.1109/TMI.2012.2209674 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Computer Science |
EISSN | 1558-254X |
EndPage | 2107 |
ExternalDocumentID | oai_HAL_hal_00940864v1 22855226 10_1109_TMI_2012_2209674 6249784 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL112986 – fundername: NHLBI NIH HHS grantid: HL079406 – fundername: NHLBI NIH HHS grantid: HL080285 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 1XC |
ID | FETCH-LOGICAL-c419t-deb003404ad6b80c41dde88fd79b8405e945323f86c02561396b084a78c8c2c83 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Aug 21 07:34:50 EDT 2025 Fri Jul 11 04:31:06 EDT 2025 Thu Apr 03 07:09:23 EDT 2025 Thu Apr 24 22:54:42 EDT 2025 Tue Jul 01 03:15:51 EDT 2025 Tue Aug 26 17:19:20 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-deb003404ad6b80c41dde88fd79b8405e945323f86c02561396b084a78c8c2c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6134-2990 0000-0002-6328-902X |
PMID | 22855226 |
PQID | 1430847036 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TMI_2012_2209674 proquest_miscellaneous_1430847036 crossref_primary_10_1109_TMI_2012_2209674 hal_primary_oai_HAL_hal_00940864v1 pubmed_primary_22855226 ieee_primary_6249784 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-01 |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2012 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref15 bauer (ref36) 2009 mendoza (ref31) 2009 ref11 ref10 song (ref20) 2010 ref2 tschirren (ref38) 2009 lo (ref14) 2009 ref1 ref39 ref17 wiemker (ref32) 2009 ref19 schlathlter (ref40) 2002; 4684 born (ref34) 2009 van ginneken (ref12) 2008; 5241 lo (ref18) 2009; 5762 irving (ref25) 2009 ref24 ref45 ref23 lee (ref33) 2009 weinheimer (ref35) 2009 fabijaska (ref29) 2009 ref42 van rikxoort (ref37) 2009 ref41 bauer (ref30) 2009 pinho (ref27) 2009 ref22 ref21 ref43 feuerstein (ref28) 2009 heimann (ref44) 2009; 28 pu (ref16) 2011; 30 fetita (ref26) 2009 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – start-page: 323 year: 2009 ident: ref14 article-title: Multiscale vessel-guided airway tree segmentation publication-title: Proc 2nd Int Workshop Pulmonary Image Anal – start-page: 215 year: 2009 ident: ref26 article-title: A morphological-aggregative approach for 3D segmentation of pulmonary airways from generic MSCT acquisitions publication-title: Proc 2nd Int Workshop Pulmonary Image Anal – ident: ref11 doi: 10.1109/TMI.2005.857654 – ident: ref23 doi: 10.1109/IEMBS.2010.5627401 – ident: ref3 doi: 10.1117/12.655090 – volume: 30 start-page: 266 year: 2011 ident: ref16 article-title: A differential geometric approach to automated segmentation of human airway tree publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2010.2076300 – ident: ref43 doi: 10.1109/83.661186 – ident: ref15 doi: 10.1016/j.media.2010.03.004 – start-page: 333 year: 2009 ident: ref33 article-title: Segmentation of the airway tree from chest CT using local volume of interest publication-title: Proc 2nd Int Workshop Pulmonary Image Anal – ident: ref6 doi: 10.1109/TMI.2010.2044799 – ident: ref2 doi: 10.1148/radiol.2353040121 – start-page: 109 year: 2010 ident: ref20 article-title: Airway tree segmentation by removing paths of leakage publication-title: Proc 1st Int Workshop Pulm Image Anal – volume: 4684 start-page: 103 year: 2002 ident: ref40 article-title: Simultaneous segmentation and tree reconstruction of the