Big data, machine learning, and population health: predicting cognitive outcomes in childhood

The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical setting. One such challenge is addressing disparities in early childhood cognitive development—a complex public health issue rooted in the social det...

Full description

Saved in:
Bibliographic Details
Published inPediatric research Vol. 93; no. 2; pp. 300 - 307
Main Authors Bowe, Andrea K., Lightbody, Gordon, Staines, Anthony, Murray, Deirdre M.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.01.2023
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical setting. One such challenge is addressing disparities in early childhood cognitive development—a complex public health issue rooted in the social determinants of health, exacerbated by inequity, characterised by intergenerational transmission, and which will continue unabated without novel approaches to address it. Early life, the period of optimal neuroplasticity, presents a window of opportunity for early intervention to improve cognitive development. Unfortunately for many, this window will be missed, and intervention may never occur or occur only when overt signs of cognitive delay manifest. In this review, we explore the potential value of ML and big data analysis in the early identification of children at risk for poor cognitive outcome, an area where there is an apparent dearth of research. We compare and contrast traditional statistical methods with ML approaches, provide examples of how ML has been used to date in the field of neurodevelopmental disorders, and present a discussion of the opportunities and risks associated with its use at a population level. The review concludes by highlighting potential directions for future research in this area. Impact To date, the application of machine learning to address population health challenges in paediatrics lags behind other clinical applications. This review provides an overview of the public health challenge we face in addressing disparities in childhood cognitive development and focuses on the cornerstone of early intervention. Recent advances in our ability to collect large volumes of data, and in analytic capabilities, provide a potential opportunity to improve current practices in this field. This review explores the potential role of machine learning and big data analysis in the early identification of children at risk for poor cognitive outcomes.
AbstractList The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical setting. One such challenge is addressing disparities in early childhood cognitive development-a complex public health issue rooted in the social determinants of health, exacerbated by inequity, characterised by intergenerational transmission, and which will continue unabated without novel approaches to address it. Early life, the period of optimal neuroplasticity, presents a window of opportunity for early intervention to improve cognitive development. Unfortunately for many, this window will be missed, and intervention may never occur or occur only when overt signs of cognitive delay manifest. In this review, we explore the potential value of ML and big data analysis in the early identification of children at risk for poor cognitive outcome, an area where there is an apparent dearth of research. We compare and contrast traditional statistical methods with ML approaches, provide examples of how ML has been used to date in the field of neurodevelopmental disorders, and present a discussion of the opportunities and risks associated with its use at a population level. The review concludes by highlighting potential directions for future research in this area. IMPACT: To date, the application of machine learning to address population health challenges in paediatrics lags behind other clinical applications. This review provides an overview of the public health challenge we face in addressing disparities in childhood cognitive development and focuses on the cornerstone of early intervention. Recent advances in our ability to collect large volumes of data, and in analytic capabilities, provide a potential opportunity to improve current practices in this field. This review explores the potential role of machine learning and big data analysis in the early identification of children at risk for poor cognitive outcomes.
The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical setting. One such challenge is addressing disparities in early childhood cognitive development—a complex public health issue rooted in the social determinants of health, exacerbated by inequity, characterised by intergenerational transmission, and which will continue unabated without novel approaches to address it. Early life, the period of optimal neuroplasticity, presents a window of opportunity for early intervention to improve cognitive development. Unfortunately for many, this window will be missed, and intervention may never occur or occur only when overt signs of cognitive delay manifest. In this review, we explore the potential value of ML and big data analysis in the early identification of children at risk for poor cognitive outcome, an area where there is an apparent dearth of research. We compare and contrast traditional statistical methods with ML approaches, provide examples of how ML has been used to date in the field of neurodevelopmental disorders, and present a discussion of the opportunities and risks associated with its use at a population level. The review concludes by highlighting potential directions for future research in this area.ImpactTo date, the application of machine learning to address population health challenges in paediatrics lags behind other clinical applications. This review provides an overview of the public health challenge we face in addressing disparities in childhood cognitive development and focuses on the cornerstone of early intervention.Recent advances in our ability to collect large volumes of data, and in analytic capabilities, provide a potential opportunity to improve current practices in this field.This review explores the potential role of machine learning and big data analysis in the early identification of children at risk for poor cognitive outcomes.
Abstract The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical setting. One such challenge is addressing disparities in early childhood cognitive development—a complex public health issue rooted in the social determinants of health, exacerbated by inequity, characterised by intergenerational transmission, and which will continue unabated without novel approaches to address it. Early life, the period of optimal neuroplasticity, presents a window of opportunity for early intervention to improve cognitive development. Unfortunately for many, this window will be missed, and intervention may never occur or occur only when overt signs of cognitive delay manifest. In this review, we explore the potential value of ML and big data analysis in the early identification of children at risk for poor cognitive outcome, an area where there is an apparent dearth of research. We compare and contrast traditional statistical methods with ML approaches, provide examples of how ML has been used to date in the field of neurodevelopmental disorders, and present a discussion of the opportunities and risks associated with its use at a population level. The review concludes by highlighting potential directions for future research in this area. Impact To date, the application of machine learning to address population health challenges in paediatrics lags behind other clinical applications. This review provides an overview of the public health challenge we face in addressing disparities in childhood cognitive development and focuses on the cornerstone of early intervention. Recent advances in our ability to collect large volumes of data, and in analytic capabilities, provide a potential opportunity to improve current practices in this field. This review explores the potential role of machine learning and big data analysis in the early identification of children at risk for poor cognitive outcomes.
The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical setting. One such challenge is addressing disparities in early childhood cognitive development—a complex public health issue rooted in the social determinants of health, exacerbated by inequity, characterised by intergenerational transmission, and which will continue unabated without novel approaches to address it. Early life, the period of optimal neuroplasticity, presents a window of opportunity for early intervention to improve cognitive development. Unfortunately for many, this window will be missed, and intervention may never occur or occur only when overt signs of cognitive delay manifest. In this review, we explore the potential value of ML and big data analysis in the early identification of children at risk for poor cognitive outcome, an area where there is an apparent dearth of research. We compare and contrast traditional statistical methods with ML approaches, provide examples of how ML has been used to date in the field of neurodevelopmental disorders, and present a discussion of the opportunities and risks associated with its use at a population level. The review concludes by highlighting potential directions for future research in this area. Impact To date, the application of machine learning to address population health challenges in paediatrics lags behind other clinical applications. This review provides an overview of the public health challenge we face in addressing disparities in childhood cognitive development and focuses on the cornerstone of early intervention. Recent advances in our ability to collect large volumes of data, and in analytic capabilities, provide a potential opportunity to improve current practices in this field. This review explores the potential role of machine learning and big data analysis in the early identification of children at risk for poor cognitive outcomes.
Author Murray, Deirdre M.
Staines, Anthony
Bowe, Andrea K.
