Radiogenomics: bridging imaging and genomics

From diagnostics to prognosis to response prediction, new applications for radiomics are rapidly being developed. One of the fastest evolving branches involves linking imaging phenotypes to the tumor genetic profile, a field commonly referred to as “radiogenomics.” In this review, a general outline...

Full description

Saved in:
Bibliographic Details
Published inAbdominal imaging Vol. 44; no. 6; pp. 1960 - 1984
Main Authors Bodalal, Zuhir, Trebeschi, Stefano, Nguyen-Kim, Thi Dan Linh, Schats, Winnie, Beets-Tan, Regina
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract From diagnostics to prognosis to response prediction, new applications for radiomics are rapidly being developed. One of the fastest evolving branches involves linking imaging phenotypes to the tumor genetic profile, a field commonly referred to as “radiogenomics.” In this review, a general outline of radiogenomic literature concerning prominent mutations across different tumor sites will be provided. The field of radiogenomics originates from image processing techniques developed decades ago; however, many technical and clinical challenges still need to be addressed. Nevertheless, increasingly accurate and robust radiogenomic models are being presented and the future appears to be bright.
AbstractList From diagnostics to prognosis to response prediction, new applications for radiomics are rapidly being developed. One of the fastest evolving branches involves linking imaging phenotypes to the tumor genetic profile, a field commonly referred to as "radiogenomics." In this review, a general outline of radiogenomic literature concerning prominent mutations across different tumor sites will be provided. The field of radiogenomics originates from image processing techniques developed decades ago; however, many technical and clinical challenges still need to be addressed. Nevertheless, increasingly accurate and robust radiogenomic models are being presented and the future appears to be bright.
From diagnostics to prognosis to response prediction, new applications for radiomics are rapidly being developed. One of the fastest evolving branches involves linking imaging phenotypes to the tumor genetic profile, a field commonly referred to as "radiogenomics." In this review, a general outline of radiogenomic literature concerning prominent mutations across different tumor sites will be provided. The field of radiogenomics originates from image processing techniques developed decades ago; however, many technical and clinical challenges still need to be addressed. Nevertheless, increasingly accurate and robust radiogenomic models are being presented and the future appears to be bright.From diagnostics to prognosis to response prediction, new applications for radiomics are rapidly being developed. One of the fastest evolving branches involves linking imaging phenotypes to the tumor genetic profile, a field commonly referred to as "radiogenomics." In this review, a general outline of radiogenomic literature concerning prominent mutations across different tumor sites will be provided. The field of radiogenomics originates from image processing techniques developed decades ago; however, many technical and clinical challenges still need to be addressed. Nevertheless, increasingly accurate and robust radiogenomic models are being presented and the future appears to be bright.
Author Nguyen-Kim, Thi Dan Linh
Trebeschi, Stefano
Schats, Winnie
Beets-Tan, Regina
Bodalal, Zuhir
Author_xml – sequence: 1
  givenname: Zuhir
  orcidid: 0000-0002-2617-8128
  surname: Bodalal
  fullname: Bodalal, Zuhir
  organization: Department of Radiology, The Netherlands Cancer Institute, GROW School for Oncology and Developmental Biology, Maastricht University
– sequence: 2
  givenname: Stefano
  orcidid: 0000-0002-5714-289X
  surname: Trebeschi
  fullname: Trebeschi, Stefano
  organization: Department of Radiology, The Netherlands Cancer Institute, GROW School for Oncology and Developmental Biology, Maastricht University
– sequence: 3
  givenname: Thi Dan Linh
  orcidid: 0000-0001-9888-0453
  surname: Nguyen-Kim
  fullname: Nguyen-Kim, Thi Dan Linh
  organization: Department of Radiology, The Netherlands Cancer Institute, GROW School for Oncology and Developmental Biology, Maastricht University, Institute of Diagnostic and Interventional Radiology, University Hospital Zurich
– sequence: 4
  givenname: Winnie
  orcidid: 0000-0003-1470-9515
  surname: Schats
  fullname: Schats, Winnie
  organization: Scientific Information Service, The Netherlands Cancer Institute
– sequence: 5
  givenname: Regina
  surname: Beets-Tan
  fullname: Beets-Tan, Regina
  email: r.beetstan@nki.nl
  organization: Department of Radiology, The Netherlands Cancer Institute, GROW School for Oncology and Developmental Biology, Maastricht University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31049614$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoNUrNb-AQ9S8OLB1Zkkm2a9ifgFBUEUvIVsNltS2mxNdhH_vbEfCj14moF53mHmOSI933hLyAnCJQKMryIAFZgBFhlQoDL73COHlAmRAeSy99vz9z4ZxjgDABQ5Is0PSJ8h8EIgPyQXL7pyzdT6ZuFMvB6VwVVT56cjt9Crqn012o6PyX6t59EON3VA3u7vXm8fs8nzw9PtzSQzHIs2M7bOc40G6tyMyzGKUlstZDGupawoL-sCuamlFVxz5MBNCVhpkRuuKZOFZQNyvt67DM1HZ2OrFi4aO59rb5suKkppQRlyyhJ6toPOmi74dF2iUArJWCETdbqhunJhK7UM6b3wpbYeEiDXgAlNjMHWyrhWt67xbdBurhDUj3W1tq6SdbWyrj5TlO5Et9v_DbF1KCbYT234O_uf1DcERJJ2
CitedBy_id crossref_primary_10_1002_jmri_27637
crossref_primary_10_1038_s41598_020_60202_3
crossref_primary_10_3389_fonc_2022_898971
crossref_primary_10_1089_omi_2022_0015
crossref_primary_10_1016_j_ejrad_2020_109266
crossref_primary_10_1097_RCT_0000000000001279
crossref_primary_10_1055_a_1522_3029
crossref_primary_10_1016_j_imu_2022_100965
crossref_primary_10_1016_j_knosys_2023_110937
crossref_primary_10_3390_medicina58040526
crossref_primary_10_1007_s11060_023_04511_3
crossref_primary_10_5528_wjtm_v9_i1_1
crossref_primary_10_1007_s10554_020_01926_1
crossref_primary_10_3390_diagnostics14131427
crossref_primary_10_2214_AJR_19_22608
crossref_primary_10_1016_j_acra_2024_11_023
crossref_primary_10_1186_s12967_023_04175_7
crossref_primary_10_3389_fonc_2022_1026305
crossref_primary_10_6009_jjrt_2023_2269
crossref_primary_10_1016_j_ctro_2021_03_006
crossref_primary_10_1007_s00405_023_07909_x
crossref_primary_10_1007_s00259_021_05371_7
crossref_primary_10_7887_jcns_29_166
crossref_primary_10_3390_diagnostics13020269
crossref_primary_10_3390_tomography10090107
crossref_primary_10_1186_s12880_022_00879_2
crossref_primary_10_29328_journal_hor_1001024
crossref_primary_10_1007_s00261_023_03875_4
crossref_primary_10_3390_gidisord5040046
crossref_primary_10_1148_radiol_2020191145
crossref_primary_10_3389_fonc_2022_974257
crossref_primary_10_1016_j_ebiom_2020_103136
crossref_primary_10_3389_fonc_2021_689509
crossref_primary_10_3390_cancers14071654
crossref_primary_10_1007_s11042_024_20388_4
crossref_primary_10_1007_s10143_022_01937_7
crossref_primary_10_3390_cancers15123074
crossref_primary_10_3390_cancers14205133
crossref_primary_10_3389_fonc_2022_773840
crossref_primary_10_1016_j_ucl_2023_01_009
crossref_primary_10_1007_s00117_019_00617_w
crossref_primary_10_37549_AR2591
crossref_primary_10_1007_s42058_019_00020_3
crossref_primary_10_1148_rg_2020200194
crossref_primary_10_1016_j_radonc_2022_109446
crossref_primary_10_3390_app10186214
crossref_primary_10_3390_cancers15072058
crossref_primary_10_3390_diagnostics11091523
crossref_primary_10_1109_ACCESS_2021_3065965
crossref_primary_10_1186_s13244_024_01672_1
crossref_primary_10_1117_1_JMI_11_6_064501
crossref_primary_10_1016_j_molmed_2022_11_002
crossref_primary_10_1080_17474124_2024_2342837
crossref_primary_10_3390_cancers13112522
crossref_primary_10_1177_10732748231169149
crossref_primary_10_1016_j_critrevonc_2021_103309
crossref_primary_10_1097_RCT_0000000000001077
crossref_primary_10_3389_fonc_2021_704607
crossref_primary_10_1148_rg_2020200042
crossref_primary_10_3389_fonc_2020_570465
crossref_primary_10_1016_j_ijrobp_2022_08_047
crossref_primary_10_3389_fonc_2021_707686
crossref_primary_10_18632_aging_202752
crossref_primary_10_1161_STROKEAHA_123_046208
crossref_primary_10_3390_cancers15082220
crossref_primary_10_1016_j_cbpa_2021_102111
crossref_primary_10_1093_oncolo_oyac036
crossref_primary_10_7759_cureus_37889
crossref_primary_10_1007_s12029_022_00909_w
crossref_primary_10_3390_life15010083
crossref_primary_10_1186_s12967_025_06101_5
crossref_primary_10_1016_j_compag_2024_109563
crossref_primary_10_3390_diagnostics14070712
crossref_primary_10_1259_bjro_20229003
crossref_primary_10_3390_cancers14194871
crossref_primary_10_1007_s00066_020_01625_9
crossref_primary_10_1002_cpt_3105
crossref_primary_10_3390_cancers14143438
crossref_primary_10_1208_s12248_021_00563_3
crossref_primary_10_1007_s10278_023_00905_x
crossref_primary_10_1186_s12885_022_09584_3
crossref_primary_10_1016_j_acra_2022_10_030
crossref_primary_10_1016_j_ejrad_2024_111577
crossref_primary_10_3389_fonc_2022_865548
crossref_primary_10_1016_j_crad_2023_12_014
crossref_primary_10_3389_fonc_2024_1304187
crossref_primary_10_3390_diagnostics13030413
crossref_primary_10_1016_j_iotech_2021_100028
crossref_primary_10_1016_j_xcrm_2022_100861
crossref_primary_10_3233_XST_211096
crossref_primary_10_1109_TCBB_2022_3143900
crossref_primary_10_1007_s11547_024_01904_w
crossref_primary_10_3390_jpm12030402
crossref_primary_10_3390_cancers14122860
crossref_primary_10_1016_j_yacr_2021_04_003
crossref_primary_10_3390_app13042218
crossref_primary_10_3390_ijms24054615
crossref_primary_10_1155_2022_1507125
crossref_primary_10_1089_aipo_2023_0002
crossref_primary_10_3390_ijms20236033
crossref_primary_10_3390_life13101950
crossref_primary_10_1259_bjr_20221063
crossref_primary_10_1007_s00259_021_05338_8
crossref_primary_10_1186_s41747_022_00306_9
crossref_primary_10_1007_s11912_020_00994_9
crossref_primary_10_1016_j_banm_2019_06_016
crossref_primary_10_1093_bioadv_vbac079
crossref_primary_10_1148_rg_230052
crossref_primary_10_1245_s10434_024_15457_9
crossref_primary_10_3390_jcm13144167
crossref_primary_10_3390_math10224225
crossref_primary_10_1002_jmri_27349
crossref_primary_10_1007_s12194_019_00552_4
crossref_primary_10_23736_S2723_9284_23_00247_9
crossref_primary_10_3390_diagnostics13040738
crossref_primary_10_1371_journal_pone_0234871
crossref_primary_10_3390_jcm11226836
crossref_primary_10_3390_cancers14092085
crossref_primary_10_1148_radiol_2020200583
crossref_primary_10_1186_s40478_020_01107_0
crossref_primary_10_3390_diagnostics13071210
crossref_primary_10_1038_s41598_023_51031_1
crossref_primary_10_3390_cimb46040203
crossref_primary_10_1016_j_csbj_2024_06_019
crossref_primary_10_3390_biomedicines10123205
crossref_primary_10_1007_s00129_022_04993_8
crossref_primary_10_5114_bta_200803
crossref_primary_10_3390_cancers16051076
crossref_primary_10_37349_etat_2023_00151
crossref_primary_10_1016_j_jbo_2024_100614
crossref_primary_10_1097_RCT_0000000000001454
crossref_primary_10_3390_bioengineering10121364
crossref_primary_10_1007_s00330_023_10054_y
crossref_primary_10_1186_s40779_024_00580_1
crossref_primary_10_1142_S2811032322500047
crossref_primary_10_1088_1361_6560_ac6fab
crossref_primary_10_1117_1_JMI_9_4_045003
crossref_primary_10_1007_s00259_023_06405_y
crossref_primary_10_1186_s13014_022_02192_2
crossref_primary_10_14366_usg_24152
crossref_primary_10_1016_j_compbiomed_2024_108293
crossref_primary_10_1007_s00423_023_02951_z
crossref_primary_10_3748_wjg_v30_i4_381
crossref_primary_10_31083_j_fbl2709254
crossref_primary_10_3389_fonc_2021_633176
crossref_primary_10_1055_s_0043_1776426
crossref_primary_10_3389_fonc_2024_1489217
crossref_primary_10_1016_j_acra_2024_01_024
crossref_primary_10_1016_j_rcl_2020_06_001
crossref_primary_10_3390_app11073273
crossref_primary_10_3389_fonc_2020_567736
crossref_primary_10_3390_jpm11030188
crossref_primary_10_1186_s40001_024_01746_2
crossref_primary_10_1002_acm2_13739
crossref_primary_10_1016_j_inffus_2023_102032
crossref_primary_10_1177_15330338221126869
crossref_primary_10_1186_s40644_025_00841_9
crossref_primary_10_3390_biom11040565
crossref_primary_10_3390_jpm12122022
crossref_primary_10_1007_s11547_021_01388_y
crossref_primary_10_3390_ijms24087214
crossref_primary_10_1186_s12967_019_2073_2
crossref_primary_10_1007_s13139_020_00642_x
crossref_primary_10_3390_cancers13030552
crossref_primary_10_1016_j_canlet_2020_03_032
crossref_primary_10_3389_frsip_2023_1271769
crossref_primary_10_1007_s00261_022_03534_0
crossref_primary_10_3389_fmedt_2022_1007822
crossref_primary_10_3390_ijms22189971
crossref_primary_10_2214_AJR_19_21677
crossref_primary_10_1016_j_dld_2022_11_005
crossref_primary_10_3389_fphy_2022_920506
crossref_primary_10_1186_s12967_022_03452_1
