Big data, machine learning, and population health: predicting cognitive outcomes in childhood
The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical setting. One such challenge is addressing disparities in early childhood cognitive development—a complex public health issue rooted in the social det...
Saved in:
Published in | Pediatric research Vol. 93; no. 2; pp. 300 - 307 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.01.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical setting. One such challenge is addressing disparities in early childhood cognitive development—a complex public health issue rooted in the social determinants of health, exacerbated by inequity, characterised by intergenerational transmission, and which will continue unabated without novel approaches to address it. Early life, the period of optimal neuroplasticity, presents a window of opportunity for early intervention to improve cognitive development. Unfortunately for many, this window will be missed, and intervention may never occur or occur only when overt signs of cognitive delay manifest. In this review, we explore the potential value of ML and big data analysis in the early identification of children at risk for poor cognitive outcome, an area where there is an apparent dearth of research. We compare and contrast traditional statistical methods with ML approaches, provide examples of how ML has been used to date in the field of neurodevelopmental disorders, and present a discussion of the opportunities and risks associated with its use at a population level. The review concludes by highlighting potential directions for future research in this area.
Impact
To date, the application of machine learning to address population health challenges in paediatrics lags behind other clinical applications. This review provides an overview of the public health challenge we face in addressing disparities in childhood cognitive development and focuses on the cornerstone of early intervention.
Recent advances in our ability to collect large volumes of data, and in analytic capabilities, provide a potential opportunity to improve current practices in this field.
This review explores the potential role of machine learning and big data analysis in the early identification of children at risk for poor cognitive outcomes. |
---|---|
AbstractList | The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical setting. One such challenge is addressing disparities in early childhood cognitive development-a complex public health issue rooted in the social determinants of health, exacerbated by inequity, characterised by intergenerational transmission, and which will continue unabated without novel approaches to address it. Early life, the period of optimal neuroplasticity, presents a window of opportunity for early intervention to improve cognitive development. Unfortunately for many, this window will be missed, and intervention may never occur or occur only when overt signs of cognitive delay manifest. In this review, we explore the potential value of ML and big data analysis in the early identification of children at risk for poor cognitive outcome, an area where there is an apparent dearth of research. We compare and contrast traditional statistical methods with ML approaches, provide examples of how ML has been used to date in the field of neurodevelopmental disorders, and present a discussion of the opportunities and risks associated with its use at a population level. The review concludes by highlighting potential directions for future research in this area. IMPACT: To date, the application of machine learning to address population health challenges in paediatrics lags behind other clinical applications. This review provides an overview of the public health challenge we face in addressing disparities in childhood cognitive development and focuses on the cornerstone of early intervention. Recent advances in our ability to collect large volumes of data, and in analytic capabilities, provide a potential opportunity to improve current practices in this field. This review explores the potential role of machine learning and big data analysis in the early identification of children at risk for poor cognitive outcomes. The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical setting. One such challenge is addressing disparities in early childhood cognitive development—a complex public health issue rooted in the social determinants of health, exacerbated by inequity, characterised by intergenerational transmission, and which will continue unabated without novel approaches to address it. Early life, the period of optimal neuroplasticity, presents a window of opportunity for early intervention to improve cognitive development. Unfortunately for many, this window will be missed, and intervention may never occur or occur only when overt signs of cognitive delay manifest. In this review, we explore the potential value of ML and big data analysis in the early identification of children at risk for poor cognitive outcome, an area where there is an apparent dearth of research. We compare and contrast traditional statistical methods with ML approaches, provide examples of how ML has been used to date in the field of neurodevelopmental disorders, and present a discussion of the opportunities and risks associated with its use at a population level. The review concludes by highlighting potential directions for future research in this area.ImpactTo date, the application of machine learning to address population health challenges in paediatrics lags behind other clinical applications. This review provides an overview of the public health challenge we face in addressing disparities in childhood cognitive development and focuses on the cornerstone of early intervention.Recent advances in our ability to collect large volumes of data, and in analytic capabilities, provide a potential opportunity to improve current practices in this field.This review explores the potential role of machine learning and big data analysis in the early identification of children at risk for poor cognitive outcomes. Abstract The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical setting. One such challenge is addressing disparities in early childhood cognitive development—a complex public health issue rooted in the social determinants of health, exacerbated by inequity, characterised by intergenerational transmission, and which will continue unabated without novel approaches to address it. Early life, the period of optimal neuroplasticity, presents a window of opportunity for early intervention to improve cognitive development. Unfortunately for many, this window will be missed, and intervention may never occur or occur only when overt signs of cognitive delay manifest. In this review, we explore the potential value of ML and big data analysis in the early identification of children at risk for poor cognitive outcome, an area where there is an apparent dearth of research. We compare and contrast traditional statistical methods with ML approaches, provide examples of how ML has been used to date in the field of neurodevelopmental disorders, and present a discussion of the opportunities and risks associated with its use at a population level. The review concludes by highlighting potential directions for future research in this area. Impact To date, the application of machine learning to address population health challenges in paediatrics lags behind other clinical applications. This review provides an overview of the public health challenge we face in addressing disparities in childhood cognitive development and focuses on the cornerstone of early intervention. Recent advances in our ability to collect large volumes of data, and in analytic capabilities, provide a potential opportunity to improve current practices in this field. This review explores the potential role of machine learning and big data analysis in the early identification of children at risk for poor cognitive outcomes. The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical setting. One such challenge is addressing disparities in early childhood cognitive development—a complex public health issue rooted in the social determinants of health, exacerbated by inequity, characterised by intergenerational transmission, and which will continue unabated without novel approaches to address it. Early life, the period of optimal neuroplasticity, presents a window of opportunity for early intervention to improve cognitive development. Unfortunately for many, this window will be missed, and intervention may never occur or occur only when overt signs of cognitive delay manifest. In this review, we explore the potential value of ML and big data analysis in the early identification of children at risk for poor cognitive outcome, an area where there is an apparent dearth of research. We compare and contrast traditional statistical methods with ML approaches, provide examples of how ML has been used to date in the field of neurodevelopmental disorders, and present a discussion of the opportunities and risks associated with its use at a population level. The review concludes by highlighting potential directions for future research in this area. Impact To date, the application of machine learning to address population health challenges in paediatrics lags behind other clinical applications. This review provides an overview of the public health challenge we face in addressing disparities in childhood cognitive development and focuses on the cornerstone of early intervention. Recent advances in our ability to collect large volumes of data, and in analytic capabilities, provide a potential opportunity to improve current practices in this field. This review explores the potential role of machine learning and big data analysis in the early identification of children at risk for poor cognitive outcomes. |
Author | Murray, Deirdre M. Staines, Anthony Bowe, Andrea K. Lightbody, Gordon |
Author_xml | – sequence: 1 givenname: Andrea K. surname: Bowe fullname: Bowe, Andrea K. email: andrea.bowe@ucdconnect.ie organization: INFANT Research Centre, University College Cork – sequence: 2 givenname: Gordon surname: Lightbody fullname: Lightbody, Gordon organization: INFANT Research Centre, University College Cork, Department of Electrical and Electronic Engineering, University College Cork – sequence: 3 givenname: Anthony surname: Staines fullname: Staines, Anthony organization: School of Nursing, Psychotherapy, and Community Health, Dublin City University – sequence: 4 givenname: Deirdre M. surname: Murray fullname: Murray, Deirdre M. organization: INFANT Research Centre, University College Cork |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35681091$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1rFTEUhoO02NvqH3AhATcuOjafk8SdFr-g0E1dSsgk596bMpOMyUzBf2_aWyu4cBECyfO-5_CcoqOUEyD0ipJ3lHB9UQXlhnSEsXYoVx19hjZU8vYkhDpCG0I47bgx-gSd1npLCBVSi-fohMteU2LoBv34GHc4uMWd48n5fUyAR3AlxbQ7xy4FPOd5Hd0Sc8J7cOOyf4_nAiH6pSHY512KS7wDnNfF5wkqjgm3njHscw4v0PHWjRVePt5n6PvnTzeXX7ur6y_fLj9cdV5Qs3RBEuV5ICYoDdIQqslgmB8YBy2U8yboPnCl2FYPfjC9Buel8b3RWxGoB36G3h5655J_rlAXO8XqYRxdgrxWy3ole9ILSRv65h_0Nq8lte0sU0pJLtkDxQ6UL7nWAls7lzi58stSYu_l24N82-TbB_n2PvT6sXodJghPkT-2G8APQG1faQfl7-z_1P4GwAyQ2Q |
CitedBy_id | crossref_primary_10_3389_fpubh_2023_1185565 crossref_primary_10_1038_s41390_022_02422_z crossref_primary_10_1038_s41390_023_02914_6 crossref_primary_10_3389_fpsyt_2023_1071622 |
Cites_doi | 10.2307/1131410 10.1371/journal.pmed.1001381 10.1016/0140-6736(93)91224-A 10.1126/scitranslmed.aag2882 10.1016/j.jclinepi.2019.02.004 10.3945/ajcn.115.113498 10.1093/bib/bbs034 10.1080/01443410903494478 10.1038/s41746-019-0191-0 10.1146/annurev.psych.53.100901.135233 10.1111/jcpp.13545 10.7326/M18-1376 10.1016/S2589-7500(20)30065-0 10.3389/fpsyg.2019.02857 10.1038/s42256-021-00373-4 10.1038/s41598-021-95673-5 10.1136/bmj.300.6733.1177 10.3390/ijerph17093071 10.1186/s12887-014-0308-1 10.2196/23130 10.1371/journal.pone.0079200 10.1136/bmjopen-2020-037860 10.1111/j.1467-8624.2009.01403.x 10.1136/bmjopen-2019-028982 10.1111/j.0013-9580.2005.03504.x 10.1007/s10654-021-00794-w 10.1196/annals.1376.007 10.1155/2014/235479 10.1007/s10803-017-3414-8 10.1038/s41746-021-00549-7 10.1371/journal.pone.0118701 10.1038/s41598-018-36465-2 10.1542/peds.2017-4019 10.1016/j.earlhumdev.2009.03.001 10.1371/journal.pone.0194856 10.1001/jamapediatrics.2021.3298 10.1371/journal.pone.0228144 10.1016/j.intell.2014.10.002 10.1016/S0140-6736(89)90710-1 10.1542/peds.2020-0242F 10.1056/NEJMp1714229 10.1016/j.jadohealth.2016.01.014 10.1136/jech.58.2.114 10.1001/jamapediatrics.2018.1524 10.1093/jn/135.8.1918 10.1186/1471-2458-11-895 10.1055/s-0029-1237424 10.1111/j.1365-3016.2006.00704.x 10.1136/bmj.322.7290.819 10.1136/bmjopen-2018-024851 10.1207/S1532480XADS0601_05 10.1055/s-0036-1572532 10.1016/j.jpeds.2007.03.020 10.1136/jech.2010.121228 10.1207/s15327957pspr0902_3 10.1006/pmed.1998.0279 10.1007/s10654-020-00625-4 10.2427/13245 10.1093/ije/dyz132 10.1177/0022146513503346 10.1038/s42256-021-00385-0 10.1186/1471-2431-14-16 10.1111/dmcn.13050 10.1038/s41390-019-0646-7 10.1289/EHP5975 10.1038/nmeth.4642 10.1002/hbm.24439 10.2196/14108 10.3390/ijerph17155276 10.1136/bmjpo-2019-000503 10.1016/j.tins.2011.02.001 10.1037/a0027303 10.1038/s41591-021-01614-0 10.3390/bs8050045. 10.1002/14651858.CD005495.pub2 10.1136/bmj.k1674 10.1093/aje/kww135 10.1177/2332858418769287 10.1056/NEJMp1606181 10.1016/S0169-7218(11)02413-0 10.3390/jintelligence5010003 10.1001/jamanetworkopen.2019.2914 10.5334/ijic.4696 10.1097/EDE.0000000000000274 10.1126/science.aax2342 10.1016/S0140-6736(86)91340-1 10.1177/027112148300300303 10.1136/bmj.b5282 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88E 8C1 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1038/s41390-022-02137-1 |
DatabaseName | SpringerOpen Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Public Health CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1530-0447 |
EndPage | 307 |
ExternalDocumentID | 10_1038_s41390_022_02137_1 35681091 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 203930 |
GroupedDBID | --- -Q- .-D .55 .GJ 08G 0R~ 123 2WC 3V. 406 4Q1 4Q2 4Q3 53G 5RE 5VS 70F 77Y 7X7 88E 8C1 8FI 8FJ AACDK AAKAS AANZL AASML AATNV AAWBL AAWTL AAYEP AAZLF ABAKF ABAWZ ABJNI ABLJU ABOCM ABPPZ ABUWG ABZZP ACAOD ACGFO ACGFS ACKTT ACMJI ACRQY ACZOJ ADBBV ADBIZ ADFPA ADHDB ADZCM AE3 AE6 AEFQL AEJRE AEMSY AENEX AEVLU AEXYK AFBBN AFKRA AFSHS AFTRI AFUWQ AGAYW AGEZK AGHAI AGQEE AHRYX AHSBF AHVBC AIGIU AILAN AIZYK AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF AWKKM AXYYD BAWUL BENPR BKKNO BPHCQ BS7 BVXVI C6C CCPQU CS3 DIK DNIVK DPUIP DU5 EBLON EBS EE. EIOEI EJD EX3 F2K F2L F2M F2N F5P FDQFY FERAY FIGPU FIZPM FRP FSGXE FYUFA H0~ HMCUK IWAJR JF9 JG8 JK3 JSO JZLTJ K8S KD2 KMI L7B M18 M1P N9A NAO NQJWS NXXTH N~M OAG OAH ODA OK1 OL1 OLG OLH OLU OLV OLY OLZ OVD OWU OWV OWW OWX OWY OWZ P-K P2P PQQKQ PROAC PSQYO R58 RNT RNTTT S4R SJN SNX SNYQT SOHCF SRMVM SWTZT T8P TAOOD TBHMF TDRGL TEORI TR2 UKHRP VVN W2D W3M WOQ WOW X7M XXN XYM YFH YOC ZFV ZXP AAYZH CGR CUY CVF ECM EIF NPM AAYXX CITATION 7XB 8FK K9. PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c419t-d507c3d09d78e590180b92cb23e847ac9d86d3772f8bcb968eac59c698f4d1ce3 |
IEDL.DBID | 7X7 |
ISSN | 0031-3998 |
IngestDate | Sat Oct 26 00:00:46 EDT 2024 Sat Nov 09 17:15:01 EST 2024 Fri Aug 23 00:41:41 EDT 2024 Wed Oct 16 00:39:12 EDT 2024 Fri Oct 11 20:46:50 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2022. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-d507c3d09d78e590180b92cb23e847ac9d86d3772f8bcb968eac59c698f4d1ce3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://doi.org/10.1038/s41390-022-02137-1 |
PMID | 35681091 |
PQID | 2777535251 |
PQPubID | 105497 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2675606451 proquest_journals_2777535251 crossref_primary_10_1038_s41390_022_02137_1 pubmed_primary_35681091 springer_journals_10_1038_s41390_022_02137_1 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | Official publication of the American Pediatric Society, the European Society for Paediatric Research and the Society for Pediatric Research |
PublicationTitle | Pediatric research |
PublicationTitleAbbrev | Pediatr Res |
PublicationTitleAlternate | Pediatr Res |
PublicationYear | 2023 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Barker, D. et al. Weight in infancy and death from ischaemic heart disease. Lancet9, 577–580 (1989). CanovaCCantaruttiAPopulation-based birth cohort studies in epidemiologyInt. J. Environ. Res. Public Health202017527632717778743231210.3390/ijerph17155276 PungelloEPEarly educational intervention, early cumulative risk, and the early home environment as predictors of young adult outcomes within a high-risk sampleChild Dev.20108141042620331676284609010.1111/j.1467-8624.2009.01403.x Steer, C. D., Bolton, P. & Golding, J. Preconception and prenatal environmental factors associated with communication impairments in 9 Year old children using an exposome-wide approach. PLoS One10, e0118701 https://doi.org/10.1371/journal.pone.0118701 (2015). BugentalDBCorpuzRSchwartzAPreventing children’s aggression: outcomes of an early interventionDev. Psychol.201248144314492232938510.1037/a0027303 LawlorDAEarly life predictors of childhood intelligence: findings from the Mater-University study of pregnancy and its outcomesPediatr. Perinat. Epidemiol.20062014816210.1111/j.1365-3016.2006.00704.x MorrisPANew findings on impact variation from the head start impact study: informing the scale-up of early childhood programsAERA Open20184233285841876928710.1177/2332858418769287 CampbellFARameyCTEffects of early intervention on intellectual and academic achievement: a follow-up study of children from low-income familiesChild Dev.1994656846981:STN:280:DyaK2c3otlSrtA%3D%3D801324810.2307/1131410 BarkerDOsmondCInfant mortality, childhood nutrition, and ischaemic heart disease in England and WalesLancet19861107710811:STN:280:DyaL283gt1akug%3D%3D287134510.1016/S0140-6736(86)91340-1 SteyerbergEWPrognosis Research Strategy (PROGRESS) 3: prognostic model researchPLoS Med.201310e100138123393430356475110.1371/journal.pmed.1001381 BzdokDAltmanNKrzywinskiMStatistics versus machine learningNat. Methods2018152332341:CAS:528:DC%2BC1cXmvVGku7g%3D30100822608263610.1038/nmeth.4642 MoonSJHwangJKanaRTorousJKimJWAccuracy of machine learning algorithms for the diagnosis of autism spectrum disorder: systematic review and meta-analysis of brain magnetic resonance imaging studiesJMIR Ment. Health20196e1410831562756694218710.2196/14108 WolfERGaps in well-child care attendance among primary care clinics serving low-income familiesPediatrics2018142e201740193030538810.1542/peds.2017-4019 VrijheidMEarly-life environmental exposures and childhood obesity: an exposome-wide approachEnviron. Health Perspect.2020128114.10.1289/EHP5975 MhasawadeVZhaoYChunaraRMachine learning and algorithmic fairness in public and population healthNat. Mach. Intell.2021365966610.1038/s42256-021-00373-4 ZwaigenbaumLPennerMAutism spectrum disorder: advances in diagnosis and evaluationBMJ2018361k16742978465710.1136/bmj.k1674 LeighJEEarly labelling of children: Concerns and alternativesTop. Early Child. Spec. Educ.198331610.1177/027112148300300303 MorelliDLChallenges to implementation of developmental screening in urban primary care: a mixed methods studyBMC Pediatr.20141424447411389961110.1186/1471-2431-14-16 TongSBaghurstPVimpaniGMcMichaelASocioeconomic position, maternal IQ, home environment, and cognitive developmentJ. Pediatr.2007151288.e11771993910.1016/j.jpeds.2007.03.020 Striving for health equity with machine learning. Nat. Mach. Intell. 2021; 3, 653 (2021). WhalleyLJDearyIJLongitudinal cohort study of childhood IQ and survival up to age 76BMJ (Clin. Res. Ed.)20013228191:STN:280:DC%2BD3M3jslahsQ%3D%3D10.1136/bmj.322.7290.819 DearloveJKearneyDHow good is general practice developmental screening?BMJ (Clin. Res. Ed.)1990300117711801:STN:280:DyaK3c3mvVWmuw%3D%3D10.1136/bmj.300.6733.1177 SpencerNRamanSO’HareBTamburliniGAddressing inequities in child health and development: towards social justiceBMJ Pediatr. Open20193e000503e00050310.1136/bmjpo-2019-000503 Camargo-FigueraFABarrosAJDSantosISMatijasevichABarrosFCEarly life determinants of low IQ at age 6 in children from the 2004 Pelotas Birth Cohort: a predictive approachBMC Pediatr.20141425510879427280910.1186/s12887-014-0308-1 Benavente-FernándezIAssociation of socioeconomic status and brain injury with neurodevelopmental outcomes of very preterm childrenJAMA Netw. Open20192e19291431050776650349010.1001/jamanetworkopen.2019.2914 SenBBorleNCGreinerRBrownMRGA general prediction model for the detection of ADHD and autism using structural and functional MRIPLoS One201813e019485629664902590360110.1371/journal.pone.0194856 Spittle, A. J., Orton, J., Doyle, L. W. & Boyd, R. Early developmental intervention programs post hospital discharge to prevent motor and cognitive impairments in preterm infants. Cochrane Database Syst. Rev. CD005495 (2007). DasWKhannaSA robust machine learning based framework for the automated detection of ADHD using pupillometric biomarkers and time series analysisSci. Rep.2021111:CAS:528:DC%2BB3MXhvVWitrbO34385511836112810.1038/s41598-021-95673-5 GanuthulaVRRSinhaSThe looking glass for intelligence quotient tests: the interplay of motivation, cognitive functioning, and affectFront. Psychol.201910285731920882692790810.3389/fpsyg.2019.02857 WhitehouseAJOEffect of preemptive intervention on developmental outcomes among infants showing early signs of autism: a randomized clinical trial of outcomes to diagnosisJAMA Pediatr.2021175e213298e21329834542577845336110.1001/jamapediatrics.2021.3298 National Research Council (US) Panel to Review the Status of Basic Research on School-Age Children. Development During Middle Childhood: The Years From Six to Twelve (National Academies Press (US), Washington (DC), 1984). Benavente-FernándezISiddiqiAMillerSPSocioeconomic status and brain injury in children born preterm: modifying neurodevelopmental outcomePediatr. Res.2020873913983166668910.1038/s41390-019-0646-7 PatraKGreeneMMPatelALMeierPMaternal education level predicts cognitive, language, and motor outcome in preterm infants in the second year of lifeAm. J. Perinatol.20163373874426890439491915510.1055/s-0036-1572532 ObermeyerZEmanuelEJPredicting the future—big data, machine learning, and clinical medicineN. Engl. J. Med.20163751216121927682033507053210.1056/NEJMp1606181 LoveJMChazan-CohenRRaikesHBrooks-GunnJWhat makes a difference: Early Head Start evaluation findings in a developmental contextMonogr. Soc. Res. Child Dev.2013781173 McCraddenMDJoshiSMazwiMAndersonJAEthical limitations of algorithmic fairness solutions in health care machine learningLancet Digit Health20202e221e223.3332805410.1016/S2589-7500(20)30065-0 LansfordJEDodgeKAPettitGSBatesJEA public health perspective on school dropout and adult outcomes: a prospective study of risk and protective factors from age 5 to 27 yearsJ. Adolesc. Health.20165865265827009741487722210.1016/j.jadohealth.2016.01.014 Furnham, A. & Cheng H. Childhood cognitive ability predicts adult financial well-being. J. Intell..5, 3 https://doi.org/10.3390/jintelligence5010003 (2017). TouwWGData mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle?Brief. Bioinforma.20131431532610.1093/bib/bbs034 HiraiAHKoganMDKandasamyVReulandCBethellCPrevalence and variation of developmental screening and surveillance in early childhoodJAMA Pediatr.201817285786629987317614306610.1001/jamapediatrics.2018.1524 BarkerLEShawKMBest (but oft-forgotten) practices: checking assumptions concerning regression residualsAm. J. Clin. Nutr.20151025335391:CAS:528:DC%2BC2MXhs1SjsrbO2620181610.3945/ajcn.115.113498 National Institute for Health and Care Excellence (NICE). Attention Deficit Hyperactivity Disorder: Diagnosis and Management (NICE, London, accessed 12 Apr 2022); https://www.nice.org.uk/guidance/ng87/chapter/Recommendations#diagnosis (2018). Flensborg-MadsenTFalgreen EriksenH-LMortensenELEarly life predictors of intelligence in young adulthood and middle agePLoS One202015e02281441:CAS:528:DC%2BB3cXisFGhsLg%3D31990952698672110.1371/journal.pone.0228144 ChristodoulouEA systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction modelsJ. Clin. Epidemiol.201911012223076361210.1016/j.jclinepi.2019.02.004 MorgensternJDPredicting population health with machine learning: a scoping reviewBMJ Open202010e03786033109649759229310.1136/bmjopen-2020-037860 DrigasASPapoutsiCA new layered model on emotional intelligenceBehav. Sci. (Basel).201884510.3390/bs8050045.297240215981239PMID: 29724021; PMCID: PMC5981239 LagerABrembergSVågeröDThe association of early IQ and education with mortality: 65 year longitudinal study in Malmö, SwedenBMJ (Clin. Res. Ed.)2009339b52821:STN:280:DC%2BD1MfisVKmsQ%3D%3D10.1136/bmj.b5282 KimHHAnJil, ParkYRA prediction model for detecting developmental disabilities in preschool-age children through digital biomarker-driven deep learning in serious games: development studyJMIR Serious Games20219e2313034085944821418410.2196/23130 FreitagHTuxhornICognitive function in preschool children after epilepsy surgery: rationale for early interventionEpilepsia2005465615671581695110.1111/j.0013-9580.2005.03504.x RameyCTRameySLPrevention of intellectual disabilities: early interventions to improve cognitive developmentPreventive Med.1998272242321:STN:280:DyaK1c3ktVWmtw%3D%3D10.1006/pmed.1998.0279 WadhwaPDBussCEntringerSSwansonJMDevelopmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanismsSemin. Reprod. Med.2009273583681:CAS:528:DC%2BD1MXhtFOis7zN19711246286263510.1055/s-0029-1237424 EdwardsKImproving access to early childhood developmental surveillance for Children from Culturally and Linguistically Diverse (CALD) BackgroundInt. J. Integr. Care202020332346361718195010.5334/ijic.4696 BradleyRHCorwynRFSocioeconomic status and child developmentAnnu. Rev. Psychol.2002533713991175249010.1146/annurev.psych.53.100901.135233 LinsellLMaloufRMorrisJKurinczukJJMarlowNRisk factor models for neurodevelopmental outcomes in children born very preterm or with very low birth weight: a systematic review of methodology and reportingAm. J. Epidemiol.20171856016122 2137_CR1 N Spencer (2137_CR9) 2019; 3 VRR Ganuthula (2137_CR13) 2019; 10 C Pansieri (2137_CR54) 2020; 17 SJ Moon (2137_CR78) 2019; 6 JE Lansford (2137_CR95) 2016; 58 DB Bugental (2137_CR26) 2012; 48 2137_CR4 K Watanabe (2137_CR33) 2005; 135 D Barker (2137_CR2) 1993; 341 FA Campbell (2137_CR35) 1994; 65 FA Camargo-Figuera (2137_CR20) 2014; 14 V Mhasawade (2137_CR83) 2021; 3 D Bzdok (2137_CR64) 2018; 15 D Barker (2137_CR6) 2004; 58 FA Campbell (2137_CR36) 2002; 6 RW Emerson (2137_CR79) 2017; 9 2137_CR10 2137_CR12 JM Kerstjens (2137_CR43) 2009; 85 2137_CR94 P Klebanov (2137_CR98) 2006; 1094 S Santos (2137_CR50) 2020; 35 HLF Eriksen (2137_CR22) 2013; 8 2137_CR92 J Dearlove (2137_CR97) 1990; 300 K Patra (2137_CR62) 2016; 33 2137_CR17 A Lager (2137_CR15) 2009; 339 JM Love (2137_CR41) 2013; 78 ER Wolf (2137_CR45) 2018; 142 T Flensborg-Madsen (2137_CR47) 2020; 15 W Das (2137_CR75) 2021; 11 JD Morgenstern (2137_CR82) 2020; 10 C Camacho (2137_CR21) 2019; 9 JE Leigh (2137_CR87) 1983; 3 AAH de Hond (2137_CR93) 2022; 5 D Bzdok (2137_CR66) 2018; 15 S Tong (2137_CR19) 2007; 151 MD McCradden (2137_CR89) 2020; 2 2137_CR37 2137_CR34 I Benavente-Fernández (2137_CR61) 2020; 87 B Sen (2137_CR76) 2018; 13 LE Barker (2137_CR60) 2015; 102 E Christodoulou (2137_CR71) 2019; 110 DL Morelli (2137_CR96) 2014; 14 PD Wadhwa (2137_CR5) 2009; 27 HH Kim (2137_CR81) 2021; 9 LF Forrest (2137_CR16) 2011; 11 SJ Mooney (2137_CR70) 2015; 26 V Mhasawade (2137_CR90) 2021; 3 Z Obermeyer (2137_CR91) 2019; 366 2137_CR39 AH Hirai (2137_CR44) 2018; 172 LM Taylor (2137_CR86) 2010; 30 D Barker (2137_CR3) 1986; 1 RH Bradley (2137_CR48) 2002; 53 C Yoshinaga-Itano (2137_CR28) 2020; 146 Y Gillette (2137_CR31) 1992; 2 DS Char (2137_CR88) 2018; 378 DA Lawlor (2137_CR23) 2006; 20 Z Vinen (2137_CR27) 2018; 48 K Edwards (2137_CR46) 2020; 20 2137_CR49 PA Morris (2137_CR42) 2018; 4 WG Touw (2137_CR69) 2013; 14 G Cioni (2137_CR8) 2016; 58 2137_CR52 EW Steyerberg (2137_CR59) 2013; 10 D Shifrer (2137_CR85) 2013; 54 JB Girault (2137_CR80) 2019; 40 AJO Whitehouse (2137_CR40) 2021; 175 AS Drigas (2137_CR14) 2018; 8 CT Ramey (2137_CR30) 1998; 27 CL Ramspek (2137_CR55) 2021; 36 HSR Rajula (2137_CR67) 2020; 56 L Zwaigenbaum (2137_CR77) 2018; 361 RF Wolff (2137_CR58) 2019; 170 2137_CR65 EP Pungello (2137_CR32) 2010; 81 H Turpin (2137_CR38) 2019; 9 R Nouchi (2137_CR11) 2014; 2014 L Jussim (2137_CR84) 2005; 9 H Freitag (2137_CR29) 2005; 46 I Schoon (2137_CR25) 2012; 66 2137_CR74 M Vrijheid (2137_CR51) 2020; 128 M Fu (2137_CR7) 2011; 34 M Uddin (2137_CR73) 2019; 2 T Blakely (2137_CR56) 2021; 49 2137_CR72 Z Obermeyer (2137_CR68) 2016; 375 S von Stumm (2137_CR24) 2015; 48 C Canova (2137_CR53) 2020; 17 LJ Whalley (2137_CR18) 2001; 322 I Benavente-Fernández (2137_CR63) 2019; 2 L Linsell (2137_CR57) 2017; 185 |
References_xml | – volume: 65 start-page: 684 year: 1994 ident: 2137_CR35 publication-title: Child Dev. doi: 10.2307/1131410 contributor: fullname: FA Campbell – volume: 10 start-page: e1001381 year: 2013 ident: 2137_CR59 publication-title: PLoS Med. doi: 10.1371/journal.pmed.1001381 contributor: fullname: EW Steyerberg – volume: 341 start-page: 938 year: 1993 ident: 2137_CR2 publication-title: Lancet doi: 10.1016/0140-6736(93)91224-A contributor: fullname: D Barker – volume: 9 start-page: eaag2882 year: 2017 ident: 2137_CR79 publication-title: Sci. Transl. Med doi: 10.1126/scitranslmed.aag2882 contributor: fullname: RW Emerson – volume: 2 start-page: 48 year: 1992 ident: 2137_CR31 publication-title: Clin. Commun. Disord. contributor: fullname: Y Gillette – volume: 110 start-page: 12 year: 2019 ident: 2137_CR71 publication-title: J. Clin. Epidemiol. doi: 10.1016/j.jclinepi.2019.02.004 contributor: fullname: E Christodoulou – volume: 102 start-page: 533 year: 2015 ident: 2137_CR60 publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.115.113498 contributor: fullname: LE Barker – volume: 14 start-page: 315 year: 2013 ident: 2137_CR69 publication-title: Brief. Bioinforma. doi: 10.1093/bib/bbs034 contributor: fullname: WG Touw – volume: 30 start-page: 191 year: 2010 ident: 2137_CR86 publication-title: Educ. Psychol. doi: 10.1080/01443410903494478 contributor: fullname: LM Taylor – volume: 2 year: 2019 ident: 2137_CR73 publication-title: npj Digital Med. doi: 10.1038/s41746-019-0191-0 contributor: fullname: M Uddin – volume: 53 start-page: 371 year: 2002 ident: 2137_CR48 publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev.psych.53.100901.135233 contributor: fullname: RH Bradley – ident: 2137_CR49 doi: 10.1111/jcpp.13545 – volume: 170 start-page: 51 year: 2019 ident: 2137_CR58 publication-title: Ann. Intern. Med. doi: 10.7326/M18-1376 contributor: fullname: RF Wolff – volume: 2 start-page: e221 year: 2020 ident: 2137_CR89 publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(20)30065-0 contributor: fullname: MD McCradden – volume: 10 start-page: 2857 year: 2019 ident: 2137_CR13 publication-title: Front. Psychol. doi: 10.3389/fpsyg.2019.02857 contributor: fullname: VRR Ganuthula – volume: 3 start-page: 659 year: 2021 ident: 2137_CR83 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00373-4 contributor: fullname: V Mhasawade – ident: 2137_CR74 – volume: 11 year: 2021 ident: 2137_CR75 publication-title: Sci. Rep. doi: 10.1038/s41598-021-95673-5 contributor: fullname: W Das – volume: 300 start-page: 1177 year: 1990 ident: 2137_CR97 publication-title: BMJ (Clin. Res. Ed.) doi: 10.1136/bmj.300.6733.1177 contributor: fullname: J Dearlove – volume: 17 start-page: 3071 year: 2020 ident: 2137_CR54 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17093071 contributor: fullname: C Pansieri – volume: 14 year: 2014 ident: 2137_CR20 publication-title: BMC Pediatr. doi: 10.1186/s12887-014-0308-1 contributor: fullname: FA Camargo-Figuera – volume: 9 start-page: e23130 year: 2021 ident: 2137_CR81 publication-title: JMIR Serious Games doi: 10.2196/23130 contributor: fullname: HH Kim – volume: 8 start-page: e79200 year: 2013 ident: 2137_CR22 publication-title: PLoS One doi: 10.1371/journal.pone.0079200 contributor: fullname: HLF Eriksen – volume: 10 start-page: e037860 year: 2020 ident: 2137_CR82 publication-title: BMJ Open doi: 10.1136/bmjopen-2020-037860 contributor: fullname: JD Morgenstern – ident: 2137_CR10 – volume: 81 start-page: 410 year: 2010 ident: 2137_CR32 publication-title: Child Dev. doi: 10.1111/j.1467-8624.2009.01403.x contributor: fullname: EP Pungello – ident: 2137_CR37 doi: 10.1136/bmjopen-2019-028982 – volume: 46 start-page: 561 year: 2005 ident: 2137_CR29 publication-title: Epilepsia doi: 10.1111/j.0013-9580.2005.03504.x contributor: fullname: H Freitag – volume: 36 start-page: 889 year: 2021 ident: 2137_CR55 publication-title: Eur. J. Epidemiol. doi: 10.1007/s10654-021-00794-w contributor: fullname: CL Ramspek – volume: 1094 start-page: 63 year: 2006 ident: 2137_CR98 publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1376.007 contributor: fullname: P Klebanov – volume: 2014 start-page: 235479 year: 2014 ident: 2137_CR11 publication-title: Adv. Neurosci. doi: 10.1155/2014/235479 contributor: fullname: R Nouchi – volume: 48 start-page: 1673 year: 2018 ident: 2137_CR27 publication-title: J. Autism Dev. Disord. doi: 10.1007/s10803-017-3414-8 contributor: fullname: Z Vinen – volume: 5 year: 2022 ident: 2137_CR93 publication-title: npj Digital Med. doi: 10.1038/s41746-021-00549-7 contributor: fullname: AAH de Hond – ident: 2137_CR52 doi: 10.1371/journal.pone.0118701 – volume: 9 year: 2019 ident: 2137_CR38 publication-title: Sci. Rep. doi: 10.1038/s41598-018-36465-2 contributor: fullname: H Turpin – volume: 142 start-page: e20174019 year: 2018 ident: 2137_CR45 publication-title: Pediatrics doi: 10.1542/peds.2017-4019 contributor: fullname: ER Wolf – volume: 85 start-page: 443 year: 2009 ident: 2137_CR43 publication-title: Early Hum. Dev. doi: 10.1016/j.earlhumdev.2009.03.001 contributor: fullname: JM Kerstjens – volume: 13 start-page: e0194856 year: 2018 ident: 2137_CR76 publication-title: PLoS One doi: 10.1371/journal.pone.0194856 contributor: fullname: B Sen – volume: 175 start-page: e213298 year: 2021 ident: 2137_CR40 publication-title: JAMA Pediatr. doi: 10.1001/jamapediatrics.2021.3298 contributor: fullname: AJO Whitehouse – volume: 15 start-page: e0228144 year: 2020 ident: 2137_CR47 publication-title: PLoS One doi: 10.1371/journal.pone.0228144 contributor: fullname: T Flensborg-Madsen – volume: 48 start-page: 30 year: 2015 ident: 2137_CR24 publication-title: Intelligence doi: 10.1016/j.intell.2014.10.002 contributor: fullname: S von Stumm – ident: 2137_CR4 doi: 10.1016/S0140-6736(89)90710-1 – volume: 146 start-page: S270 year: 2020 ident: 2137_CR28 publication-title: Pediatrics doi: 10.1542/peds.2020-0242F contributor: fullname: C Yoshinaga-Itano – volume: 378 start-page: 981 year: 2018 ident: 2137_CR88 publication-title: N. Engl. J. Med doi: 10.1056/NEJMp1714229 contributor: fullname: DS Char – volume: 58 start-page: 652 year: 2016 ident: 2137_CR95 publication-title: J. Adolesc. Health. doi: 10.1016/j.jadohealth.2016.01.014 contributor: fullname: JE Lansford – volume: 58 start-page: LP–115 year: 2004 ident: 2137_CR6 publication-title: J. Epidemiol. Community Health doi: 10.1136/jech.58.2.114 contributor: fullname: D Barker – volume: 172 start-page: 857 year: 2018 ident: 2137_CR44 publication-title: JAMA Pediatr. doi: 10.1001/jamapediatrics.2018.1524 contributor: fullname: AH Hirai – volume: 135 start-page: 1918 year: 2005 ident: 2137_CR33 publication-title: J. Nutr. doi: 10.1093/jn/135.8.1918 contributor: fullname: K Watanabe – volume: 11 year: 2011 ident: 2137_CR16 publication-title: BMC Public Health doi: 10.1186/1471-2458-11-895 contributor: fullname: LF Forrest – ident: 2137_CR12 – volume: 27 start-page: 358 year: 2009 ident: 2137_CR5 publication-title: Semin. Reprod. Med. doi: 10.1055/s-0029-1237424 contributor: fullname: PD Wadhwa – volume: 20 start-page: 148 year: 2006 ident: 2137_CR23 publication-title: Pediatr. Perinat. Epidemiol. doi: 10.1111/j.1365-3016.2006.00704.x contributor: fullname: DA Lawlor – volume: 322 start-page: 819 year: 2001 ident: 2137_CR18 publication-title: BMJ (Clin. Res. Ed.) doi: 10.1136/bmj.322.7290.819 contributor: fullname: LJ Whalley – volume: 9 start-page: e024851 year: 2019 ident: 2137_CR21 publication-title: BMJ Open doi: 10.1136/bmjopen-2018-024851 contributor: fullname: C Camacho – volume: 6 start-page: 42 year: 2002 ident: 2137_CR36 publication-title: Appl. Dev. Sci. doi: 10.1207/S1532480XADS0601_05 contributor: fullname: FA Campbell – volume: 33 start-page: 738 year: 2016 ident: 2137_CR62 publication-title: Am. J. Perinatol. doi: 10.1055/s-0036-1572532 contributor: fullname: K Patra – volume: 151 start-page: 288.e1 year: 2007 ident: 2137_CR19 publication-title: J. Pediatr. doi: 10.1016/j.jpeds.2007.03.020 contributor: fullname: S Tong – volume: 66 start-page: 716 year: 2012 ident: 2137_CR25 publication-title: J. Epidemiol. Community Health doi: 10.1136/jech.2010.121228 contributor: fullname: I Schoon – volume: 9 start-page: 131 year: 2005 ident: 2137_CR84 publication-title: Personal. Soc. Psychol. Rev. doi: 10.1207/s15327957pspr0902_3 contributor: fullname: L Jussim – volume: 27 start-page: 224 year: 1998 ident: 2137_CR30 publication-title: Preventive Med. doi: 10.1006/pmed.1998.0279 contributor: fullname: CT Ramey – volume: 35 start-page: 193 year: 2020 ident: 2137_CR50 publication-title: Eur. J. Epidemiol. doi: 10.1007/s10654-020-00625-4 contributor: fullname: S Santos – ident: 2137_CR65 doi: 10.2427/13245 – volume: 49 start-page: 2058 year: 2021 ident: 2137_CR56 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyz132 contributor: fullname: T Blakely – volume: 54 start-page: 462 year: 2013 ident: 2137_CR85 publication-title: J. Health Soc. Behav. doi: 10.1177/0022146513503346 contributor: fullname: D Shifrer – ident: 2137_CR92 doi: 10.1038/s42256-021-00385-0 – volume: 14 year: 2014 ident: 2137_CR96 publication-title: BMC Pediatr. doi: 10.1186/1471-2431-14-16 contributor: fullname: DL Morelli – volume: 58 start-page: 61 year: 2016 ident: 2137_CR8 publication-title: Dev. Med. Child Neurol. doi: 10.1111/dmcn.13050 contributor: fullname: G Cioni – volume: 87 start-page: 391 year: 2020 ident: 2137_CR61 publication-title: Pediatr. Res. doi: 10.1038/s41390-019-0646-7 contributor: fullname: I Benavente-Fernández – volume: 128 start-page: 1 year: 2020 ident: 2137_CR51 publication-title: Environ. Health Perspect. doi: 10.1289/EHP5975 contributor: fullname: M Vrijheid – volume: 15 start-page: 233 year: 2018 ident: 2137_CR66 publication-title: Nat. Methods doi: 10.1038/nmeth.4642 contributor: fullname: D Bzdok – volume: 40 start-page: 1195 year: 2019 ident: 2137_CR80 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24439 contributor: fullname: JB Girault – volume: 6 start-page: e14108 year: 2019 ident: 2137_CR78 publication-title: JMIR Ment. Health doi: 10.2196/14108 contributor: fullname: SJ Moon – volume: 17 start-page: 5276 year: 2020 ident: 2137_CR53 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17155276 contributor: fullname: C Canova – ident: 2137_CR1 – volume: 3 start-page: e000503 year: 2019 ident: 2137_CR9 publication-title: BMJ Pediatr. Open doi: 10.1136/bmjpo-2019-000503 contributor: fullname: N Spencer – volume: 34 start-page: 177 year: 2011 ident: 2137_CR7 publication-title: Trends Neurosci. doi: 10.1016/j.tins.2011.02.001 contributor: fullname: M Fu – volume: 48 start-page: 1443 year: 2012 ident: 2137_CR26 publication-title: Dev. Psychol. doi: 10.1037/a0027303 contributor: fullname: DB Bugental – ident: 2137_CR72 doi: 10.1038/s41591-021-01614-0 – volume: 8 start-page: 45 year: 2018 ident: 2137_CR14 publication-title: Behav. Sci. (Basel). doi: 10.3390/bs8050045. contributor: fullname: AS Drigas – volume: 56 start-page: 455 year: 2020 ident: 2137_CR67 publication-title: Medicine (Kaunas) contributor: fullname: HSR Rajula – ident: 2137_CR39 doi: 10.1002/14651858.CD005495.pub2 – volume: 361 start-page: k1674 year: 2018 ident: 2137_CR77 publication-title: BMJ doi: 10.1136/bmj.k1674 contributor: fullname: L Zwaigenbaum – volume: 185 start-page: 601 year: 2017 ident: 2137_CR57 publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kww135 contributor: fullname: L Linsell – volume: 4 start-page: 233285841876928 year: 2018 ident: 2137_CR42 publication-title: AERA Open doi: 10.1177/2332858418769287 contributor: fullname: PA Morris – volume: 375 start-page: 1216 year: 2016 ident: 2137_CR68 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1606181 contributor: fullname: Z Obermeyer – ident: 2137_CR94 doi: 10.1016/S0169-7218(11)02413-0 – volume: 15 start-page: 233 year: 2018 ident: 2137_CR64 publication-title: Nat. Methods doi: 10.1038/nmeth.4642 contributor: fullname: D Bzdok – volume: 78 start-page: 1 year: 2013 ident: 2137_CR41 publication-title: Monogr. Soc. Res. Child Dev. contributor: fullname: JM Love – ident: 2137_CR17 doi: 10.3390/jintelligence5010003 – volume: 2 start-page: e192914 year: 2019 ident: 2137_CR63 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2019.2914 contributor: fullname: I Benavente-Fernández – volume: 20 start-page: 3 year: 2020 ident: 2137_CR46 publication-title: Int. J. Integr. Care doi: 10.5334/ijic.4696 contributor: fullname: K Edwards – volume: 26 start-page: 390 year: 2015 ident: 2137_CR70 publication-title: Epidemiology doi: 10.1097/EDE.0000000000000274 contributor: fullname: SJ Mooney – volume: 366 start-page: 447 year: 2019 ident: 2137_CR91 publication-title: Science doi: 10.1126/science.aax2342 contributor: fullname: Z Obermeyer – ident: 2137_CR34 – volume: 1 start-page: 1077 year: 1986 ident: 2137_CR3 publication-title: Lancet doi: 10.1016/S0140-6736(86)91340-1 contributor: fullname: D Barker – volume: 3 start-page: 1 year: 1983 ident: 2137_CR87 publication-title: Top. Early Child. Spec. Educ. doi: 10.1177/027112148300300303 contributor: fullname: JE Leigh – volume: 339 start-page: b5282 year: 2009 ident: 2137_CR15 publication-title: BMJ (Clin. Res. Ed.) doi: 10.1136/bmj.b5282 contributor: fullname: A Lager – volume: 3 start-page: 659 year: 2021 ident: 2137_CR90 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00373-4 contributor: fullname: V Mhasawade |
SSID | ssj0014584 |
Score | 2.4702954 |
SecondaryResourceType | review_article |
Snippet | The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical setting.... Abstract The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical... |
SourceID | proquest crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 300 |
SubjectTerms | At risk youth Big Data Child Child, Preschool Cognition Cognitive development Data analysis Early intervention Humans Machine Learning Medicine Medicine & Public Health Neurodevelopmental disorders Pediatric Surgery Pediatrics Public health Review Article Risk Assessment |
SummonAdditionalLinks | – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iIL6I306nRPDNBdsmbRPfdDiGMJ8c7EVC89GxB7uxdf-_lzatjOmDz0nTcpfk7vq7-x1C98yKXEfKEpVDrMoSGhIVM0tCG2gGDrRIq_Zto_dkOGZvk3jiaXJcLcwGfk_54wouWREQl3MO1oimBCKdPbDB3KVv9ZN-ixg4vK-mYAwJGF3uC2R-X2PTCG15lluoaGVsBkfo0HuJ-LlW6zHascUJ2h95HPwUfb7Mptgld_bwV5UNabFv_zDt4awweNH25cJ1peMTXizd4y7LGbc5Q3i-LmHL2RWeFVg3LMdnaDx4_egPiW-UQDQLRUkMOHWamkCYlFtXTMoDJSKtImrB-GRaGJ4YCn50zpVWIuFw28ZCJ4LnzITa0nO0W8wLe4mwEgqOsImyXAXMBjE3VFOrMoiqDFOcdtBDIzm5qPkwZIVjUy5rOUuQs6zkLMMO6jbClf5srGSUpqkjlYlh-K4dhl3toIqssPM1zIE4JnFUejDnolZK-zpacagJGOk1WvpZ_O9vufrf9Gt04DrL139bumi3XK7tDfgfpbqtNt43XhfPQA priority: 102 providerName: Springer Nature |
Title | Big data, machine learning, and population health: predicting cognitive outcomes in childhood |
URI | https://link.springer.com/article/10.1038/s41390-022-02137-1 https://www.ncbi.nlm.nih.gov/pubmed/35681091 https://www.proquest.com/docview/2777535251 https://search.proquest.com/docview/2675606451 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1NSxwx9FF3QQQp1WrdViVCb25wMsnMJL0UXRQpKFIU9iLD5GMWD85u3d3_35dJZqSIvQyEhEx4L3nfHwDfhVO1SbWjukZdVeScUZ0JR5lLjEABWhVt-7ab2_z6QfyaZtNocFvGsMqOJraE2s6Nt5GfpUVR-FIkGfu5-EN91yjvXY0tNDZgyNIk9yFdxbRXuJj3AYayjIwiI5YxaSbh8myJxFsl1MeyI5fjBWX_MqY30uYbT2nLgK4-wccoOZLzgOod-OCaXdi8ib7xXdgOFjgSEos-w-PF04z4ANAxeW4jJh2JLSJmY1I1liz63l0kZEP-IIsXv52PhCZ9XBGZr1cIIrckTw0xXSXkPXi4uryfXNPYTIEawdSKWhT8DLeJsoV0PuFUJlqlRqfcIYOqjLIytxxl7Vpqo1UukSJnyuRK1sIy4_g-DJp54w6AaKXxmdu0qnUiXJJJyw13ukLNywot-QhOO0iWi1Azo2x93VyWAe4lwr1s4V6yERx2wC7j-1mWr9gewUk_jTffuzOqxs3XuAZ1ndyX28M1XwKS-t_xts6awplxh7XXzd8_y9f_n-UbbPlu88ECcwiD1cvaHaFMstLH7cXDr5ywYxheXN7e_cbRJJ_8BQ_A3rM |
link.rule.ids | 315,783,787,12068,12235,21400,27936,27937,31731,31732,33278,33279,33756,33757,41132,42201,43322,43591,43817,51588,74073,74342,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB-sgi0UUfvhqa0RfOsFdzfZ3cSXUotyVe-QouBLCZuPFR-6d3p3_38nm-xKkfY5YTfMJPM9vwE44k7WJtOO6hp9VV6wlOqcO5q6xHA0oGXZjm8bT4rRLb-4y-9iwG0eyyo7mdgKajs1PkZ-nJVl6aFI8vTr7JH6qVE-uxpHaLyCNQ9Vhc7X2unZ5Ppnn0fwWcAAzJhSVMUits0kTBzPUXzLhPpqdtRzrKTp36rphb35IlfaqqDzTdiItiP5Fpi9BSuu2Yb1ccyOb8PbEIMjobXoHfw6fbgnvgR0SH63NZOOxCER90NSNZbM-uldJPRDnpDZk_-cr4UmfWURmS4XSCQ3Jw8NMR0W8nu4PT-7-T6icZwCNTyVC2rR9DPMJtKWwvmWU5FomRmdMYcqqjLSisIytLZroY2WhUCZnEtTSFFzmxrHPsBqM23cDhAtNT50m1W1TrhLcmGZYU5X6HtZrgUbwJeOkmoWUDNUm-1mQgW6K6S7aumu0gHsd8RW8QXN1TO_B3DYL-Pd9wmNqnHTJe5Bb6fwgHu452NgUv871iKtSVwZdlx7_vi_z7L7_7McwOvRzfhKXf2YXO7BGz97PsRj9mF18bR0n9BCWejP8Rr-ARPv38U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_sCVKQUu3XWasR-tYLt7vJ7iZ9KVo9tNVDSgVfSth8rPjg3und_f-dbLIrIu1zQhJmMh_J_GYG4DN3sjaZdlTX-FblBUupzrmjqUsMRwdalm37totpcXrFf1zn1xH_tIiwyk4ntorazoz_Ix9nZVn6UiR5Oq4jLOLyePJtfk99BykfaY3tNF7Aeol7JgNYPzqZXv7qYwo-IhiKNKYUzbKIKTQJE-MFqnKZUI9sR5vHSpo-NVPPfM9ncdPWHE1ew6voR5LDwPgtWHPNNmxcxEj5NmyG_zgS0ozewJ-j2xvi4aAjctfiJx2JDSNuRqRqLJn3nbxIyI38SuYPfjmPiyY9yojMVkskmFuQ24aYri7yW7ianPz-fkpjawVqeCqX1KIbaJhNpC2F8-mnItEyMzpjDs1VZaQVhWXoeddCGy0Lgfo5l6aQouY2NY69g0Eza9wHIFpqFHqbVbVOuEtyYZlhTlf4DrNcCzaELx0l1TxU0FBt5JsJFeiukO6qpbtKh7DbEVtFaVqoR94P4aAfRjnwwY2qcbMVzsGXT-GL7-Gc94FJ_XasrbomcWTUce1x8X-fZef_Z9mHDbyB6vxs-vMjvPRt6MPXzC4Mlg8r9wmdlaXei7fwL6la4_M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+data%2C+machine+learning%2C+and+population+health%3A+predicting+cognitive+outcomes+in+childhood&rft.jtitle=Pediatric+research&rft.au=Bowe%2C+Andrea+K&rft.au=Lightbody%2C+Gordon&rft.au=Staines%2C+Anthony&rft.au=Murray%2C+Deirdre+M&rft.date=2023-01-01&rft.eissn=1530-0447&rft.volume=93&rft.issue=2&rft.spage=300&rft_id=info:doi/10.1038%2Fs41390-022-02137-1&rft_id=info%3Apmid%2F35681091&rft.externalDocID=35681091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3998&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3998&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3998&client=summon |