Lightbody, Gordon
Author_xml – sequence: 1
  givenname: Andrea K.
  surname: Bowe
  fullname: Bowe, Andrea K.
  email: andrea.bowe@ucdconnect.ie
  organization: INFANT Research Centre, University College Cork
– sequence: 2
  givenname: Gordon
  surname: Lightbody
  fullname: Lightbody, Gordon
  organization: INFANT Research Centre, University College Cork, Department of Electrical and Electronic Engineering, University College Cork
– sequence: 3
  givenname: Anthony
  surname: Staines
  fullname: Staines, Anthony
  organization: School of Nursing, Psychotherapy, and Community Health, Dublin City University
– sequence: 4
  givenname: Deirdre M.
  surname: Murray
  fullname: Murray, Deirdre M.
  organization: INFANT Research Centre, University College Cork
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35681091$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1rFTEUhoO02NvqH3AhATcuOjafk8SdFr-g0E1dSsgk596bMpOMyUzBf2_aWyu4cBECyfO-5_CcoqOUEyD0ipJ3lHB9UQXlhnSEsXYoVx19hjZU8vYkhDpCG0I47bgx-gSd1npLCBVSi-fohMteU2LoBv34GHc4uMWd48n5fUyAR3AlxbQ7xy4FPOd5Hd0Sc8J7cOOyf4_nAiH6pSHY512KS7wDnNfF5wkqjgm3njHscw4v0PHWjRVePt5n6PvnTzeXX7ur6y_fLj9cdV5Qs3RBEuV5ICYoDdIQqslgmB8YBy2U8yboPnCl2FYPfjC9Buel8b3RWxGoB36G3h5655J_rlAXO8XqYRxdgrxWy3ole9ILSRv65h_0Nq8lte0sU0pJLtkDxQ6UL7nWAls7lzi58stSYu_l24N82-TbB_n2PvT6sXodJghPkT-2G8APQG1faQfl7-z_1P4GwAyQ2Q
CitedBy_id crossref_primary_10_3389_fpubh_2023_1185565
crossref_primary_10_1038_s41390_022_02422_z
crossref_primary_10_1038_s41390_023_02914_6
crossref_primary_10_3389_fpsyt_2023_1071622
Cites_doi 10.2307/1131410
10.1371/journal.pmed.1001381
10.1016/0140-6736(93)91224-A
10.1126/scitranslmed.aag2882
10.1016/j.jclinepi.2019.02.004
10.3945/ajcn.115.113498
10.1093/bib/bbs034
10.1080/01443410903494478
10.1038/s41746-019-0191-0
10.1146/annurev.psych.53.100901.135233
10.1111/jcpp.13545
10.7326/M18-1376
10.1016/S2589-7500(20)30065-0
10.3389/fpsyg.2019.02857
10.1038/s42256-021-00373-4
10.1038/s41598-021-95673-5
10.1136/bmj.300.6733.1177
10.3390/ijerph17093071
10.1186/s12887-014-0308-1
10.2196/23130
10.1371/journal.pone.0079200
10.1136/bmjopen-2020-037860
10.1111/j.1467-8624.2009.01403.x
10.1136/bmjopen-2019-028982
10.1111/j.0013-9580.2005.03504.x
10.1007/s10654-021-00794-w
10.1196/annals.1376.007
10.1155/2014/235479
10.1007/s10803-017-3414-8
10.1038/s41746-021-00549-7
10.1371/journal.pone.0118701
10.1038/s41598-018-36465-2
10.1542/peds.2017-4019
10.1016/j.earlhumdev.2009.03.001
10.1371/journal.pone.0194856
10.1001/jamapediatrics.2021.3298
10.1371/journal.pone.0228144
10.1016/j.intell.2014.10.002
10.1016/S0140-6736(89)90710-1
10.1542/peds.2020-0242F
10.1056/NEJMp1714229
10.1016/j.jadohealth.2016.01.014
10.1136/jech.58.2.114
10.1001/jamapediatrics.2018.1524
10.1093/jn/135.8.1918
10.1186/1471-2458-11-895
10.1055/s-0029-1237424
10.1111/j.1365-3016.2006.00704.x
10.1136/bmj.322.7290.819
10.1136/bmjopen-2018-024851
10.1207/S1532480XADS0601_05
10.1055/s-0036-1572532
10.1016/j.jpeds.2007.03.020
10.1136/jech.2010.121228
10.1207/s15327957pspr0902_3
10.1006/pmed.1998.0279
10.1007/s10654-020-00625-4
10.2427/13245
10.1093/ije/dyz132
10.1177/0022146513503346
10.1038/s42256-021-00385-0
10.1186/1471-2431-14-16
10.1111/dmcn.13050
10.1038/s41390-019-0646-7
10.1289/EHP5975
10.1038/nmeth.4642
10.1002/hbm.24439
10.2196/14108
10.3390/ijerph17155276
10.1136/bmjpo-2019-000503
10.1016/j.tins.2011.02.001
10.1037/a0027303
10.1038/s41591-021-01614-0
10.3390/bs8050045.
10.1002/14651858.CD005495.pub2
10.1136/bmj.k1674
10.1093/aje/kww135
10.1177/2332858418769287
10.1056/NEJMp1606181
10.1016/S0169-7218(11)02413-0
10.3390/jintelligence5010003
10.1001/jamanetworkopen.2019.2914
10.5334/ijic.4696
10.1097/EDE.0000000000000274
10.1126/science.aax2342
10.1016/S0140-6736(86)91340-1
10.1177/027112148300300303
10.1136/bmj.b5282
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1038/s41390-022-02137-1
DatabaseName SpringerOpen
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Public Health
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1530-0447
EndPage 307
ExternalDocumentID 10_1038_s41390_022_02137_1
35681091
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 203930
GroupedDBID ---
-Q-
.-D
.55
.GJ
08G
0R~
123
2WC
3V.
406
4Q1
4Q2
4Q3
53G
5RE
5VS
70F
77Y
7X7
88E
8C1
8FI
8FJ
AACDK
AAKAS
AANZL
AASML
AATNV
AAWBL
AAWTL
AAYEP
AAZLF
ABAKF
ABAWZ
ABJNI
ABLJU
ABOCM
ABPPZ
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACKTT
ACMJI
ACRQY
ACZOJ
ADBBV
ADBIZ
ADFPA
ADHDB
ADZCM
AE3
AE6
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFSHS
AFTRI
AFUWQ
AGAYW
AGEZK
AGHAI
AGQEE
AHRYX
AHSBF
AHVBC
AIGIU
AILAN
AIZYK
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AWKKM
AXYYD
BAWUL
BENPR
BKKNO
BPHCQ
BS7
BVXVI
C6C
CCPQU
CS3
DIK
DNIVK
DPUIP
DU5
EBLON
EBS
EE.
