Extraction of Airways From CT (EXACT'09)

This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate 15 different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 31; no. 11; pp. 2093 - 2107
Main Authors Lo, Pechin, van Ginneken, Bram, Reinhardt, Joseph M., Yavarna, Tarunashree, de Jong, Pim A., Irving, Benjamin, Fetita, Catalin, Ortner, Margarete, Pinho, Rômulo, Sijbers, Jan, Feuerstein, Marco, Fabijanska, Anna, Bauer, Christian, Beichel, Reinhard, Mendoza, Carlos S., Wiemker, Rafael, Lee, Jaesung, Reeves, Anthony P., Born, Silvia, Weinheimer, Oliver, van Rikxoort, Eva M., Tschirren, Juerg, Mori, Ken, Odry, Benjamin, Naidich, David P., Hartmann, Ieneke, Hoffman, Eric A., Prokop, Mathias, Pedersen, Jesper H., de Bruijne, Marleen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2012
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2012.2209674

Cover

Loading…
Abstract This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate 15 different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard from scratch, we propose to construct the reference using results from all algorithms that are to be evaluated. We start by subdividing each segmented airway tree into its individual branch segments. Each branch segment is then visually scored by trained observers to determine whether or not it is a correctly segmented part of the airway tree. Finally, the reference airway trees are constructed by taking the union of all correctly extracted branch segments. Fifteen airway tree extraction algorithms from different research groups are evaluated on a diverse set of 20 chest computed tomography (CT) scans of subjects ranging from healthy volunteers to patients with severe pathologies, scanned at different sites, with different CT scanner brands, models, and scanning protocols. Three performance measures covering different aspects of segmentation quality were computed for all participating algorithms. Results from the evaluation showed that no single algorithm could extract more than an average of 74% of the total length of all branches in the reference standard, indicating substantial differences between the algorithms. A fusion scheme that obtained superior results is presented, demonstrating that there is complementary information provided by the different algorithms and there is still room for further improvements in airway segmentation algorithms.
AbstractList This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate fifteen different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard from scratch, we propose to construct the reference using results from all algorithms that are to be evaluated. We start by subdividing each segmented airway tree into its individual branch segments. Each branch segment is then visually scored by trained observers to determine whether or not it is a correctly segmented part of the airway tree. Finally, the reference airway trees are constructed by taking the union of all correctly extracted branch segments. Fifteen airway tree extraction algorithms from different research groups are evaluated on a diverse set of twenty chest computed tomography (CT) scans of subjects ranging from healthy volunteers to patients with severe pathologies, scanned at different sites, with different CT scanner brands, models, and scanning protocols. Three performance measures covering different aspects of segmentation quality were computed for all participating algorithms. Results from the evaluation showed that no single algorithm could extract more than an average of 74% of the total length of all branches in the reference standard, indicating substantial differences between the algorithms. A fusion scheme that obtained superior results is presented, demonstrating that there is complementary information provided by the different algorithms and there is still room for further improvements in airway segmentation algorithms.This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate fifteen different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard from scratch, we propose to construct the reference using results from all algorithms that are to be evaluated. We start by subdividing each segmented airway tree into its individual branch segments. Each branch segment is then visually scored by trained observers to determine whether or not it is a correctly segmented part of the airway tree. Finally, the reference airway trees are constructed by taking the union of all correctly extracted branch segments. Fifteen airway tree extraction algorithms from different research groups are evaluated on a diverse set of twenty chest computed tomography (CT) scans of subjects ranging from healthy volunteers to patients with severe pathologies, scanned at different sites, with different CT scanner brands, models, and scanning protocols. Three performance measures covering different aspects of segmentation quality were computed for all participating algorithms. Results from the evaluation showed that no single algorithm could extract more than an average of 74% of the total length of all branches in the reference standard, indicating substantial differences between the algorithms. A fusion scheme that obtained superior results is presented, demonstrating that there is complementary information provided by the different algorithms and there is still room for further improvements in airway segmentation algorithms.