crossref_primary_10_3390_cancers14071646
crossref_primary_10_1002_ctm2_1522
crossref_primary_10_1016_j_semcancer_2023_02_006
crossref_primary_10_1007_s00261_020_02556_w
crossref_primary_10_1055_s_0039_3400268
crossref_primary_10_1155_2022_6623574
crossref_primary_10_1007_s11547_023_01644_3
crossref_primary_10_1016_j_acra_2020_06_016
crossref_primary_10_1097_OGX_0000000000000902
crossref_primary_10_1097_HM9_0000000000000077
crossref_primary_10_1038_s41571_021_00560_7
crossref_primary_10_3389_fonc_2022_892056
crossref_primary_10_1016_j_labinv_2024_102060
crossref_primary_10_3390_cancers14164052
crossref_primary_10_1016_j_cmpb_2021_106311
crossref_primary_10_1016_j_cmpb_2022_106750
crossref_primary_10_1097_RMR_0000000000000222
crossref_primary_10_34133_jbioxresearch_0022
crossref_primary_10_1016_j_biopha_2020_111173
crossref_primary_10_3390_diagnostics10060359
crossref_primary_10_1186_s40644_024_00746_z
crossref_primary_10_1007_s00381_022_05534_3
crossref_primary_10_1055_a_1355_0636
crossref_primary_10_1089_omi_2021_0065
crossref_primary_10_4251_wjgo_v13_i11_1599
crossref_primary_10_2967_jnumed_121_262618
crossref_primary_10_1016_j_jddst_2023_104681
crossref_primary_10_1080_14737140_2020_1712198
crossref_primary_10_3390_medicina61030380
crossref_primary_10_1186_s13244_023_01474_x
crossref_primary_10_3390_cancers13112681
crossref_primary_10_1360_TB_2024_0018
Cites_doi 10.1055/s-0037-1600633
10.5599/admet.1.3.7
10.1038/srep23428
10.1186/s12885-016-2659-5
10.18632/oncotarget.10523
10.1148/radiol.14132641
10.1038/s41598-018-30273-4
10.1007/s11060-017-2576-8
10.1007/s00261-015-0386-z
10.1038/s41598-017-02425-5
10.1117/12.2217658
10.1016/j.lungcan.2014.09.007
10.1007/BF01297149
10.1038/s41467-019-08718-9
10.1007/s00330-017-5267-0
10.1117/1.jmi.1.3.031009
10.1002/cncr.31039
10.1007/s13139-017-0512-7
10.5694/mja14.00132
10.1016/j.athoracsur.2015.07.062
10.1371/journal.pone.0146388
10.1016/j.ijrobp.2018.05.053
10.1109/isbi.2017.7950601
10.1002/hep.28620
10.3390/biomedicines6010035
10.1007/s00330-018-5695-5
10.1007/s00261-018-1600-6
10.1634/theoncologist.2016-0179
10.1002/jmri.25960
10.1038/s41598-018-24438-4
10.3322/caac.21492
10.1056/NEJMoa1305275
10.1080/08998280.2008.11928410
10.1093/neuonc/nox168
10.1117/12.2254212
10.1148/radiol.2016152110
10.1002/jmri.24879
10.1016/S0959-8049(16)30301-X
10.7554/elife.23421
10.1016/j.ygyno.2016.02.023
10.1117/12.2293701
10.2217/bmm.14.16
10.1007/s11060-017-2420-1
10.1118/1.4957257
10.1371/journal.pone.0164924
10.1186/s12943-018-0789-x
10.2214/AJR.10.4720
10.1093/neuonc/now256
10.1056/NEJMoa062790
10.1016/j.jacr.2017.12.006
10.1016/j.radonc.2016.04.004
10.1200/JCO.2017.35.15_suppl.e15626
10.1038/s41591-018-0107-6
10.1002/mp.12938
10.1038/srep17787
10.2214/ajr.11.7824
10.1038/srep33860
10.1016/j.clinimag.2018.05.028
10.1002/mp.12685
10.1371/journal.pone.0060576
10.3389/fimmu.2017.01679
10.1371/journal.pone.0100244
10.2217/hep.15.41
10.1055/s00839473
10.1038/nrurol.2018.9
10.1093/neuonc/now135
10.1111/ene.12578
10.1117/1.jmi.4.4.041304
10.1016/j.juro.2018.02.2302
10.1200/jco.2015.33.7_suppl.25
10.1093/neuonc/noy033
10.1371/journal.pone.0025451
10.1016/j.jacr.2009.09.022
10.18632/oncotarget.20643
10.1016/j.urology.2005.07.009
10.1007/s00330-015-3814-0
10.1002/hep.27877
10.1038/srep18678
10.1148/radiol.2017161845
10.1148/radiol.2018172361
10.1038/s41598-018-22739-2
10.1016/j.tranon.2014.07.007
10.1117/1.JMI.5.1.011021
10.1016/j.crad.2017.01.015
10.3389/fonc.2015.00272
10.1016/S0167-8140(16)31859-X
10.1038/s41598-019-41728-7
10.1038/s41571-018-0002-6
10.18632/oncoscience.353
10.1016/j.ejmp.2018.03.012
10.1038/srep46349
10.1007/s00261-015-0438-4
10.1038/modpathol.2012.166
10.21037/qims.2019.03.02
10.1038/s41598-017-05848-2
10.1200/CCI.17.00004
10.1038/srep13087
10.1007/s00330-017-4859-z
10.1371/journal.pone.0102107
10.1002/acm2.12170
10.1038/nbt1306
10.1093/neuonc/nov225.11
10.3109/0284186X.2013.812798
10.1038/ncomms5006
10.1177/1947601911411084
10.1158/1055-9965.EPI-06-0034
10.1007/s00261-017-1192-6
10.1016/j.cell.2011.02.013
10.1007/s00330-017-5302-1
10.1016/j.clineuro.2017.12.007
10.1016/j.ejrad.2017.10.009
10.1038/s41598-017-13679-4
10.1097/md.0000000000001753
10.1038/nrclinonc.2013.2
10.1007/s11548-017-1691-5
10.1158/1535-7163.MCT-17-0386
10.1097/PDM.0b013e3181c93fd1
10.1007/s00330-017-5146-8
10.1093/neuros/nyx316
10.1259/bjr/65897774
10.1007/s00261-018-1505-4
10.4132/jptm.2018.09.21
10.1016/j.urolonc.2018.01.002
10.21037/tcr.2016.07.14
10.1007/s00234-015-1576-7
10.1007/s11912-009-0015-5
10.1073/pnas.0801279105
10.1148/radiol.14131731
10.1097/SLA.0b013e31821ad884
10.1200/JCO.2009.21.9170
10.1007/s00330-016-4653-3
10.1148/radiol.13130663
10.21873/anticanres.11039
10.2967/jnumed.116.181826
10.1038/s41598-018-24306-1
10.2214/ajr.14.14147
10.1118/1.4957254
10.1038/srep41674
10.1016/j.jtho.2017.09.581
10.1038/srep03529
10.18632/oncotarget.23616
10.1158/0008-5472.can-17-0122
10.1148/radiol.2016161382
10.18632/oncotarget.17585
10.1117/12.845321
10.2214/ajr.15.14967
10.1148/radiol.2017162823
10.1038/s41598-017-18310-0
10.1093/annonc/mdy495
10.1117/1.jmi.2.4.041006
10.1117/12.2255694
10.1118/1.4934826
10.1016/j.clinimag.2016.11.015
10.1200/JCO.2017.35.15_suppl.e15623
10.1109/TBME.2015.2477688
10.1038/s41598-018-37984-8
10.1093/neuonc/not183
10.3978/j.issn.2218-6751.2014.05.01
10.1371/journal.pone.0187908
10.1093/neuonc/nor162
10.1016/j.jvir.2007.04.031
10.1016/j.crad.2018.01.009
10.1016/j.ejrad.2009.01.050
10.1093/bib/bby026
10.1007/s00330-018-5400-8
10.1371/journal.pone.0166550
10.1038/srep34921
10.1259/bjr.20160212
10.1038/s41416-018-0185-8
10.1007/s00330-017-4964-z
10.1148/radiol.12111607
10.1371/journal.pone.0193871
10.1117/1.JMI.1.3.034003
10.1001/jamaoncol.2016.2631
10.1016/j.ccell.2018.06.006
10.1007/s00261-014-0161-6
10.6082/3jah-5j51
10.1118/1.4934373
10.1200/jco.2015.33.7_suppl.126
10.1002/mp.12123
10.1200/jco.2018.36.15_suppl.8528
10.1038/nrc.2016.154
10.1148/radiol.2015151169
10.1186/s13058-014-0424-8
10.21037/tcr.2019.01.14
10.3389/fonc.2018.00228
10.1016/j.tranon.2017.10.012
10.1371/journal.pone.0185190
10.1007/s11548-014-0991-2
10.1117/12.2217084
ContentType Journal Article
Copyright The Author(s) 2019
Abdominal Radiology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: Abdominal Radiology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0S
M1P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00261-019-02028-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni)
Proquest Medical Database
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Computer Science Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2366-0058
EndPage 1984
ExternalDocumentID 31049614
10_1007_s00261_019_02028_w
Genre Journal Article
GroupedDBID -EM
04C
0R~
29~
2J2
2JN
2JY
2KG
2KM
2LR
406
53G
5VS
7RV
7X7
88E
8AO
8FH
8FI
8FJ
95-
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHVE
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWZB
AGYKE
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
AZFZN
B-.
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BMSDO
BSONS
C6C
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GNWQR
HCIFZ
HMCUK
IKXTQ
IMOTQ
ITM
IWAJR
J-C
JZLTJ
K7-
KOV
LK8
LLZTM
M1P
M4Y
M7P
NAPCQ
NPVJJ
NQJWS
NU0
O9J
PQQKQ
PROAC
PSQYO
PT4
QOR
R89
ROL
RSV
S16
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
TSG
UG4
UKHRP
UOJIU
UTJUX
W23
YLTOR
Z7X
Z83
Z87
Z8V
Z8W
Z91
ZMTXR
AAAVM
AANXM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ACUDM
AEBTG
AEKMD
AEZWR
AFDZB
AFEXP
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CITATION
GRRUI
H13
PHGZM
PHGZT
SCLPG
SDE
UZXMN
VFIZW
AJOOF
NPM
---
.86
.VR
06C
06D
0VY
1N0
23M
2~H
30V
36B
3V.
4.4
408
409
40D
40E
5GY
5RE
67Z
6NX
7XB
8FD
8FE
8FG
8FK
8TC
95.
95~
96X
AAWCG
AAWTL
AAYQN
ABBXA
ABOCM
ACOMO
ADHIR
ADIMF
AEGAL
AENEX
AEPYU
AETLH
AFWTZ
AHAVH
AIIXL
AKMHD
ALWAN
AZQEC
BA0
BKEYQ
BPHCQ
BVXVI
CS3
DL5
DWQXO
ESBYG
EX3
F5P
FEDTE
FR3
G-Y
G-Z
GGRSB
GJIRD
GNUQQ
GQ7
GQ8
GXS
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IXC
IZIGR
IZQ
I~Z
J0Z
JQ2
K6V
K9.
KDC
KPH
LAS
M7Z
MA-
N9A
NB0
O93
O9I
OAM
OVD
P19
P62
P64
P9S
PF0
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q2X
QOK
QOS
R9I
RHV
RPX
RRX
S27
S37
S3B
SAP
SDH
SHX
SMD
T13
TSV
TT1
TUC
U2A
U9L
VC2
WH7
WJK
WK8
WOW
Z45
ZOVNA
7X8
ABRTQ
ID FETCH-LOGICAL-c419t-cef55a1c0f5c7b716baea6897f88d24bf914cf8e64a41404cb01da65c4a2389e3
IEDL.DBID 7X7
ISSN 2366-004X
2366-0058
IngestDate Mon Jul 21 11:40:18 EDT 2025
Fri Jul 25 19:48:23 EDT 2025
Wed Feb 19 02:31:54 EST 2025
Tue Jul 01 02:12:31 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
Fri Feb 21 02:33:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Genomics
Prostate neoplasms
Brain neoplasms
Quantitative imaging
Breast neoplasms
Colorectal neoplasms
Radiogenomics
Liver neoplasms
Radiomics
Lung neoplasms
Kidney neoplasms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-cef55a1c0f5c7b716baea6897f88d24bf914cf8e64a41404cb01da65c4a2389e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9888-0453
0000-0003-1470-9515
0000-0002-2617-8128
0000-0002-5714-289X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s00261-019-02028-w
PMID 31049614
PQID 2218683398
PQPubID 31175
PageCount 25
ParticipantIDs proquest_miscellaneous_2229231423
proquest_journals_2218683398
pubmed_primary_31049614
crossref_citationtrail_10_1007_s00261_019_02028_w
crossref_primary_10_1007_s00261_019_02028_w
springer_journals_10_1007_s00261_019_02028_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Abdominal imaging
PublicationTitleAbbrev Abdom Radiol
PublicationTitleAlternate Abdom Radiol (NY)
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BergerMFMardisERThe emerging clinical relevance of genomics in cancer medicineNat Rev Clin Oncol20181563533651:CAS:528:DC%2BC1cXos1Snsbk%3D10.1038/s41571-018-0002-6295994766658089
ZhangBHeXOuyangFGuDDongYZhangLMoXHuangWTianJZhang SJClRadiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma.201740321271:CAS:528:DC%2BC2sXhtVWrt7zF
HalpennyDFRielyGJHayesSYuHZhengJMoskowitzCSGinsbergMSAre there imaging characteristics associated with lung adenocarcinomas harboring ALK rearrangements?Lung cancer (Amsterdam, Netherlands)201486219019410.1016/j.lungcan.2014.09.007
BrayFFerlayJSoerjomataramISiegelRLTorreLAJemalAGlobal cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countriesCA Cancer J Clin201868639442410.3322/caac.21492
BanerjeeSMitraSShankarBUHayashiYA Novel GBM Saliency Detection Model Using Multi-Channel MRIPloS one2016111e01463881:CAS:528:DC%2BC28XmtVyqtb8%3D10.1371/journal.pone.0146388267527354709039
Hassan I, Kotrotsou A, Matsuoka CK, Alfaro-Munoz K, Elshafeey N, Zinn P, De Groot J, Colen R (2017) Increased mutation burden (Hypermutation) in gliomas is associated with a unique radiomic texture signature in magnetic resonance imaging. Neuro-oncology 19 (Supplement 6):vi147-vi148. doi:http://dx.doi.org/10.1093/neuonc/nox168
Shafiq‐ul‐Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, Abdalah MA, Schabath MB, Goldgof DG, Mackin DJMp (2017) Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. 44 (3):1050-1062
Shaikh F, Franc B, Allen E, Sala E, Awan O, Hendrata K, Halabi S, Mohiuddin S, Malik S, Hadley D, Shrestha R (2018) Translational Radiomics: Defining the Strategy Pipeline and Considerations for Application-Part 2: From Clinical Implementation to Enterprise. Journal of the American College of Radiology: JACR 15 (3 Pt B):543-549. https://doi.org/10.1016/j.jacr.2017.12.006
YamamotoSMakiDDKornRLKuoMDRadiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscapeAJR American journal of roentgenology2012199365466310.2214/ajr.11.782422915408
Coroller TP, Agrawal V, Narayan V, Hou Y, Grossmann P, Lee SW, Mak RH, Aerts HJJR, Oncology (2016) Radiomic phenotype features predict pathological response in non-small cell lung cancer. 119 (3):480-486
Duddalwar V, Liang G, Siegmund K, Cen S, Varghese B, Hwang D, Desai B, Desai M, Aron M, Gill I (2018) Association of computed tomography-based radiomic features with epigenetic variation of clear cell renal cell carcinoma using dna methylation. Journal of Urology 199 (4 Supplement 1):e959
BoydNFGuoHMartinLJSunLStoneJFishellEJongRAHislopGChiarelliAMinkinSYaffeMJMammographic density and the risk and detection of breast cancerN Engl J Med200735632272361:CAS:528:DC%2BD2sXnslSjsg%3D%3D10.1056/NEJMoa062790
Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL (2015) Machine Learning methods for Quantitative Radiomic Biomarkers. Scientific reports 5:13087. https://doi.org/10.1038/srep13087. https://www.nature.com/articles/srep13087#supplementary-information
Wiki FQ, Body QF-PW The Radiological Society of North America (RSNA) Quantitative Imaging Biomarker Alliance (QIBA) FDG-PET Technical Committee: Proffered Protocol for Quantifying the Standard Uptake (SUV) in Patients with Cancer.
JamaspishviliTBermanDMRossAEScherHIDe MarzoAMSquireJALotanTLClinical implications of PTEN loss in prostate cancerNat Rev Urol20181542222341:CAS:528:DC%2BC1cXivFGmsb4%3D10.1038/nrurol.2018.929460925
EmaminejadNQianWGuanYTanMQiuYLiuHZhengBFusion of Quantitative Image and Genomic Biomarkers to Improve Prognosis Assessment of Early Stage Lung Cancer PatientsIEEE Trans Biomed Eng20166351034104310.1109/TBME.2015.247768826390440
CorollerTBiWGreenwaldNZeleznikRHuynhEParmarCHuangRAertsHPredicting meningioma tumor recurrence using radiogenomics dataMedical physics2018456e67810.1002/mp.12938
van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, Hoekstra OS, Smit EF, Boellaard RJMi, biology (2016) Repeatability of radiomic features in non-small-cell lung cancer [18 F] FDG-PET/CT studies: impact of reconstruction and delineation. 18 (5):788-795
YipSSKimJCorollerTPParmarCVelazquezERHuynhEMakRHAertsHJAssociations Between Somatic Mutations and Metabolic Imaging Phenotypes in Non-Small Cell Lung CancerJournal of nuclear medicine: official publication, Society of Nuclear Medicine20175845695761:CAS:528:DC%2BC1cXmtVOjsbg%3D10.2967/jnumed.116.181826
AertsHJThe Potential of Radiomic-Based Phenotyping in Precision Medicine: A ReviewJAMA oncology20162121636164210.1001/jamaoncol.2016.263127541161
DeLeon T, Borad MJ, Wu T, Li J, Zwart CM, Yang G, Holeman S, Silva AC (2017) Utility of CT texture for identification of FGFR2 fusion in cholangiocarcinoma: A radiogenomic pilot study. Journal of Clinical Oncology Conference 35 (15 Supplement 1)
LiHGigerMLHuynhBQAntropovaNODeep learning in breast cancer risk assessment: evaluation of convolutional neural networks on a clinical dataset of full-field digital mammogramsJournal of medical imaging (Bellingham, Wash)20174404130410.1117/1.jmi.4.4.041304
GoodmanAMKatoSBazhenovaLPatelSPFramptonGMMillerVStephensPJDanielsGAKurzrockRTumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse CancersMol Cancer Ther20171611259826081:CAS:528:DC%2BC2sXhslGisrvL10.1158/1535-7163.MCT-17-0386288353865670009
GevaertOEchegaraySKhuongAHoangCDShragerJBJensenKCBerryGJGuoHHLauCPlevritisSKRubinDLNapelSLeungANPredictive radiogenomics modeling of EGFR mutation status in lung cancerScientific reports20177416741:CAS:528:DC%2BC2sXitVyisro%3D10.1038/srep41674281397045282551
BanerjeeSWangDSKimHJSirlinCBChanMGKornRLRutmanAMSiripongsakunSLuDImanbayevGKuoMDA computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinomaHepatology (Baltimore, Md)201562379280010.1002/hep.27877
Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJJFio (2015) Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. 5:272
OzkanEWestADedelowJAChuBFZhaoWYildizVOOttersonGAShiloKGhoshSKingMWhiteRDErdalBSCT Gray-Level Texture Analysis as a Quantitative Imaging Biomarker of Epidermal Growth Factor Receptor Mutation Status in Adenocarcinoma of the LungAJR American journal of roentgenology201520551016102510.2214/ajr.14.1414726496549
GutmanDADunnWDJrGrossmannPCooperLAHolderCALigonKLAlexanderBMAertsHJSomatic mutations associated with MRI-derived volumetric features in glioblastomaNeuroradiology201557121227123710.1007/s00234-015-1576-7263377654648958
Chen X, Zhou Z, Thomas K, Wang J (2016) Predicting gene mutations in renal cell carcinoma based on CT imaging features: Validation using TCGA-TCIA datasets. Medical physics 43 (6 PART2):3705
YipSSFParmarCKimJHuynhEMakRHAertsHImpact of experimental design on PET radiomics in predicting somatic mutation statusEuropean journal of radiology20179781510.1016/j.ejrad.2017.10.00929153372
Traverso A, Wee L, Dekker A, Gillies RJIJoROBP (2018) Repeatability and reproducibility of radiomic features: a systematic review. 102 (4):1143-1158
ZhouHVallieresMBaiHXSuCTangHOldridgeDZhangZXiaoBLiaoWTaoYZhouJZhangPYangLMRI features predict survival and molecular markers in diffuse lower-grade gliomasNeuro-oncology20171968628701:CAS:528:DC%2BC1cXitFSntLrK10.1093/neuonc/now256283395885464433
GevaertOXuJHoangCDLeungANXuYQuonARubinDLNapelSPlevritisSKNon-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data–methods and preliminary resultsRadiology2012264238739610.1148/radiol.12111607227234993401348
SohrabiSVikramRCorrelation of CT derived textual features with mutational status of clear cell renal cell carcinoma-preliminary findingsAbdominal Radiology20174282030203110.1007/s00261-017-1192-6
Zhang X, Tian Q, Wu YX, Xu XP, Li BJ, Liu YX, Liu Y, Lu HB IDH mutation assessment of glioma using texture features of multimodal MR images. In: Petrick NA, Armato SG (eds), 2017. SPIE. https://doi.org/10.1117/12.2254212
Saha A, Harowicz MR, Grimm LJ, Kim CE, Ghate SV, Walsh R, Mazurowski MA (2018) A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features. British journal of cancer. https://doi.org/10.1038/s41416-018-0185-8
ChanBAHughesBGTargeted therapy for non-small cell lung cancer: current standards and the promise of the futureTransl Lung Cancer Res20154136541:CAS:528:DC%2BC2MXhtFCms7vL10.3978/j.issn.2218-6751.2014.05.0143677114367711
CourtLERaoAKrishnanSRadiomics in cancer diagnosis, cancer staging, and prediction of response to treatmentTranslational cancer research20165433733910.21037/tcr.2016.07.14
Ger RB, Zhou S, Chi P-CM, Goff DL, Zhang L, Lee HJ, Fuller CD, Howell RM, Li H, Stafford RJ Quantitative image feature variability amongst CT scanners with a controlled scan protocol. In: Medical Imaging 2018: Computer-Aided Diagnosis, 2018. International Society for Optics and Photonics, p 105751O
Zhang J, Qiu Q, Duan J, Gong G, Jiang Q, Sun G, Yin YJTCR (2019) Variability of radiomic features extracted from multi-b-value diffusion-weighted images in hepatocellular carcinoma. 8 (1):130-140
BeigNPatelJPrasannaPHillVGuptaACorreaRBeraKSinghSPartoviSVaradanVAhluwaliaMMadabhushiATiwariPRadiogenomic analysis of hypoxia pathway is predictive of overall survival in GlioblastomaScientific reports20188171:CAS:528:DC%2BC1cXhsFGitbrF10.1038/s41598-017-18310-0293115585758516
SunYWXuJZhouJLiuWJTargeted drugs for systemic therapy of lung cancer with brain metastasesOncotarget2018945459547210.18632/oncotarget.2361629435193
Jia T, Xiong J, Li X, Ma J, Ren Y, Xu Z, Cai X, Zhang J, Zhao J, Fu X (2017) Detecting epidermal growth factor receptor mutation status in patients with lung adenocarcinoma using radiomics and random forest. Journal of Thoracic Oncology 12 (11 Supplement 2):S1860
LohmannPLercheCBauerEKStegerJStoffelsGBlauTDunklVKocherMViswanathanSFilssCP
R Stoyanova (2028_CR183) 2016; 7
T Jamaspishvili (2028_CR179) 2018; 15
E Segal (2028_CR145) 2007; 25
Z Li (2028_CR20) 2017; 7
M Roman (2028_CR87) 2018; 17
2028_CR38
2028_CR36
SSF Yip (2028_CR100) 2017; 97
KL Hsieh (2028_CR52) 2017; 8
R Paul (2028_CR15) 2018; 5
BA Chan (2028_CR86) 2015; 4
H Chandarana (2028_CR144) 2011; 196
L Lu (2028_CR14) 2016; 11
2028_CR199
2028_CR197
2028_CR196
2028_CR195
2028_CR194
D Hanahan (2028_CR26) 2011; 144
SM McCann (2028_CR180) 2016; 206
2028_CR192
2028_CR25
2028_CR22
2028_CR21
F Khalvati (2028_CR198) 2019; 9
LE Court (2028_CR5) 2016; 5
KC Lim (2028_CR142) 2011; 254
J Kang (2028_CR7) 2018; 8
2028_CR19
2028_CR18
AG Winer (2028_CR161) 2015; 1
2028_CR190
E Ozkan (2028_CR105) 2015; 205
J Yu (2028_CR64) 2017; 27
2028_CR188
2028_CR187
2028_CR186
2028_CR185
2028_CR182
2028_CR181
ZA Binder (2028_CR211) 2018; 34
2028_CR12
2028_CR11
H Li (2028_CR121) 2017; 4
2028_CR1
2028_CR189
P Afshar (2028_CR16) 2018
MD Kuo (2028_CR140) 2007; 18
Y Li (2028_CR75) 2017; 135
J Sorensen (2028_CR98) 2015; 2
F Guo (2028_CR164) 2018; 8
TA Chan (2028_CR31) 2019; 30
2028_CR177
2028_CR176
2028_CR174
2028_CR173
2028_CR172
S Fiset (2028_CR201) 2019; 135
AM Goodman (2028_CR32) 2017; 16
P Sawan (2028_CR103) 2018; 51
CA Karlo (2028_CR155) 2014; 270
ER Velazquez (2028_CR209) 2013; 3
DF Halpenny (2028_CR104) 2017; 42
CL Cowey (2028_CR153) 2009; 11
M Diehn (2028_CR35) 2008; 105
J De Fauw (2028_CR208) 2018; 24
J Cox (2028_CR29) 2016; 3
HJ Brisse (2028_CR84) 2017; 12
2028_CR74
B Shofty (2028_CR62) 2018; 13
2028_CR72
F Bray (2028_CR138) 2018; 68
2028_CR71
DJ Cheon (2028_CR30) 2014; 8
J Wu (2028_CR129) 2017; 285
P Lohmann (2028_CR54) 2018; 57
2028_CR206
2028_CR205
2028_CR204
2028_CR203
2028_CR202
2028_CR76
HA Vargas (2028_CR134) 2017; 285
2028_CR200
LS Hu (2028_CR47) 2017; 19
DF Halpenny (2028_CR91) 2014; 86
HJ Aerts (2028_CR24) 2016; 2
P Kickingereder (2028_CR68) 2016; 281
2028_CR63
2028_CR61
YC Wi (2028_CR158) 2018; 52
MF Berger (2028_CR27) 2018; 15
Y Zhang (2028_CR10) 2017; 7
VA McCormack (2028_CR117) 2006; 15
R Colen (2028_CR214) 2015; 5
P Grossmann (2028_CR42) 2016; 16
GL Gierach (2028_CR119) 2014; 16
M Zhou (2028_CR107) 2018; 286
S Rathore (2028_CR79) 2018; 8
GJ Weiss (2028_CR95) 2014; 9
HJ Yoon (2028_CR92) 2015; 94
2028_CR57
2028_CR56
2028_CR53
P Lovinfosse (2028_CR175) 2016; 89
YW Sun (2028_CR85) 2018; 9
M Yarchoan (2028_CR34) 2017; 17
H Arita (2028_CR58) 2018; 8
B Sacconi (2028_CR109) 2017; 72
2028_CR40
Y Pershad (2028_CR178) 2017; 7
2028_CR48
2028_CR46
2028_CR44
Y Li (2028_CR73) 2018; 28
JG Tamez-Pena (2028_CR137) 2018; 13
EEC De Jong (2028_CR88) 2016; 119
E Rios Velazquez (2028_CR99) 2017; 77
LJ Grimm (2028_CR126) 2015; 42
N Beig (2028_CR212) 2018; 8
H Wang (2028_CR23) 2014; 1
JC Peeken (2028_CR8) 2018; 48
O Gevaert (2028_CR45) 2014; 273
S Banerjee (2028_CR207) 2016; 11
AS Jakola (2028_CR59) 2018; 164
2028_CR128
2028_CR127
JJ Miller (2028_CR49) 2017; 123
H Li (2028_CR131) 2016; 281
CB Pereira (2028_CR28) 2013; 8
SS Yip (2028_CR2) 2017; 7
T Coroller (2028_CR82) 2018; 45
H Akbari (2028_CR69) 2018; 20
CT Chou (2028_CR143) 2012; 85
2028_CR111
2028_CR110
RJ Gillies (2028_CR3) 2016; 278
J Lv (2028_CR97) 2018; 73
2028_CR118
FA Shaikh (2028_CR184) 2017; 1
2028_CR114
2028_CR112
CJ Allegra (2028_CR168) 2009; 27
R Vikram (2028_CR162) 2014; 39
K Tam (2028_CR139) 2013; 1
B Zhang (2028_CR17) 2017; 403
L Zhang (2028_CR113) 2018; 11
S Yamamoto (2028_CR122) 2012; 199
SHE Boots-Sprenger (2028_CR66) 2013; 26
O Gevaert (2028_CR90) 2012; 264
AM Rutman (2028_CR6) 2009; 70
H Zhou (2028_CR65) 2017; 19
2028_CR93
TJ Kim (2028_CR102) 2016; 101
M Efremova (2028_CR33) 2017; 8
2028_CR106
H Kim (2028_CR13) 2016; 11
R Colen (2028_CR213) 2014; 7
L Yang (2028_CR171) 2018; 28
JY Douillard (2028_CR169) 2013; 369
2028_CR210
S Banerjee (2028_CR146) 2015; 62
2028_CR83
2028_CR81
SS Yip (2028_CR101) 2017; 58
J Zhang (2028_CR167) 2015; 5
Y Li (2028_CR67) 2018; 28
O Gevaert (2028_CR108) 2017; 7
2028_CR89
JE Park (2028_CR9) 2018; 52
ER Haspinger (2028_CR124) 2015; 3
N Irahara (2028_CR165) 2010; 19
B Zhao (2028_CR193) 2016; 6
2028_CR163
L Papp (2028_CR60) 2018; 57
Y Wang (2028_CR50) 2015; 22
HJ Aerts (2028_CR94) 2016; 6
MG Lubner (2028_CR170) 2015; 40
A Fernández-Medarde (2028_CR166) 2011; 2
S Rizzo (2028_CR96) 2016; 26
A Lecler (2028_CR191) 2019; 9
ZC Li (2028_CR80) 2018; 28
2028_CR154
2028_CR151
2028_CR150
S Narang (2028_CR77) 2017; 8
L Hutchinson (2028_CR132) 2013; 10
MA Mazurowski (2028_CR125) 2014; 273
N Emaminejad (2028_CR115) 2016; 63
2028_CR157
NF Boyd (2028_CR116) 2007; 356
2028_CR156
H Tang (2028_CR147) 2016; 64
T Gudbjartsson (2028_CR152) 2005; 66
HJ Aerts (2028_CR4) 2014; 5
CH Lee (2028_CR123) 2010; 7
S Sohrabi (2028_CR159) 2017; 42
H Li (2028_CR120) 2014; 1
2028_CR141
J Lee (2028_CR70) 2015; 2
2028_CR148
Y Zhu (2028_CR130) 2015; 5
GL Davis (2028_CR149) 2008; 21
AB Shinagare (2028_CR160) 2015; 40
M Lehrer (2028_CR78) 2017; 4
P Eichinger (2028_CR51) 2017; 7
PO Zinn (2028_CR37) 2011; 6
D Yang (2028_CR39) 2015; 42
2028_CR133
DA Gutman (2028_CR43) 2015; 57
S Bisdas (2028_CR55) 2018; 8
MA Mazurowski (2028_CR41) 2017; 133
2028_CR136
2028_CR135
References_xml – reference: LovinfossePKoopmanschBLambertFJodogneSKustermansGHattMVisvikisDSeidelLPolusMAlbertADelvennePHustinxR(18)F-FDG PET/CT imaging in rectal cancer: relationship with the RAS mutational statusThe British journal of radiology20168910632016021210.1259/bjr.20160212271460675257332
– reference: Fave X, Mackin D, Yang J, Zhang J, Fried D, Balter P, Followill D, Gomez D, Jones AK, Stingo FJMp (2015) Can radiomics features be reproducibly measured from CBCT images for patients with non‐small cell lung cancer? 42 (12):6784-6797
– reference: Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi AJEr (2017) The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. 27 (11):4498-4509
– reference: ColenRHatamiMKotrotsouAChaddadABakhtiariALuediMZinnPORadiomic subclassification of glioblastomaNeuro-oncology20155v15510.1093/neuonc/nov225.11
– reference: LohmannPLercheCBauerEKStegerJStoffelsGBlauTDunklVKocherMViswanathanSFilssCPStegmayrCNeumaierBShahNJFinkGRLangenKJGalldiksNRadiomics for prediction of the IDH genotype in gliomasNuklearMedizin2018572A3610.1055/s00839473
– reference: LimKCChowPKAllenJCChiaGSLimMCheowPCChungAYOoiLLTanSBMicrovascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the Milan criteriaAnnals of surgery2011254110811310.1097/SLA.0b013e31821ad88421527845
– reference: ChandaranaHRobinsonEHajduCHDrozhininLBabbJSTaouliBMicrovascular invasion in hepatocellular carcinoma: is it predictable with pretransplant MRI?AJR American journal of roentgenology201119651083108910.2214/AJR.10.472021512074
– reference: ZhouMLeungAEchegaraySGentlesAShragerJBJensenKCBerryGJPlevritisSKRubinDLNapelSGevaertONon-Small Cell Lung Cancer Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with Prognostic ImplicationsRadiology2018286130731510.1148/radiol.201716184528727543
– reference: GrimmLJZhangJMazurowskiMAComputational approach to radiogenomics of breast cancer: Luminal A and luminal B molecular subtypes are associated with imaging features on routine breast MRI extracted using computer vision algorithmsJournal of magnetic resonance imaging: JMRI201542490290710.1002/jmri.2487925777181
– reference: JakolaASZhangYHSkjulsvikAJSolheimOBoHKBerntsenEMReinertsenIGulatiSForanderPBrismarTBQuantitative texture analysis in the prediction of IDH status in low-grade gliomasClinical neurology and neurosurgery201816411412010.1016/j.clineuro.2017.12.00729220731
– reference: Shin YR, Kim KA, Im S, Hwang SS, Kim KJAr (2016) Prediction of KRAS mutation in rectal cancer using MRI. 36 (9):4799-4804
– reference: HanahanDWeinbergRAHallmarks of cancer: the next generationCell201114456466741:CAS:528:DC%2BC3MXjsFeqtrk%3D10.1016/j.cell.2011.02.01321376230
– reference: NarangSKimDAithalaSHeimbergerABAhmedSRaoDRaoGRaoATumor image-derived texture features are associated with CD3 T-cell infiltration status in glioblastomaOncotarget201786010124410125410.18632/oncotarget.20643292541605731870
– reference: Beig N, Patel J, Prasanna P, Partovi S, Varadan V, Madabhushi A, Tiwari P Radiogenomic analysis of hypoxia pathway reveals computerized MRI descriptors predictive of overall survival in glioblastoma. In: Petrick NA, Armato SG (eds), 2017. SPIE. https://doi.org/10.1117/12.2255694
– reference: LiHZhuYBurnsideESDrukkerKHoadleyKAFanCConzenSDWhitmanGJSuttonEJNetJMGanottMHuangEMorrisEAPerouCMJiYGigerMLMR Imaging Radiomics Signatures for Predicting the Risk of Breast Cancer Recurrence as Given by Research Versions of MammaPrint, Oncotype DX, and PAM50 Gene AssaysRadiology2016281238239110.1148/radiol.2016152110271445365069147
– reference: AllegraCJJessupJMSomerfieldMRHamiltonSRHammondEHHayesDFMcAllisterPKMortonRFSchilskyRLAmerican Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapyJ Clin Oncol200927122091209610.1200/JCO.2009.21.9170
– reference: KangJRancatiTLeeSOhJHKernsSLScottJGSchwartzRKimSRosensteinBSMachine Learning and Radiogenomics: Lessons Learned and Future DirectionsFrontiers in oncology2018822810.3389/fonc.2018.00228299778646021505
– reference: VargasHAHuangEPLakhmanYIppolitoJEBhosalePMellnickVShinagareABAnelloMKirbyJFevrier-SullivanBJRRadiogenomics of high-grade serous ovarian cancer: multireader multi-institutional study from the Cancer Genome Atlas Ovarian Cancer Imaging Research Group.20172852482492
– reference: LubnerMGStaboNLubnerSJdel RioAMSongCHalbergRBPickhardtPJCT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomesAbdominal imaging20154072331233710.1007/s00261-015-0438-425968046
– reference: GutmanDADunnWDJrGrossmannPCooperLAHolderCALigonKLAlexanderBMAertsHJSomatic mutations associated with MRI-derived volumetric features in glioblastomaNeuroradiology201557121227123710.1007/s00234-015-1576-7263377654648958
– reference: RutmanAMKuoMDRadiogenomics: creating a link between molecular diagnostics and diagnostic imagingEuropean journal of radiology200970223224110.1016/j.ejrad.2009.01.05019303233
– reference: MazurowskiMAClarkKCzarnekNMShamsesfandabadiPPetersKBSahaARadiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with The Cancer Genome Atlas dataJournal of neuro-oncology2017133127351:CAS:528:DC%2BC2sXntVKnt7w%3D10.1007/s11060-017-2420-128470431
– reference: Hussain Z, Gimenez F, Yi D, Rubin D Differential data augmentation techniques for medical imaging classification tasks. In: AMIA Annual Symposium Proceedings, 2017. American Medical Informatics Association, p 979