airways for virtual bronchoscopy publication-title: SPIE Medical Imaging 2002 Image Processing doi: 10.1117/12.467061 – ident: ref13 doi: 10.1016/j.compmedimag.2009.04.012 – start-page: 251 year: 2009 ident: ref29 article-title: Results of applying two-pass region growing algorithm for airway tree segmentation to MDCT chest scans from EXACT database publication-title: Proc 2nd Int Workshop Pulmonary Image Anal – ident: ref39 doi: 10.1109/TMI.2012.2209674 – start-page: 297 year: 2009 ident: ref25 article-title: 3D segmentation of the airway tree using a morphology based method publication-title: Proc 2nd Int Workshop Pulmonary Image Anal – start-page: 261 year: 2009 ident: ref27 article-title: Robust region growing based intrathoracic airway tree segmentation publication-title: Proc 2nd Int Workshop Pulmonary Image Anal – ident: ref1 doi: 10.1164/ajrccm.162.3.9907120 – ident: ref17 doi: 10.1109/TMI.2004.826945 – volume: 28 start-page: 1251 year: 2009 ident: ref44 article-title: Comparison and evaluation of methods for liver segmentation from CT datasets publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2009.2013851 – ident: ref7 doi: 10.1097/RTI.0b013e3181d7e721 – ident: ref41 doi: 10.1109/9.412624 – ident: ref4 doi: 10.1016/j.compmedimag.2006.06.002 – ident: ref9 doi: 10.1016/S1076-6332(03)80517-2 – ident: ref21 doi: 10.1007/978-3-540-30136-3_118 – ident: ref42 doi: 10.1109/ICIP.1996.559540 – ident: ref5 doi: 10.1117/12.773281 – ident: ref22 doi: 10.1109/ICBBE.2009.5162427 – volume: 5241 start-page: 219 year: 2008 ident: ref12 article-title: Robust segmentation and anatomical labeling of the airway tree from thoracic CT scans publication-title: Medical Image Computing and Computer-Assisted Intervention – volume: 5762 start-page: 51 year: 2009 ident: ref18 article-title: Airway tree extraction with locally optimal paths publication-title: Medical Image Computing and Computer-Assisted Intervention – ident: ref10 doi: 10.1109/VISUAL.2003.1250370 – start-page: 315 year: 2009 ident: ref35 article-title: Fully automated extraction of airways from CT scans based on self-adapting region growing publication-title: Proc 2nd Int Workshop Pulmonary Image Anal – ident: ref24 doi: 10.1109/TMI.2003.815905 – ident: ref45 doi: 10.1109/TMI.2010.2072789 – start-page: 309 year: 2009 ident: ref32 article-title: A simple centricity-based region growing algorithm for the extraction of airways publication-title: Proc 2nd Int Workshop Pulmonary Image Anal – start-page: 285 year: 2009 ident: ref31 article-title: Maximal contrast adaptive region growing for CT airway tree segmentation publication-title: Proc 2nd Int Workshop Pulmonary Image Anal – start-page: 203 year: 2009 ident: ref30 article-title: Airway tree reconstruction based on tube detection publication-title: Proc 2nd Int Workshop Pulmonary Image Anal – start-page: 273 year: 2009 ident: ref28 article-title: Adaptive branch tracing and image sharpening for airway tree extraction in 3-D chest CT publication-title: Proc 2nd Int Workshop Pulmonary Image Anal – ident: ref19 doi: 10.1109/ISBI.2010.5490282 – start-page: 227 year: 2009 ident: ref38 article-title: Airway segmentation framework for clinical environments publication-title: Proc 2nd Int Workshop Pulmonary Image Anal – start-page: 239 year: 2009 ident: ref34 article-title: Three-step segmentation of the lower airways with advanced