EIOEI
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FDQFY
FERAY
FIGPU
FIZPM
FRP
FSGXE
FYUFA
H0~
HMCUK
IWAJR
JF9
JG8
JK3
JSO
JZLTJ
K8S
KD2
KMI
L7B
M18
M1P
N9A
NAO
NQJWS
NXXTH
N~M
OAG
OAH
ODA
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OVD
OWU
OWV
OWW
OWX
OWY
OWZ
P-K
P2P
PQQKQ
PROAC
PSQYO
R58
RNT
RNTTT
S4R
SJN
SNX
SNYQT
SOHCF
SRMVM
SWTZT
T8P
TAOOD
TBHMF
TDRGL
TEORI
TR2
UKHRP
VVN
W2D
W3M
WOQ
WOW
X7M
XXN
XYM
YFH
YOC
ZFV
ZXP
AAYZH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7XB
8FK
K9.
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c419t-d507c3d09d78e590180b92cb23e847ac9d86d3772f8bcb968eac59c698f4d1ce3
IEDL.DBID 7X7
ISSN 0031-3998
IngestDate Sat Oct 26 00:00:46 EDT 2024
Sat Nov 09 17:15:01 EST 2024
Fri Aug 23 00:41:41 EDT 2024
Wed Oct 16 00:39:12 EDT 2024
Fri Oct 11 20:46:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2022. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-d507c3d09d78e590180b92cb23e847ac9d86d3772f8bcb968eac59c698f4d1ce3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://doi.org/10.1038/s41390-022-02137-1
PMID 35681091
PQID 2777535251
PQPubID 105497
PageCount 8
ParticipantIDs proquest_miscellaneous_2675606451
proquest_journals_2777535251
crossref_primary_10_1038_s41390_022_02137_1
pubmed_primary_35681091
springer_journals_10_1038_s41390_022_02137_1
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Official publication of the American Pediatric Society, the European Society for Paediatric Research and the Society for Pediatric Research
PublicationTitle Pediatric research
PublicationTitleAbbrev Pediatr Res
PublicationTitleAlternate Pediatr Res
PublicationYear 2023
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Barker, D. et al. Weight in infancy and death from ischaemic heart disease. Lancet9, 577–580 (1989).
CanovaCCantaruttiAPopulation-based birth cohort studies in epidemiologyInt. J. Environ. Res. Public Health202017527632717778743231210.3390/ijerph17155276
PungelloEPEarly educational intervention, early cumulative risk, and the early home environment as predictors of young adult outcomes within a high-risk sampleChild Dev.20108141042620331676284609010.1111/j.1467-8624.2009.01403.x
Steer, C. D., Bolton, P. & Golding, J. Preconception and prenatal environmental factors associated with communication impairments in 9 Year old children using an exposome-wide approach. PLoS One10, e0118701 https://doi.org/10.1371/journal.pone.0118701 (2015).
BugentalDBCorpuzRSchwartzAPreventing children’s aggression: outcomes of an early interventionDev. Psychol.201248144314492232938510.1037/a0027303
LawlorDAEarly life predictors of childhood intelligence: findings from the Mater-University study of pregnancy and its outcomesPediatr. Perinat. Epidemiol.20062014816210.1111/j.1365-3016.2006.00704.x
MorrisPANew findings on impact variation from the head start impact study: informing the scale-up of early childhood programsAERA Open20184233285841876928710.1177/2332858418769287
CampbellFARameyCTEffects of early intervention on intellectual and academic achievement: a follow-up study of children from low-income familiesChild Dev.1994656846981:STN:280:DyaK2c3otlSrtA%3D%3D801324810.2307/1131410
BarkerDOsmondCInfant mortality, childhood nutrition, and ischaemic heart disease in England and WalesLancet19861107710811:STN:280:DyaL283gt1akug%3D%3D287134510.1016/S0140-6736(86)91340-1
SteyerbergEWPrognosis Research Strategy (PROGRESS) 3: prognostic model researchPLoS Med.201310e100138123393430356475110.1371/journal.pmed.1001381
BzdokDAltmanNKrzywinskiMStatistics versus machine learningNat. Methods2018152332341:CAS:528:DC%2BC1cXmvVGku7g%3D30100822608263610.1038/nmeth.4642
MoonSJHwangJKanaRTorousJKimJWAccuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: systematic review and meta-analysis of brain magnetic resonance imaging studiesJMIR Ment. Health20196e1410831562756694218710.2196/14108
WolfERGaps in well-child care attendance among primary care clinics serving low-income familiesPediatrics2018142e201740193030538810.1542/peds.2017-4019
VrijheidMEarly-life environmental exposures and childhood obesity: an exposome-wide approachEnviron. Health Perspect.2020128114.10.1289/EHP5975
MhasawadeVZhaoYChunaraRMachine learning and algorithmic fairness in public and population healthNat. Mach. Intell.2021365966610.1038/s42256-021-00373-4
ZwaigenbaumLPennerMAutism spectrum disorder: advances in diagnosis and evaluationBMJ2018361k16742978465710.1136/bmj.k1674
LeighJEEarly labelling of children: Concerns and alternativesTop. Early Child. Spec. Educ.198331610.1177/027112148300300303
MorelliDLChallenges to implementation of developmental screening in urban primary care: a mixed methods studyBMC Pediatr.20141424447411389961110.1186/1471-2431-14-16
TongSBaghurstPVimpaniGMcMichaelASocioeconomic position, maternal IQ, home environment, and cognitive developmentJ. Pediatr.2007151288.e11771993910.1016/j.jpeds.2007.03.020
Striving for health equity with machine learning. Nat. Mach. Intell. 2021; 3, 653 (2021).
WhalleyLJDearyIJLongitudinal cohort study of childhood IQ and survival up to age 76BMJ (Clin. Res. Ed.)20013228191:STN:280:DC%2BD3M3jslahsQ%3D%3D10.1136/bmj.322.7290.819
DearloveJKearneyDHow good is general practice developmental screening?BMJ (Clin. Res. Ed.)1990300117711801:STN:280:DyaK3c3mvVWmuw%3D%3D10.1136/bmj.300.6733.1177
SpencerNRamanSO’HareBTamburliniGAddressing inequities in child health and development: towards social justiceBMJ Pediatr. Open20193e000503e00050310.1136/bmjpo-2019-000503
Camargo-FigueraFABarrosAJDSantosISMatijasevichABarrosFCEarly life determinants of low IQ at age 6 in children from the 2004 Pelotas Birth Cohort: a predictive approachBMC Pediatr.20141425510879427280910.1186/s12887-014-0308-1
Benavente-FernándezIAssociation of socioeconomic status and brain injury with neurodevelopmental outcomes of very preterm childrenJAMA Netw. Open20192e19291431050776650349010.1001/jamanetworkopen.2019.2914
SenBBorleNCGreinerRBrownMRGA general prediction model for the detection of ADHD and autism using structural and functional MRIPLoS One201813e019485629664902590360110.1371/journal.pone.0194856
Spittle, A. J., Orton, J., Doyle, L. W. & Boyd, R. Early developmental intervention programs post hospital discharge to prevent motor and cognitive impairments in preterm infants. Cochrane Database Syst. Rev. CD005495 (2007).