– reference: Shaikh F, Franc B, Allen E, Sala E, Awan O, Hendrata K, Halabi S, Mohiuddin S, Malik S, Hadley D, Shrestha R (2018) Translational Radiomics: Defining the Strategy Pipeline and Considerations for Application-Part 2: From Clinical Implementation to Enterprise. Journal of the American College of Radiology: JACR 15 (3 Pt B):543-549. https://doi.org/10.1016/j.jacr.2017.12.006
– reference: Aherne EA, Pak LM, Goldman DA, Gonen M, Jarnagin WR, Simpson AL, Do RK (2018) Intrahepatic cholangiocarcinoma: can imaging phenotypes predict survival and tumor genetics? Abdominal radiology (New York). https://doi.org/10.1007/s00261-018-1505-4
– reference: CoxJWeinmanSMechanisms of doxorubicin resistance in hepatocellular carcinomaHepat Oncol201631575910.2217/hep.15.4126998221
– reference: YipSSFParmarCKimJHuynhEMakRHAertsHImpact of experimental design on PET radiomics in predicting somatic mutation statusEuropean journal of radiology20179781510.1016/j.ejrad.2017.10.00929153372
– reference: CorollerTBiWGreenwaldNZeleznikRHuynhEParmarCHuangRAertsHPredicting meningioma tumor recurrence using radiogenomics dataMedical physics2018456e67810.1002/mp.12938
– reference: West DL, Kotrotsou A, Niekamp AS, Idris T, Camejo DG, Mazal NJ, Cardenas NJ, Goldberg JL, Colen RR (2017) CT-based radiomic analysis of hepatocellular carcinoma patients to predict key genomic information. Journal of Clinical Oncology Conference 35 (15 Supplement 1)
– reference: SohrabiSVikramRCorrelation of CT derived textual features with mutational status of clear cell renal cell carcinoma-preliminary findingsAbdominal Radiology20174282030203110.1007/s00261-017-1192-6
– reference: StoyanovaRPollackATakharMLynneCParraNLamLLAlshalalfaMBuerkiCCastilloRJordaMAshabHAKryvenkoONPunnenSParekhDJAbramowitzMCGilliesRJDavicioniEErhoNIshkanianAAssociation of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsiesOncotarget2016733533625337610.18632/oncotarget.10523274381425288193
– reference: MillerJJShihHAAndronesiOCCahillDPIsocitrate dehydrogenase-mutant glioma: Evolving clinical and therapeutic implicationsCancer201712323453545461:CAS:528:DC%2BC2sXhvVeqtrfF10.1002/cncr.31039
– reference: BisdasSShenHThustSKatsarosVStranjalisGBoskosCBrandnerSZhangJTexture analysis- and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary studyScientific reports20188161081:CAS:528:DC%2BC1cXhslegtbnI10.1038/s41598-018-24438-4296664135904150
– reference: ZhaoBTanYTsaiWYQiJXieCLuLSchwartzLHReproducibility of radiomics for deciphering tumor phenotype with imagingScientific reports20166234281:CAS:528:DC%2BC28XkvVCksb8%3D10.1038/srep23428270097654806325
– reference: MazurowskiMAZhangJGrimmLJYoonSCSilberJIRadiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imagingRadiology2014273236537210.1148/radiol.1413264125028781
– reference: Shafiq‐ul‐Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, Abdalah MA, Schabath MB, Goldgof DG, Mackin DJMp (2017) Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. 44 (3):1050-1062
– reference: LiZCBaiHSunQLiQLiuLZouYChenYLiangCZhengHMultiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: A multicentre studyEuropean radiology20182893640365010.1007/s00330-017-5302-129564594
– reference: YangDRaoGMartinezJVeeraraghavanARaoAEvaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastomaMedical physics20154211672567351:CAS:528:DC%2BC2MXhslemsL%2FK10.1118/1.4934373265207625148162
– reference: SunYWXuJZhouJLiuWJTargeted drugs for systemic therapy of lung cancer with brain metastasesOncotarget2018945459547210.18632/oncotarget.2361629435193
– reference: Anuradha S, Webb PM, Blomfield P, Brand AH, Friedlander M, Leung Y, Obermair A, Oehler MK, Quinn M, Steer CJMJoA (2014) Survival of Australian women with invasive epithelial ovarian cancer: a population‐based study. 201 (5):283-288
– reference: PeekenJCBernhoferMWiestlerBGoldbergTCremersDRostBWilkensJJCombsSENusslinFRadiomics in radiooncology - Challenging the medical physicistPhysica medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB)201848273610.1016/j.ejmp.2018.03.012
– reference: Simonetti RG, Camma C, Fiorello F, Politi F, D’Amico G, Pagliaro L (1991) Hepatocellular carcinoma. A worldwide problem and the major risk factors. Dig Dis Sci 36 (7):962-972
– reference: ShoftyBArtziMBen BashatDLibermanGHaimOKashanianABoksteinFBlumenthalDTRamZShaharTMRI radiomics analysis of molecular alterations in low-grade gliomasInternational journal of computer assisted radiology and surgery201813456357110.1007/s11548-017-1691-529270916
– reference: Perrin T, Midya A, Yamashita R, Chakraborty J, Saidon T, Jarnagin WR, Gonen M, Simpson AL, Do RKJAR (2018) Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging. 43 (12):3271-3278
– reference: Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B, Rodriguez-Rivera E, Dodge C, Jones AK, Court LJIr (2015) Measuring CT scanner variability of radiomics features. 50 (11):757
– reference: BanerjeeSMitraSShankarBUHayashiYA Novel GBM Saliency Detection Model Using Multi-Channel MRIPloS one2016111e01463881:CAS:528:DC%2BC28XmtVyqtb8%3D10.1371/journal.pone.0146388267527354709039
– reference: YamamotoSMakiDDKornRLKuoMDRadiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscapeAJR American journal of roentgenology2012199365466310.2214/ajr.11.782422915408
– reference: BrayFFerlayJSoerjomataramISiegelRLTorreLAJemalAGlobal cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countriesCA Cancer J Clin201868639442410.3322/caac.21492
– reference: TamKThe roles of doxorubicin in hepatocellular carcinomaADMET and DMPK201313294410.5599/admet.1.3.7
– reference: BergerMFMardisERThe emerging clinical relevance of genomics in cancer medicineNat Rev Clin Oncol20181563533651:CAS:528:DC%2BC1cXos1Snsbk%3D10.1038/s41571-018-0002-6295994766658089
– reference: Altazi BA, Zhang GG, Fernandez DC, Montejo ME, Hunt D, Werner J, Biagioli MC, Moros EGJJoacmp (2017) Reproducibility of F18‐FDG PET radiomic features for different cervical tumor segmentation methods, gray‐level discretization, and reconstruction algorithms. 18 (6):32-48
– reference: Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL (2015) Machine Learning methods for Quantitative Radiomic Biomarkers. Scientific reports 5:13087. https://doi.org/10.1038/srep13087. https://www.nature.com/articles/srep13087#supplementary-information
– reference: ChanTAYarchoanMJaffeeESwantonCQuezadaSAStenzingerAPetersSDevelopment of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinicAnn Oncol201930144561:STN:280:DC%2BB3cvmslSktQ%3D%3D10.1093/annonc/mdy49530395155
– reference: WeissGJGaneshanBMilesKACampbellDHCheungPYFrankSKornRLNoninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognosticPloS one201497e1002441:CAS:528:DC%2BC2cXhs1eqtrfF10.1371/journal.pone.0100244249878384079229
– reference: Bi WL, Corroller T, Greenwald NF, Huynh E, Aizer MAA, Santagata S, Al-Mefty O, Alexander B, Dunn IF, Huang R, Aerts H (2017) Radiographic prediction of meningioma grade and genomic profile. Journal of Neurological Surgery Part B: Skull Base Conference: 27th Annual Meeting North American Skull Base Society United States 78 (Supplement 1). doi:http://dx.doi.org/10.1055/s-0037-1600633
– reference: HalpennyDFRielyGJHayesSYuHZhengJMoskowitzCSGinsbergMSAre there imaging characteristics associated with lung adenocarcinomas harboring ALK rearrangements?Lung cancer (Amsterdam, Netherlands)201486219019410.1016/j.lungcan.2014.09.007
– reference: LeeCHDershawDDKopansDEvansPMonseesBMonticcioloDBrennerRJBassettLBergWFeigSBreast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancerJournal of the American college of radiology201071182710.1016/j.jacr.2009.09.022
– reference: BinderZAThorneAHBakasSWileytoEPBilelloMAkbariHRathoreSHaSMZhangLFergusonCJDahiyaSBiWLReardonDAIdbaihAFelsbergJHentschelBWellerMBagleySJMorrissetteJJDNasrallahMPMaJZancaCScottAMOrellanaLDavatzikosCFurnariFBO’RourkeDMEpidermal Growth Factor Receptor Extracellular Domain Mutations in Glioblastoma Present Opportunities for Clinical Imaging and Therapeutic DevelopmentCancer cell2018341163177.e1671:CAS:528:DC%2BC1cXht12ltr%2FL10.1016/j.ccell.2018.06.006299904986424337
– reference: DavisGLDempsterJMelerJDOrrDWWalbergMWBrownBBergerBDO’ConnorJKGoldsteinRMHepatocellular carcinoma: management of an increasingly common problemProc (Bayl Univ Med Cent)200821326628010.1080/08998280.2008.11928410
– reference: ZhuYLiHGuoWDrukkerKLanLGigerMLJiYDeciphering Genomic Underpinnings of Quantitative MRI-based Radiomic Phenotypes of Invasive Breast CarcinomaScientific reports20155177871:CAS:528:DC%2BC2MXhvFKitrvL10.1038/srep17787266390254671006
– reference: Hassan I, Kotrotsou A, Matsuoka CK, Alfaro-Munoz K, Elshafeey N, Zinn P, De Groot J, Colen R (2017) Increased mutation burden (Hypermutation) in gliomas is associated with a unique radiomic texture signature in magnetic resonance imaging. Neuro-oncology 19 (Supplement 6):vi147-vi148. doi:http://dx.doi.org/10.1093/neuonc/nox168
– reference: LeeJNarangSMartinezJJRaoGRaoAAssociating spatial diversity features of radiologically defined tumor habitats with epidermal growth factor receptor driver status and 12-month survival in glioblastoma: methods and preliminary investigationJournal of medical imaging (Bellingham, Wash)20152404100610.1117/1.jmi.2.4.041006
– reference: Chen X, Zhou Z, Thomas K, Wang J (2016) Predicting gene mutations in renal cell carcinoma based on CT imaging features: Validation using TCGA-TCIA datasets. Medical physics 43 (6 PART2):3705
– reference: CheonDJOrsulicSTen-gene biomarker panel: a new hope for ovarian cancer?Biomark Med2014845235261:CAS:528:DC%2BC2cXnsVSrt7g%3D10.2217/bmm.14.16247966164330556
– reference: ShinagareABVikramRJaffeCAkinOKirbyJHuangEFreymannJSainaniNISadowCABathalaTKRubinDLOtoAHellerMTSurabhiVRKatabathinaVSilvermanSGRadiogenomics of clear cell renal cell carcinoma: preliminary findings of The Cancer Genome Atlas-Renal Cell Carcinoma (TCGA-RCC) Imaging Research GroupAbdominal imaging20154061684169210.1007/s00261-015-0386-z257539554534327
– reference: LiHGigerMLHuynhBQAntropovaNODeep learning in breast cancer risk assessment: evaluation of convolutional neural networks on a clinical dataset of full-field digital mammogramsJournal of medical imaging (Bellingham, Wash)20174404130410.1117/1.jmi.4.4.041304
– reference: AkbariHBakasSPisapiaJMNasrallahMPRozyckiMMartinez-LageMMorrissetteJJDDahmaneNO’RourkeDMDavatzikosCIn vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signatureNeuro-oncology2018208106810791:CAS:528:DC%2BC1MXhtlKntbzM10.1093/neuonc/noy033296178436280148
– reference: LiZWangYYuJGuoYCaoWDeep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade gliomaScientific reports20177154671:CAS:528:DC%2BC1cXhtlCks7bL10.1038/s41598-017-05848-2287104975511238
– reference: HsiehKLChenCYLoCMRadiomic model for predicting mutations in the isocitrate dehydrogenase gene in glioblastomasOncotarget2017828458884589710.18632/oncotarget.17585285268135542235
– reference: BoydNFGuoHMartinLJSunLStoneJFishellEJongRAHislopGChiarelliAMinkinSYaffeMJMammographic density and the risk and detection of breast cancerN Engl J Med200735632272361:CAS:528:DC%2BD2sXnslSjsg%3D%3D10.1056/NEJMoa062790
– reference: WiYCMoonAJungMJKimYBangSSJangKPaikSSShinSJLoss of Nuclear BAP1 Expression Is Associated with High WHO/ISUP Grade in Clear Cell Renal Cell CarcinomaJ Pathol Transl Med201852637838510.4132/jptm.2018.09.21302694736250939
– reference: BeigNPatelJPrasannaPHillVGuptaACorreaRBeraKSinghSPartoviSVaradanVAhluwaliaMMadabhushiATiwariPRadiogenomic analysis of hypoxia pathway is predictive of overall survival in GlioblastomaScientific reports20188171:CAS:528:DC%2BC1cXhsFGitbrF10.1038/s41598-017-18310-0293115585758516
– reference: Chen S-W, Lin C-Y, Ho C-M, Chang Y-S, Yang S-F, Kao C-H, Chang J-GJCnm (2015) Genetic alterations in colorectal Cancer have different patterns on 18F-FDG PET/CT. 40 (8):621-626
– reference: Jia T, Xiong J, Li X, Ma J, Ren Y, Xu Z, Cai X, Zhang J, Zhao J, Fu X (2017) Detecting epidermal growth factor receptor mutation status in patients with lung adenocarcinoma using radiomics and random forest. Journal of Thoracic Oncology 12 (11 Supplement 2):S1860
– reference: WangYZhangTLiSFanXMaJWangLJiangTAnatomical localization of isocitrate dehydrogenase 1 mutation: a voxel-based radiographic study of 146 low-grade gliomasEuropean journal of neurology20152223483541:STN:280:DC%2BC2M3gvFensw%3D%3D10.1111/ene.1257825318355
– reference: Zhang X, Tian Q, Wu YX, Xu XP, Li BJ, Liu YX, Liu Y, Lu HB IDH mutation assessment of glioma using texture features of multimodal MR images. In: Petrick NA, Armato SG (eds), 2017. SPIE. https://doi.org/10.1117/12.2254212
– reference: AertsHJGrossmannPTanYOxnardGRRizviNSchwartzLHZhaoBDefining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLCScientific reports20166338601:CAS:528:DC%2BC28XhsFGrtr%2FI10.1038/srep33860276458035028716
– reference: PaulRHawkinsSHSchabathMBGilliesRJHallLOGoldgofDBPredicting malignant nodules by fusing deep features with classical radiomics featuresJournal of medical imaging (Bellingham, Wash)20185101102110.1117/1.JMI.5.1.011021
– reference: GierachGLLiHLoudJTGreeneMHChowCKLanLPrindivilleSAEng-WongJSoballePWGiambartolomeiCMaiPLGalboCENicholsKCalzoneKAOlopadeOIGailMHGigerMLRelationships between computer-extracted mammographic texture pattern features and BRCA1/2 mutation status: a cross-sectional studyBreast cancer research: BCR20141644241:CAS:528:DC%2BC2cXhvV2ksLfN10.1186/s13058-014-0424-825159706
– reference: Zhang J, Qiu Q, Duan J, Gong G, Jiang Q, Sun G, Yin YJTCR (2019) Variability of radiomic features extracted from multi-b-value diffusion-weighted images in hepatocellular carcinoma. 8 (1):130-140
– reference: McCormackVAdos SantosSilva IBreast density and parenchymal patterns as markers of breast cancer risk: a meta-analysisCancer Epidemiol Biomarkers Prev20061561159116910.1158/1055-9965.EPI-06-003416775176
– reference: Vander-Weele DJ, McCann S, Fan X, Antic T, Jiang Y, Oto A (2015) Radiogenomics of prostate cancer: Association between quantitative multi-parametric MRI features and PTEN. Journal of Clinical Oncology Conference 33 (7 SUPPL. 1)
– reference: GevaertOMitchellLAAchrolASXuJEchegaraySSteinbergGKCheshierSHNapelSZaharchukGPlevritisSKGlioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image featuresRadiology2014273116817410.1148/radiol.1413173142637724263772
– reference: Dasgupta A, Gupta T, Pungavkar S, Janu A, Shirsat N, Chinnaswamy G, Jalali R (2014) Can we predict molecular subtypes of medulloblastoma based on MRI? Encouraging data from a blinded study. Journal of Cancer Research and Therapeutics 1):S5-S6
– reference: YangLDongDFangMZhuYZangYLiuZZhangHYingJZhaoXTianJCan CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer?European radiology20182852058206710.1007/s00330-017-5146-829335867
– reference: AritaHKinoshitaMKawaguchiATakahashiMNaritaYTerakawaYTsuyuguchiNOkitaYNonakaMMoriuchiSTakagakiMFujimotoYFukaiJIzumotoSIshibashiKNakajimaYShofudaTKanematsuDYoshiokaEKodamaYManoMMoriKIchimuraKKanemuraYLesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomasScientific reports201881117731:CAS:528:DC%2BC1MXkt1Gkug%3D%3D10.1038/s41598-018-30273-4300828566078954
– reference: Joskowicz L, Cohen D, Caplan N, Sosna J (2018) Inter-observer variability of manual contour delineation of structures in CT. European radiology. https://doi.org/10.1007/s00330-018-5695-5
– reference: Parmar C, Velazquez ER, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, Mitra S, Shankar BU, Kikinis R, Haibe-Kains BJPo (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. 9 (7):e102107
– reference: WangHCruz-RoaABasavanhallyAGilmoreHShihNFeldmanMTomaszewskiJGonzalezFMadabhushiAMitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network featuresJournal of medical imaging (Bellingham, Wash)20141303400310.1117/1.JMI.1.3.034003
– reference: Zhang J, Zhang Q (2018) VHL and Hypoxia Signaling: Beyond HIF in Cancer. Biomedicines 6 (1). https://doi.org/10.3390/biomedicines6010035
– reference: Clay R, Johnson T, Bartholmai BJ, Karwoski R, Maldonado F, Rajagopalan S, Peikert T (2018) Canary (computer aided nodule analysis and risk yield) as a radiologic biomarker to predict tumor response to EGFR-targeted therapy in adenocarcinoma of the lung. American Journal of Respiratory and Critical Care Medicine Conference: American Thoracic Society International Conference, ATS 197 (MeetingAbstracts)
– reference: Leijenaar RT, Carvalho S, Velazquez ER, Van Elmpt WJ, Parmar C, Hoekstra OS, Hoekstra CJ, Boellaard R, Dekker AL, Gillies RJJAo (2013) Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability. 52 (7):1391-1397
– reference: Qiu Q, Duan J, Duan Z, Meng X, Ma C, Zhu J, Lu J, Liu T, Yin YJQIiM, Surgery (2019) Reproducibility and non-redundancy of radiomic features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability.