leakage-control publication-title: Proc 2nd Int Workshop Pulmonary Image Anal – start-page: 341 year: 2009 ident: ref37 article-title: Automatic segmentation of the airway tree from thoracic CT scans using a multi-threshold approach publication-title: Proc 2nd Int Workshop Pulmonary Image Anal – ident: ref8 doi: 10.1109/TMI.2009.2035813 – start-page: 191 year: 2009 ident: ref36 article-title: Segmentation of airways based on gradient vector flow publication-title: Proc 2nd Int Workshop Pulmonary Image Anal |
SSID | ssj0014509 |
Score | 2.523609 |
Snippet | This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate 15 different airway tree... This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate fifteen different airway tree... |
SourceID | hal proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2093 |
SubjectTerms | Algorithms Analysis of Variance Bioengineering Computed tomography Computer Science Databases, Factual Engineering Sciences evaluation Humans Image segmentation Imaging Life Sciences Lung - diagnostic imaging Lungs Medical diagnostic imaging pulmonary airways Radiographic Image Enhancement - methods segmentation Signal and Image processing Tomography, X-Ray Computed - methods Trachea - diagnostic imaging |
Title | Extraction of Airways From CT (EXACT'09) |
URI | https://ieeexplore.ieee.org/document/6249784 https://www.ncbi.nlm.nih.gov/pubmed/22855226 https://www.proquest.com/docview/1430847036 https://hal.science/hal-00940864 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB5RDggOsLyWsA8FtBIgkdZ17MQ-VlWrguieitRbFD8q0EKzKuny-PXryUss2l1xiyw7cjxO_E3mm28AvmlJ7My5yYHgMg2YUDxQMlUBkSoW3B2YRBcE2e_R6JpdTvl0Bc6bXBhrbUE-s228LGL5JtNL_FXWiSjWQ2MtaDnHrczVaiIGjJd0DoqKsSSidUiSyM5kfIEcLtqm1AH2GEvxUCo4Io8_TqPWDXIhiyIr_8abxbkz3IJxPeOSbvKjvcxVW7-8EXN87yN9gM0KgPq9csdsw4qd78DGK1nCHVgbVwH3XTgdPOWLMvfBz2Z-73bxmD4_-MNFdu_3J_7pYNrrT06IPNuD6-Fg0h8FVXGFQLOuzAODRYNCRlhqIiWIa3QfOiFmJpbKOX3cSsZDGs5EpBEWOaAYKSJYGgstNNUi3IfVeTa3B-CT0Jg0ZSI0XDJGTCFyF3JUveUmZsqDTr3Iia6Ux7EAxl1SeCBEJs5CCVooqSzkwVkz4mepuvGfvsfObk03lMse9a4SbEPapHPZ2K-uB7u49k2vatk9OKrNnLjXCmMl6dxmywfnEYXuaVGdzIOPpf2bwfXmOfz7TT_BOs6vTFj8DKv5Ymm_OOSSq6_Flv0NrGnf5w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFD4CJu3ysAuwLQNGmCYNpKV1HTuxH6uqVYGWpyD1LYov1RBbM7Xpbr9-PrkJ0Jh4iyw7cnyc-Ds53_kOwEctiZ07NzkQXGYBE4oHSmYqIFLFgrsDk-iSIHsRjS_Z2YzPNuBzmwtjrS3JZ7aDl2Us3-R6jb_KuhHFemhsEx5xTMatsrXamAHjFaGDomYsiWgTlCSym0xPkcVFO5Q6yB5jMR5KBUfsces82vyCbMiyzMr9iLM8eUYvYNrMuSKcXHfWheroP3fkHB_6UC_heQ1B_X61Z17Bhl1sw7MbwoTb8Hhah9x34Hj4q1hW2Q9-Pvf7V8uf2e-VP1rm3_xB4h8PZ_1B8onIk124HA2TwTioyysEmvVkERgsGxQywjITKUFco_vUCTE3sVTO7eNWMh7ScC4ijcDIQcVIEcGyWGihqRbha9ha5Av7FnwSGpNlTISGS8aIKWXuQo66t9zETHnQbRY51bX2OJbA-JqWPgiRqbNQihZKawt5cNKO-F7pbvyn7wdnt7YbCmaP-5MU25A46Zw29qPnwQ6ufdurXnYPjhozp-7FwmhJtrD5euV8otA9LeqTefCmsn87uNk87_5900N4Mk6mk3RyenG-B09xrlX64j5sFcu1PXA4plDvy-37F4qq4y8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraction+of+Airways+From+CT+%28EXACT%2709%29&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Lo%2C+Pechin&rft.au=van+Ginneken%2C+Bram&rft.au=Reinhardt%2C+Joseph+M.&rft.au=Yavarna%2C+Tarunashree&rft.date=2012-11-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=31&rft.issue=11&rft.spage=2093&rft.epage=2107&rft_id=info:doi/10.1109%2FTMI.2012.2209674&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2012_2209674 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |