Radiogenomics: bridging imaging and genomics
From diagnostics to prognosis to response prediction, new applications for radiomics are rapidly being developed. One of the fastest evolving branches involves linking imaging phenotypes to the tumor genetic profile, a field commonly referred to as “radiogenomics.” In this review, a general outline...
Saved in:
Published in | Abdominal imaging Vol. 44; no. 6; pp. 1960 - 1984 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | From diagnostics to prognosis to response prediction, new applications for radiomics are rapidly being developed. One of the fastest evolving branches involves linking imaging phenotypes to the tumor genetic profile, a field commonly referred to as “radiogenomics.” In this review, a general outline of radiogenomic literature concerning prominent mutations across different tumor sites will be provided. The field of radiogenomics originates from image processing techniques developed decades ago; however, many technical and clinical challenges still need to be addressed. Nevertheless, increasingly accurate and robust radiogenomic models are being presented and the future appears to be bright. |
---|---|
AbstractList | From diagnostics to prognosis to response prediction, new applications for radiomics are rapidly being developed. One of the fastest evolving branches involves linking imaging phenotypes to the tumor genetic profile, a field commonly referred to as "radiogenomics." In this review, a general outline of radiogenomic literature concerning prominent mutations across different tumor sites will be provided. The field of radiogenomics originates from image processing techniques developed decades ago; however, many technical and clinical challenges still need to be addressed. Nevertheless, increasingly accurate and robust radiogenomic models are being presented and the future appears to be bright. From diagnostics to prognosis to response prediction, new applications for radiomics are rapidly being developed. One of the fastest evolving branches involves linking imaging phenotypes to the tumor genetic profile, a field commonly referred to as "radiogenomics." In this review, a general outline of radiogenomic literature concerning prominent mutations across different tumor sites will be provided. The field of radiogenomics originates from image processing techniques developed decades ago; however, many technical and clinical challenges still need to be addressed. Nevertheless, increasingly accurate and robust radiogenomic models are being presented and the future appears to be bright.From diagnostics to prognosis to response prediction, new applications for radiomics are rapidly being developed. One of the fastest evolving branches involves linking imaging phenotypes to the tumor genetic profile, a field commonly referred to as "radiogenomics." In this review, a general outline of radiogenomic literature concerning prominent mutations across different tumor sites will be provided. The field of radiogenomics originates from image processing techniques developed decades ago; however, many technical and clinical challenges still need to be addressed. Nevertheless, increasingly accurate and robust radiogenomic models are being presented and the future appears to be bright. |
Author | Nguyen-Kim, Thi Dan Linh Trebeschi, Stefano Schats, Winnie Beets-Tan, Regina Bodalal, Zuhir |
Author_xml | – sequence: 1 givenname: Zuhir orcidid: 0000-0002-2617-8128 surname: Bodalal fullname: Bodalal, Zuhir organization: Department of Radiology, The Netherlands Cancer Institute, GROW School for Oncology and Developmental Biology, Maastricht University – sequence: 2 givenname: Stefano orcidid: 0000-0002-5714-289X surname: Trebeschi fullname: Trebeschi, Stefano organization: Department of Radiology, The Netherlands Cancer Institute, GROW School for Oncology and Developmental Biology, Maastricht University – sequence: 3 givenname: Thi Dan Linh orcidid: 0000-0001-9888-0453 surname: Nguyen-Kim fullname: Nguyen-Kim, Thi Dan Linh organization: Department of Radiology, The Netherlands Cancer Institute, GROW School for Oncology and Developmental Biology, Maastricht University, Institute of Diagnostic and Interventional Radiology, University Hospital Zurich – sequence: 4 givenname: Winnie orcidid: 0000-0003-1470-9515 surname: Schats fullname: Schats, Winnie organization: Scientific Information Service, The Netherlands Cancer Institute – sequence: 5 givenname: Regina surname: Beets-Tan fullname: Beets-Tan, Regina email: r.beetstan@nki.nl organization: Department of Radiology, The Netherlands Cancer Institute, GROW School for Oncology and Developmental Biology, Maastricht University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31049614$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LAzEQhoNUrNb-AQ9S8OLB1Zkkm2a9ifgFBUEUvIVsNltS2mxNdhH_vbEfCj14moF53mHmOSI933hLyAnCJQKMryIAFZgBFhlQoDL73COHlAmRAeSy99vz9z4ZxjgDABQ5Is0PSJ8h8EIgPyQXL7pyzdT6ZuFMvB6VwVVT56cjt9Crqn012o6PyX6t59EON3VA3u7vXm8fs8nzw9PtzSQzHIs2M7bOc40G6tyMyzGKUlstZDGupawoL-sCuamlFVxz5MBNCVhpkRuuKZOFZQNyvt67DM1HZ2OrFi4aO59rb5suKkppQRlyyhJ6toPOmi74dF2iUArJWCETdbqhunJhK7UM6b3wpbYeEiDXgAlNjMHWyrhWt67xbdBurhDUj3W1tq6SdbWyrj5TlO5Et9v_DbF1KCbYT234O_uf1DcERJJ2 |
CitedBy_id | crossref_primary_10_1002_jmri_27637 crossref_primary_10_1038_s41598_020_60202_3 crossref_primary_10_3389_fonc_2022_898971 crossref_primary_10_1089_omi_2022_0015 crossref_primary_10_1016_j_ejrad_2020_109266 crossref_primary_10_1097_RCT_0000000000001279 crossref_primary_10_1055_a_1522_3029 crossref_primary_10_1016_j_imu_2022_100965 crossref_primary_10_1016_j_knosys_2023_110937 crossref_primary_10_3390_medicina58040526 crossref_primary_10_1007_s11060_023_04511_3 crossref_primary_10_5528_wjtm_v9_i1_1 crossref_primary_10_1007_s10554_020_01926_1 crossref_primary_10_3390_diagnostics14131427 crossref_primary_10_2214_AJR_19_22608 crossref_primary_10_1016_j_acra_2024_11_023 crossref_primary_10_1186_s12967_023_04175_7 crossref_primary_10_3389_fonc_2022_1026305 crossref_primary_10_6009_jjrt_2023_2269 crossref_primary_10_1016_j_ctro_2021_03_006 crossref_primary_10_1007_s00405_023_07909_x crossref_primary_10_1007_s00259_021_05371_7 crossref_primary_10_7887_jcns_29_166 crossref_primary_10_3390_diagnostics13020269 crossref_primary_10_3390_tomography10090107 crossref_primary_10_1186_s12880_022_00879_2 crossref_primary_10_29328_journal_hor_1001024 crossref_primary_10_1007_s00261_023_03875_4 crossref_primary_10_3390_gidisord5040046 crossref_primary_10_1148_radiol_2020191145 crossref_primary_10_3389_fonc_2022_974257 crossref_primary_10_1016_j_ebiom_2020_103136 crossref_primary_10_3389_fonc_2021_689509 crossref_primary_10_3390_cancers14071654 crossref_primary_10_1007_s11042_024_20388_4 crossref_primary_10_1007_s10143_022_01937_7 crossref_primary_10_3390_cancers15123074 crossref_primary_10_3390_cancers14205133 crossref_primary_10_3389_fonc_2022_773840 crossref_primary_10_1016_j_ucl_2023_01_009 crossref_primary_10_1007_s00117_019_00617_w crossref_primary_10_37549_AR2591 crossref_primary_10_1007_s42058_019_00020_3 crossref_primary_10_1148_rg_2020200194 crossref_primary_10_1016_j_radonc_2022_109446 crossref_primary_10_3390_app10186214 crossref_primary_10_3390_cancers15072058 crossref_primary_10_3390_diagnostics11091523 crossref_primary_10_1109_ACCESS_2021_3065965 crossref_primary_10_1186_s13244_024_01672_1 crossref_primary_10_1117_1_JMI_11_6_064501 crossref_primary_10_1016_j_molmed_2022_11_002 crossref_primary_10_1080_17474124_2024_2342837 crossref_primary_10_3390_cancers13112522 crossref_primary_10_1177_10732748231169149 crossref_primary_10_1016_j_critrevonc_2021_103309 crossref_primary_10_1097_RCT_0000000000001077 crossref_primary_10_3389_fonc_2021_704607 crossref_primary_10_1148_rg_2020200042 crossref_primary_10_3389_fonc_2020_570465 crossref_primary_10_1016_j_ijrobp_2022_08_047 crossref_primary_10_3389_fonc_2021_707686 crossref_primary_10_18632_aging_202752 crossref_primary_10_1161_STROKEAHA_123_046208 crossref_primary_10_3390_cancers15082220 crossref_primary_10_1016_j_cbpa_2021_102111 crossref_primary_10_1093_oncolo_oyac036 crossref_primary_10_7759_cureus_37889 crossref_primary_10_1007_s12029_022_00909_w crossref_primary_10_3390_life15010083 crossref_primary_10_1186_s12967_025_06101_5 crossref_primary_10_1016_j_compag_2024_109563 crossref_primary_10_3390_diagnostics14070712 crossref_primary_10_1259_bjro_20229003 crossref_primary_10_3390_cancers14194871 crossref_primary_10_1007_s00066_020_01625_9 crossref_primary_10_1002_cpt_3105 crossref_primary_10_3390_cancers14143438 crossref_primary_10_1208_s12248_021_00563_3 crossref_primary_10_1007_s10278_023_00905_x crossref_primary_10_1186_s12885_022_09584_3 crossref_primary_10_1016_j_acra_2022_10_030 crossref_primary_10_1016_j_ejrad_2024_111577 crossref_primary_10_3389_fonc_2022_865548 crossref_primary_10_1016_j_crad_2023_12_014 crossref_primary_10_3389_fonc_2024_1304187 crossref_primary_10_3390_diagnostics13030413 