The time-delayed inverted pendulum: implications for human balance control

The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fing...

Full description

Saved in:
Bibliographic Details
Published inChaos (Woodbury, N.Y.) Vol. 19; no. 2; p. 026110
Main Authors Milton, John, Cabrera, Juan Luis, Ohira, Toru, Tajima, Shigeru, Tonosaki, Yukinori, Eurich, Christian W, Campbell, Sue Ann
Format Journal Article
LanguageEnglish
Published United States 01.06.2009
Subjects
Online AccessGet more information

Cover

Loading…
Abstract The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, tau(n), be greater than a critical delay tau(c) that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when theta exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise.
AbstractList The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, tau(n), be greater than a critical delay tau(c) that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when theta exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise.
Author Campbell, Sue Ann
Tonosaki, Yukinori
Cabrera, Juan Luis
Tajima, Shigeru
Milton, John
Eurich, Christian W
Ohira, Toru
Author_xml – sequence: 1
  givenname: John
  surname: Milton
  fullname: Milton, John
  organization: Joint Science Department, W. M. Keck Science Center, The Claremont Colleges, Claremont, California 91711, USA
– sequence: 2
  givenname: Juan Luis
  surname: Cabrera
  fullname: Cabrera, Juan Luis
– sequence: 3
  givenname: Toru
  surname: Ohira
  fullname: Ohira, Toru
– sequence: 4
  givenname: Shigeru
  surname: Tajima
  fullname: Tajima, Shigeru
– sequence: 5
  givenname: Yukinori
  surname: Tonosaki
  fullname: Tonosaki, Yukinori
– sequence: 6
  givenname: Christian W
  surname: Eurich
  fullname: Eurich, Christian W
– sequence: 7
  givenname: Sue Ann
  surname: Campbell
  fullname: Campbell, Sue Ann
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19566270$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKxDAYhYMozkUXvoDkBTrmT9ukcSeD44UBN-N6yOUPE0nS0oswb29BXZ3Dtzh8Z0Uuc5uRkDtgG2CifIBNCRVUXF2QJbBGFVI0fEFWw_DFGANe1tdkAaoWgku2JO-HE9IxJCwcRn1GR0P-xn6cS4fZTXFKjzSkLgarx9Dmgfq2p6cp6UyNjjpbpLbNY9_GG3LldRzw9i_X5HP3fNi-FvuPl7ft076wFaixcBVKYEp4YaTT4BFmQ1l6lKhdbRha4zhK6dFZYWqtmeMzR9Ugl-Arvib3v7vdZBK6Y9eHpPvz8f8U_wGFHU7i
CitedBy_id crossref_primary_10_1038_s42003_024_06029_4
crossref_primary_10_1051_mmnp_20116614
crossref_primary_10_1007_s00221_018_5216_4
crossref_primary_10_1016_j_neunet_2021_12_004
crossref_primary_10_1155_2010_829484
crossref_primary_10_1098_rsif_2012_0763
crossref_primary_10_1063_5_0087019
crossref_primary_10_1063_1_3337690
crossref_primary_10_1371_journal_pone_0195111
crossref_primary_10_1007_s11071_020_06012_8
crossref_primary_10_1109_TNSRE_2012_2199333
crossref_primary_10_1177_1077546320926909
crossref_primary_10_1103_PhysRevE_91_042114
crossref_primary_10_1007_s00221_011_2590_6
crossref_primary_10_1016_j_physd_2011_07_015
crossref_primary_10_1016_j_physrep_2022_04_007
crossref_primary_10_1098_rsif_2019_0041
crossref_primary_10_1016_j_ifacol_2015_09_359
crossref_primary_10_1016_j_neunet_2015_03_012
crossref_primary_10_1016_j_cnsns_2010_07_025
crossref_primary_10_1016_j_mbs_2011_08_006
crossref_primary_10_1016_j_cnsns_2015_11_007
crossref_primary_10_1007_s00221_010_2274_7
crossref_primary_10_1098_rsta_2012_0458
crossref_primary_10_1103_PhysRevE_92_042105
crossref_primary_10_1152_jn_00429_2012
crossref_primary_10_1177_1077546315583400
crossref_primary_10_1109_TRO_2023_3236952
crossref_primary_10_1111_j_1460_9568_2012_08102_x
crossref_primary_10_1088_1751_8121_ad4752
crossref_primary_10_1007_s11071_021_06812_6
crossref_primary_10_1103_PhysRevApplied_16_034012
crossref_primary_10_1111_desc_12238
crossref_primary_10_1115_1_4056590
crossref_primary_10_1016_j_jelekin_2013_09_002
crossref_primary_10_1063_5_0056097
crossref_primary_10_1126_scirobotics_adf1080
crossref_primary_10_1109_LRA_2023_3304845
crossref_primary_10_1007_s00221_011_2972_9
crossref_primary_10_25046_aj080613
crossref_primary_10_1007_s00221_011_2768_y
crossref_primary_10_1152_jn_00140_2013
crossref_primary_10_1063_5_0022319
crossref_primary_10_1098_rsif_2011_0212
crossref_primary_10_1103_PhysRevE_89_060903
crossref_primary_10_1371_journal_pone_0223850
crossref_primary_10_1063_1_5006776
crossref_primary_10_1007_s11071_019_05058_7
crossref_primary_10_1103_PhysRevE_98_022223
crossref_primary_10_1098_rsta_2018_0126
crossref_primary_10_1007_s10483_022_2921_8
crossref_primary_10_1016_j_gaitpost_2022_02_023
crossref_primary_10_3390_e24081020
crossref_primary_10_1007_s10339_015_0653_5
crossref_primary_10_1115_1_4031979
crossref_primary_10_1177_1077546314529602
crossref_primary_10_1007_s00221_012_3174_9
crossref_primary_10_1007_s00221_013_3729_4
crossref_primary_10_1088_1367_2630_12_5_053013
crossref_primary_10_3389_fncom_2016_00034
crossref_primary_10_5687_sss_2014_242
crossref_primary_10_1038_s41598_017_13510_0
crossref_primary_10_7566_JPSJ_92_064002
crossref_primary_10_1063_1_3155067
crossref_primary_10_1007_s40435_014_0142_1
crossref_primary_10_1115_1_4042953
crossref_primary_10_1063_5_0028197
crossref_primary_10_1103_PhysRevLett_110_168702
crossref_primary_10_1016_j_praneu_2021_10_006
crossref_primary_10_5687_sss_2014_237
crossref_primary_10_1016_j_sysconle_2015_03_002
crossref_primary_10_1016_j_gaitpost_2013_02_007
crossref_primary_10_1109_TCYB_2013_2240451
crossref_primary_10_1140_epjst_e2012_01573_7
crossref_primary_10_1016_j_nahs_2014_05_007
crossref_primary_10_1002_rnc_5698
crossref_primary_10_1007_s10409_017_0655_x
crossref_primary_10_1016_j_probengmech_2012_12_008
crossref_primary_10_1371_journal_pone_0007427
crossref_primary_10_1016_j_physa_2019_123731
crossref_primary_10_1016_j_ifacol_2021_11_117
crossref_primary_10_1016_j_clinbiomech_2010_11_010
crossref_primary_10_1016_j_ifacol_2015_09_408
crossref_primary_10_1016_j_amc_2013_03_030
crossref_primary_10_1152_jn_00691_2011
crossref_primary_10_1115_1_4056702
crossref_primary_10_3389_fnbot_2018_00037
crossref_primary_10_1098_rsif_2017_0771
crossref_primary_10_1088_1741_2560_8_6_065005
crossref_primary_10_1007_s00422_020_00815_z
crossref_primary_10_1016_j_ifacol_2015_10_180
crossref_primary_10_1152_jn_00353_2022
crossref_primary_10_1098_rsif_2012_0077
crossref_primary_10_1109_TNN_2011_2163319
crossref_primary_10_1063_1_5042090
crossref_primary_10_1016_j_physrep_2019_08_001
crossref_primary_10_1038_s41598_019_47613_7
crossref_primary_10_1016_j_jbiomech_2013_08_012
crossref_primary_10_1146_annurev_control_063022_094301
crossref_primary_10_1007_s12043_021_02259_x
crossref_primary_10_1063_1_3335460
crossref_primary_10_1137_140975632
crossref_primary_10_1063_1_3142245
crossref_primary_10_1002_nme_6368
crossref_primary_10_1155_2018_9014232
crossref_primary_10_1016_j_knosys_2023_111000
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1063/1.3141429
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1089-7682
ExternalDocumentID 19566270
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0ZJ
1UP
2-P
29B
4.4
53G
5VS
6TJ
8WZ
A6W
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CGR
CUY
CVF
DU5
EBS
ECM
EIF
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NEUPN
NPM
NPSNA
O-B
OHT
P2P
RDFOP
RIP
RNS
ROL
RQS
TAE
WH7
WHG
ID FETCH-LOGICAL-c419t-d4e71096f6b7da1fe176873fe7ead5b0ecbd2e77fedc6b5aa0d2d5be98e271f42
IngestDate Sat Sep 28 07:56:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c419t-d4e71096f6b7da1fe176873fe7ead5b0ecbd2e77fedc6b5aa0d2d5be98e271f42
PMID 19566270
ParticipantIDs pubmed_primary_19566270
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Chaos (Woodbury, N.Y.)
PublicationTitleAlternate Chaos
PublicationYear 2009
SSID ssj0001235
Score 2.3317616
Snippet The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine...
SourceID pubmed
SourceType Index Database
StartPage 026110
SubjectTerms Adolescent
Adult
Biomechanical Phenomena
Biophysical Phenomena
Humans
Locomotion - physiology
Middle Aged
Models, Biological
Nonlinear Dynamics
Postural Balance - physiology
Young Adult
Title The time-delayed inverted pendulum: implications for human balance control
URI https://www.ncbi.nlm.nih.gov/pubmed/19566270
Volume 19
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELZgaBIvCBgDBpv8wAM8pEsc1072hiomhAQ8UDTekB3bNEhtELQP8Ot3ZydpgE0bvESRT63afF9Pd9fv7gjZYzlkskyLSKpMR5wxF2XKQeJaWJE4ZtKMY3Py6Zk4vuQnV_2reTHHd5dMda94-mNfyXtQhTPAFbtk34Bs-6ZwAPeAL1wBYbj-N8a4HD7CUY-PFsco4XpluMHNtljXw4S_7IrGUVUY9vJpFDUWrVi9G6UORqry1dhfVdX-0972ZLmmibBW3nfVvAMFKfZ90N_OcCPwrGyD9vNRGSzD6n42rxjclmN_ejEqb2xtaMoQ-Vwu1bPBdcZZHkHy8ty35h0OsY6jxNQv6Flf-XAImrCc0EsTnvDwtTpY3o09mNjmKJiM_219MU67MS2SRZmhYzzD8s5yU5RL-834KZF-bz-DHy0bXvci_fBhyHCVrNT5Az0MZFgjC3ayTj56HW_xsE7Wal_9QPfrgeIHn8gJ8IR2eUIbntCGJz9olyUUWEI9S2jNElqzZINc_jwaDo6jeodGVPAkn0aGW1TbCie0NCpxNgGIZOqsBBfS17EttGFWSmdNIXRfqdgwOLd5ZplMHGefyYdJNbFbhMrYwWmmhRGKm5gpiHqMyjgEjbnOFd8mm-HJXN-FQSnXzTP78lfLDlmek2mXLDn4ZdqvEOZN9TcPzW8yA1GH
link.rule.ids 783
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+time-delayed+inverted+pendulum%3A+implications+for+human+balance+control&rft.jtitle=Chaos+%28Woodbury%2C+N.Y.%29&rft.au=Milton%2C+John&rft.au=Cabrera%2C+Juan+Luis&rft.au=Ohira%2C+Toru&rft.au=Tajima%2C+Shigeru&rft.date=2009-06-01&rft.eissn=1089-7682&rft.volume=19&rft.issue=2&rft.spage=026110&rft_id=info:doi/10.1063%2F1.3141429&rft_id=info%3Apmid%2F19566270&rft_id=info%3Apmid%2F19566270&rft.externalDocID=19566270