DasWKhannaSA robust machine learning based framework for the automated detection of ADHD using pupillometric biomarkers and time series analysisSci. Rep.2021111:CAS:528:DC%2BB3MXhvVWitrbO34385511836112810.1038/s41598-021-95673-5
GanuthulaVRRSinhaSThe looking glass for intelligence quotient tests: the interplay of motivation, cognitive functioning, and affectFront. Psychol.201910285731920882692790810.3389/fpsyg.2019.02857
WhitehouseAJOEffect of preemptive intervention on developmental outcomes among infants showing early signs of autism: a randomized clinical trial of outcomes to diagnosisJAMA Pediatr.2021175e213298e21329834542577845336110.1001/jamapediatrics.2021.3298
National Research Council (US) Panel to Review the Status of Basic Research on School-Age Children. Development During Middle Childhood: The Years From Six to Twelve (National Academies Press (US), Washington (DC), 1984).
Benavente-FernándezISiddiqiAMillerSPSocioeconomic status and brain injury in children born preterm: modifying neurodevelopmental outcomePediatr. Res.2020873913983166668910.1038/s41390-019-0646-7
PatraKGreeneMMPatelALMeierPMaternal education level predicts cognitive, language, and motor outcome in preterm infants in the second year of lifeAm. J. Perinatol.20163373874426890439491915510.1055/s-0036-1572532
ObermeyerZEmanuelEJPredicting the future—big data, machine learning, and clinical medicineN. Engl. J. Med.20163751216121927682033507053210.1056/NEJMp1606181
LoveJMChazan-CohenRRaikesHBrooks-GunnJWhat makes a difference: Early Head Start evaluation findings in a developmental contextMonogr. Soc. Res. Child Dev.2013781173
McCraddenMDJoshiSMazwiMAndersonJAEthical limitations of algorithmic fairness solutions in health care machine learningLancet Digit Health20202e221e223.3332805410.1016/S2589-7500(20)30065-0
LansfordJEDodgeKAPettitGSBatesJEA public health perspective on school dropout and adult outcomes: a prospective study of risk and protective factors from age 5 to 27 yearsJ. Adolesc. Health.20165865265827009741487722210.1016/j.jadohealth.2016.01.014
Furnham, A. & Cheng H. Childhood cognitive ability predicts adult financial well-being. J. Intell..5, 3 https://doi.org/10.3390/jintelligence5010003 (2017).
TouwWGData mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle?Brief. Bioinforma.20131431532610.1093/bib/bbs034
HiraiAHKoganMDKandasamyVReulandCBethellCPrevalence and variation of developmental screening and surveillance in early childhoodJAMA Pediatr.201817285786629987317614306610.1001/jamapediatrics.2018.1524
BarkerLEShawKMBest (but oft-forgotten) practices: checking assumptions concerning regression residualsAm. J. Clin. Nutr.20151025335391:CAS:528:DC%2BC2MXhs1SjsrbO2620181610.3945/ajcn.115.113498
National Institute for Health and Care Excellence (NICE). Attention Deficit Hyperactivity Disorder: Diagnosis and Management (NICE, London, accessed 12 Apr 2022); https://www.nice.org.uk/guidance/ng87/chapter/Recommendations#diagnosis (2018).
Flensborg-MadsenTFalgreen EriksenH-LMortensenELEarly life predictors of intelligence in young adulthood and middle agePLoS One202015e02281441:CAS:528:DC%2BB3cXisFGhsLg%3D31990952698672110.1371/journal.pone.0228144
ChristodoulouEA systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction modelsJ. Clin. Epidemiol.201911012223076361210.1016/j.jclinepi.2019.02.004
MorgensternJDPredicting population health with machine learning: a scoping reviewBMJ Open202010e03786033109649759229310.1136/bmjopen-2020-037860
DrigasASPapoutsiCA new layered model on emotional intelligenceBehav. Sci. (Basel).201884510.3390/bs8050045.297240215981239PMID: 29724021; PMCID: PMC5981239
LagerABrembergSVågeröDThe association of early IQ and education with mortality: 65 year longitudinal study in Malmö, SwedenBMJ (Clin. Res. Ed.)2009339b52821:STN:280:DC%2BD1MfisVKmsQ%3D%3D10.1136/bmj.b5282
KimHHAnJil, ParkYRA prediction model for detecting developmental disabilities in preschool-age children through digital biomarker-driven deep learning in serious games: development studyJMIR Serious Games20219e2313034085944821418410.2196/23130
FreitagHTuxhornICognitive function in preschool children after epilepsy surgery: rationale for early interventionEpilepsia2005465615671581695110.1111/j.0013-9580.2005.03504.x
RameyCTRameySLPrevention of intellectual disabilities: early interventions to improve cognitive developmentPreventive Med.1998272242321:STN:280:DyaK1c3ktVWmtw%3D%3D10.1006/pmed.1998.0279
WadhwaPDBussCEntringerSSwansonJMDevelopmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanismsSemin. Reprod. Med.2009273583681:CAS:528:DC%2BD1MXhtFOis7zN19711246286263510.1055/s-0029-1237424
EdwardsKImproving access to early childhood developmental surveillance for Children from Culturally and Linguistically Diverse (CALD) BackgroundInt. J. Integr. Care202020332346361718195010.5334/ijic.4696
BradleyRHCorwynRFSocioeconomic status and child developmentAnnu. Rev. Psychol.2002533713991175249010.1146/annurev.psych.53.100901.135233
LinsellLMaloufRMorrisJKurinczukJJMarlowNRisk factor models for neurodevelopmental outcomes in children born very preterm or with very low birth weight: a systematic review of methodology and reportingAm. J. Epidemiol.20171856016122
2137_CR1
N Spencer (2137_CR9) 2019; 3
VRR Ganuthula (2137_CR13) 2019; 10
C Pansieri (2137_CR54) 2020; 17
SJ Moon (2137_CR78) 2019; 6
JE Lansford (2137_CR95) 2016; 58
DB Bugental (2137_CR26) 2012; 48
2137_CR4
K Watanabe (2137_CR33) 2005; 135
D Barker (2137_CR2) 1993; 341
FA Campbell (2137_CR35) 1994; 65
FA Camargo-Figuera (2137_CR20) 2014; 14
V Mhasawade (2137_CR83) 2021; 3
D Bzdok (2137_CR64) 2018; 15
D Barker (2137_CR6) 2004; 58
FA Campbell (2137_CR36) 2002; 6
RW Emerson (2137_CR79) 2017; 9
2137_CR10
2137_CR12
JM Kerstjens (2137_CR43) 2009; 85
2137_CR94
P Klebanov (2137_CR98) 2006; 1094
S Santos (2137_CR50) 2020; 35
HLF Eriksen (2137_CR22) 2013; 8
2137_CR92
J Dearlove (2137_CR97) 1990; 300
K Patra (2137_CR62) 2016; 33
2137_CR17
A Lager (2137_CR15) 2009; 339
JM Love (2137_CR41) 2013; 78
ER Wolf (2137_CR45) 2018; 142
T Flensborg-Madsen (2137_CR47) 2020; 15
W Das (2137_CR75) 2021; 11
JD Morgenstern (2137_CR82) 2020; 10
C Camacho (2137_CR21) 2019; 9
JE Leigh (2137_CR87) 1983; 3
AAH de Hond (2137_CR93) 2022; 5
D Bzdok (2137_CR66) 2018; 15
S Tong (2137_CR19) 2007; 151
MD McCradden (2137_CR89) 2020; 2
2137_CR37
2137_CR34
I Benavente-Fernández (2137_CR61) 2020; 87
B Sen (2137_CR76) 2018; 13
LE Barker (2137_CR60) 2015; 102
E Christodoulou (2137_CR71) 2019; 110
DL Morelli (2137_CR96) 2014; 14
PD Wadhwa (2137_CR5) 2009; 27
HH Kim (2137_CR81) 2021; 9
LF Forrest (2137_CR16) 2011; 11
SJ Mooney (2137_CR70) 2015; 26
V Mhasawade (2137_CR90) 2021; 3
Z Obermeyer (2137_CR91) 2019; 366
2137_CR39
AH Hirai (2137_CR44) 2018; 172
LM Taylor (2137_CR86) 2010; 30
D Barker (2137_CR3) 1986; 1
RH Bradley (2137_CR48) 2002; 53
C Yoshinaga-Itano (2137_CR28) 2020; 146
Y Gillette (2137_CR31) 1992; 2
DS Char (2137_CR88) 2018; 378
DA Lawlor (2137_CR23) 2006; 20
Z Vinen (2137_CR27) 2018; 48
K Edwards (2137_CR46) 2020; 20
2137_CR49
PA Morris (2137_CR42) 2018; 4
WG Touw (2137_CR69) 2013; 14
G Cioni (2137_CR8) 2016; 58
2137_CR52
EW Steyerberg (2137_CR59) 2013; 10
D Shifrer (2137_CR85) 2013; 54
JB Girault (2137_CR80) 2019; 40
AJO Whitehouse (2137_CR40) 2021; 175
AS Drigas (2137_CR14) 2018; 8
CT Ramey (2137_CR30) 1998; 27
CL Ramspek (2137_CR55) 2021; 36
HSR Rajula (2137_CR67) 2020; 56
L Zwaigenbaum (2137_CR77) 2018; 361
RF Wolff (2137_CR58) 2019; 170
2137_CR65
EP Pungello (2137_CR32) 2010; 81
H Turpin (2137_CR38) 2019; 9
R Nouchi (2137_CR11) 2014; 2014
L Jussim (2137_CR84) 2005; 9
H Freitag (2137_CR29) 2005; 46
I Schoon (2137_CR25) 2012; 66
2137_CR74
M Vrijheid (2137_CR51) 2020; 128
M Fu (2137_CR7) 2011; 34
M Uddin (2137_CR73) 2019; 2
T Blakely (2137_CR56) 2021; 49
2137_CR72
Z Obermeyer (2137_CR68) 2016; 375
S von Stumm (2137_CR24) 2015; 48
C Canova (2137_CR53) 2020; 17
LJ Whalley (2137_CR18) 2001; 322
I Benavente-Fernández (2137_CR63) 2019; 2
L Linsell (2137_CR57) 2017; 185
References_xml – volume: 65
  start-page: 684
  year: 1994
  ident: 2137_CR35
  publication-title: Child Dev.
  doi: 10.2307/1131410
  contributor:
    fullname: FA Campbell
– volume: 10
  start-page: e1001381
  year: 2013
  ident: 2137_CR59
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001381
  contributor:
    fullname: EW Steyerberg
– volume: 341
  start-page: 938
  year: 1993
  ident: 2137_CR2
  publication-title: Lancet
  doi: 10.1016/0140-6736(93)91224-A
  contributor:
    fullname: D Barker
– volume: 9
  start-page: eaag2882
  year: 2017
  ident: 2137_CR79
  publication-title: Sci. Transl. Med
  doi: 10.1126/scitranslmed.aag2882
  contributor:
    fullname: RW Emerson
– volume: 2
  start-page: 48
  year: 1992
  ident: 2137_CR31
  publication-title: Clin. Commun. Disord.
  contributor:
    fullname: Y Gillette
– volume: 110
  start-page: 12
  year: 2019
  ident: 2137_CR71
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/j.jclinepi.2019.02.004
  contributor:
    fullname: E Christodoulou
– volume: 102
  start-page: 533
  year: 2015
  ident: 2137_CR60
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.115.113498
  contributor:
    fullname: LE Barker
– volume: 14
  start-page: 315
  year: 2013
  ident: 2137_CR69
  publication-title: Brief. Bioinforma.
  doi: 10.1093/bib/bbs034
  contributor:
    fullname: WG Touw
– volume: 30
  start-page: 191
  year: 2010
  ident: 2137_CR86
  publication-title: Educ. Psychol.
  doi: 10.1080/01443410903494478
  contributor:
    fullname: LM Taylor
– volume: 2
  year: 2019
  ident: 2137_CR73
  publication-title: npj Digital Med.
  doi: 10.1038/s41746-019-0191-0
  contributor:
    fullname: M Uddin
– volume: 53
  start-page: 371
  year: 2002
  ident: 2137_CR48
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev.psych.53.100901.135233
  contributor:
    fullname: RH Bradley
– ident: 2137_CR49
  doi: 10.1111/jcpp.13545
– volume: 170
  start-page: 51
  year: 2019
  ident: 2137_CR58
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M18-1376
  contributor:
    fullname: RF Wolff
– volume: 2
  start-page: e221
  year: 2020
  ident: 2137_CR89
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30065-0
  contributor:
    fullname: MD McCradden
– volume: 10
  start-page: 2857
  year: 2019
  ident: 2137_CR13
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2019.02857
  contributor:
    fullname: VRR Ganuthula
– volume: 3
  start-page: 659
  year: 2021
  ident: 2137_CR83
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00373-4
  contributor:
    fullname: V Mhasawade
– ident: 2137_CR74
– volume: 11
  year: 2021
  ident: 2137_CR75
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-95673-5
  contributor:
    fullname: W Das
– volume: 300
  start-page: 1177
  year: 1990
  ident: 2137_CR97
  publication-title: BMJ (Clin. Res. Ed.)
  doi: 10.1136/bmj.300.6733.1177
  contributor:
    fullname: J Dearlove
– volume: 17
  start-page: 3071
  year: 2020
  ident: 2137_CR54
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17093071
  contributor:
    fullname: C Pansieri
– volume: 14
  year: 2014
  ident: 2137_CR20
  publication-title: BMC Pediatr.