crossref_primary_10_1016_j_iotech_2021_100028 crossref_primary_10_1016_j_xcrm_2022_100861 crossref_primary_10_3233_XST_211096 crossref_primary_10_1109_TCBB_2022_3143900 crossref_primary_10_1007_s11547_024_01904_w crossref_primary_10_3390_jpm12030402 crossref_primary_10_3390_cancers14122860 crossref_primary_10_1016_j_yacr_2021_04_003 crossref_primary_10_3390_app13042218 crossref_primary_10_3390_ijms24054615 crossref_primary_10_1155_2022_1507125 crossref_primary_10_1089_aipo_2023_0002 crossref_primary_10_3390_ijms20236033 crossref_primary_10_3390_life13101950 crossref_primary_10_1259_bjr_20221063 crossref_primary_10_1007_s00259_021_05338_8 crossref_primary_10_1186_s41747_022_00306_9 crossref_primary_10_1007_s11912_020_00994_9 crossref_primary_10_1016_j_banm_2019_06_016 crossref_primary_10_1093_bioadv_vbac079 crossref_primary_10_1148_rg_230052 crossref_primary_10_1245_s10434_024_15457_9 crossref_primary_10_3390_jcm13144167 crossref_primary_10_3390_math10224225 crossref_primary_10_1002_jmri_27349 crossref_primary_10_1007_s12194_019_00552_4 crossref_primary_10_23736_S2723_9284_23_00247_9 crossref_primary_10_3390_diagnostics13040738 crossref_primary_10_1371_journal_pone_0234871 crossref_primary_10_3390_jcm11226836 crossref_primary_10_3390_cancers14092085 crossref_primary_10_1148_radiol_2020200583 crossref_primary_10_1186_s40478_020_01107_0 crossref_primary_10_3390_diagnostics13071210 crossref_primary_10_1038_s41598_023_51031_1 crossref_primary_10_3390_cimb46040203 crossref_primary_10_1016_j_csbj_2024_06_019 crossref_primary_10_3390_biomedicines10123205 crossref_primary_10_1007_s00129_022_04993_8 crossref_primary_10_5114_bta_200803 crossref_primary_10_3390_cancers16051076 crossref_primary_10_37349_etat_2023_00151 crossref_primary_10_1016_j_jbo_2024_100614 crossref_primary_10_1097_RCT_0000000000001454 crossref_primary_10_3390_bioengineering10121364 crossref_primary_10_1007_s00330_023_10054_y crossref_primary_10_1186_s40779_024_00580_1 crossref_primary_10_1142_S2811032322500047 crossref_primary_10_1088_1361_6560_ac6fab crossref_primary_10_1117_1_JMI_9_4_045003 crossref_primary_10_1007_s00259_023_06405_y crossref_primary_10_1186_s13014_022_02192_2 crossref_primary_10_14366_usg_24152 crossref_primary_10_1016_j_compbiomed_2024_108293 crossref_primary_10_1007_s00423_023_02951_z crossref_primary_10_3748_wjg_v30_i4_381 crossref_primary_10_31083_j_fbl2709254 crossref_primary_10_3389_fonc_2021_633176 crossref_primary_10_1055_s_0043_1776426 crossref_primary_10_3389_fonc_2024_1489217 crossref_primary_10_1016_j_acra_2024_01_024 crossref_primary_10_1016_j_rcl_2020_06_001 crossref_primary_10_3390_app11073273 crossref_primary_10_3389_fonc_2020_567736 crossref_primary_10_3390_jpm11030188 crossref_primary_10_1186_s40001_024_01746_2 crossref_primary_10_1002_acm2_13739 crossref_primary_10_1016_j_inffus_2023_102032 crossref_primary_10_1177_15330338221126869 crossref_primary_10_1186_s40644_025_00841_9 crossref_primary_10_3390_biom11040565 crossref_primary_10_3390_jpm12122022 crossref_primary_10_1007_s11547_021_01388_y crossref_primary_10_3390_ijms24087214 crossref_primary_10_1186_s12967_019_2073_2 crossref_primary_10_1007_s13139_020_00642_x crossref_primary_10_3390_cancers13030552 crossref_primary_10_1016_j_canlet_2020_03_032 crossref_primary_10_3389_frsip_2023_1271769 crossref_primary_10_1007_s00261_022_03534_0 crossref_primary_10_3389_fmedt_2022_1007822 crossref_primary_10_3390_ijms22189971 crossref_primary_10_2214_AJR_19_21677 crossref_primary_10_1016_j_dld_2022_11_005 crossref_primary_10_3389_fphy_2022_920506 crossref_primary_10_1186_s12967_022_03452_1 crossref_primary_10_3390_cancers14071646 crossref_primary_10_1002_ctm2_1522 crossref_primary_10_1016_j_semcancer_2023_02_006 crossref_primary_10_1007_s00261_020_02556_w crossref_primary_10_1055_s_0039_3400268 crossref_primary_10_1155_2022_6623574 crossref_primary_10_1007_s11547_023_01644_3 crossref_primary_10_1016_j_acra_2020_06_016 crossref_primary_10_1097_OGX_0000000000000902 crossref_primary_10_1097_HM9_0000000000000077 crossref_primary_10_1038_s41571_021_00560_7 crossref_primary_10_3389_fonc_2022_892056 crossref_primary_10_1016_j_labinv_2024_102060 crossref_primary_10_3390_cancers14164052 crossref_primary_10_1016_j_cmpb_2021_106311 crossref_primary_10_1016_j_cmpb_2022_106750 crossref_primary_10_1097_RMR_0000000000000222 crossref_primary_10_34133_jbioxresearch_0022 crossref_primary_10_1016_j_biopha_2020_111173 crossref_primary_10_3390_diagnostics10060359 crossref_primary_10_1186_s40644_024_00746_z crossref_primary_10_1007_s00381_022_05534_3 crossref_primary_10_1055_a_1355_0636 crossref_primary_10_1089_omi_2021_0065 crossref_primary_10_4251_wjgo_v13_i11_1599 crossref_primary_10_2967_jnumed_121_262618 crossref_primary_10_1016_j_jddst_2023_104681 crossref_primary_10_1080_14737140_2020_1712198 crossref_primary_10_3390_medicina61030380 crossref_primary_10_1186_s13244_023_01474_x crossref_primary_10_3390_cancers13112681 crossref_primary_10_1360_TB_2024_0018 |
Cites_doi | 10.1055/s-0037-1600633 10.5599/admet.1.3.7 10.1038/srep23428 10.1186/s12885-016-2659-5 10.18632/oncotarget.10523 10.1148/radiol.14132641 10.1038/s41598-018-30273-4 10.1007/s11060-017-2576-8 10.1007/s00261-015-0386-z 10.1038/s41598-017-02425-5 10.1117/12.2217658 10.1016/j.lungcan.2014.09.007 10.1007/BF01297149 10.1038/s41467-019-08718-9 10.1007/s00330-017-5267-0 10.1117/1.jmi.1.3.031009 10.1002/cncr.31039 10.1007/s13139-017-0512-7 10.5694/mja14.00132 10.1016/j.athoracsur.2015.07.062 10.1371/journal.pone.0146388 10.1016/j.ijrobp.2018.05.053 10.1109/isbi.2017.7950601 10.1002/hep.28620 10.3390/biomedicines6010035 10.1007/s00330-018-5695-5 10.1007/s00261-018-1600-6 10.1634/theoncologist.2016-0179 10.1002/jmri.25960 10.1038/s41598-018-24438-4 10.3322/caac.21492 10.1056/NEJMoa1305275 10.1080/08998280.2008.11928410 10.1093/neuonc/nox168 10.1117/12.2254212 10.1148/radiol.2016152110 10.1002/jmri.24879 10.1016/S0959-8049(16)30301-X 10.7554/elife.23421 10.1016/j.ygyno.2016.02.023 10.1117/12.2293701 10.2217/bmm.14.16 10.1007/s11060-017-2420-1 10.1118/1.4957257 10.1371/journal.pone.0164924 10.1186/s12943-018-0789-x 10.2214/AJR.10.4720 10.1093/neuonc/now256 10.1056/NEJMoa062790 10.1016/j.jacr.2017.12.006 10.1016/j.radonc.2016.04.004 10.1200/JCO.2017.35.15_suppl.e15626 10.1038/s41591-018-0107-6 10.1002/mp.12938 10.1038/srep17787 10.2214/ajr.11.7824 10.1038/srep33860 10.1016/j.clinimag.2018.05.028 10.1002/mp.12685 10.1371/journal.pone.0060576 10.3389/fimmu.2017.01679 10.1371/journal.pone.0100244 10.2217/hep.15.41 10.1055/s00839473 10.1038/nrurol.2018.9 10.1093/neuonc/now135 10.1111/ene.12578 10.1117/1.jmi.4.4.041304 10.1016/j.juro.2018.02.2302 10.1200/jco.2015.33.7_suppl.25 10.1093/neuonc/noy033 10.1371/journal.pone.0025451 10.1016/j.jacr.2009.09.022 10.18632/oncotarget.20643 10.1016/j.urology.2005.07.009 10.1007/s00330-015-3814-0 10.1002/hep.27877 10.1038/srep18678 10.1148/radiol.2017161845 10.1148/radiol.2018172361 10.1038/s41598-018-22739-2 10.1016/j.tranon.2014.07.007 10.1117/1.JMI.5.1.011021 10.1016/j.crad.2017.01.015 10.3389/fonc.2015.00272 10.1016/S0167-8140(16)31859-X 10.1038/s41598-019-41728-7 10.1038/s41571-018-0002-6 10.18632/oncoscience.353 10.1016/j.ejmp.2018.03.012 10.1038/srep46349 10.1007/s00261-015-0438-4 10.1038/modpathol.2012.166 10.21037/qims.2019.03.02 10.1038/s41598-017-05848-2 10.1200/CCI.17.00004 10.1038/srep13087 10.1007/s00330-017-4859-z 10.1371/journal.pone.0102107 10.1002/acm2.12170 10.1038/nbt1306 10.1093/neuonc/nov225.11 10.3109/0284186X.2013.812798 10.1038/ncomms5006 10.1177/1947601911411084 10.1158/1055-9965.EPI-06-0034 10.1007/s00261-017-1192-6 10.1016/j.cell.2011.02.013 10.1007/s00330-017-5302-1 10.1016/j.clineuro.2017.12.007 10.1016/j.ejrad.2017.10.009 10.1038/s41598-017-13679-4 10.1097/md.0000000000001753 10.1038/nrclinonc.2013.2 10.1007/s11548-017-1691-5 10.1158/1535-7163.MCT-17-0386 10.1097/PDM.0b013e3181c93fd1 10.1007/s00330-017-5146-8 10.1093/neuros/nyx316 10.1259/bjr/65897774 10.1007/s00261-018-1505-4 10.4132/jptm.2018.09.21 10.1016/j.urolonc.2018.01.002 10.21037/tcr.2016.07.14 10.1007/s00234-015-1576-7 10.1007/s11912-009-0015-5 10.1073/pnas.0801279105 10.1148/radiol.14131731 10.1097/SLA.0b013e31821ad884 10.1200/JCO.2009.21.9170 10.1007/s00330-016-4653-3 10.1148/radiol.13130663 10.21873/anticanres.11039 10.2967/jnumed.116.181826 10.1038/s41598-018-24306-1 10.2214/ajr.14.14147 10.1118/1.4957254 10.1038/srep41674 10.1016/j.jtho.2017.09.581 10.1038/srep03529 10.18632/oncotarget.23616 10.1158/0008-5472.can-17-0122 10.1148/radiol.2016161382 10.18632/oncotarget.17585 10.1117/12.845321 10.2214/ajr.15.14967 10.1148/radiol.2017162823 10.1038/s41598-017-18310-0 10.1093/annonc/mdy495 10.1117/1.jmi.2.4.041006 10.1117/12.2255694 10.1118/1.4934826 10.1016/j.clinimag.2016.11.015 10.1200/JCO.2017.35.15_suppl.e15623 10.1109/TBME.2015.2477688 10.1038/s41598-018-37984-8 10.1093/neuonc/not183 10.3978/j.issn.2218-6751.2014.05.01 10.1371/journal.pone.0187908 10.1093/neuonc/nor162 