This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate fifteen different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard from scratch, we propose to construct the reference using results from all algorithms that are to be evaluated. We start by subdividing each segmented airway tree into its individual branch segments. Each branch segment is then visually scored by trained observers to determine whether or not it is a correctly segmented part of the airway tree. Finally, the reference airway trees are constructed by taking the union of all correctly extracted branch segments. Fifteen airway tree extraction algorithms from different research groups are evaluated on a diverse set of twenty chest computed tomography (CT) scans of subjects ranging from healthy volunteers to patients with severe pathologies, scanned at different sites, with different CT scanner brands, models, and scanning protocols. Three performance measures covering different aspects of segmentation quality were computed for all participating algorithms. Results from the evaluation showed that no single algorithm could extract more than an average of 74% of the total length of all branches in the reference standard, indicating substantial differences between the algorithms. A fusion scheme that obtained superior results is presented, demonstrating that there is complementary information provided by the different algorithms and there is still room for further improvements in airway segmentation algorithms.
This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate 15 different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard from scratch, we propose to construct the reference using results from all algorithms that are to be evaluated. We start by subdividing each segmented airway tree into its individual branch segments. Each branch segment is then visually scored by trained observers to determine whether or not it is a correctly segmented part of the airway tree. Finally, the reference airway trees are constructed by taking the union of all correctly extracted branch segments. Fifteen airway tree extraction algorithms from different research groups are evaluated on a diverse set of 20 chest computed tomography (CT) scans of subjects ranging from healthy volunteers to patients with severe pathologies, scanned at different sites, with different CT scanner brands, models, and scanning protocols. Three performance measures covering different aspects of segmentation quality were computed for all participating algorithms. Results from the evaluation showed that no single algorithm could extract more than an average of 74% of the total length of all branches in the reference standard, indicating substantial differences between the algorithms. A fusion scheme that obtained superior results is presented, demonstrating that there is complementary information provided by the different algorithms and there is still room for further improvements in airway segmentation algorithms.
Author Lo, Pechin
Tschirren, Juerg
Fetita, Catalin
Mori, Ken
Feuerstein, Marco
Reinhardt, Joseph M.
de Bruijne, Marleen
Fabijanska, Anna
Lee, Jaesung
Sijbers, Jan
Reeves, Anthony P.
van Rikxoort, Eva M.
van Ginneken, Bram
Born, Silvia
Pinho, Rômulo
de Jong, Pim A.
Bauer, Christian
Mendoza, Carlos S.
Hartmann, Ieneke
Weinheimer, Oliver
Pedersen, Jesper H.
Naidich, David P.
Prokop, Mathias
Wiemker, Rafael
Hoffman, Eric A.
Yavarna, Tarunashree
Odry, Benjamin
Irving, Benjamin
Ortner, Margarete
Beichel, Reinhard
Author_xml – sequence: 1
  givenname: Pechin
  surname: Lo
  fullname: Lo, Pechin
  organization: Image Group, Department of Computer Science, University of Copenhagen, Denmark
– sequence: 2
  givenname: Bram
  surname: van Ginneken
  fullname: van Ginneken, Bram
  organization: Diagnostic Image Analysis Group, Radboud University Nijmegen Medical Centre, The Netherlands
– sequence: 3
  givenname: Joseph M.
  surname: Reinhardt
  fullname: Reinhardt, Joseph M.
  organization: Department of Biomedical Engineering, The University of Iowa, USA
– sequence: 4
  givenname: Tarunashree
  surname: Yavarna
  fullname: Yavarna, Tarunashree
  organization: Dept. of Biomedical Engineering, The University of Iowa, USA
– sequence: 5
  givenname: Pim A.
  surname: de Jong
  fullname: de Jong, Pim A.
  organization: University Medical Center Utrecht, Utrecht, The Netherlands
– sequence: 6
  givenname: Benjamin
  surname: Irving
  fullname: Irving, Benjamin
  organization: University College London, UK
– sequence: 7
  givenname: Catalin
  surname: Fetita
  fullname: Fetita, Catalin
  organization: Institut TELECOM/Telecom SudParis, Evry
– sequence: 8
  givenname: Margarete
  surname: Ortner
  fullname: Ortner, Margarete
  organization: Institut TELECOM/Telecom SudParis, Evry
– sequence: 9
  givenname: Rômulo
  surname: Pinho
  fullname: Pinho, Rômulo
  organization: Léon Bérard Cancer Centre, Univeristy of Lyon, Lyon, France
– sequence: 10
  givenname: Jan
  surname: Sijbers
  fullname: Sijbers, Jan
  organization: University of Antwerp, Belgium
– sequence: 11
  givenname: Marco
  surname: Feuerstein
  fullname: Feuerstein, Marco
  organization: microDimensions, Technische Universität München, Germany
– sequence: 12
  givenname: Anna
  surname: Fabijanska
  fullname: Fabijanska, Anna
  organization: Department of Computer Engineering, Technical University of Lodz, Poland
– sequence: 13
  givenname: Christian
  surname: Bauer
  fullname: Bauer, Christian
  organization: Institute for Computer Graphics and Vision, Graz University of Technology, Austria
– sequence: 14
  givenname: Reinhard
  surname: Beichel
  fullname: Beichel, Reinhard
  organization: Department of Electrical and Computer Engineering, The University of Iowa
– sequence: 15
  givenname: Carlos S.
  surname: Mendoza
  fullname: Mendoza, Carlos S.
  organization: Department of Signal Processing and Communications, Universidad de Sevilla, Spain
– sequence: 16
  givenname: Rafael
  surname: Wiemker
  fullname: Wiemker, Rafael
  organization: Philips Research Laboratories Hamburg, Germany
– sequence: 17
  givenname: Jaesung
  surname: Lee
  fullname: Lee, Jaesung
  organization: School of Electrical and Computer Engineering, Cornell University, USA
– sequence: 18
  givenname: Anthony P.
  surname: Reeves
  fullname: Reeves, Anthony P.
  organization: School of Electrical and Computer Engineering, Cornell University, USA
– sequence: 19
  givenname: Silvia
  surname: Born
  fullname: Born, Silvia
  organization: Visual Computing, ICCAS, Universität Leipzig, Germany
– sequence: 20
  givenname: Oliver
  surname: Weinheimer
  fullname: Weinheimer, Oliver
  organization: Department of Diagnostic and Interventional Radiology, Johannes Gutenberg University of Mainz, Germany
– sequence: 21
  givenname: Eva M.
  surname: van Rikxoort
  fullname: van Rikxoort, Eva M.
  organization: Diagnostic Image Analysis Group, Radboud University Nijmegen Medical Centre, The Netherlands
– sequence: 22
  givenname: Juerg
  surname: Tschirren
  fullname: Tschirren, Juerg
  organization: VIDA Diagnostics, Inc., USA
– sequence: 23
  givenname: Ken
  surname: Mori
  fullname: Mori, Ken
  organization: Information and Communications Headquarters, Nagoya University, Hirotsugu Takabatake, Minami Sanjo Hospital, Japan
– sequence: 24
  givenname: Benjamin
  surname: Odry
  fullname: Odry, Benjamin
  organization: Corporate Research, Siemens Corporation, USA
– sequence: 25
  givenname: David P.
  surname: Naidich
  fullname: Naidich, David P.
  organization: Department of Radiology, New York University Medical Center, USA
– sequence: 26
  givenname: Ieneke
  surname: Hartmann
  fullname: Hartmann, Ieneke
  organization: Department of Radiology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
– sequence: 27
  givenname: Eric A.
  surname: Hoffman
  fullname: Hoffman, Eric A.
  organization: Department of Radiology, The University of Iowa, USA
– sequence: 28
  givenname: Mathias
  surname: Prokop
  fullname: Prokop, Mathias
  organization: Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
– sequence: 29
  givenname: Jesper H.
  surname: Pedersen
  fullname: Pedersen, Jesper H.
  organization: Department of Cardio Thoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Denmark
– sequence: 30
  givenname: Marleen
  surname: de Bruijne
  fullname: de Bruijne, Marleen
  organization: Image Group, Department of Computer Science, University of Copenhagen, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22855226$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00940864$$DView record in HAL
BookMark eNp9kM9LwzAYhoNM3A-9C4L05nbo_JImaXIsY3ODiZcKu4U0TbHSrbPp1P33tnTu4MHTBy_P-37wDFFvV-4sQrcYphiDfIyfV1MCmEwJAclDeoEGmDHhE0Y3PTQAEgofgJM-Gjr3DoApA3mF-oQIxgjhAzSef9eVNnVe7rwy86K8-tJH5y2qcuvNYm8830Sz-AHk5BpdZrpw9uZ0R-h1MY9nS3_98rSaRWvfUCxrP7UJQECB6pQnApowTa0QWRrKRFBgVlIWkCAT3ABhHAeSJyCoDoURhhgRjNCk233ThdpX-VZXR1XqXC2jtWozAElBcPqJG3bcsfuq_DhYV6tt7owtCr2z5cEpTINmO4SAN-j9CT0kW5uel39NNAB0gKlK5yqbnREMqpWtGtmqla1OspsK_1Mxea1blY3SvPiveNcVc2vt-Q8nVIaCBj9Pz4Wz
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107144
crossref_primary_10_1088_1402_4896_ad1668
crossref_primary_10_1016_j_prime_2023_100242
crossref_primary_10_1007_s10278_018_0158_8
crossref_primary_10_1007_s10489_022_04380_9
crossref_primary_10_1002_ima_23188
crossref_primary_10_1007_s00034_024_02991_w
crossref_primary_10_1016_j_artmed_2023_102637
crossref_primary_10_1016_j_cmpb_2021_106610
crossref_primary_10_1097_RTI_0000000000000387
crossref_primary_10_1117_1_JMI_2_2_020103
crossref_primary_10_1118_1_4941692
crossref_primary_10_26782_jmcms_2020_08_00062
crossref_primary_10_1109_TMI_2014_2374615
crossref_primary_10_1002_mp_13711
crossref_primary_10_1016_j_media_2014_07_003
crossref_primary_10_1109_TMI_2024_3419707
crossref_primary_10_1002_mp_12751
crossref_primary_10_1115_1_4054106
crossref_primary_10_1088_1361_6560_ad1d6c
crossref_primary_10_1016_j_bspc_2024_106849
crossref_primary_10_1016_j_asoc_2017_07_010
crossref_primary_10_1186_s41747_021_00247_9
crossref_primary_10_1109_TMI_2012_2209674
crossref_primary_10_1371_journal_pone_0144282
crossref_primary_10_3390_diagnostics14171979
crossref_primary_10_1109_TMI_2021_3097665
crossref_primary_10_1109_TMI_2014_2377694
crossref_primary_10_1016_j_bspc_2024_106183
crossref_primary_10_1109_TMI_2021_3062280
crossref_primary_10_7599_hmr_2017_37_2_61
crossref_primary_10_1016_j_media_2016_11_001
crossref_primary_10_1016_j_media_2013_09_001
crossref_primary_10_1049_htl_2018_5074
crossref_primary_10_1088_1361_6560_aad2a1
crossref_primary_10_1109_TCSVT_2021_3092163
crossref_primary_10_1109_TIP_2015_2493446
crossref_primary_10_1007_s11548_016_1492_2
crossref_primary_10_1016_j_media_2014_05_007
crossref_primary_10_1007_s11548_022_02582_7
crossref_primary_10_3389_fonc_2022_868186
crossref_primary_10_1016_j_media_2023_102957
crossref_primary_10_1117_1_JMI_3_4_044506
crossref_primary_10_1109_TMI_2014_2380991
crossref_primary_10_1148_radiol_2015141579
crossref_primary_10_2174_1573405618666220630151409
crossref_primary_10_3390_s24165104
crossref_primary_10_1371_journal_pone_0230259
crossref_primary_10_1088_0031_9155_58_17_R187
crossref_primary_10_1007_s00034_021_01723_8
crossref_primary_10_1109_TMI_2014_2316115
crossref_primary_10_1109_TMI_2010_2076300
crossref_primary_10_1049_iet_ipr_2019_1024
crossref_primary_10_1118_1_4921139
crossref_primary_10_1007_s12194_017_0394_5
crossref_primary_10_1080_21681163_2024_2325361
crossref_primary_10_1109_TVLSI_2023_3342122
crossref_primary_10_1259_bjro_20210026
crossref_primary_10_1016_j_compeleceng_2018_01_027
crossref_primary_10_3233_XST_190627
crossref_primary_10_1080_21681163_2017_1332531
crossref_primary_10_1109_ACCESS_2021_3059680
crossref_primary_10_1109_TMI_2016_2578680
crossref_primary_10_1016_j_cmpb_2016_04_021
crossref_primary_10_3390_diagnostics13132161
crossref_primary_10_1016_j_compeleceng_2021_106992
crossref_primary_10_1016_j_media_2016_09_002
crossref_primary_10_1016_j_media_2015_05_003
crossref_primary_10_1016_j_compbiomed_2022_106241
crossref_primary_10_1016_j_media_2015_05_008
crossref_primary_10_1152_ajplung_00341_2021
crossref_primary_10_1016_j_patcog_2016_07_023
crossref_primary_10_1109_TFUZZ_2024_3433506
crossref_primary_10_1016_j_patcog_2024_111302
crossref_primary_10_1109_JBHI_2016_2623840
crossref_primary_10_1109_JBHI_2023_3290136
crossref_primary_10_1109_TMM_2016_2602062
crossref_primary_10_1172_JCI120693
crossref_primary_10_1007_s11042_019_7697_y
crossref_primary_10_1109_JBHI_2023_3324080
crossref_primary_10_1007_s11042_020_10415_5
crossref_primary_10_1109_TMI_2024_3448468
crossref_primary_10_1109_TVLSI_2022_3213186
crossref_primary_10_1016_j_media_2020_101751
crossref_primary_10_1007_s00330_014_3261_3
crossref_primary_10_1007_s00330_023_09615_y
crossref_primary_10_1177_1556984519826321
crossref_primary_10_1007_s11042_017_5341_2
crossref_primary_10_1007_s11263_015_0856_3
crossref_primary_10_1109_TVCG_2021_3114851
crossref_primary_10_1007_s11548_024_03243_7
crossref_primary_10_1016_j_media_2018_10_006
crossref_primary_10_1016_j_media_2024_103253
crossref_primary_10_1038_s41598_021_95364_1
crossref_primary_10_1007_s11548_023_02946_7
crossref_primary_10_1016_j_compmedimag_2015_11_002
crossref_primary_10_1186_s40537_024_00974_x
crossref_primary_10_1109_TBME_2013_2285627
crossref_primary_10_1109_TNNLS_2023_3269223
crossref_primary_10_1016_j_artmed_2024_102930
crossref_primary_10_1371_journal_pone_0297437
crossref_primary_10_1016_j_bspc_2025_107648
crossref_primary_10_1088_1361_6560_ad4300
crossref_primary_10_1186_s12938_015_0060_2
crossref_primary_10_1145_3615862
crossref_primary_10_1183_13993003_01601_2015
crossref_primary_10_1016_j_media_2014_02_004
crossref_primary_10_1049_iet_ipr_2019_0252
crossref_primary_10_1109_TCSII_2022_3174183
crossref_primary_10_1117_1_JMI_4_2_024505
crossref_primary_10_1016_j_acra_2014_12_026
crossref_primary_10_1007_s11548_021_02466_2
crossref_primary_10_1038_s44172_024_00296_z
crossref_primary_10_1118_1_4963214
crossref_primary_10_1109_ACCESS_2024_3431637
crossref_primary_10_1007_s11548_024_03215_x
crossref_primary_10_4103_digm_digm_1_19
crossref_primary_10_1109_TVCG_2015_2467413
crossref_primary_10_1109_TPAMI_2012_265
crossref_primary_10_1016_j_meddos_2020_09_004
crossref_primary_10_1109_TMI_2021_3078828
crossref_primary_10_1109_TMI_2020_3029013
crossref_primary_10_1002_mp_13773
crossref_primary_10_1089_ten_tec_2019_0052
crossref_primary_10_1016_j_media_2024_103355
crossref_primary_10_1007_s00371_022_02446_w
crossref_primary_10_1038_s41467_018_07619_7
Cites_doi 10.1109/TMI.2005.857654
10.1109/IEMBS.2010.5627401
10.1117/12.655090
10.1109/TMI.2010.2076300
10.1109/83.661186
10.1016/j.media.2010.03.004
10.1109/TMI.2010.2044799
10.1148/radiol.2353040121
10.1117/12.467061
10.1016/j.compmedimag.2009.04.012
10.1109/TMI.2012.2209674
10.1164/ajrccm.162.3.9907120
10.1109/TMI.2004.826945
10.1109/TMI.2009.2013851
10.1097/RTI.0b013e3181d7e721
10.1109/9.412624
10.1016/j.compmedimag.2006.06.002
10.1016/S1076-6332(03)80517-2
10.1007/978-3-540-30136-3_118
10.1109/ICIP.1996.559540
10.1117/12.773281
10.1109/ICBBE.2009.5162427
10.1109/VISUAL.2003.1250370
10.1109/TMI.2003.815905
10.1109/TMI.2010.2072789
10.1109/ISBI.2010.5490282
10.1109/TMI.2009.2035813
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
DOI 10.1109/TMI.2012.2209674
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1558-254X
EndPage 2107
ExternalDocumentID oai_HAL_hal_00940864v1
22855226
10_1109_TMI_2012_2209674
6249784
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL112986
– fundername: NHLBI NIH HHS
  grantid: HL079406
– fundername: NHLBI NIH HHS
  grantid: HL080285
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
ID FETCH-LOGICAL-c419t-deb003404ad6b80c41dde88fd79b8405e945323f86c02561396b084a78c8c2c83
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 07:34:50 EDT 2025
Fri Jul 11 04:31:06 EDT 2025
Thu Apr 03 07:09:23 EDT 2025
Thu Apr 24 22:54:42 EDT 2025
Tue Jul 01 03:15:51 EDT 2025
Tue Aug 26 17:19:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-deb003404ad6b80c41dde88fd79b8405e945323f86c02561396b084a78c8c2c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6134-2990
0000-0002-6328-902X
PMID 22855226
PQID 1430847036
PQPubID 23479
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TMI_2012_2209674
proquest_miscellaneous_1430847036
crossref_primary_10_1109_TMI_2012_2209674
hal_primary_oai_HAL_hal_00940864v1
pubmed_primary_22855226
ieee_primary_6249784
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref15
bauer (ref36) 2009
mendoza (ref31) 2009
ref11
ref10
song (ref20) 2010
ref2
tschirren (ref38) 2009
lo (ref14) 2009
ref1
ref39
ref17
wiemker (ref32) 2009
ref19
schlathlter (ref40) 2002; 4684
born (ref34) 2009
van ginneken (ref12) 2008; 5241
lo (ref18) 2009; 5762
irving (ref25) 2009
ref24
ref45
ref23
lee (ref33) 2009
weinheimer (ref35) 2009
fabijaska (ref29) 2009
ref42
van rikxoort (ref37) 2009
ref41
bauer (ref30) 2009
pinho (ref27) 2009
ref22
ref21
ref43
feuerstein (ref28) 2009
heimann (ref44) 2009; 28
pu (ref16) 2011; 30
fetita (ref26) 2009
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – start-page: 323
  year: 2009
  ident: ref14
  article-title: Multiscale vessel-guided airway tree segmentation
  publication-title: Proc 2nd Int Workshop Pulmonary Image Anal
– start-page: 215
  year: 2009
  ident: ref26
  article-title: A morphological-aggregative approach for 3D segmentation of pulmonary airways from generic MSCT acquisitions
  publication-title: Proc 2nd Int Workshop Pulmonary Image Anal
– ident: ref11
  doi: 10.1109/TMI.2005.857654
– ident: ref23
  doi: 10.1109/IEMBS.2010.5627401
– ident: ref3
  doi: 10.1117/12.655090
– volume: 30
  start-page: 266
  year: 2011
  ident: ref16
  article-title: A differential geometric approach to automated segmentation of human airway tree
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2010.2076300
– ident: ref43
  doi: 10.1109/83.661186
– ident: ref15
  doi: 10.1016/j.media.2010.03.004
– start-page: 333
  year: 2009
  ident: ref33
  article-title: Segmentation of the airway tree from chest CT using local volume of interest
  publication-title: Proc 2nd Int Workshop Pulmonary Image Anal
– ident: ref6
  doi: 10.1109/TMI.2010.2044799
– ident: ref2
  doi: 10.1148/radiol.2353040121
– start-page: 109
  year: 2010
  ident: ref20
  article-title: Airway tree segmentation by removing paths of leakage
  publication-title: Proc 1st Int Workshop Pulm Image Anal
– volume: 4684
  start-page: 103
  year: 2002
  ident: ref40
  article-title: Simultaneous segmentation and tree reconstruction of the airways for virtual bronchoscopy
  publication-title: SPIE Medical Imaging 2002 Image Processing
  doi: 10.1117/12.467061
– ident: ref13
  doi: 10.1016/j.compmedimag.2009.04.012
– start-page: 251
  year: 2009
  ident: ref29
  article-title: Results of applying two-pass region growing algorithm for airway tree segmentation to MDCT chest scans from EXACT database
  publication-title: Proc 2nd Int Workshop Pulmonary Image Anal
– ident: ref39
  doi: 10.1109/TMI.2012.2209674
– start-page: 297
  year: 2009
  ident: ref25
  article-title: 3D segmentation of the airway tree using a morphology based method
  publication-title: Proc 2nd Int Workshop Pulmonary Image Anal
– start-page: 261
  year: 2009
  ident: ref27
  article-title: Robust region growing based intrathoracic airway tree segmentation
  publication-title: Proc 2nd Int Workshop Pulmonary Image Anal
– ident: ref1
  doi: 10.1164/ajrccm.162.3.9907120
– ident: ref17
  doi: 10.1109/TMI.2004.826945
– volume: 28
  start-page: 1251
  year: 2009
  ident: ref44
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2009.2013851
– ident: ref7
  doi: 10.1097/RTI.0b013e3181d7e721
– ident: ref41
  doi: 10.1109/9.412624
– ident: ref4
  doi: 10.1016/j.compmedimag.2006.06.002
– ident: ref9
  doi: 10.1016/S1076-6332(03)80517-2
– ident: ref21
  doi: 10.1007/978-3-540-30136-3_118
– ident: ref42
  doi: 10.1109/ICIP.1996.559540
– ident: ref5
  doi: 10.1117/12.773281
– ident: ref22
  doi: 10.1109/ICBBE.2009.5162427
– volume: 5241
  start-page: 219
  year: 2008
  ident: ref12
  article-title: Robust segmentation and anatomical labeling of the airway tree from thoracic CT scans
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– volume: 5762
  start-page: 51
  year: 2009
  ident: ref18
  article-title: Airway tree extraction with locally optimal paths
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– ident: ref10
  doi: 10.1109/VISUAL.2003.1250370
– start-page: 315
  year: 2009
  ident: ref35
  article-title: Fully automated extraction of airways from CT scans based on self-adapting region growing
  publication-title: Proc 2nd Int Workshop Pulmonary Image Anal
– ident: ref24
  doi: 10.1109/TMI.2003.815905
– ident: ref45
  doi: 10.1109/TMI.2010.2072789
– start-page: 309
  year: 2009
  ident: ref32
  article-title: A simple centricity-based region growing algorithm for the extraction of airways
  publication-title: Proc 2nd Int Workshop Pulmonary Image Anal
– start-page: 285
  year: 2009
  ident: ref31
  article-title: Maximal contrast adaptive region growing for CT airway tree segmentation
  publication-title: Proc 2nd Int Workshop Pulmonary Image Anal
– start-page: 203
  year: 2009
  ident: ref30
  article-title: Airway tree reconstruction based on tube detection
  publication-title: Proc 2nd Int Workshop Pulmonary Image Anal
– start-page: 273
  year: 2009
  ident: ref28
  article-title: Adaptive branch tracing and image sharpening for airway tree extraction in 3-D chest CT
  publication-title: Proc 2nd Int Workshop Pulmonary Image Anal
– ident: ref19
  doi: 10.1109/ISBI.2010.5490282
– start-page: 227
  year: 2009
  ident: ref38
  article-title: Airway segmentation framework for clinical environments
  publication-title: Proc 2nd Int Workshop Pulmonary Image Anal
– start-page: 239
  year: 2009
  ident: ref34
  article-title: Three-step segmentation of the lower airways with advanced leakage-control
  publication-title: Proc 2nd Int Workshop Pulmonary Image Anal
– start-page: 341
  year: 2009
  ident: ref37
  article-title: Automatic segmentation of the airway tree from thoracic CT scans using a multi-threshold approach
  publication-title: Proc 2nd Int Workshop Pulmonary Image Anal
– ident: ref8
  doi: 10.1109/TMI.2009.2035813
– start-page: 191
  year: 2009
  ident: ref36
  article-title: Segmentation of airways based on gradient vector flow
  publication-title: Proc 2nd Int Workshop Pulmonary Image Anal
SSID ssj0014509
Score 2.523609
Snippet This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate 15 different airway tree...