  doi: 10.1186/s12887-014-0308-1
  contributor:
    fullname: FA Camargo-Figuera
– volume: 9
  start-page: e23130
  year: 2021
  ident: 2137_CR81
  publication-title: JMIR Serious Games
  doi: 10.2196/23130
  contributor:
    fullname: HH Kim
– volume: 8
  start-page: e79200
  year: 2013
  ident: 2137_CR22
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0079200
  contributor:
    fullname: HLF Eriksen
– volume: 10
  start-page: e037860
  year: 2020
  ident: 2137_CR82
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2020-037860
  contributor:
    fullname: JD Morgenstern
– ident: 2137_CR10
– volume: 81
  start-page: 410
  year: 2010
  ident: 2137_CR32
  publication-title: Child Dev.
  doi: 10.1111/j.1467-8624.2009.01403.x
  contributor:
    fullname: EP Pungello
– ident: 2137_CR37
  doi: 10.1136/bmjopen-2019-028982
– volume: 46
  start-page: 561
  year: 2005
  ident: 2137_CR29
  publication-title: Epilepsia
  doi: 10.1111/j.0013-9580.2005.03504.x
  contributor:
    fullname: H Freitag
– volume: 36
  start-page: 889
  year: 2021
  ident: 2137_CR55
  publication-title: Eur. J. Epidemiol.
  doi: 10.1007/s10654-021-00794-w
  contributor:
    fullname: CL Ramspek
– volume: 1094
  start-page: 63
  year: 2006
  ident: 2137_CR98
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1376.007
  contributor:
    fullname: P Klebanov
– volume: 2014
  start-page: 235479
  year: 2014
  ident: 2137_CR11
  publication-title: Adv. Neurosci.
  doi: 10.1155/2014/235479
  contributor:
    fullname: R Nouchi
– volume: 48
  start-page: 1673
  year: 2018
  ident: 2137_CR27
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/s10803-017-3414-8
  contributor:
    fullname: Z Vinen
– volume: 5
  year: 2022
  ident: 2137_CR93
  publication-title: npj Digital Med.
  doi: 10.1038/s41746-021-00549-7
  contributor:
    fullname: AAH de Hond
– ident: 2137_CR52
  doi: 10.1371/journal.pone.0118701
– volume: 9
  year: 2019
  ident: 2137_CR38
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36465-2
  contributor:
    fullname: H Turpin
– volume: 142
  start-page: e20174019
  year: 2018
  ident: 2137_CR45
  publication-title: Pediatrics
  doi: 10.1542/peds.2017-4019
  contributor:
    fullname: ER Wolf
– volume: 85
  start-page: 443
  year: 2009
  ident: 2137_CR43
  publication-title: Early Hum. Dev.
  doi: 10.1016/j.earlhumdev.2009.03.001
  contributor:
    fullname: JM Kerstjens
– volume: 13
  start-page: e0194856
  year: 2018
  ident: 2137_CR76
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0194856
  contributor:
    fullname: B Sen
– volume: 175
  start-page: e213298
  year: 2021
  ident: 2137_CR40
  publication-title: JAMA Pediatr.
  doi: 10.1001/jamapediatrics.2021.3298
  contributor:
    fullname: AJO Whitehouse
– volume: 15
  start-page: e0228144
  year: 2020
  ident: 2137_CR47
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0228144
  contributor:
    fullname: T Flensborg-Madsen
– volume: 48
  start-page: 30
  year: 2015
  ident: 2137_CR24
  publication-title: Intelligence
  doi: 10.1016/j.intell.2014.10.002
  contributor:
    fullname: S von Stumm
– ident: 2137_CR4
  doi: 10.1016/S0140-6736(89)90710-1
– volume: 146
  start-page: S270
  year: 2020
  ident: 2137_CR28
  publication-title: Pediatrics
  doi: 10.1542/peds.2020-0242F
  contributor:
    fullname: C Yoshinaga-Itano
– volume: 378
  start-page: 981
  year: 2018
  ident: 2137_CR88
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJMp1714229
  contributor:
    fullname: DS Char
– volume: 58
  start-page: 652
  year: 2016
  ident: 2137_CR95
  publication-title: J. Adolesc. Health.
  doi: 10.1016/j.jadohealth.2016.01.014
  contributor:
    fullname: JE Lansford
– volume: 58
  start-page: LP–115
  year: 2004
  ident: 2137_CR6
  publication-title: J. Epidemiol. Community Health
  doi: 10.1136/jech.58.2.114
  contributor:
    fullname: D Barker
– volume: 172
  start-page: 857
  year: 2018
  ident: 2137_CR44
  publication-title: JAMA Pediatr.
  doi: 10.1001/jamapediatrics.2018.1524
  contributor:
    fullname: AH Hirai
– volume: 135
  start-page: 1918
  year: 2005
  ident: 2137_CR33
  publication-title: J. Nutr.
  doi: 10.1093/jn/135.8.1918
  contributor:
    fullname: K Watanabe
– volume: 11
  year: 2011
  ident: 2137_CR16
  publication-title: BMC Public Health
  doi: 10.1186/1471-2458-11-895
  contributor:
    fullname: LF Forrest
– ident: 2137_CR12
– volume: 27
  start-page: 358
  year: 2009
  ident: 2137_CR5
  publication-title: Semin. Reprod. Med.
  doi: 10.1055/s-0029-1237424
  contributor:
    fullname: PD Wadhwa
– volume: 20
  start-page: 148
  year: 2006
  ident: 2137_CR23
  publication-title: Pediatr. Perinat. Epidemiol.
  doi: 10.1111/j.1365-3016.2006.00704.x
  contributor:
    fullname: DA Lawlor
– volume: 322
  start-page: 819
  year: 2001
  ident: 2137_CR18
  publication-title: BMJ (Clin. Res. Ed.)
  doi: 10.1136/bmj.322.7290.819
  contributor:
    fullname: LJ Whalley
– volume: 9
  start-page: e024851
  year: 2019
  ident: 2137_CR21
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2018-024851
  contributor:
    fullname: C Camacho
– volume: 6
  start-page: 42
  year: 2002
  ident: 2137_CR36
  publication-title: Appl. Dev. Sci.
  doi: 10.1207/S1532480XADS0601_05
  contributor:
    fullname: FA Campbell
– volume: 33
  start-page: 738
  year: 2016
  ident: 2137_CR62
  publication-title: Am. J. Perinatol.
  doi: 10.1055/s-0036-1572532
  contributor:
    fullname: K Patra
– volume: 151
  start-page: 288.e1
  year: 2007
  ident: 2137_CR19
  publication-title: J. Pediatr.
  doi: 10.1016/j.jpeds.2007.03.020
  contributor:
    fullname: S Tong
– volume: 66
  start-page: 716
  year: 2012
  ident: 2137_CR25
  publication-title: J. Epidemiol. Community Health
  doi: 10.1136/jech.2010.121228
  contributor:
    fullname: I Schoon
– volume: 9
  start-page: 131
  year: 2005
  ident: 2137_CR84
  publication-title: Personal. Soc. Psychol. Rev.
  doi: 10.1207/s15327957pspr0902_3
  contributor:
    fullname: L Jussim
– volume: 27
  start-page: 224
  year: 1998
  ident: 2137_CR30
  publication-title: Preventive Med.