– reference: Kalra M, Wang G, Orton CGJMp (2018) Radiomics in lung cancer: Its time is here. 45 (3):997-1000
– reference: DouillardJYOlinerKSSienaSTaberneroJBurkesRBarugelMHumbletYBodokyGCunninghamDJassemJRiveraFKocakovaIRuffPBlasinska-MorawiecMSmakalMCanonJLRotherMWilliamsRRongAWiezorekJSidhuRPattersonSDPanitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancerN Engl J Med201336911102310341:CAS:528:DC%2BC3sXhsFGktr3L10.1056/NEJMoa1305275
– reference: Colen RR, Mahajan B, Jolesz FA, Zinn PO (2011) Radiogenomic mapping in GBM in patients with high versus low edema/tumor infiltration using an image-genomic analysis of 12,764 genes and 555 micrornas. Neuro-oncology 3):iii142-iii143. doi:http://dx.doi.org/10.1093/neuonc/nor162
– reference: AertsHJVelazquezERLeijenaarRTParmarCGrossmannPCarvalhoSBussinkJMonshouwerRHaibe-KainsBRietveldDHoebersFRietbergenMMLeemansCRDekkerAQuackenbushJGilliesRJLambinPDecoding tumour phenotype by noninvasive imaging using a quantitative radiomics approachNature communications2014540061:CAS:528:DC%2BC2cXitVShsb3L10.1038/ncomms5006248924064059926
– reference: YipSSKimJCorollerTPParmarCVelazquezERHuynhEMakRHAertsHJAssociations Between Somatic Mutations and Metabolic Imaging Phenotypes in Non-Small Cell Lung CancerJournal of nuclear medicine: official publication, Society of Nuclear Medicine20175845695761:CAS:528:DC%2BC1cXmtVOjsbg%3D10.2967/jnumed.116.181826
– reference: Wiki FQ, Body QF-PW The Radiological Society of North America (RSNA) Quantitative Imaging Biomarker Alliance (QIBA) FDG-PET Technical Committee: Proffered Protocol for Quantifying the Standard Uptake (SUV) in Patients with Cancer.
– reference: Grossmann P, Stringfield O, El-Hachem N, Bui MM, Rios Velazquez E, Parmar C, Leijenaar RT, Haibe-Kains B, Lambin P, Gillies RJ, Aerts HJ (2017) Defining the biological basis of radiomic phenotypes in lung cancer. eLife 6. https://doi.org/10.7554/elife.23421
– reference: KarloCADi PaoloPLChaimJHakimiAAOstrovnayaIRussoPHricakHMotzerRHsiehJJAkinORadiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutationsRadiology2014270246447110.1148/radiol.13130663
– reference: ZhangBHeXOuyangFGuDDongYZhangLMoXHuangWTianJZhang SJClRadiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma.201740321271:CAS:528:DC%2BC2sXhtVWrt7zF
– reference: LiYQianZXuKWangKFanXLiSLiuXWangYJiangTRadiomic features predict Ki-67 expression level and survival in lower grade gliomasJournal of neuro-oncology201713523173241:CAS:528:DC%2BC2sXhsVyiur7E10.1007/s11060-017-2576-828900812
– reference: ChouCTChenRCLeeCWKoCJWuHKChenYLPrediction of microvascular invasion of hepatocellular carcinoma by pre-operative CT imagingThe British journal of radiology201285101477878310.1259/bjr/65897774218281493474124
– reference: KickingerederPBonekampDNowosielskiMKratzASillMBurthSWickAEidelOSchlemmerHPRadbruchADebusJHerold-MendeCUnterbergAJonesDPfisterSWickWvon DeimlingABendszusMCapperDRadiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging FeaturesRadiology2016281390791810.1148/radiol.2016161382
– reference: LeclerADuronLBalvayDSavatovskyJBergèsOZmudaMFarahEGalatoireOBouchouichaAFournierLSCombining Multiple Magnetic Resonance Imaging Sequences Provides Independent Reproducible Radiomics FeaturesScientific reports20199120681:CAS:528:DC%2BC1MXnslemtro%3D10.1038/s41598-018-37984-8307657326376058
– reference: Winterhoff B, Hamidi H, Wang C, Kalli KR, Fridley BL, Dering J, Chen H-W, Cliby WA, Wang H-J, Dowdy SJGo (2016) Molecular classification of high grade endometrioid and clear cell ovarian cancer using TCGA gene expression signatures. 141 (1):95-100
– reference: Fernández-MedardeASantosERas in Cancer and Developmental DiseasesGenes & Cancer2011233443581:CAS:528:DC%2BC3MXpvFWlsbs%3D10.1177/1947601911411084
– reference: IraharaNBabaYNoshoKShimaKYanLDias-SantagataDIafrateAJFuchsCSHaigisKMOginoSNRAS mutations are rare in colorectal cancerDiagn Mol Pathol20101931571631:CAS:528:DC%2BC3cXhtVOhs7vN10.1097/PDM.0b013e3181c93fd1207367452929976
– reference: AertsHJThe Potential of Radiomic-Based Phenotyping in Precision Medicine: A ReviewJAMA oncology20162121636164210.1001/jamaoncol.2016.263127541161
– reference: Wang S, Fan M, Zhang J, Zheng B, Wang X, Li L Radiogenomic analysis of breast cancer: Dynamic contrast enhanced - Magnetic resonance imaging based features are associated with molecular subtypes. In: Cook TS, Zhang J (eds), 2016. SPIE. https://doi.org/10.1117/12.2217658
– reference: LiHGigerMLLanLJanardananJSennettCAComparative analysis of image-based phenotypes of mammographic density and parenchymal patterns in distinguishing between BRCA1/2 cases, unilateral cancer cases, and controlsJournal of medical imaging (Bellingham, Wash)20141303100910.1117/1.jmi.1.3.031009
– reference: SawanPPlodkowskiAJLiAELiBTDrilonACapanuMGinsbergMSCT features of HER2-mutant lung adenocarcinomasClinical imaging20185127928310.1016/j.clinimag.2018.05.02829906786
– reference: HaspingerERRoselliniSAmmariSDercleLBluthgenMVBesseBCaramellaCMassardCLacroixLDe BaereTDeschampsFMichielsSSoriaJCFerteCRadiomics to identify HER2 amplification or mutation in metastatic patients with solid tumors prospectively enrolled in MOSCATO-01European Journal of Cancer20153S10110.1016/S0959-8049(16)30301-X
– reference: Maraka S, Kotrotsou A, Abrol S, Hassan A, Elshafeey N, Starostina O, Alfaro-Munoz K, Colen R, De Groot J (2017) Radiomic analysis on apparent diffusion coefficient (ADC) maps predicts platelet-derived growth factor receptor alpha (PDGFRA) gene amplification for newly diagnosed glioblastoma patients. Neuro-oncology 19 (Supplement 6):vi148. doi:http://dx.doi.org/10.1093/neuonc/nox168
– reference: WuJLiBSunXCaoGRubinDLNapelSIkedaDMKurianAWLiRHeterogeneous Enhancement Patterns of Tumor-adjacent Parenchyma at MR Imaging Are Associated with Dysregulated Signaling Pathways and Poor Survival in Breast CancerRadiology2017285240141310.1148/radiol.2017162823287084625673053
– reference: GevaertOEchegaraySKhuongAHoangCDShragerJBJensenKCBerryGJGuoHHLauCPlevritisSKRubinDLNapelSLeungANPredictive radiogenomics modeling of EGFR mutation status in lung cancerScientific reports20177416741:CAS:528:DC%2BC2sXitVyisro%3D10.1038/srep41674281397045282551
– reference: ParkJEKimHSRadiomics as a Quantitative Imaging Biomarker: Practical Considerations and the Current Standpoint in Neuro-oncologic StudiesNuclear medicine and molecular imaging20185229910810.1007/s13139-017-0512-7296625585897262
– reference: Gevaert O, Mitchell L, Achrol A, Xu J, Steinberg G, Cheshier S, Napel S, Zaharchuk G, Plevritis S (2013) Creating a radiogenomics map of multi-omics and quantitative image features in glioblastoma multiforme. Neuro-oncology 3):iii140-iii141. doi:http://dx.doi.org/10.1093/neuonc/not183
– reference: ZhangJZhengJYangYLuJGaoJLuTSunJJiangHZhuYZhengYLiangZLiuTMolecular spectrum of KRAS, NRAS, BRAF and PIK3CA mutations in Chinese colorectal cancer patients: analysis of 1,110 casesScientific reports20155186781:CAS:528:DC%2BC2MXitVynsLvJ10.1038/srep18678266914484687048
– reference: Ger RB, Zhou S, Chi P-CM, Goff DL, Zhang L, Lee HJ, Fuller CD, Howell RM, Li H, Stafford RJ Quantitative image feature variability amongst CT scanners with a controlled scan protocol. In: Medical Imaging 2018: Computer-Aided Diagnosis, 2018. International Society for Optics and Photonics, p 105751O
– reference: Zhao L, Lee VH, Ng MK, Yan H, Bijlsma MFJBib (2018) Molecular subtyping of cancer: current status and moving toward clinical applications.
– reference: Moon H, Choi JH, Park JH, Byun BH, Lim I, Kim BI, Choi CW, Lim SM (2015) Differences of < sup > 18 </sup > F-FDG PET tumor texture parameters according to the presence of epidermal growth factor receptor mutation in non-small cell lung cancer. Journal of Nuclear Medicine Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI 56 (SUPPL. 3)
– reference: ZhangYOikonomouAWongAHaiderMAKhalvatiFRadiomics-based Prognosis Analysis for Non-Small Cell Lung CancerScientific reports20177463491:CAS:528:DC%2BC2sXmtFKgtb8%3D10.1038/srep46349284180065394465
– reference: LvJZhangHMaJMaYGaoGSongZYangYComparison of CT radiogenomic and clinical characteristics between EGFR and KRAS mutations in lung adenocarcinomasClinical radiology2018736590.e591590.e59810.1016/j.crad.2018.01.009
– reference: Stoyanova R, Pollack A, Lynne C, Jorda M, Erho N, Lam LLC, Buerki C, Davicioni E, Ishkanian A (2015) Using radiogenomics to characterize MRI-guided prostate cancer biopsy heterogenity. Journal of Clinical Oncology Conference 33 (7 SUPPL. 1)
– reference: Coroller TP, Bi WL, Huynh E, Abedalthagafi M, Aizer AA, Greenwald NF, Parmar C, Narayan V, Wu WW, de Moura SMJPo (2017) Radiographic prediction of meningioma grade by semantic and radiomic features. 12 (11):e0187908
– reference: RizzoSPetrellaFBuscarinoVDe MariaFRaimondiSBarberisMFumagalliCSpitaleriGRampinelliCDe MarinisFSpaggiariLBellomiMCT Radiogenomic Characterization of EGFR, K-RAS, and ALK Mutations in Non-Small Cell Lung CancerEuropean radiology2016261324210.1007/s00330-015-3814-025956936
– reference: SorensenJErasmusJJrShroffGRaoAStingoFCourtLGoldKALeeJHeymachJVSwisherSGodoyMCombining CT texture analysis with semantic imaging descriptions for the radiogenomic detection of EGFR and KRAS mutations in NSCLCJournal of Thoracic Oncology20152S700
– reference: JamaspishviliTBermanDMRossAEScherHIDe MarzoAMSquireJALotanTLClinical implications of PTEN loss in prostate cancerNat Rev Urol20181542222341:CAS:528:DC%2BC1cXivFGmsb4%3D10.1038/nrurol.2018.929460925
– reference: Traverso A, Wee L, Dekker A, Gillies RJIJoROBP (2018) Repeatability and reproducibility of radiomic features: a systematic review. 102 (4):1143-1158
– reference: Zhang X, Tian Q, Wang L, Liu Y, Li B, Liang Z, Gao P, Zheng K, Zhao B, Lu H (2018) Radiomics Strategy for Molecular Subtype Stratification of Lower-Grade Glioma: Detecting IDH and TP53 Mutations Based on Multimodal MRI. Journal of magnetic resonance imaging: JMRI. https://doi.org/10.1002/jmri.25960
– reference: LehrerMBhadraARavikumarVChenJYWintermarkMHwangSNHolderCAHuangEPFevrier-SullivanBFreymannJBRaoAMultiple-response regression analysis links magnetic resonance imaging features to de-regulated protein expression and pathway activity in lower grade gliomaOncoscience201745–6576610.18632/oncoscience.35355388495538849
– reference: Dagogo-Jack I, Shaw ATJTo (2016) Screening for ALK rearrangements in lung cancer: time for a new generation of diagnostics? 21 (6):662-663
– reference: GrossmannPGutmanDADunnWDJrHolderCAAertsHJImaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in GlioblastomaBMC cancer2016166111:CAS:528:DC%2BC2sXhslaks7nE10.1186/s12885-016-2659-5275021804977720
– reference: HutchinsonLCLOVAR validates prognostic gene-expression signatureNat Rev Clin Oncol2013106810.1038/nrclinonc.2013.223337919
– reference: GudbjartssonTThoroddsenAPetursdottirVHardarsonSMagnussonJEinarssonGVEffect of incidental detection for survival of patients with renal cell carcinoma: results of population-based study of 701 patientsUrology20056661186119110.1016/j.urology.2005.07.00916360438
– reference: WinerAGHoetkerAVacchioMJZaborECOstravnayaIRussoPHsiehJJAkinOHakimiAARadiogenomics of clear cell renal cell carcinoma: Associations between imaging, molecular alterations and pathologic featuresJournal of Urology20151e423
– reference: GevaertOXuJHoangCDLeungANXuYQuonARubinDLNapelSPlevritisSKNon-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data–methods and preliminary resultsRadiology2012264238739610.1148/radiol.12111607227234993401348
– reference: LuLEhmkeRCSchwartzLHZhaoBAssessing agreement between radiomic features computed for multiple CT imaging settingsPloS one20161112e016655010.1371/journal.pone.0166550
– reference: KimTJLeeCTJheonSHParkJSChungJHRadiologic Characteristics of Surgically Resected Non-Small Cell Lung Cancer With ALK Rearrangement or EGFR MutationsThe Annals of thoracic surgery2016101247348010.1016/j.athoracsur.2015.07.06226454747
– reference: PappLPoetschNGrahovacMMitterhauserMWadsakWBeyerTHackerMTraub-WeidingerTPrediction of IDH1-R132H mutation status of glioma patients from 11-C-Methionine-PET radiomics features utilizing machine learning approachesNuklearMedizin2018572A7810.1055/s00839473
– reference: Berenguer R, Pastor-Juan MdR, Canales-Vázquez J, Castro-García M, Villas MV, Mansilla Legorburo F, Sabater SJR (2018) Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. 288 (2):407-415
– reference: GuoFGongHZhaoHChenJZhangYZhangLShiXZhangAJinHZhangJHeYMutation status and prognostic values of KRAS, NRAS, BRAF and PIK3CA in 353 Chinese colorectal cancer patientsScientific reports20188160761:CAS:528:DC%2BC1cXhslegtbrF10.1038/s41598-018-24306-1296663875904111
– reference: Coroller TP, Agrawal V, Narayan V, Hou Y, Grossmann P, Lee SW, Mak RH, Aerts HJJR, Oncology (2016) Radiomic phenotype features predict pathological response in non-small cell lung cancer. 119 (3):480-486
– reference: EfremovaMFinotelloFRiederDTrajanoskiZNeoantigens Generated by Individual Mutations and Their Role in Cancer Immunity and ImmunotherapyFront Immunol2017816791:CAS:528:DC%2BC1cXitFOgsL7K10.3389/fimmu.2017.01679292343295712389
– reference: GilliesRJKinahanPEHricakHRadiomics: Images Are More than PicturesThey Are Data. Radiology2016278256357710.1148/radiol.201515116926579733
– reference: Rios VelazquezEParmarCLiuYCorollerTPCruzGStringfieldOYeZMakrigiorgosMFennessyFMakRHGilliesRQuackenbushJAertsHSomatic Mutations Drive Distinct Imaging Phenotypes in Lung CancerCancer research20177714392239301:CAS:528:DC%2BC2sXhtFKiurvP10.1158/0008-5472.can-17-012228566328
– reference: VikramRGhoshPTamboliPRaoAImage texture analysis to predict bap1 mutational status in patients with clear cell renal carcinomaAbdominal imaging201439366810.1007/s00261-014-0161-6
– reference: ShaikhFAKolowitzBJAwanOAertsHJvon RedenAHalabiSMohiuddinSAMalikSShresthaRBDeibleCTechnical challenges in the clinical application of radiomicsJCO Clinical Cancer Informatics201711810.1200/CCI.17.00004
– reference: HalpennyDFPlodkowskiARielyGZhengJLitvakAMoscowitzCGinsbergMSRadiogenomic evaluation of lung cancer - Are there imaging characteristics associated with lung adenocarcinomas harboring BRAF mutations?Clinical imaging20174214715110.1016/j.clinimag.2016.11.01528012356
– reference: ZinnPOMahajanBSathyanPSinghSKMajumderSJoleszFAColenRRRadiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiformePloS one2011610e254511:CAS:528:DC%2BC3MXhtlOitLvI10.1371/journal.pone.0025451219986593187774
– reference: Jeon H, Cho HR, Park CK, Park SH, Kumarir N, Thakur N, Chung J, Choi SH (2017) CD49D correlated with apparent diffusion coefficient as a promising biomarker for prognosis prediction of glioblastoma: Radiogenomics study. Neuro-oncology 19 (Supplement 6):vi157. doi:http://dx.doi.org/10.1093/neuonc/nox168
– reference: da Costa WH, da Cunha IW, Fares AF, Bezerra SM, Shultz L, Clavijo DA, da Silva DV, Netto GJ, Guimaraes GC, Cassio Zequi S (2018) Prognostic impact of concomitant loss of PBRM1 and BAP1 protein expression in early stages of clear cell renal cell carcinoma. Urol Oncol 36 (5):243 e241-243 e248. https://doi.org/10.1016/j.urolonc.2018.01.002
– reference: LiYLiuXXuKQianZWangKFanXLiSWangYJiangTMRI features can predict EGFR expression in lower grade gliomas: A voxel-based radiomic analysisEuropean radiology201828135636210.1007/s00330-017-4964-z28755054
– reference: AfsharPMohammadiAPlataniotisKNOikonomouABenali HJapa2018Challenges and OpportunitiesFrom Hand-Crafted to Deep Learning-based Cancer Radiomics
– reference: KuoMDGollubJSirlinCBOoiCChenXRadiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinomaJournal of vascular and interventional radiology: JVIR200718782183110.1016/j.jvir.2007.04.03117609439
– reference: BrisseHJBlancTSchleiermacherGMosseriVPhilippe-ChomettePJanoueix-LeroseyIPierronGLapoubleEPeuchmaurMFreneauxPGalmicheLAlgretNPeycelonMMichonJDelattreOSarnackiSRadiogenomics of neuroblastomas: Relationships between imaging phenotypes, tumor genomic profile and survivalPloS one2017129e01851901:CAS:528:DC%2BC1cXosVOqu7o%3D10.1371/journal.pone.0185190289457815612658
– reference: Lohmann P, Lerche C, Bauer E, Steger J, Stoffels G, Filss CP, Stegmayr C, Neumaier B, Shah NJ, Langen K, Galldiks N (2017) Predicting isocitrate dehydrogenase genotype in malignant glioma using fet pet radiomics. Neuro-oncology 19 (Supplement 3):iii88-iii89. doi:http://dx.doi.org/10.1093/neuonc/nox036
– reference: DeLeon T, Borad MJ, Wu T, Li J, Zwart CM, Yang G, Holeman S, Silva AC (2017) Utility of CT texture for identification of FGFR2 fusion in cholangiocarcinoma: A radiogenomic pilot study. Journal of Clinical Oncology Conference 35 (15 Supplement 1)
– reference: Hong H-S, Kim SH, Park H-J, Park M-S, Kim KW, Kim WH, Kim NK, Lee JM, Cho HJJYmj (2013) Correlations of dynamic contrast-enhanced magnetic resonance imaging with morphologic, angiogenic, and molecular prognostic factors in rectal cancer. 54 (1):123-130
– reference: ColenRFosterIGatenbyRGigerMEGilliesRGutmanDHellerMJainRMadabhushiAMadhavanSNapelSRaoASaltzJTatumJVerhaakRWhitmanGNCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics SignaturesTranslational oncology20147555656910.1016/j.tranon.2014.07.007253894514225695
– reference: Rios Velazquez E, Liu Y, Parmar C, Narayan V, Gillies R, Aerts H (2016) Radiomic CT features complement semantic annotations to predict EGFR mutations in lung adenocarcinomas. Medical physics 43 (6 PART2):3706
– reference: Song B, Zhang G, Lu H, Wang H, Zhu W, Pickhardt PJ, Liang ZJIjocar, surgery (2014) Volumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography. 9 (6):1021-1031
– reference: RathoreSAkbariHRozyckiMAbdullahKGNasrallahMPBinderZADavuluriRVLustigRADahmaneNBilelloMO’RourkeDMDavatzikosCRadiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1Scientific reports20188150871:CAS:528:DC%2BC1cXhslWgurzK10.1038/s41598-018-22739-2295724925865162
– reference: SegalESirlinCBOoiCAdlerASGollubJChenXChanBKMatcukGRBarryCTChangHYKuoMDDecoding global gene expression programs in liver cancer by noninvasive imagingNat Biotechnol20072566756801:CAS:528:DC%2BD2sXmtlersrk%3D10.1038/nbt1306
– reference: HuLSNingSEschbacherJMBaxterLCGawNRanjbarSPlasenciaJDueckACPengSSmithKANakajiPKarisJPQuarlesCCWuTLoftusJCJenkinsRBSicotteHKollmeyerTMO’NeillBPElmquistWHoxworthJMFrakesDSarkariaJSwansonKRTranNLLiJMitchellJRRadiogenomics to characterize regional genetic heterogeneity in glioblastomaNeuro-oncology20171911281371:CAS:528:DC%2BC1cXitFSntrrM10.1093/neuonc/now13527502248
– reference: Duddalwar V, Liang G, Siegmund K, Cen S, Varghese B, Hwang D, Desai B, Desai M, Aron M, Gill I (2018) Association of computed tomography-based radiomic features with epigenetic variation of clear cell renal cell carcinoma using dna methylation. Journal of Urology 199 (4 Supplement 1):e959
– reference: YoonHJSohnIChoJHLeeHYKimJHChoiYLKimHLeeGLeeKSKimJDecoding Tumor Phenotypes for ALK, ROS1, and RET Fusions in Lung Adenocarcinoma Using a Radiomics ApproachMedicine20159441e17531:CAS:528:DC%2BC2MXhs1yltLrM10.1097/md.0000000000001753264699154616787
– reference: He J (2018) Comparison of PET conventional parameters and PET texture parameters for predicting KRAS gene mutation in colorectal cancer. Journal of Nuclear Medicine Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI 59 (Supplement 1)
– reference: KhalvatiFZhangYBaigSLobo-MuellerEMKaranicolasPGallingerSHaiderMAPrognostic Value of CT Radiomic Features in Resectable Pancreatic Ductal AdenocarcinomaScientific reports20199154491:CAS:528:DC%2BC1MXoslWjsr8%3D10.1038/s41598-019-41728-7309319546443807
– reference: EichingerPAlbertsEDelbridgeCTrebeschiSValentinitschABetteSHuberTGemptJMeyerBSchlegelJZimmerCKirschkeJSMenzeBHWiestlerBDiffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomasScientific reports201771133961:CAS:528:DC%2BC1cXhsVyksL3M10.1038/s41598-017-13679-4290426195645407
– reference: RomanMBaraibarILopezINadalERolfoCVicentSGil-BazoIKRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old targetMol Cancer2018171331:CAS:528:DC%2BC1cXitF2nt7vE10.1186/s12943-018-0789-x58177245817724
– reference: YuJShiZLianYLiZLiuTGaoYWangYChenLMaoYNoninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II gliomaEuropean radiology20172783509352210.1007/s00330-016-4653-328004160
– reference: Cho H, Hong B, Park C, Park S, Choi S (2017) Is BCAT1 a new MR imaging-related biomarker for prognosis prediction in IDH1-wildtype glioblastoma patients?: Radiogenomics study. Neuro-oncology 19 (Supplement 3):iii41. doi:http://dx.doi.org/10.1093/neuonc/nox036
– reference: Antropova N Deep Learning and Radiomics of Breast Cancer on DCE-MRI in Assessment of Malignancy and Response to Therapy.143. https://doi.org/10.6082/3jah-5j51
– reference: De JongEECVan ElmptWHendriksLELLeijenaarRTHDingemansAMCLambinPRadiomic CT features for evaluation of EGFR and KRAS mutation status in patients with advanced NSCLCRadiotherapy and Oncology2016119Supplement 1S290S29110.1016/S0167-8140(16)31859-X
– reference: GoodmanAMKatoSBazhenovaLPatelSPFramptonGMMillerVStephensPJDanielsGAKurzrockRTumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse CancersMol Cancer Ther20171611259826081:CAS:528:DC%2BC2sXhslGisrvL10.1158/1535-7163.MCT-17-0386288353865670009
– reference: PershadYGovindanSHaraABoradMBekaii-SaabTWallaceAAlbadawiHOkluRJDUsing Naïve Bayesian Analysis to Determine Imaging Characteristics of KRAS Mutations in Metastatic Colon Cancer.20177350
– reference: TangHBaiHXSuCLeeAMYangLThe effect of cirrhosis on radiogenomic biomarker’s ability to predict microvascular invasion and outcome in hepatocellular carcinomaHepatology (Baltimore, Md)201664269169210.1002/hep.28620
– reference: Hong EK, Choi SH, Shin DJ, Jo SW, Yoo RE, Kang KM, Yun TJ, Kim JH, Sohn CH, Park SH, Won JK, Kim TM, Park CK, Kim IH, Lee ST (2018) Radiogenomics correlation between MR imaging features and major genetic profiles in glioblastoma. European radiology. https://doi.org/10.1007/s00330-018-5400-8
– reference: Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJJFio (2015) Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. 5:272
– reference: PereiraCBLealMFde SouzaCRMontenegroRCReyJACarvalhoAAAssumpcaoPPKhayatASPintoGRDemachkiSde Arruda Cardoso SmithMBurbanoRRPrognostic and predictive significance of MYC and KRAS alterations in breast cancer from women treated with neoadjuvant chemotherapyPloS one201383e605761:CAS:528:DC%2BC3sXlslCgsrk%3D10.1371/journal.pone.0060576235559923608596
– reference: ZhouHVallieresMBaiHXSuCTangHOldridgeDZhangZXiaoBLiaoWTaoYZhouJZhangPYangLMRI features predict survival and molecular markers in diffuse lower-grade gliomasNeuro-oncology20171968628701:CAS:528:DC%2BC1cXitFSntLrK10.1093/neuonc/now256283395885464433
– reference: Li H, Giger ML, Lan L, Yuan Y, Bhooshan N, Olopade OI Effect of variable gain on computerized texture analysis on digitalized mammograms. In: Summers RM, Karssemeijer N (eds), 2010. SPIE. https://doi.org/10.1117/12.845321
– reference: ChanBAHughesBGTargeted therapy for non-small cell lung cancer: current standards and the promise of the futureTransl Lung Cancer Res20154136541:CAS:528:DC%2BC2MXhtFCms7vL10.3978/j.issn.2218-6751.2014.05.0143677114367711
– reference: SacconiBAnzideiMLeonardiABoniFSabaLScipioneRAnileMRengoMLongoFBezziMVenutaFNapoliALaghiACatalanoCAnalysis of CT features and quantitative texture analysis in patients with lung adenocarcinoma: a correlation with EGFR mutations and survival ratesClinical radiology20177264434501:STN:280:DC%2BC1czislejtQ%3D%3D10.1016/j.crad.2017.01.01528258739
– reference: Van Der Voort SR, Gahrmann R, Van Den Bent MJ, Vincent AJPE, Niessen WJ, Smits M, Klein S Radiogenomic classification of the 1p/19q status in presumed low-grade gliomas. In, 2017. IEEE Computer Society, pp 638-641. https://doi.org/10.1109/isbi.2017.7950601
– reference: EmaminejadNQianWGuanYTanMQiuYLiuHZhengBFusion of Quantitative Image and Genomic Biomarkers to Improve Prognosis Assessment of Early Stage Lung Cancer PatientsIEEE Trans Biomed Eng20166351034104310.1109/TBME.2015.247768826390440
– reference: LiYLiuXQianZSunZXuKWangKFanXZhangZLiSWangYJiangTGenotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signatureEuropean radiology20182872960296810.1007/s00330-017-5267-029404769
– reference: McCannSMJiangYFanXWangJAnticTPriorFVanderWeeleDOtoAQuantitative Multiparametric MRI Features and PTEN Expression of Peripheral Zone Prostate Cancer: A Pilot StudyAJR American journal of roentgenology2016206355956510.2214/ajr.15.1496726901012
– reference: He L, Huang Y, Ma Z, Liang C, Liang C, Liu Z (2016) Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Scientific reports 6:34921. https://doi.org/10.1038/srep34921. https://www.nature.com/articles/srep34921#supplementary-information
– reference: FisetSWelchMLWeissJPintilieMConwayJLMilosevicMFylesATraversoAJaffrayDMetserUJROncologyRepeatability and reproducibility of MRI-based radiomic features in cervical cancer.2019135107114
– reference: YarchoanMJohnsonBA3rdLutzERLaheruDAJaffeeEMTargeting neoantigens to augment antitumour immunityNat Rev Cancer20171742092221:CAS:528:DC%2BC2sXkt1Ontrc%3D10.1038/nrc.2016.154282338025575801
– reference: Chaunzwa TL, Christiani DC, Lanuti M, Shafer A, Diao N, Mak RH, Aerts H (2018) A deep-learning radiomics model for predicting survival in early-stage non-small cell lung cancer. 36 (15_suppl):8528-8528. https://doi.org/10.1200/jco.2018.36.15_suppl.8528
– reference: Saha A, Harowicz MR, Grimm LJ, Kim CE, Ghate SV, Walsh R, Mazurowski MA (2018) A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features. British journal of cancer. https://doi.org/10.1038/s41416-018-0185-8
– reference: YipSSLiuYParmarCLiQLiuSQuFYeZGilliesRJAertsHJAssociations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancerScientific reports201771351910.1038/s41598-017-02425-5
– reference: DiehnMNardiniCWangDSMcGovernSJayaramanMLiangYAldapeKChaSKuoMDIdentification of noninvasive imaging surrogates for brain tumor gene-expression modulesProc Natl Acad Sci U S A2008105135213521810.1073/pnas.080127910522782242278224
– reference: VelazquezERParmarCJermoumiMMakRHvan BaardwijkAFennessyFMLewisJHDe RuysscherDKikinisRLambinPAertsHJVolumetric CT-based segmentation of NSCLC using 3D-SlicerScientific reports20133352910.1038/srep03529243462413866632
– reference: Boots-SprengerSHESijbenARijntjesJTopsBBJIdemaAJRiveraALBleekerFEGijtenbeekAMDiefesKHeathcockLAldapeKDJeukenJWMWesselingPSignificance of complete 1p/19q co-deletion, IDH1 mutation and MGMT promoter methylation in gliomas: use with cautionModern Pathology2013269221:CAS:528:DC%2BC3sXhtVGksLnP10.1038/modpathol.2012.16623429602
– reference: CoweyCLRathmellWKVHL gene mutations in renal cell carcinoma: role as a biomarker of disease outcome and drug efficacyCurr Oncol Rep2009112941011:CAS:528:DC%2BD1MXltVSluro%3D10.1007/s11912-009-0015-5
– reference: OzkanEWestADedelowJAChuBFZhaoWYildizVOOttersonGAShiloKGhoshSKingMWhiteRDErdalBSCT Gray-Level Texture Analysis as a Quantitative Imaging Biomarker of Epidermal Growth Factor Receptor Mutation Status in Adenocarcinoma of the LungAJR American journal of roentgenology201520551016102510.2214/ajr.14.1414726496549
– reference: Tamez-PenaJGRodriguez-RojasJAGomez-RuedaHCelaya-PadillaJMRivera-PrietoRAPalacios-CoronaRGarza-MontemayorMCardona-HuertaSTrevinoVRadiogenomics analysis identifies correlations of digital mammography with clinical molecular signatures in breast cancerPloS one2018133e01938711:CAS:528:DC%2BC1cXhslenurnK10.1371/journal.pone.0193871295964965875760
– reference: BanerjeeSWangDSKimHJSirlinCBChanMGKornRLRutmanAMSiripongsakunSLuDImanbayevGKuoMDA computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinomaHepatology (Baltimore, Md)201562379280010.1002/hep.27877
– reference: ZhangLChenBLiuXSongJFangMHuCDongDLiWTianJQuantitative Biomarkers for Prediction of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung CancerTranslational oncology20181119410110.1016/j.tranon.2017.10.01229216508
– reference: De FauwJLedsamJRRomera-ParedesBNikolovSTomasevNBlackwellSAskhamHGlorotXO’DonoghueBVisentinDvan den DriesscheGLakshminarayananBMeyerCMackinderFBoutonSAyoubKChopraRKingDKarthikesalingamAHughesCORaineRHughesJSimDAEganCTufailAMontgomeryHHassabisDReesGBackTKhawPTSuleymanMCornebiseJKeanePARonnebergerOClinically applicable deep learning for diagnosis and referral in retinal diseaseNature Medicine2018249134213501:CAS:528:DC%2BC1cXhsFSqtbzN10.1038/s41591-018-0107-630104768
– reference: Buckler AJ, Mozley PD, Schwartz L, Petrick N, McNitt-Gray M, Fenimore C, O’Donnell K, Hayes W, Kim HJ, Clarke LJAr (2010) Volumetric CT in lung cancer: an example for the qualification of imaging as a biomarker. 17 (1):107-115
– reference: Czarnek NM, Clark K, Peters KB, Collins LM, Mazurowski MA Radiogenomics of glioblastoma: A pilot multi-institutional study to investigate a relationship between tumor shape features and tumor molecular subtype. In: Tourassi GD, Armato SG (eds), 2016. SPIE. https://doi.org/10.1117/12.2217084
– reference: Zinn PO, Singh SK, Kotrotsou A, Abrol S, Thomas G, Mosley J, Elakkad A, Hassan I, Kumar A, Colen RR (2017) Distinct Radiomic Phenotypes Define Glioblastoma TP53-PTEN-EGFR Mutational Landscape. Neurosurgery 64 (CN_suppl_1):203-210. https://doi.org/10.1093/neuros/nyx316
– reference: Caramella C, Bluthgen MV, Rosellini S, Leduc C, Facchinetti F, Haspinger E, Ferte C, Michiels S, Soria JC, Besse B (2015) Prognostic value of texture analysis and correlation with molecular profile in EGFR mutated/ALK rearranged advanced non-small cell lung cancer (NSCLC). European Journal of Cancer 3):S647-S648
– reference: CourtLERaoAKrishnanSRadiomics in cancer diagnosis, cancer staging, and prediction of response to treatmentTranslational cancer research20165433733910.21037/tcr.2016.07.14
– reference: KimHParkCMLeeMParkSJSongYSLeeJHHwangEJGooJMImpact of reconstruction algorithms on CT radiomic features of pulmonary tumors: analysis of intra-and inter-reader variability and inter-reconstruction algorithm variabilityPloS one20161110e016492410.1371/journal.pone.0164924
– reference: van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, Hoekstra OS, Smit EF, Boellaard RJMi, biology (2016) Repeatability of radiomic features in non-small-cell lung cancer [18 F] FDG-PET/CT studies: impact of reconstruction and delineation. 18 (5):788-795
– reference: Lu H, Arshad M, Thornton A, Avesani G, Cunnea P, Curry E, Kanavati F, Liang J, Nixon K, Williams STJNc (2019) A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic-and molecular-phenotypes of epithelial ovarian cancer. 10 (1):764
– ident: 2028_CR194
– ident: 2028_CR81
  doi: 10.1055/s-0037-1600633
– volume: 1
  start-page: 29
  issue: 3
  year: 2013
  ident: 2028_CR139
  publication-title: ADMET and DMPK
  doi: 10.5599/admet.1.3.7
– ident: 2028_CR83
– volume: 6
  start-page: 23428
  year: 2016
  ident: 2028_CR193
  publication-title: Scientific reports
  doi: 10.1038/srep23428
– volume: 1
  start-page: e423
  year: 2015
  ident: 2028_CR161
  publication-title: Journal of Urology
– volume: 16
  start-page: 611
  year: 2016
  ident: 2028_CR42
  publication-title: BMC cancer
  doi: 10.1186/s12885-016-2659-5
– volume: 7
  start-page: 53362
  issue: 33
  year: 2016
  ident: 2028_CR183
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10523
– volume: 273
  start-page: 365
  issue: 2
  year: 2014
  ident: 2028_CR125
  publication-title: Radiology
  doi: 10.1148/radiol.14132641
– volume: 8
  start-page: 11773
  issue: 1
  year: 2018
  ident: 2028_CR58
  publication-title: Scientific reports
  doi: 10.1038/s41598-018-30273-4
– volume: 135
  start-page: 317
  issue: 2
  year: 2017
  ident: 2028_CR75
  publication-title: Journal of neuro-oncology
  doi: 10.1007/s11060-017-2576-8
– volume: 40
  start-page: 1684
  issue: 6
  year: 2015
  ident: 2028_CR160
  publication-title: Abdominal imaging
  doi: 10.1007/s00261-015-0386-z
– volume: 7
  start-page: 3519
  issue: 1
  year: 2017
  ident: 2028_CR2
  publication-title: Scientific reports
  doi: 10.1038/s41598-017-02425-5
– ident: 2028_CR127
  doi: 10.1117/12.2217658
– volume: 86
  start-page: 190
  issue: 2
  year: 2014
  ident: 2028_CR91
  publication-title: Lung cancer (Amsterdam, Netherlands)
  doi: 10.1016/j.lungcan.2014.09.007
– ident: 2028_CR204
– volume: 403
  start-page: 21
  year: 2017
  ident: 2028_CR17
  publication-title: Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma.
– ident: 2028_CR148
  doi: 10.1007/BF01297149
– ident: 2028_CR136
  doi: 10.1038/s41467-019-08718-9
– volume: 28
  start-page: 2960
  issue: 7
  year: 2018
  ident: 2028_CR73
  publication-title: European radiology
  doi: 10.1007/s00330-017-5267-0
– volume: 1
  start-page: 031009
  issue: 3
  year: 2014
  ident: 2028_CR120
  publication-title: Journal of medical imaging (Bellingham, Wash)
  doi: 10.1117/1.jmi.1.3.031009
– volume: 123
  start-page: 4535
  issue: 23
  year: 2017
  ident: 2028_CR49
  publication-title: Cancer
  doi: 10.1002/cncr.31039
– volume: 52
  start-page: 99
  issue: 2
  year: 2018
  ident: 2028_CR9
  publication-title: Nuclear medicine and molecular imaging
  doi: 10.1007/s13139-017-0512-7
– ident: 2028_CR135
  doi: 10.5694/mja14.00132
– volume: 101
  start-page: 473
  issue: 2
  year: 2016
  ident: 2028_CR102
  publication-title: The Annals of thoracic surgery
  doi: 10.1016/j.athoracsur.2015.07.062
– volume: 11
  start-page: e0146388
  issue: 1
  year: 2016
  ident: 2028_CR207
  publication-title: PloS one
  doi: 10.1371/journal.pone.0146388
– ident: 2028_CR188
– ident: 2028_CR186
  doi: 10.1016/j.ijrobp.2018.05.053
– ident: 2028_CR63
  doi: 10.1109/isbi.2017.7950601
– volume: 64
  start-page: 691
  issue: 2
  year: 2016
  ident: 2028_CR147
  publication-title: Hepatology (Baltimore, Md)
  doi: 10.1002/hep.28620
– ident: 2028_CR154
  doi: 10.3390/biomedicines6010035
– ident: 2028_CR210
  doi: 10.1007/s00330-018-5695-5
– ident: 2028_CR71
– ident: 2028_CR197
  doi: 10.1007/s00261-018-1600-6
– ident: 2028_CR177
– ident: 2028_CR89
  doi: 10.1634/theoncologist.2016-0179
– ident: 2028_CR61
  doi: 10.1002/jmri.25960
– volume: 8
  start-page: 6108
  issue: 1
  year: 2018
  ident: 2028_CR55
  publication-title: Scientific reports
  doi: 10.1038/s41598-018-24438-4
– volume: 68
  start-page: 394
  issue: 6
  year: 2018
  ident: 2028_CR138
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21492
– volume: 369
  start-page: 1023
  issue: 11
  year: 2013
  ident: 2028_CR169
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1305275
– volume: 21
  start-page: 266
  issue: 3
  year: 2008
  ident: 2028_CR149
  publication-title: Proc (Bayl Univ Med Cent)
  doi: 10.1080/08998280.2008.11928410
– ident: 2028_CR72
  doi: 10.1093/neuonc/nox168
– ident: 2028_CR57
  doi: 10.1117/12.2254212
– volume: 281
  start-page: 382
  issue: 2
  year: 2016
  ident: 2028_CR131
  publication-title: Radiology
  doi: 10.1148/radiol.2016152110
– volume: 42
  start-page: 902
  issue: 4
  year: 2015
  ident: 2028_CR126
  publication-title: Journal of magnetic resonance imaging: JMRI
  doi: 10.1002/jmri.24879
– volume: 3
  start-page: S101
  year: 2015
  ident: 2028_CR124
  publication-title: European Journal of Cancer
  doi: 10.1016/S0959-8049(16)30301-X
– ident: 2028_CR114
  doi: 10.7554/elife.23421
– ident: 2028_CR133
  doi: 10.1016/j.ygyno.2016.02.023
– ident: 2028_CR76
  doi: 10.1093/neuonc/nox168
– ident: 2028_CR48
  doi: 10.1093/neuonc/nox168
– ident: 2028_CR12
  doi: 10.1117/12.2293701
– volume: 8
  start-page: 523
  issue: 4
  year: 2014
  ident: 2028_CR30
  publication-title: Biomark Med
  doi: 10.2217/bmm.14.16
– volume: 133
  start-page: 27
  issue: 1
  year: 2017
  ident: 2028_CR41
  publication-title: Journal of neuro-oncology
  doi: 10.1007/s11060-017-2420-1
– ident: 2028_CR110
  doi: 10.1118/1.4957257
– volume: 11
  start-page: e0164924
  issue: 10
  year: 2016
  ident: 2028_CR13
  publication-title: PloS one
  doi: 10.1371/journal.pone.0164924
– volume: 17
  start-page: 33
  issue: 1
  year: 2018
  ident: 2028_CR87
  publication-title: Mol Cancer
  doi: 10.1186/s12943-018-0789-x
– volume: 196
  start-page: 1083
  issue: 5
  year: 2011
  ident: 2028_CR144
  publication-title: AJR American journal of roentgenology
  doi: 10.2214/AJR.10.4720
– volume: 19
  start-page: 862
  issue: 6
  year: 2017
  ident: 2028_CR65
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/now256
– volume: 356
  start-page: 227
  issue: 3
  year: 2007
  ident: 2028_CR116
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa062790
– ident: 2028_CR11
  doi: 10.1016/j.jacr.2017.12.006
– ident: 2028_CR200
  doi: 10.1016/j.radonc.2016.04.004
– ident: 2028_CR151
  doi: 10.1200/JCO.2017.35.15_suppl.e15626
– volume: 24
  start-page: 1342
  issue: 9
  year: 2018
  ident: 2028_CR208
  publication-title: Nature Medicine
  doi: 10.1038/s41591-018-0107-6
– volume: 45
  start-page: e678
  issue: 6
  year: 2018
  ident: 2028_CR82
  publication-title: Medical physics
  doi: 10.1002/mp.12938
– volume: 5
  start-page: 17787
  year: 2015
  ident: 2028_CR130
  publication-title: Scientific reports
  doi: 10.1038/srep17787
– volume: 199
  start-page: 654
  issue: 3
  year: 2012
  ident: 2028_CR122
  publication-title: AJR American journal of roentgenology
  doi: 10.2214/ajr.11.7824
– volume: 6
  start-page: 33860
  year: 2016
  ident: 2028_CR94
  publication-title: Scientific reports
  doi: 10.1038/srep33860
– volume: 51
  start-page: 279
  year: 2018
  ident: 2028_CR103
  publication-title: Clinical imaging
  doi: 10.1016/j.clinimag.2018.05.028
– ident: 2028_CR25
  doi: 10.1002/mp.12685
– volume: 8
  start-page: e60576
  issue: 3
  year: 2013
  ident: 2028_CR28
  publication-title: PloS one
  doi: 10.1371/journal.pone.0060576
– volume: 8
  start-page: 1679
  year: 2017
  ident: 2028_CR33
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.01679
– volume: 9
  start-page: e100244
  issue: 7
  year: 2014
  ident: 2028_CR95
  publication-title: PloS one
  doi: 10.1371/journal.pone.0100244
– volume: 3
  start-page: 57
  issue: 1
  year: 2016
  ident: 2028_CR29
  publication-title: Hepat Oncol
  doi: 10.2217/hep.15.41
– volume: 57
  start-page: A78
  issue: 2
  year: 2018
  ident: 2028_CR60
  publication-title: NuklearMedizin
  doi: 10.1055/s00839473
– volume: 15
  start-page: 222
  issue: 4
  year: 2018
  ident: 2028_CR179
  publication-title: Nat Rev Urol
  doi: 10.1038/nrurol.2018.9
– volume: 19
  start-page: 128
  issue: 1
  year: 2017
  ident: 2028_CR47
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/now135
– volume: 22
  start-page: 348
  issue: 2
  year: 2015
  ident: 2028_CR50
  publication-title: European journal of neurology
  doi: 10.1111/ene.12578
– volume: 4
  start-page: 041304
  issue: 4
  year: 2017
  ident: 2028_CR121
  publication-title: Journal of medical imaging (Bellingham, Wash)
  doi: 10.1117/1.jmi.4.4.041304
– ident: 2028_CR163
  doi: 10.1016/j.juro.2018.02.2302
– ident: 2028_CR182
  doi: 10.1200/jco.2015.33.7_suppl.25
– volume: 20
  start-page: 1068
  issue: 8
  year: 2018
  ident: 2028_CR69
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/noy033
– volume: 6
  start-page: e25451
  issue: 10
  year: 2011
  ident: 2028_CR37
  publication-title: PloS one
  doi: 10.1371/journal.pone.0025451
– volume: 7
  start-page: 18
  issue: 1
  year: 2010
  ident: 2028_CR123
  publication-title: Journal of the American college of radiology
  doi: 10.1016/j.jacr.2009.09.022
– volume: 8
  start-page: 101244
  issue: 60
  year: 2017
  ident: 2028_CR77
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.20643
– volume: 66
  start-page: 1186
  issue: 6
  year: 2005
  ident: 2028_CR152
  publication-title: Urology
  doi: 10.1016/j.urology.2005.07.009
– volume: 26
  start-page: 32
  issue: 1
  year: 2016
  ident: 2028_CR96
  publication-title: European radiology
  doi: 10.1007/s00330-015-3814-0
– volume: 62
  start-page: 792
  issue: 3
  year: 2015
  ident: 2028_CR146
  publication-title: Hepatology (Baltimore, Md)
  doi: 10.1002/hep.27877
– volume: 5
  start-page: 18678
  year: 2015
  ident: 2028_CR167
  publication-title: Scientific reports
  doi: 10.1038/srep18678
– volume: 286
  start-page: 307
  issue: 1
  year: 2018
  ident: 2028_CR107
  publication-title: Radiology
  doi: 10.1148/radiol.2017161845
– ident: 2028_CR190
  doi: 10.1148/radiol.2018172361
– volume: 8
  start-page: 5087
  issue: 1
  year: 2018
  ident: 2028_CR79
  publication-title: Scientific reports
  doi: 10.1038/s41598-018-22739-2
– volume: 7
  start-page: 556
  issue: 5
  year: 2014
  ident: 2028_CR213
  publication-title: Translational oncology
  doi: 10.1016/j.tranon.2014.07.007
– volume: 5
  start-page: 011021
  issue: 1
  year: 2018
  ident: 2028_CR15
  publication-title: Journal of medical imaging (Bellingham, Wash)
  doi: 10.1117/1.JMI.5.1.011021
– volume: 72
  start-page: 443
  issue: 6
  year: 2017
  ident: 2028_CR109
  publication-title: Clinical radiology
  doi: 10.1016/j.crad.2017.01.015
– ident: 2028_CR19
  doi: 10.3389/fonc.2015.00272
– volume: 119
  start-page: S290
  issue: Supplement 1
  year: 2016
  ident: 2028_CR88
  publication-title: Radiotherapy and Oncology
  doi: 10.1016/S0167-8140(16)31859-X
– volume: 9
  start-page: 5449
  issue: 1
  year: 2019
  ident: 2028_CR198
  publication-title: Scientific reports
  doi: 10.1038/s41598-019-41728-7
– volume: 15
  start-page: 353
  issue: 6
  year: 2018
  ident: 2028_CR27
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/s41571-018-0002-6
– volume: 4
  start-page: 57
  issue: 5–6
  year: 2017
  ident: 2028_CR78
  publication-title: Oncoscience
  doi: 10.18632/oncoscience.353
– volume: 48
  start-page: 27
  year: 2018
  ident: 2028_CR8
  publication-title: Physica medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB)
  doi: 10.1016/j.ejmp.2018.03.012
– ident: 2028_CR174
– volume: 7
  start-page: 46349
  year: 2017
  ident: 2028_CR10
  publication-title: Scientific reports
  doi: 10.1038/srep46349
– volume: 40
  start-page: 2331
  issue: 7
  year: 2015
  ident: 2028_CR170
  publication-title: Abdominal imaging
  doi: 10.1007/s00261-015-0438-4
– volume: 26
  start-page: 922
  year: 2013
  ident: 2028_CR66
  publication-title: Modern Pathology
  doi: 10.1038/modpathol.2012.166
– ident: 2028_CR202
  doi: 10.21037/qims.2019.03.02
– volume: 7
  start-page: 5467
  issue: 1
  year: 2017
  ident: 2028_CR20
  publication-title: Scientific reports
  doi: 10.1038/s41598-017-05848-2
– volume: 1
  start-page: 1
  year: 2017
  ident: 2028_CR184
  publication-title: JCO Clinical Cancer Informatics
  doi: 10.1200/CCI.17.00004
– ident: 2028_CR18
  doi: 10.1038/srep13087
– ident: 2028_CR192
  doi: 10.1007/s00330-017-4859-z
– ident: 2028_CR195
  doi: 10.1371/journal.pone.0102107
– ident: 2028_CR199
  doi: 10.1002/acm2.12170
– volume: 25
  start-page: 675
  issue: 6
  year: 2007
  ident: 2028_CR145
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1306
– volume: 5
  start-page: v155
  year: 2015
  ident: 2028_CR214
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/nov225.11
– ident: 2028_CR185
  doi: 10.3109/0284186X.2013.812798
– volume: 5
  start-page: 4006
  year: 2014
  ident: 2028_CR4
  publication-title: Nature communications
  doi: 10.1038/ncomms5006
– volume: 2
  start-page: 344
  issue: 3
  year: 2011
  ident: 2028_CR166
  publication-title: Genes & Cancer
  doi: 10.1177/1947601911411084
– volume: 15
  start-page: 1159
  issue: 6
  year: 2006
  ident: 2028_CR117
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-06-0034
– volume: 42
  start-page: 2030
  issue: 8
  year: 2017
  ident: 2028_CR159
  publication-title: Abdominal Radiology
  doi: 10.1007/s00261-017-1192-6
– volume: 144
  start-page: 646
  issue: 5
  year: 2011
  ident: 2028_CR26
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 28
  start-page: 3640
  issue: 9
  year: 2018
  ident: 2028_CR80
  publication-title: European radiology
  doi: 10.1007/s00330-017-5302-1
– volume: 164
  start-page: 114
  year: 2018
  ident: 2028_CR59
  publication-title: Clinical neurology and neurosurgery
  doi: 10.1016/j.clineuro.2017.12.007
– volume: 97
  start-page: 8
  year: 2017
  ident: 2028_CR100
  publication-title: European journal of radiology
  doi: 10.1016/j.ejrad.2017.10.009
– volume: 57
  start-page: A36
  issue: 2
  year: 2018
  ident: 2028_CR54
  publication-title: NuklearMedizin
  doi: 10.1055/s00839473
– volume: 7
  start-page: 13396
  issue: 1
  year: 2017
  ident: 2028_CR51
  publication-title: Scientific reports
  doi: 10.1038/s41598-017-13679-4
– volume: 94
  start-page: e1753
  issue: 41
  year: 2015
  ident: 2028_CR92
  publication-title: Medicine
  doi: 10.1097/md.0000000000001753
– volume: 10
  start-page: 68
  year: 2013
  ident: 2028_CR132
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2013.2
– volume: 13
  start-page: 563
  issue: 4
  year: 2018
  ident: 2028_CR62
  publication-title: International journal of computer assisted radiology and surgery
  doi: 10.1007/s11548-017-1691-5
– volume: 16
  start-page: 2598
  issue: 11
  year: 2017
  ident: 2028_CR32
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-17-0386
– volume: 19
  start-page: 157
  issue: 3
  year: 2010
  ident: 2028_CR165
  publication-title: Diagn Mol Pathol
  doi: 10.1097/PDM.0b013e3181c93fd1
– volume: 28
  start-page: 2058
  issue: 5
  year: 2018
  ident: 2028_CR171
  publication-title: European radiology
  doi: 10.1007/s00330-017-5146-8
– ident: 2028_CR46
  doi: 10.1093/neuros/nyx316
– volume: 85
  start-page: 778
  issue: 1014
  year: 2012
  ident: 2028_CR143
  publication-title: The British journal of radiology
  doi: 10.1259/bjr/65897774
– volume: 285
  start-page: 482
  issue: 2
  year: 2017
  ident: 2028_CR134
  publication-title: Radiogenomics of high-grade serous ovarian cancer: multireader multi-institutional study from the Cancer Genome Atlas Ovarian Cancer Imaging Research Group.
– ident: 2028_CR150
  doi: 10.1007/s00261-018-1505-4
– volume: 52
  start-page: 378
  issue: 6
  year: 2018
  ident: 2028_CR158
  publication-title: J Pathol Transl Med
  doi: 10.4132/jptm.2018.09.21
– ident: 2028_CR157
  doi: 10.1016/j.urolonc.2018.01.002
– volume: 5
  start-page: 337
  issue: 4
  year: 2016
  ident: 2028_CR5
  publication-title: Translational cancer research
  doi: 10.21037/tcr.2016.07.14
– volume: 57
  start-page: 1227
  issue: 12
  year: 2015
  ident: 2028_CR43
  publication-title: Neuroradiology
  doi: 10.1007/s00234-015-1576-7
– volume: 11
  start-page: 94
  issue: 2
  year: 2009
  ident: 2028_CR153
  publication-title: Curr Oncol Rep
  doi: 10.1007/s11912-009-0015-5
– volume: 105
  start-page: 5213
  issue: 13
  year: 2008
  ident: 2028_CR35
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0801279105
– volume: 273
  start-page: 168
  issue: 1
  year: 2014
  ident: 2028_CR45
  publication-title: Radiology
  doi: 10.1148/radiol.14131731
– volume: 254
  start-page: 108
  issue: 1
  year: 2011
  ident: 2028_CR142
  publication-title: Annals of surgery
  doi: 10.1097/SLA.0b013e31821ad884
– volume: 27
  start-page: 2091
  issue: 12
  year: 2009
  ident: 2028_CR168
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2009.21.9170
– volume: 27
  start-page: 3509
  issue: 8
  year: 2017
  ident: 2028_CR64
  publication-title: European radiology
  doi: 10.1007/s00330-016-4653-3
– volume: 270
  start-page: 464
  issue: 2
  year: 2014
  ident: 2028_CR155
  publication-title: Radiology
  doi: 10.1148/radiol.13130663
– ident: 2028_CR172
  doi: 10.21873/anticanres.11039
– volume: 2
  start-page: S700
  year: 2015
  ident: 2028_CR98
  publication-title: Journal of Thoracic Oncology
– volume: 58
  start-page: 569
  issue: 4
  year: 2017
  ident: 2028_CR101
  publication-title: Journal of nuclear medicine: official publication, Society of Nuclear Medicine
  doi: 10.2967/jnumed.116.181826
– volume: 8
  start-page: 6076
  issue: 1
  year: 2018
  ident: 2028_CR164
  publication-title: Scientific reports
  doi: 10.1038/s41598-018-24306-1
– volume: 205
  start-page: 1016
  issue: 5
  year: 2015
  ident: 2028_CR105
  publication-title: AJR American journal of roentgenology
  doi: 10.2214/ajr.14.14147
– ident: 2028_CR156
  doi: 10.1118/1.4957254
– volume: 7
  start-page: 41674
  year: 2017
  ident: 2028_CR108
  publication-title: Scientific reports
  doi: 10.1038/srep41674
– ident: 2028_CR111
  doi: 10.1016/j.jtho.2017.09.581
– volume: 3
  start-page: 3529
  year: 2013
  ident: 2028_CR209
  publication-title: Scientific reports
  doi: 10.1038/srep03529
– volume: 9
  start-page: 5459
  issue: 4
  year: 2018
  ident: 2028_CR85
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.23616
– volume: 77
  start-page: 3922
  issue: 14
  year: 2017
  ident: 2028_CR99
  publication-title: Cancer research
  doi: 10.1158/0008-5472.can-17-0122
– volume: 281
  start-page: 907
  issue: 3
  year: 2016
  ident: 2028_CR68
  publication-title: Radiology
  doi: 10.1148/radiol.2016161382
– volume: 8
  start-page: 45888
  issue: 28
  year: 2017
  ident: 2028_CR52
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17585
– volume: 135
  start-page: 107
  year: 2019
  ident: 2028_CR201
  publication-title: Repeatability and reproducibility of MRI-based radiomic features in cervical cancer.
– ident: 2028_CR118
  doi: 10.1117/12.845321
– volume: 206
  start-page: 559
  issue: 3
  year: 2016
  ident: 2028_CR180
  publication-title: AJR American journal of roentgenology
  doi: 10.2214/ajr.15.14967
– volume: 285
  start-page: 401
  issue: 2
  year: 2017
  ident: 2028_CR129
  publication-title: Radiology
  doi: 10.1148/radiol.2017162823
– volume: 8
  start-page: 7
  issue: 1
  year: 2018
  ident: 2028_CR212
  publication-title: Scientific reports
  doi: 10.1038/s41598-017-18310-0
– volume: 30
  start-page: 44
  issue: 1
  year: 2019
  ident: 2028_CR31
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdy495
– volume: 2
  start-page: 041006
  issue: 4
  year: 2015
  ident: 2028_CR70
  publication-title: Journal of medical imaging (Bellingham, Wash)
  doi: 10.1117/1.jmi.2.4.041006
– ident: 2028_CR206
– ident: 2028_CR74
  doi: 10.1117/12.2255694
– ident: 2028_CR187
  doi: 10.1118/1.4934826
– volume: 42
  start-page: 147
  year: 2017
  ident: 2028_CR104
  publication-title: Clinical imaging
  doi: 10.1016/j.clinimag.2016.11.015
– volume: 7
  start-page: 50
  issue: 3
  year: 2017
  ident: 2028_CR178
  publication-title: Using Naïve Bayesian Analysis to Determine Imaging Characteristics of KRAS Mutations in Metastatic Colon Cancer.
– ident: 2028_CR141
  doi: 10.1200/JCO.2017.35.15_suppl.e15623
– volume: 63
  start-page: 1034
  issue: 5
  year: 2016
  ident: 2028_CR115
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2477688
– volume: 9
  start-page: 2068
  issue: 1
  year: 2019
  ident: 2028_CR191
  publication-title: Scientific reports
  doi: 10.1038/s41598-018-37984-8
– ident: 2028_CR44
  doi: 10.1093/neuonc/not183
– volume: 4
  start-page: 36
  issue: 1
  year: 2015
  ident: 2028_CR86
  publication-title: Transl Lung Cancer Res
  doi: 10.3978/j.issn.2218-6751.2014.05.01
– ident: 2028_CR1
  doi: 10.1371/journal.pone.0187908
– ident: 2028_CR93
– ident: 2028_CR36
  doi: 10.1093/neuonc/nor162
– volume: 18
  start-page: 821
  issue: 7
  year: 2007
  ident: 2028_CR140
  publication-title: Journal of vascular and interventional radiology: JVIR
  doi: 10.1016/j.jvir.2007.04.031
– volume: 73
  start-page: 590.e591
  issue: 6
  year: 2018
  ident: 2028_CR97
  publication-title: Clinical radiology
  doi: 10.1016/j.crad.2018.01.009
– volume: 70
  start-page: 232
  issue: 2
  year: 2009
  ident: 2028_CR6
  publication-title: European journal of radiology
  doi: 10.1016/j.ejrad.2009.01.050
– ident: 2028_CR38
  doi: 10.1093/bib/bby026
– ident: 2028_CR56
  doi: 10.1007/s00330-018-5400-8
– ident: 2028_CR205
– volume: 11
  start-page: e0166550
  issue: 12
  year: 2016
  ident: 2028_CR14
  publication-title: PloS one
  doi: 10.1371/journal.pone.0166550
– ident: 2028_CR173
– ident: 2028_CR196
  doi: 10.1038/srep34921
– volume: 89
  start-page: 20160212
  issue: 1063
  year: 2016
  ident: 2028_CR175
  publication-title: The British journal of radiology
  doi: 10.1259/bjr.20160212
– ident: 2028_CR128
  doi: 10.1038/s41416-018-0185-8
– volume: 28
  start-page: 356
  issue: 1
  year: 2018
  ident: 2028_CR67
  publication-title: European radiology
  doi: 10.1007/s00330-017-4964-z
– volume: 264
  start-page: 387
  issue: 2
  year: 2012
  ident: 2028_CR90
  publication-title: Radiology
  doi: 10.1148/radiol.12111607
– ident: 2028_CR106
– volume: 13
  start-page: e0193871
  issue: 3
  year: 2018
  ident: 2028_CR137
  publication-title: PloS one
  doi: 10.1371/journal.pone.0193871
– volume: 1
  start-page: 034003
  issue: 3
  year: 2014
  ident: 2028_CR23
  publication-title: Journal of medical imaging (Bellingham, Wash)
  doi: 10.1117/1.JMI.1.3.034003
– volume: 2
  start-page: 1636
  issue: 12
  year: 2016
  ident: 2028_CR24
  publication-title: JAMA oncology
  doi: 10.1001/jamaoncol.2016.2631
– volume: 34
  start-page: 163
  issue: 1
  year: 2018
  ident: 2028_CR211
  publication-title: Cancer cell
  doi: 10.1016/j.ccell.2018.06.006
– volume-title: Benali HJapa
  year: 2018
  ident: 2028_CR16
– volume: 39
  start-page: 668
  issue: 3
  year: 2014
  ident: 2028_CR162
  publication-title: Abdominal imaging
  doi: 10.1007/s00261-014-0161-6
– ident: 2028_CR22
  doi: 10.6082/3jah-5j51
– volume: 42
  start-page: 6725
  issue: 11
  year: 2015
  ident: 2028_CR39
  publication-title: Medical physics
  doi: 10.1118/1.4934373
– ident: 2028_CR181
  doi: 10.1200/jco.2015.33.7_suppl.126
– ident: 2028_CR112
– ident: 2028_CR189
  doi: 10.1002/mp.12123
– ident: 2028_CR53
– ident: 2028_CR21
  doi: 10.1200/jco.2018.36.15_suppl.8528
– volume: 17
  start-page: 209
  issue: 4
  year: 2017
  ident: 2028_CR34
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc.2016.154
– volume: 278
  start-page: 563
  issue: 2
  year: 2016
  ident: 2028_CR3
  publication-title: They Are Data. Radiology
  doi: 10.1148/radiol.2015151169
– volume: 16
  start-page: 424
  issue: 4
  year: 2014
  ident: 2028_CR119
  publication-title: Breast cancer research: BCR
  doi: 10.1186/s13058-014-0424-8
– ident: 2028_CR203
  doi: 10.21037/tcr.2019.01.14
– volume: 8
  start-page: 228
  year: 2018
  ident: 2028_CR7
  publication-title: Frontiers in oncology
  doi: 10.3389/fonc.2018.00228
– volume: 11
  start-page: 94
  issue: 1
  year: 2018
  ident: 2028_CR113
  publication-title: Translational oncology
  doi: 10.1016/j.tranon.2017.10.012
– volume: 12
  start-page: e0185190
  issue: 9
  year: 2017
  ident: 2028_CR84
  publication-title: PloS one
  doi: 10.1371/journal.pone.0185190
– ident: 2028_CR176
  doi: 10.1007/s11548-014-0991-2
– ident: 2028_CR40
  doi: 10.1117/12.2217084
SSID ssj0001651125
ssj0008379
Score 2.609758
SecondaryResourceType review_article
Snippet From diagnostics to prognosis to response prediction, new applications for radiomics are rapidly being developed. One of the fastest evolving branches involves...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1960
SubjectTerms Biological evolution
Brain cancer
Breast cancer
CME articles
Colorectal cancer
Gastroenterology
Hepatology
Image processing
Imaging
Kidney cancer
Liver cancer
Medicine
Medicine & Public Health
Mutation
Phenotypes
Prostate cancer
Radiology
Radiomics
Special Section: Radiogenomics
Tumors
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90A_HF74_qlAq-uY5-pG3q2xDnUOaDOJhPJUlTGLpOXMfAv95L1taPqbDnpNf0Ltf87i53B3CeIsZQZadQxR2uvFWppaJLlh-EnHiCSaZ9ur37oNsntwN_UCSFTcrb7mVIUv-pq2Q3bS6g6RtZCHFcas1WoY74wyY1qLdvnu6--FYCBSN83VcuQIPZJoMiX-Z3Qt_PpAWguRAk1WdPZxP65arnV06eW9Oct8T7j4KOy37WFmwUYNRsz3fPNqzIbAfWekW4fReaDywZjlUZ19FQTC5Nnd2FxM3hSDc3MlmWmOXwHvQ7149XXator2AJ4kS5JWTq-8wRduqLkKPdxFEyAY3ClNLEJTyNHCJSKgPCiCrCI7jtJCzwBWF4zkfS24daNs7kIZhU5atKjzBUfxImgvIklMKNXE5tzok0wCkZHIui9rhqgfESV1WTNRtiZEOs2RDPDLionnmdV974d3ajlFtcaOEkdlXDLep5ETXgrBpG_VFBEZbJ8VTNcRXGRVRpwMFc3tXrEPqSCPGLAc1Sdp_E_17L0XLTj2Hd1eJXrp0G1PK3qTxBpJPz02JjfwAW6PAM
  priority: 102
  providerName: Springer Nature
Title Radiogenomics: bridging imaging and genomics
URI https://link.springer.com/article/10.1007/s00261-019-02028-w
https://www.ncbi.nlm.nih.gov/pubmed/31049614
https://www.proquest.com/docview/2218683398
https://www.proquest.com/docview/2229231423
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LS_QwEB98gHgRX99nfVHBmxa3adqmXmR32VUUFxEX1lNJ0hQWtKvuiv--M9m0IqKX5JA0DTN5_GYmMwNwXCLGoLBTuMVDRdqqMiDrUhAnqeKRlkZane7tILka8utRPHIKt6l7VlmfifagLiaadORnjJIniSjKxMXLa0BZo8i66lJoLMIyhS6jJ13pqBG4EF3YWHssSlBqbvGRc5qxrnNW-EBBOgsQMDERfHy_mH6gzR-WUnsB9ddhzSFHvz1n9QYsmGoTVm6dbXwLTu9lMZ5QzNXnsZ6e-9YVC0fyx882E5Evq8Kvm7dh2O89dK8Clwsh0DzMZoE2ZRzLULfKWKcKhRyFZExElpZCFIyrMgu5LoVJuOQUMUerVljIJNZc4qWcmegfLFWTyuyAL8i51ERc4l7laaGFKlKjWcaUaCnFjQdhTYhcu0DhlK_iKW9CHFvi5Ui83BIv__DgpPnmZR4m48_e-zV9c7dlpvkXgz04appxsZMFQ1Zm8k59GAFShIAe_J_zpfkd4lSeIdjw4LRm1Nfgv89l9--57MEqs4uE9C77sDR7ezcHCENm6tCuNSxF__IQltv9TmdA9eXjTQ_rTm9wd4-t3aSL5ZC1PwGQd9xa
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9NADLdGkYAXBGODQGGZNJ5YRHO5JBckhBDQdWu7B9RKfcvuLhep0pp2tFXFl-IzYl_-VKiib3vO5WL5bN_PdmwDnOWIMajtFKq4ryhalXuUXfLCKFY80NJIG9MdXke9Mb-ahJMD-FPXwtBvlbVNtIY6m2uKkX9kNDxJBEEivizuPJoaRdnVeoRGKRZ983uDLtvy8-V3PN_3jHV_jL71vGqqgKe5n6w8bfIwlL7u5KGOFboLCgmKRBLnQmSMqzzxuc6Fibjk1HtGq46fySjUXOL1lpgA930ADzmSQholuheN5Rdlbz8WROild_ikKtKxpXrW2UHHPfEQoDHhbf69CHfQ7U5m1l543WfwtEKq7tdStJ7DgSkO4dGwysW_gPOfMpvOqcfrbKqXn1xb-oU7udOZnXzkyiJz68dHML4XLh1Dq5gX5hW4gopZTcAl2gYeZ1qoLDaaJUyJjlLcOODXjEh11Zic5mPcpk1LZcu8FJmXWualGwc-NO8syrYce1e3a_6mlYou061AOXDaPEblooyJLMx8TWsYAWCEnA68LM-l-RziYp4guHHgvD6o7eb_p-X1flpO4HFvNBykg8vr_ht4wqzAUMynDa3Vr7V5ixBopd5ZuXPh5r4F_S8WmxLh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS8QwEB48QHwRb-tZQZ-0uE3TNhVERF28EVHYt5qkKSy4XXVXFv-av86ZbFsR0Tefk6ZhjuSbmcwMwFaOGIPKTqGK-4q8VblH0SUvjGLFAy2NtD7d65vo7IFftMLWCHxUuTD0rLI6E-1BnXU1-cj3GDVPEkGQiL28fBZxe9I8fH7xqIMURVqrdhpDEbk07wM033oH5yfI623Gmqf3x2de2WHA09xP-p42eRhKXzfyUMcKTQeFm4tEEudCZIyrPPG5zoWJuORUh0arhp_JKNRc4lWXmADXHYXxOAh90rG4VRt7iGxsnT8WRGixN3irTNixaXvW8EEjPvEQrDHhDb5fij-Q7o8orb38mtMwVaJW92goZjMwYopZmLgu4_JzsHsns3aX6r122rq379o0MFzJbXdsFyRXFplbDc_Dw79QaQHGim5hlsAVlNhqAi7xnOBxpoXKYqNZwpRoKMWNA35FiFSXRcqpV8ZTWpdXtsRLkXipJV46cGCn_uZ5WKLjz9mrFX3TUl176ZdwObBZD6OiUfREFqb7RnMYgWGEnw4sDvlS_w4xMk8Q6DiwWzHqa_Hf97L89142YAJFPL06v7lcgUlm5YXcP6sw1n99M2uIhvpq3YqdC4__Leef21kXDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiogenomics%3A+bridging+imaging+and+genomics&rft.jtitle=Abdominal+radiology+%28New+York%29&rft.au=Bodalal%2C+Zuhir&rft.au=Trebeschi%2C+Stefano&rft.au=Nguyen-Kim%2C+Thi+Dan+Linh&rft.au=Schats%2C+Winnie&rft.date=2019-06-01&rft.eissn=2366-0058&rft.volume=44&rft.issue=6&rft.spage=1960&rft_id=info:doi/10.1007%2Fs00261-019-02028-w&rft_id=info%3Apmid%2F31049614&rft.externalDocID=31049614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-004X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-004X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-004X&client=summon