10.1016/j.jvir.2007.04.031 10.1016/j.crad.2018.01.009 10.1016/j.ejrad.2009.01.050 10.1093/bib/bby026 10.1007/s00330-018-5400-8 10.1371/journal.pone.0166550 10.1038/srep34921 10.1259/bjr.20160212 10.1038/s41416-018-0185-8 10.1007/s00330-017-4964-z 10.1148/radiol.12111607 10.1371/journal.pone.0193871 10.1117/1.JMI.1.3.034003 10.1001/jamaoncol.2016.2631 10.1016/j.ccell.2018.06.006 10.1007/s00261-014-0161-6 10.6082/3jah-5j51 10.1118/1.4934373 10.1200/jco.2015.33.7_suppl.126 10.1002/mp.12123 10.1200/jco.2018.36.15_suppl.8528 10.1038/nrc.2016.154 10.1148/radiol.2015151169 10.1186/s13058-014-0424-8 10.21037/tcr.2019.01.14 10.3389/fonc.2018.00228 10.1016/j.tranon.2017.10.012 10.1371/journal.pone.0185190 10.1007/s11548-014-0991-2 10.1117/12.2217084 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Abdominal Radiology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: Abdominal Radiology is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. KB0 LK8 M0S M1P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00261-019-02028-w |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni) Proquest Medical Database Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Computer Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2366-0058 |
EndPage | 1984 |
ExternalDocumentID | 31049614 10_1007_s00261_019_02028_w |
Genre | Journal Article |
GroupedDBID | -EM 04C 0R~ 29~ 2J2 2JN 2JY 2KG 2KM 2LR 406 53G 5VS 7RV 7X7 88E 8AO 8FH 8FI 8FJ 95- AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAYIU AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHVE ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACPRK ACZOJ ADBBV ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFJLC AFKRA AFLOW AFQWF AFRAH AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWZB AGYKE AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ AXYYD AZFZN B-. BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BMSDO BSONS C6C CCPQU CSCUP DDRTE DNIVK DPUIP EBLON EBS EIHBH EIOEI EJD EMB EMOBN FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GNWQR HCIFZ HMCUK IKXTQ IMOTQ ITM IWAJR J-C JZLTJ K7- KOV LK8 LLZTM M1P M4Y M7P NAPCQ NPVJJ NQJWS NU0 O9J PQQKQ PROAC PSQYO PT4 QOR R89 ROL RSV S16 SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN TSG UG4 UKHRP UOJIU UTJUX W23 YLTOR Z7X Z83 Z87 Z8V Z8W Z91 ZMTXR AAAVM AANXM AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ACSTC ACUDM AEBTG AEKMD AEZWR AFDZB AFEXP AFHIU AFOHR AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA CITATION GRRUI H13 PHGZM PHGZT SCLPG SDE UZXMN VFIZW AJOOF NPM --- .86 .VR 06C 06D 0VY 1N0 23M 2~H 30V 36B 3V. 4.4 408 409 40D 40E 5GY 5RE 67Z 6NX 7XB 8FD 8FE 8FG 8FK 8TC 95. 95~ 96X AAWCG AAWTL AAYQN ABBXA ABOCM ACOMO ADHIR ADIMF AEGAL AENEX AEPYU AETLH AFWTZ AHAVH AIIXL AKMHD ALWAN AZQEC BA0 BKEYQ BPHCQ BVXVI CS3 DL5 DWQXO ESBYG EX3 F5P FEDTE FR3 G-Y G-Z GGRSB GJIRD GNUQQ GQ7 GQ8 GXS HF~ HG5 HMJXF HQYDN HRMNR HVGLF I09 IHE IJ- IXC IZIGR IZQ I~Z J0Z JQ2 K6V K9. KDC KPH LAS M7Z MA- N9A NB0 O93 O9I OAM OVD P19 P62 P64 P9S PF0 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q2X QOK QOS R9I RHV RPX RRX S27 S37 S3B SAP SDH SHX SMD T13 TSV TT1 TUC U2A U9L VC2 WH7 WJK WK8 WOW Z45 ZOVNA 7X8 ABRTQ |
ID | FETCH-LOGICAL-c419t-cef55a1c0f5c7b716baea6897f88d24bf914cf8e64a41404cb01da65c4a2389e3 |
IEDL.DBID | 7X7 |
ISSN | 2366-004X 2366-0058 |
IngestDate | Mon Jul 21 11:40:18 EDT 2025 Fri Jul 25 19:48:23 EDT 2025 Wed Feb 19 02:31:54 EST 2025 Tue Jul 01 02:12:31 EDT 2025 Thu Apr 24 23:10:20 EDT 2025 Fri Feb 21 02:33:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Genomics Prostate neoplasms Brain neoplasms Quantitative imaging Breast neoplasms Colorectal neoplasms Radiogenomics Liver neoplasms Radiomics Lung neoplasms Kidney neoplasms |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-cef55a1c0f5c7b716baea6897f88d24bf914cf8e64a41404cb01da65c4a2389e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9888-0453 0000-0003-1470-9515 0000-0002-2617-8128 0000-0002-5714-289X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s00261-019-02028-w |
PMID | 31049614 |
PQID | 2218683398 |
PQPubID | 31175 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_2229231423 proquest_journals_2218683398 pubmed_primary_31049614 crossref_citationtrail_10_1007_s00261_019_02028_w crossref_primary_10_1007_s00261_019_02028_w springer_journals_10_1007_s00261_019_02028_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Abdominal imaging |
PublicationTitleAbbrev | Abdom Radiol |
PublicationTitleAlternate | Abdom Radiol (NY) |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | BergerMFMardisERThe emerging clinical relevance of genomics in cancer medicineNat Rev Clin Oncol20181563533651:CAS:528:DC%2BC1cXos1Snsbk%3D10.1038/s41571-018-0002-6295994766658089 ZhangBHeXOuyangFGuDDongYZhangLMoXHuangWTianJZhang SJClRadiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma.201740321271:CAS:528:DC%2BC2sXhtVWrt7zF HalpennyDFRielyGJHayesSYuHZhengJMoskowitzCSGinsbergMSAre there imaging characteristics associated with lung adenocarcinomas harboring ALK rearrangements?Lung cancer (Amsterdam, Netherlands)201486219019410.1016/j.lungcan.2014.09.007 BrayFFerlayJSoerjomataramISiegelRLTorreLAJemalAGlobal cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countriesCA Cancer J Clin201868639442410.3322/caac.21492 BanerjeeSMitraSShankarBUHayashiYA Novel GBM Saliency Detection Model Using Multi-Channel MRIPloS one2016111e01463881:CAS:528:DC%2BC28XmtVyqtb8%3D10.1371/journal.pone.0146388267527354709039 Hassan I, Kotrotsou A, Matsuoka CK, Alfaro-Munoz K, Elshafeey N, Zinn P, De Groot J, Colen R (2017) Increased mutation burden (Hypermutation) in gliomas is associated with a unique radiomic texture signature in magnetic resonance imaging. Neuro-oncology 19 (Supplement 6):vi147-vi148. doi:http://dx.doi.org/10.1093/neuonc/nox168 Shafiq‐ul‐Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, Abdalah MA, Schabath MB, Goldgof DG, Mackin DJMp (2017) Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. 44 (3):1050-1062 Shaikh F, Franc B, Allen E, Sala E, Awan O, Hendrata K, Halabi S, Mohiuddin S, Malik S, Hadley D, Shrestha R (2018) Translational Radiomics: Defining the Strategy Pipeline and Considerations for Application-Part 2: From Clinical Implementation to Enterprise. Journal of the American College of Radiology: JACR 15 (3 Pt B):543-549. https://doi.org/10.1016/j.jacr.2017.12.006 YamamotoSMakiDDKornRLKuoMDRadiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscapeAJR American journal of roentgenology2012199365466310.2214/ajr.11.782422915408 Coroller TP, Agrawal V, Narayan V, Hou Y, Grossmann P, Lee SW, Mak RH, Aerts HJJR, Oncology (2016) Radiomic phenotype features predict pathological response in non-small cell lung cancer. 119 (3):480-486 Duddalwar V, Liang G, Siegmund K, Cen S, Varghese B, Hwang D, Desai B, Desai M, Aron M, Gill I (2018) Association of computed tomography-based radiomic features with epigenetic variation of clear cell renal cell carcinoma using dna methylation. Journal of Urology 199 (4 Supplement 1):e959 BoydNFGuoHMartinLJSunLStoneJFishellEJongRAHislopGChiarelliAMinkinSYaffeMJMammographic density and the risk and detection of breast cancerN Engl J Med200735632272361:CAS:528:DC%2BD2sXnslSjsg%3D%3D10.1056/NEJMoa062790 Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL (2015) Machine Learning methods for Quantitative Radiomic Biomarkers. Scientific reports 5:13087. https://doi.org/10.1038/srep13087. https://www.nature.com/articles/srep13087#supplementary-information Wiki FQ, Body QF-PW The Radiological Society of North America (RSNA) Quantitative Imaging Biomarker Alliance (QIBA) FDG-PET Technical Committee: Proffered Protocol for Quantifying the Standard Uptake (SUV) in Patients with Cancer. JamaspishviliTBermanDMRossAEScherHIDe MarzoAMSquireJALotanTLClinical implications of PTEN loss in prostate cancerNat Rev Urol20181542222341:CAS:528:DC%2BC1cXivFGmsb4%3D10.1038/nrurol.2018.929460925 EmaminejadNQianWGuanYTanMQiuYLiuHZhengBFusion of Quantitative Image and Genomic Biomarkers to Improve Prognosis Assessment of Early Stage Lung Cancer PatientsIEEE Trans Biomed Eng20166351034104310.1109/TBME.2015.247768826390440 CorollerTBiWGreenwaldNZeleznikRHuynhEParmarCHuangRAertsHPredicting meningioma tumor recurrence using radiogenomics dataMedical physics2018456e67810.1002/mp.12938 van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, Hoekstra OS, Smit EF, Boellaard RJMi, biology (2016) Repeatability of radiomic features in non-small-cell lung cancer [18 F] FDG-PET/CT studies: impact of reconstruction and delineation. 18 (5):788-795 YipSSKimJCorollerTPParmarCVelazquezERHuynhEMakRHAertsHJAssociations Between Somatic Mutations and Metabolic Imaging Phenotypes in Non-Small Cell Lung CancerJournal of nuclear medicine: official publication, Society of Nuclear Medicine20175845695761:CAS:528:DC%2BC1cXmtVOjsbg%3D10.2967/jnumed.116.181826 AertsHJThe Potential of Radiomic-Based Phenotyping in Precision Medicine: A ReviewJAMA oncology20162121636164210.1001/jamaoncol.2016.263127541161 DeLeon T, Borad MJ, Wu T, Li J, Zwart CM, Yang G, Holeman S, Silva AC (2017) Utility of CT texture for identification of FGFR2 fusion in cholangiocarcinoma: A radiogenomic pilot study. Journal of Clinical Oncology Conference 35 (15 Supplement 1) LiHGigerMLHuynhBQAntropovaNODeep learning in breast cancer risk assessment: evaluation of convolutional neural networks on a clinical dataset of full-field digital mammogramsJournal of medical imaging (Bellingham, Wash)20174404130410.1117/1.jmi.4.4.041304 GoodmanAMKatoSBazhenovaLPatelSPFramptonGMMillerVStephensPJDanielsGAKurzrockRTumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse CancersMol Cancer Ther20171611259826081:CAS:528:DC%2BC2sXhslGisrvL10.1158/1535-7163.MCT-17-0386288353865670009 GevaertOEchegaraySKhuongAHoangCDShragerJBJensenKCBerryGJGuoHHLauCPlevritisSKRubinDLNapelSLeungANPredictive radiogenomics modeling of EGFR mutation status in lung cancerScientific reports20177416741:CAS:528:DC%2BC2sXitVyisro%3D10.1038/srep41674281397045282551 BanerjeeSWangDSKimHJSirlinCBChanMGKornRLRutmanAMSiripongsakunSLuDImanbayevGKuoMDA computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinomaHepatology (Baltimore, Md)201562379280010.1002/hep.27877 Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJJFio (2015) Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. 5:272 OzkanEWestADedelowJAChuBFZhaoWYildizVOOttersonGAShiloKGhoshSKingMWhiteRDErdalBSCT Gray-Level Texture Analysis as a Quantitative Imaging Biomarker of Epidermal Growth Factor Receptor Mutation Status in Adenocarcinoma of the LungAJR American journal of roentgenology201520551016102510.2214/ajr.14.1414726496549 GutmanDADunnWDJrGrossmannPCooperLAHolderCALigonKLAlexanderBMAertsHJSomatic mutations associated with MRI-derived volumetric features in glioblastomaNeuroradiology201557121227123710.1007/s00234-015-1576-7263377654648958 Chen X, Zhou Z, Thomas K, Wang J (2016) Predicting gene mutations in renal cell carcinoma based on CT imaging features: Validation using TCGA-TCIA datasets. Medical physics 43 (6 PART2):3705 YipSSFParmarCKimJHuynhEMakRHAertsHImpact of experimental design on PET radiomics in predicting somatic mutation statusEuropean journal of radiology20179781510.1016/j.ejrad.2017.10.00929153372 Traverso A, Wee L, Dekker A, Gillies RJIJoROBP (2018) Repeatability and reproducibility of radiomic features: a systematic review. 102 (4):1143-1158 ZhouHVallieresMBaiHXSuCTangHOldridgeDZhangZXiaoBLiaoWTaoYZhouJZhangPYangLMRI features predict survival and molecular markers in diffuse lower-grade gliomasNeuro-oncology20171968628701:CAS:528:DC%2BC1cXitFSntLrK10.1093/neuonc/now256283395885464433 GevaertOXuJHoangCDLeungANXuYQuonARubinDLNapelSPlevritisSKNon-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data–methods and preliminary resultsRadiology2012264238739610.1148/radiol.12111607227234993401348 SohrabiSVikramRCorrelation of CT derived textual features with mutational status of clear cell renal cell carcinoma-preliminary findingsAbdominal Radiology20174282030203110.1007/s00261-017-1192-6 Zhang X, Tian Q, Wu YX, Xu XP, Li BJ, Liu YX, Liu Y, Lu HB IDH mutation assessment of glioma using texture features of multimodal MR images. In: Petrick NA, Armato SG (eds), 2017. SPIE. https://doi.org/10.1117/12.2254212 Saha A, Harowicz MR, Grimm LJ, Kim CE, Ghate SV, Walsh R, Mazurowski MA (2018) A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features. British journal of cancer. https://doi.org/10.1038/s41416-018-0185-8 ChanBAHughesBGTargeted therapy for non-small cell lung cancer: current standards and the promise of the futureTransl Lung Cancer Res20154136541:CAS:528:DC%2BC2MXhtFCms7vL10.3978/j.issn.2218-6751.2014.05.0143677114367711 CourtLERaoAKrishnanSRadiomics in cancer diagnosis, cancer staging, and prediction of response to treatmentTranslational cancer research20165433733910.21037/tcr.2016.07.14 Ger RB, Zhou S, Chi P-CM, Goff DL, Zhang L, Lee HJ, Fuller CD, Howell RM, Li H, Stafford RJ Quantitative image feature variability amongst CT scanners with a controlled scan protocol. In: Medical Imaging 2018: Computer-Aided Diagnosis, 2018. International Society for Optics and Photonics, p 105751O Zhang J, Qiu Q, Duan J, Gong G, Jiang Q, Sun G, Yin YJTCR (2019) Variability of radiomic features extracted from multi-b-value diffusion-weighted images in hepatocellular carcinoma. 