  doi: 10.1006/pmed.1998.0279
  contributor:
    fullname: CT Ramey
– volume: 35
  start-page: 193
  year: 2020
  ident: 2137_CR50
  publication-title: Eur. J. Epidemiol.
  doi: 10.1007/s10654-020-00625-4
  contributor:
    fullname: S Santos
– ident: 2137_CR65
  doi: 10.2427/13245
– volume: 49
  start-page: 2058
  year: 2021
  ident: 2137_CR56
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyz132
  contributor:
    fullname: T Blakely
– volume: 54
  start-page: 462
  year: 2013
  ident: 2137_CR85
  publication-title: J. Health Soc. Behav.
  doi: 10.1177/0022146513503346
  contributor:
    fullname: D Shifrer
– ident: 2137_CR92
  doi: 10.1038/s42256-021-00385-0
– volume: 14
  year: 2014
  ident: 2137_CR96
  publication-title: BMC Pediatr.
  doi: 10.1186/1471-2431-14-16
  contributor:
    fullname: DL Morelli
– volume: 58
  start-page: 61
  year: 2016
  ident: 2137_CR8
  publication-title: Dev. Med. Child Neurol.
  doi: 10.1111/dmcn.13050
  contributor:
    fullname: G Cioni
– volume: 87
  start-page: 391
  year: 2020
  ident: 2137_CR61
  publication-title: Pediatr. Res.
  doi: 10.1038/s41390-019-0646-7
  contributor:
    fullname: I Benavente-Fernández
– volume: 128
  start-page: 1
  year: 2020
  ident: 2137_CR51
  publication-title: Environ. Health Perspect.
  doi: 10.1289/EHP5975
  contributor:
    fullname: M Vrijheid
– volume: 15
  start-page: 233
  year: 2018
  ident: 2137_CR66
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4642
  contributor:
    fullname: D Bzdok
– volume: 40
  start-page: 1195
  year: 2019
  ident: 2137_CR80
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24439
  contributor:
    fullname: JB Girault
– volume: 6
  start-page: e14108
  year: 2019
  ident: 2137_CR78
  publication-title: JMIR Ment. Health
  doi: 10.2196/14108
  contributor:
    fullname: SJ Moon
– volume: 17
  start-page: 5276
  year: 2020
  ident: 2137_CR53
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17155276
  contributor:
    fullname: C Canova
– ident: 2137_CR1
– volume: 3
  start-page: e000503
  year: 2019
  ident: 2137_CR9
  publication-title: BMJ Pediatr. Open
  doi: 10.1136/bmjpo-2019-000503
  contributor:
    fullname: N Spencer
– volume: 34
  start-page: 177
  year: 2011
  ident: 2137_CR7
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2011.02.001
  contributor:
    fullname: M Fu
– volume: 48
  start-page: 1443
  year: 2012
  ident: 2137_CR26
  publication-title: Dev. Psychol.
  doi: 10.1037/a0027303
  contributor:
    fullname: DB Bugental
– ident: 2137_CR72
  doi: 10.1038/s41591-021-01614-0
– volume: 8
  start-page: 45
  year: 2018
  ident: 2137_CR14
  publication-title: Behav. Sci. (Basel).
  doi: 10.3390/bs8050045.
  contributor:
    fullname: AS Drigas
– volume: 56
  start-page: 455
  year: 2020
  ident: 2137_CR67
  publication-title: Medicine (Kaunas)
  contributor:
    fullname: HSR Rajula
– ident: 2137_CR39
  doi: 10.1002/14651858.CD005495.pub2
– volume: 361
  start-page: k1674
  year: 2018
  ident: 2137_CR77
  publication-title: BMJ
  doi: 10.1136/bmj.k1674
  contributor:
    fullname: L Zwaigenbaum
– volume: 185
  start-page: 601
  year: 2017
  ident: 2137_CR57
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kww135
  contributor:
    fullname: L Linsell
– volume: 4
  start-page: 233285841876928
  year: 2018
  ident: 2137_CR42
  publication-title: AERA Open
  doi: 10.1177/2332858418769287
  contributor:
    fullname: PA Morris
– volume: 375
  start-page: 1216
  year: 2016
  ident: 2137_CR68
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1606181
  contributor:
    fullname: Z Obermeyer
– ident: 2137_CR94
  doi: 10.1016/S0169-7218(11)02413-0
– volume: 15
  start-page: 233
  year: 2018
  ident: 2137_CR64
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4642
  contributor:
    fullname: D Bzdok
– volume: 78
  start-page: 1
  year: 2013
  ident: 2137_CR41
  publication-title: Monogr. Soc. Res. Child Dev.
  contributor:
    fullname: JM Love
– ident: 2137_CR17
  doi: 10.3390/jintelligence5010003
– volume: 2
  start-page: e192914
  year: 2019
  ident: 2137_CR63
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2019.2914
  contributor:
    fullname: I Benavente-Fernández
– volume: 20
  start-page: 3
  year: 2020
  ident: 2137_CR46
  publication-title: Int. J. Integr. Care
  doi: 10.5334/ijic.4696
  contributor:
    fullname: K Edwards
– volume: 26
  start-page: 390
  year: 2015
  ident: 2137_CR70
  publication-title: Epidemiology
  doi: 10.1097/EDE.0000000000000274
  contributor:
    fullname: SJ Mooney
– volume: 366
  start-page: 447
  year: 2019
  ident: 2137_CR91
  publication-title: Science
  doi: 10.1126/science.aax2342
  contributor:
    fullname: Z Obermeyer
– ident: 2137_CR34
– volume: 1
  start-page: 1077
  year: 1986
  ident: 2137_CR3
  publication-title: Lancet
  doi: 10.1016/S0140-6736(86)91340-1
  contributor:
    fullname: D Barker
– volume: 3
  start-page: 1
  year: 1983
  ident: 2137_CR87
  publication-title: Top. Early Child. Spec. Educ.
  doi: 10.1177/027112148300300303
  contributor:
    fullname: JE Leigh
– volume: 339
  start-page: b5282
  year: 2009
  ident: 2137_CR15
  publication-title: BMJ (Clin. Res. Ed.)
  doi: 10.1136/bmj.b5282
  contributor:
    fullname: A Lager
– volume: 3
  start-page: 659
  year: 2021
  ident: 2137_CR90
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00373-4
  contributor:
    fullname: V Mhasawade
SSID ssj0014584
Score 2.4702954
SecondaryResourceType review_article
Snippet The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical setting....
Abstract The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical...
SourceID proquest
crossref
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 300
SubjectTerms At risk youth
Big Data
Child
Child, Preschool
Cognition
Cognitive development
Data analysis
Early intervention
Humans
Machine Learning
Medicine
Medicine & Public Health
Neurodevelopmental disorders
Pediatric Surgery
Pediatrics
Public health
Review Article
Risk Assessment
SummonAdditionalLinks – databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iIL6I306nRPDNBdsmbRPfdDiGMJ8c7EVC89GxB7uxdf-_lzatjOmDz0nTcpfk7vq7-x1C98yKXEfKEpVDrMoSGhIVM0tCG2gGDrRIq_Zto_dkOGZvk3jiaXJcLcwGfk_54wouWREQl3MO1oimBCKdPbDB3KVv9ZN-ixg4vK-mYAwJGF3uC2R-X2PTCG15lluoaGVsBkfo0HuJ-LlW6zHascUJ2h95HPwUfb7Mptgld_bwV5UNabFv_zDt4awweNH25cJ1peMTXizd4y7LGbc5Q3i-LmHL2RWeFVg3LMdnaDx4_egPiW-UQDQLRUkMOHWamkCYlFtXTMoDJSKtImrB-GRaGJ4YCn50zpVWIuFw28ZCJ4LnzITa0nO0W8wLe4mwEgqOsImyXAXMBjE3VFOrMoiqDFOcdtBDIzm5qPkwZIVjUy5rOUuQs6zkLMMO6jbClf5srGSUpqkjlYlh-K4dhl3toIqssPM1zIE4JnFUejDnolZK-zpacagJGOk1WvpZ_O9vufrf9Gt04DrL139bumi3XK7tDfgfpbqtNt43XhfPQA
  priority: 102
  providerName: Springer Nature
Title Big data, machine learning, and population health: predicting cognitive outcomes in childhood
URI https://link.springer.com/article/10.1038/s41390-022-02137-1
https://www.ncbi.nlm.nih.gov/pubmed/35681091
https://www.proquest.com/docview/2777535251
https://search.proquest.com/docview/2675606451
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1NSxwx9FF3QQQp1WrdViVCb25wMsnMJL0UXRQpKFIU9iLD5GMWD85u3d3_35dJZqSIvQyEhEx4L3nfHwDfhVO1SbWjukZdVeScUZ0JR5lLjEABWhVt-7ab2_z6QfyaZtNocFvGsMqOJraE2s6Nt5GfpUVR-FIkGfu5-EN91yjvXY0tNDZgyNIk9yFdxbRXuJj3AYayjIwiI5YxaSbh8myJxFsl1MeyI5fjBWX_MqY30uYbT2nLgK4-wccoOZLzgOod-OCaXdi8ib7xXdgOFjgSEos-w-PF04z4ANAxeW4jJh2JLSJmY1I1liz63l0kZEP-IIsXv52PhCZ9XBGZr1cIIrckTw0xXSXkPXi4uryfXNPYTIEawdSKWhT8DLeJsoV0PuFUJlqlRqfcIYOqjLIytxxl7Vpqo1UukSJnyuRK1sIy4_g-DJp54w6AaKXxmdu0qnUiXJJJyw13ukLNywot-QhOO0iWi1Azo2x93VyWAe4lwr1s4V6yERx2wC7j-1mWr9gewUk_jTffuzOqxs3XuAZ1ndyX28M1XwKS-t_xts6awplxh7XXzd8_y9f_n-UbbPlu88ECcwiD1cvaHaFMstLH7cXDr5ywYxheXN7e_cbRJJ_8BQ_A3rM
link.rule.ids 315,783,787,12068,12235,21400,27936,27937,31731,31732,33278,33279,33756,33757,41132,42201,43322,43591,43817,51588,74073,74342,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB-sgi0UUfvhqa0RfOsFdzfZ3cSXUotyVe-QouBLCZuPFR-6d3p3_38nm-xKkfY5YTfMJPM9vwE44k7WJtOO6hp9VV6wlOqcO5q6xHA0oGXZjm8bT4rRLb-4y-9iwG0eyyo7mdgKajs1PkZ-nJVl6aFI8vTr7JH6qVE-uxpHaLyCNQ9Vhc7X2unZ5Ppnn0fwWcAAzJhSVMUits0kTBzPUXzLhPpqdtRzrKTp36rphb35IlfaqqDzTdiItiP5Fpi9BSuu2Yb1ccyOb8PbEIMjobXoHfw6fbgnvgR0SH63NZOOxCER90NSNZbM-uldJPRDnpDZk_-cr4UmfWURmS4XSCQ3Jw8NMR0W8nu4PT-7-T6icZwCNTyVC2rR9DPMJtKWwvmWU5FomRmdMYcqqjLSisIytLZroY2WhUCZnEtTSFFzmxrHPsBqM23cDhAtNT50m1W1TrhLcmGZYU5X6HtZrgUbwJeOkmoWUDNUm-1mQgW6K6S7aumu0gHsd8RW8QXN1TO_B3DYL-Pd9wmNqnHTJe5Bb6fwgHu452NgUv871iKtSVwZdlx7_vi_z7L7_7McwOvRzfhKXf2YXO7BGz97PsRj9mF18bR0n9BCWejP8Rr-ARPv38U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_sCVKQUu3XWasR-tYLt7vJ7iZ9KVo9tNVDSgVfSth8rPjg3und_f-dbLIrIu1zQhJmMh_J_GYG4DN3sjaZdlTX-FblBUupzrmjqUsMRwdalm37totpcXrFf1zn1xH_tIiwyk4ntorazoz_Ix9nZVn6UiR5Oq4jLOLyePJtfk99BykfaY3tNF7Aeol7JgNYPzqZXv7qYwo-IhiKNKYUzbKIKTQJE-MFqnKZUI9sR5vHSpo-NVPPfM9ncdPWHE1ew6voR5LDwPgtWHPNNmxcxEj5NmyG_zgS0ozewJ-j2xvi4aAjctfiJx2JDSNuRqRqLJn3nbxIyI38SuYPfjmPiyY9yojMVkskmFuQ24aYri7yW7ianPz-fkpjawVqeCqX1KIbaJhNpC2F8-mnItEyMzpjDs1VZaQVhWXoeddCGy0Lgfo5l6aQouY2NY69g0Eza9wHIFpqFHqbVbVOuEtyYZlhTlf4DrNcCzaELx0l1TxU0FBt5JsJFeiukO6qpbtKh7DbEVtFaVqoR94P4aAfRjnwwY2qcbMVzsGXT-GL7-Gc94FJ_XasrbomcWTUce1x8X-fZef_Z9mHDbyB6vxs-vMjvPRt6MPXzC4Mlg8r9wmdlaXei7fwL6la4_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+data%2C+machine+learning%2C+and+population+health%3A+predicting+cognitive+outcomes+in+childhood&rft.jtitle=Pediatric+research&rft.au=Bowe%2C+Andrea+K&rft.au=Lightbody%2C+Gordon&rft.au=Staines%2C+Anthony&rft.au=Murray%2C+Deirdre+M&rft.date=2023-01-01&rft.eissn=1530-0447&rft.volume=93&rft.issue=2&rft.spage=300&rft_id=info:doi/10.1038%2Fs41390-022-02137-1&rft_id=info%3Apmid%2F35681091&rft.externalDocID=35681091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3998&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3998&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3998&client=summon