This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate fifteen different airway tree...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2093
SubjectTerms Algorithms
Analysis of Variance
Bioengineering
Computed tomography
Computer Science
Databases, Factual
Engineering Sciences
evaluation
Humans
Image segmentation
Imaging
Life Sciences
Lung - diagnostic imaging
Lungs
Medical diagnostic imaging
pulmonary airways
Radiographic Image Enhancement - methods
segmentation
Signal and Image processing
Tomography, X-Ray Computed - methods
Trachea - diagnostic imaging
Title Extraction of Airways From CT (EXACT'09)
URI https://ieeexplore.ieee.org/document/6249784
https://www.ncbi.nlm.nih.gov/pubmed/22855226
https://www.proquest.com/docview/1430847036
https://hal.science/hal-00940864
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB5RDggOsLyWsA8FtBIgkdZ17MQ-VlWrguieitRbFD8q0EKzKuny-PXryUss2l1xiyw7cjxO_E3mm28AvmlJ7My5yYHgMg2YUDxQMlUBkSoW3B2YRBcE2e_R6JpdTvl0Bc6bXBhrbUE-s228LGL5JtNL_FXWiSjWQ2MtaDnHrczVaiIGjJd0DoqKsSSidUiSyM5kfIEcLtqm1AH2GEvxUCo4Io8_TqPWDXIhiyIr_8abxbkz3IJxPeOSbvKjvcxVW7-8EXN87yN9gM0KgPq9csdsw4qd78DGK1nCHVgbVwH3XTgdPOWLMvfBz2Z-73bxmD4_-MNFdu_3J_7pYNrrT06IPNuD6-Fg0h8FVXGFQLOuzAODRYNCRlhqIiWIa3QfOiFmJpbKOX3cSsZDGs5EpBEWOaAYKSJYGgstNNUi3IfVeTa3B-CT0Jg0ZSI0XDJGTCFyF3JUveUmZsqDTr3Iia6Ux7EAxl1SeCBEJs5CCVooqSzkwVkz4mepuvGfvsfObk03lMse9a4SbEPapHPZ2K-uB7u49k2vatk9OKrNnLjXCmMl6dxmywfnEYXuaVGdzIOPpf2bwfXmOfz7TT_BOs6vTFj8DKv5Ymm_OOSSq6_Flv0NrGnf5w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFD4CJu3ysAuwLQNGmCYNpKV1HTuxH6uqVYGWpyD1LYov1RBbM7Xpbr9-PrkJ0Jh4iyw7cnyc-Ds53_kOwEctiZ07NzkQXGYBE4oHSmYqIFLFgrsDk-iSIHsRjS_Z2YzPNuBzmwtjrS3JZ7aDl2Us3-R6jb_KuhHFemhsEx5xTMatsrXamAHjFaGDomYsiWgTlCSym0xPkcVFO5Q6yB5jMR5KBUfsces82vyCbMiyzMr9iLM8eUYvYNrMuSKcXHfWheroP3fkHB_6UC_heQ1B_X61Z17Bhl1sw7MbwoTb8Hhah9x34Hj4q1hW2Q9-Pvf7V8uf2e-VP1rm3_xB4h8PZ_1B8onIk124HA2TwTioyysEmvVkERgsGxQywjITKUFco_vUCTE3sVTO7eNWMh7ScC4ijcDIQcVIEcGyWGihqRbha9ha5Av7FnwSGpNlTISGS8aIKWXuQo66t9zETHnQbRY51bX2OJbA-JqWPgiRqbNQihZKawt5cNKO-F7pbvyn7wdnt7YbCmaP-5MU25A46Zw29qPnwQ6ufdurXnYPjhozp-7FwmhJtrD5euV8otA9LeqTefCmsn87uNk87_5900N4Mk6mk3RyenG-B09xrlX64j5sFcu1PXA4plDvy-37F4qq4y8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraction+of+Airways+From+CT+%28EXACT%2709%29&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Lo%2C+Pechin&rft.au=van+Ginneken%2C+Bram&rft.au=Reinhardt%2C+Joseph+M.&rft.au=Yavarna%2C+Tarunashree&rft.date=2012-11-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=31&rft.issue=11&rft.spage=2093&rft.epage=2107&rft_id=info:doi/10.1109%2FTMI.2012.2209674&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2012_2209674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon