The time-delayed inverted pendulum: implications for human balance control
The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fing...
Saved in:
Published in | Chaos (Woodbury, N.Y.) Vol. 19; no. 2; p. 026110 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.06.2009
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, tau(n), be greater than a critical delay tau(c) that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when theta exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise. |
---|---|
AbstractList | The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, tau(n), be greater than a critical delay tau(c) that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when theta exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise. |
Author | Campbell, Sue Ann Tonosaki, Yukinori Cabrera, Juan Luis Tajima, Shigeru Milton, John Eurich, Christian W Ohira, Toru |
Author_xml | – sequence: 1 givenname: John surname: Milton fullname: Milton, John organization: Joint Science Department, W. M. Keck Science Center, The Claremont Colleges, Claremont, California 91711, USA – sequence: 2 givenname: Juan Luis surname: Cabrera fullname: Cabrera, Juan Luis – sequence: 3 givenname: Toru surname: Ohira fullname: Ohira, Toru – sequence: 4 givenname: Shigeru surname: Tajima fullname: Tajima, Shigeru – sequence: 5 givenname: Yukinori surname: Tonosaki fullname: Tonosaki, Yukinori – sequence: 6 givenname: Christian W surname: Eurich fullname: Eurich, Christian W – sequence: 7 givenname: Sue Ann surname: Campbell fullname: Campbell, Sue Ann |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19566270$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tKxDAYhYMozkUXvoDkBTrmT9ukcSeD44UBN-N6yOUPE0nS0oswb29BXZ3Dtzh8Z0Uuc5uRkDtgG2CifIBNCRVUXF2QJbBGFVI0fEFWw_DFGANe1tdkAaoWgku2JO-HE9IxJCwcRn1GR0P-xn6cS4fZTXFKjzSkLgarx9Dmgfq2p6cp6UyNjjpbpLbNY9_GG3LldRzw9i_X5HP3fNi-FvuPl7ft076wFaixcBVKYEp4YaTT4BFmQ1l6lKhdbRha4zhK6dFZYWqtmeMzR9Ugl-Arvib3v7vdZBK6Y9eHpPvz8f8U_wGFHU7i |
CitedBy_id | crossref_primary_10_1038_s42003_024_06029_4 crossref_primary_10_1051_mmnp_20116614 crossref_primary_10_1007_s00221_018_5216_4 crossref_primary_10_1016_j_neunet_2021_12_004 crossref_primary_10_1155_2010_829484 crossref_primary_10_1098_rsif_2012_0763 crossref_primary_10_1063_5_0087019 crossref_primary_10_1063_1_3337690 crossref_primary_10_1371_journal_pone_0195111 crossref_primary_10_1007_s11071_020_06012_8 crossref_primary_10_1109_TNSRE_2012_2199333 crossref_primary_10_1177_1077546320926909 crossref_primary_10_1103_PhysRevE_91_042114 crossref_primary_10_1007_s00221_011_2590_6 crossref_primary_10_1016_j_physd_2011_07_015 crossref_primary_10_1016_j_physrep_2022_04_007 crossref_primary_10_1098_rsif_2019_0041 crossref_primary_10_1016_j_ifacol_2015_09_359 crossref_primary_10_1016_j_neunet_2015_03_012 crossref_primary_10_1016_j_cnsns_2010_07_025 crossref_primary_10_1016_j_mbs_2011_08_006 crossref_primary_10_1016_j_cnsns_2015_11_007 crossref_primary_10_1007_s00221_010_2274_7 crossref_primary_10_1098_rsta_2012_0458 crossref_primary_10_1103_PhysRevE_92_042105 crossref_primary_10_1152_jn_00429_2012 crossref_primary_10_1177_1077546315583400 crossref_primary_10_1109_TRO_2023_3236952 crossref_primary_10_1111_j_1460_9568_2012_08102_x crossref_primary_10_1088_1751_8121_ad4752 crossref_primary_10_1007_s11071_021_06812_6 crossref_primary_10_1103_PhysRevApplied_16_034012 crossref_primary_10_1111_desc_12238 crossref_primary_10_1115_1_4056590 crossref_primary_10_1016_j_jelekin_2013_09_002 crossref_primary_10_1063_5_0056097 crossref_primary_10_1126_scirobotics_adf1080 crossref_primary_10_1109_LRA_2023_3304845 crossref_primary_10_1007_s00221_011_2972_9 crossref_primary_10_25046_aj080613 crossref_primary_10_1007_s00221_011_2768_y crossref_primary_10_1152_jn_00140_2013 crossref_primary_10_1063_5_0022319 crossref_primary_10_1098_rsif_2011_0212 crossref_primary_10_1103_PhysRevE_89_060903 crossref_primary_10_1371_journal_pone_0223850 crossref_primary_10_1063_1_5006776 crossref_primary_10_1007_s11071_019_05058_7 crossref_primary_10_1103_PhysRevE_98_022223 crossref_primary_10_1098_rsta_2018_0126 crossref_primary_10_1007_s10483_022_2921_8 crossref_primary_10_1016_j_gaitpost_2022_02_023 crossref_primary_10_3390_e24081020 crossref_primary_10_1007_s10339_015_0653_5 crossref_primary_10_1115_1_4031979 crossref_primary_10_1177_1077546314529602 crossref_primary_10_1007_s00221_012_3174_9 crossref_primary_10_1007_s00221_013_3729_4 crossref_primary_10_1088_1367_2630_12_5_053013 crossref_primary_10_3389_fncom_2016_00034 crossref_primary_10_5687_sss_2014_242 crossref_primary_10_1038_s41598_017_13510_0 crossref_primary_10_7566_JPSJ_92_064002 crossref_primary_10_1063_1_3155067 crossref_primary_10_1007_s40435_014_0142_1 crossref_primary_10_1115_1_4042953 crossref_primary_10_1063_5_0028197 crossref_primary_10_1103_PhysRevLett_110_168702 crossref_primary_10_1016_j_praneu_2021_10_006 crossref_primary_10_5687_sss_2014_237 crossref_primary_10_1016_j_sysconle_2015_03_002 crossref_primary_10_1016_j_gaitpost_2013_02_007 crossref_primary_10_1109_TCYB_2013_2240451 crossref_primary_10_1140_epjst_e2012_01573_7 crossref_primary_10_1016_j_nahs_2014_05_007 crossref_primary_10_1002_rnc_5698 crossref_primary_10_1007_s10409_017_0655_x crossref_primary_10_1016_j_probengmech_2012_12_008 crossref_primary_10_1371_journal_pone_0007427 crossref_primary_10_1016_j_physa_2019_123731 crossref_primary_10_1016_j_ifacol_2021_11_117 crossref_primary_10_1016_j_clinbiomech_2010_11_010 crossref_primary_10_1016_j_ifacol_2015_09_408 crossref_primary_10_1016_j_amc_2013_03_030 crossref_primary_10_1152_jn_00691_2011 crossref_primary_10_1115_1_4056702 crossref_primary_10_3389_fnbot_2018_00037 crossref_primary_10_1098_rsif_2017_0771 crossref_primary_10_1088_1741_2560_8_6_065005 crossref_primary_10_1007_s00422_020_00815_z crossref_primary_10_1016_j_ifacol_2015_10_180 crossref_primary_10_1152_jn_00353_2022 crossref_primary_10_1098_rsif_2012_0077 crossref_primary_10_1109_TNN_2011_2163319 crossref_primary_10_1063_1_5042090 crossref_primary_10_1016_j_physrep_2019_08_001 crossref_primary_10_1038_s41598_019_47613_7 crossref_primary_10_1016_j_jbiomech_2013_08_012 crossref_primary_10_1146_annurev_control_063022_094301 crossref_primary_10_1007_s12043_021_02259_x crossref_primary_10_1063_1_3335460 crossref_primary_10_1137_140975632 crossref_primary_10_1063_1_3142245 crossref_primary_10_1002_nme_6368 crossref_primary_10_1155_2018_9014232 crossref_primary_10_1016_j_knosys_2023_111000 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1063/1.3141429 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1089-7682 |
ExternalDocumentID | 19566270 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .DC 0ZJ 1UP 2-P 29B 4.4 53G 5VS 6TJ 8WZ A6W AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CGR CUY CVF DU5 EBS ECM EIF EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NEUPN NPM NPSNA O-B OHT P2P RDFOP RIP RNS ROL RQS TAE WH7 WHG |
ID | FETCH-LOGICAL-c419t-d4e71096f6b7da1fe176873fe7ead5b0ecbd2e77fedc6b5aa0d2d5be98e271f42 |
IngestDate | Sat Sep 28 07:56:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c419t-d4e71096f6b7da1fe176873fe7ead5b0ecbd2e77fedc6b5aa0d2d5be98e271f42 |
PMID | 19566270 |
ParticipantIDs | pubmed_primary_19566270 |
PublicationCentury | 2000 |
PublicationDate | 2009-06-01 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Chaos (Woodbury, N.Y.) |
PublicationTitleAlternate | Chaos |
PublicationYear | 2009 |
SSID | ssj0001235 |
Score | 2.3317616 |
Snippet | The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 026110 |
SubjectTerms | Adolescent Adult Biomechanical Phenomena Biophysical Phenomena Humans Locomotion - physiology Middle Aged Models, Biological Nonlinear Dynamics Postural Balance - physiology Young Adult |
Title | The time-delayed inverted pendulum: implications for human balance control |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19566270 |
Volume | 19 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELZgaBIvCBgDBpv8wAM8pEsc1072hiomhAQ8UDTekB3bNEhtELQP8Ot3ZydpgE0bvESRT63afF9Pd9fv7gjZYzlkskyLSKpMR5wxF2XKQeJaWJE4ZtKMY3Py6Zk4vuQnV_2reTHHd5dMda94-mNfyXtQhTPAFbtk34Bs-6ZwAPeAL1wBYbj-N8a4HD7CUY-PFsco4XpluMHNtljXw4S_7IrGUVUY9vJpFDUWrVi9G6UORqry1dhfVdX-0972ZLmmibBW3nfVvAMFKfZ90N_OcCPwrGyD9vNRGSzD6n42rxjclmN_ejEqb2xtaMoQ-Vwu1bPBdcZZHkHy8ty35h0OsY6jxNQv6Flf-XAImrCc0EsTnvDwtTpY3o09mNjmKJiM_219MU67MS2SRZmhYzzD8s5yU5RL-834KZF-bz-DHy0bXvci_fBhyHCVrNT5Az0MZFgjC3ayTj56HW_xsE7Wal_9QPfrgeIHn8gJ8IR2eUIbntCGJz9olyUUWEI9S2jNElqzZINc_jwaDo6jeodGVPAkn0aGW1TbCie0NCpxNgGIZOqsBBfS17EttGFWSmdNIXRfqdgwOLd5ZplMHGefyYdJNbFbhMrYwWmmhRGKm5gpiHqMyjgEjbnOFd8mm-HJXN-FQSnXzTP78lfLDlmek2mXLDn4ZdqvEOZN9TcPzW8yA1GH |
link.rule.ids | 783 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+time-delayed+inverted+pendulum%3A+implications+for+human+balance+control&rft.jtitle=Chaos+%28Woodbury%2C+N.Y.%29&rft.au=Milton%2C+John&rft.au=Cabrera%2C+Juan+Luis&rft.au=Ohira%2C+Toru&rft.au=Tajima%2C+Shigeru&rft.date=2009-06-01&rft.eissn=1089-7682&rft.volume=19&rft.issue=2&rft.spage=026110&rft_id=info:doi/10.1063%2F1.3141429&rft_id=info%3Apmid%2F19566270&rft_id=info%3Apmid%2F19566270&rft.externalDocID=19566270 |