8 (1):130-140 BeigNPatelJPrasannaPHillVGuptaACorreaRBeraKSinghSPartoviSVaradanVAhluwaliaMMadabhushiATiwariPRadiogenomic analysis of hypoxia pathway is predictive of overall survival in GlioblastomaScientific reports20188171:CAS:528:DC%2BC1cXhsFGitbrF10.1038/s41598-017-18310-0293115585758516 SunYWXuJZhouJLiuWJTargeted drugs for systemic therapy of lung cancer with brain metastasesOncotarget2018945459547210.18632/oncotarget.2361629435193 Jia T, Xiong J, Li X, Ma J, Ren Y, Xu Z, Cai X, Zhang J, Zhao J, Fu X (2017) Detecting epidermal growth factor receptor mutation status in patients with lung adenocarcinoma using radiomics and random forest. Journal of Thoracic Oncology 12 (11 Supplement 2):S1860 LohmannPLercheCBauerEKStegerJStoffelsGBlauTDunklVKocherMViswanathanSFilssCP R Stoyanova (2028_CR183) 2016; 7 T Jamaspishvili (2028_CR179) 2018; 15 E Segal (2028_CR145) 2007; 25 Z Li (2028_CR20) 2017; 7 M Roman (2028_CR87) 2018; 17 2028_CR38 2028_CR36 SSF Yip (2028_CR100) 2017; 97 KL Hsieh (2028_CR52) 2017; 8 R Paul (2028_CR15) 2018; 5 BA Chan (2028_CR86) 2015; 4 H Chandarana (2028_CR144) 2011; 196 L Lu (2028_CR14) 2016; 11 2028_CR199 2028_CR197 2028_CR196 2028_CR195 2028_CR194 D Hanahan (2028_CR26) 2011; 144 SM McCann (2028_CR180) 2016; 206 2028_CR192 2028_CR25 2028_CR22 2028_CR21 F Khalvati (2028_CR198) 2019; 9 LE Court (2028_CR5) 2016; 5 KC Lim (2028_CR142) 2011; 254 J Kang (2028_CR7) 2018; 8 2028_CR19 2028_CR18 AG Winer (2028_CR161) 2015; 1 2028_CR190 E Ozkan (2028_CR105) 2015; 205 J Yu (2028_CR64) 2017; 27 2028_CR188 2028_CR187 2028_CR186 2028_CR185 2028_CR182 2028_CR181 ZA Binder (2028_CR211) 2018; 34 2028_CR12 2028_CR11 H Li (2028_CR121) 2017; 4 2028_CR1 2028_CR189 P Afshar (2028_CR16) 2018 MD Kuo (2028_CR140) 2007; 18 Y Li (2028_CR75) 2017; 135 J Sorensen (2028_CR98) 2015; 2 F Guo (2028_CR164) 2018; 8 TA Chan (2028_CR31) 2019; 30 2028_CR177 2028_CR176 2028_CR174 2028_CR173 2028_CR172 S Fiset (2028_CR201) 2019; 135 AM Goodman (2028_CR32) 2017; 16 P Sawan (2028_CR103) 2018; 51 CA Karlo (2028_CR155) 2014; 270 ER Velazquez (2028_CR209) 2013; 3 DF Halpenny (2028_CR104) 2017; 42 CL Cowey (2028_CR153) 2009; 11 M Diehn (2028_CR35) 2008; 105 J De Fauw (2028_CR208) 2018; 24 J Cox (2028_CR29) 2016; 3 HJ Brisse (2028_CR84) 2017; 12 2028_CR74 B Shofty (2028_CR62) 2018; 13 2028_CR72 F Bray (2028_CR138) 2018; 68 2028_CR71 DJ Cheon (2028_CR30) 2014; 8 J Wu (2028_CR129) 2017; 285 P Lohmann (2028_CR54) 2018; 57 2028_CR206 2028_CR205 2028_CR204 2028_CR203 2028_CR202 2028_CR76 HA Vargas (2028_CR134) 2017; 285 2028_CR200 LS Hu (2028_CR47) 2017; 19 DF Halpenny (2028_CR91) 2014; 86 HJ Aerts (2028_CR24) 2016; 2 P Kickingereder (2028_CR68) 2016; 281 2028_CR63 2028_CR61 YC Wi (2028_CR158) 2018; 52 MF Berger (2028_CR27) 2018; 15 Y Zhang (2028_CR10) 2017; 7 VA McCormack (2028_CR117) 2006; 15 R Colen (2028_CR214) 2015; 5 P Grossmann (2028_CR42) 2016; 16 GL Gierach (2028_CR119) 2014; 16 M Zhou (2028_CR107) 2018; 286 S Rathore (2028_CR79) 2018; 8 GJ Weiss (2028_CR95) 2014; 9 HJ Yoon (2028_CR92) 2015; 94 2028_CR57 2028_CR56 2028_CR53 P Lovinfosse (2028_CR175) 2016; 89 YW Sun (2028_CR85) 2018; 9 M Yarchoan (2028_CR34) 2017; 17 H Arita (2028_CR58) 2018; 8 B Sacconi (2028_CR109) 2017; 72 2028_CR40 Y Pershad (2028_CR178) 2017; 7 2028_CR48 2028_CR46 2028_CR44 Y Li (2028_CR73) 2018; 28 JG Tamez-Pena (2028_CR137) 2018; 13 EEC De Jong (2028_CR88) 2016; 119 E Rios Velazquez (2028_CR99) 2017; 77 LJ Grimm (2028_CR126) 2015; 42 N Beig (2028_CR212) 2018; 8 H Wang (2028_CR23) 2014; 1 JC Peeken (2028_CR8) 2018; 48 O Gevaert (2028_CR45) 2014; 273 S Banerjee (2028_CR207) 2016; 11 AS Jakola (2028_CR59) 2018; 164 2028_CR128 2028_CR127 JJ Miller (2028_CR49) 2017; 123 H Li (2028_CR131) 2016; 281 CB Pereira (2028_CR28) 2013; 8 SS Yip (2028_CR2) 2017; 7 T Coroller (2028_CR82) 2018; 45 H Akbari (2028_CR69) 2018; 20 CT Chou (2028_CR143) 2012; 85 2028_CR111 2028_CR110 RJ Gillies (2028_CR3) 2016; 278 J Lv (2028_CR97) 2018; 73 2028_CR118 FA Shaikh (2028_CR184) 2017; 1 2028_CR114 2028_CR112 CJ Allegra (2028_CR168) 2009; 27 R Vikram (2028_CR162) 2014; 39 K Tam (2028_CR139) 2013; 1 B Zhang (2028_CR17) 2017; 403 L Zhang (2028_CR113) 2018; 11 S Yamamoto (2028_CR122) 2012; 199 SHE Boots-Sprenger (2028_CR66) 2013; 26 O Gevaert (2028_CR90) 2012; 264 AM Rutman (2028_CR6) 2009; 70 H Zhou (2028_CR65) 2017; 19 2028_CR93 TJ Kim (2028_CR102) 2016; 101 M Efremova (2028_CR33) 2017; 8 2028_CR106 H Kim (2028_CR13) 2016; 11 R Colen (2028_CR213) 2014; 7 L Yang (2028_CR171) 2018; 28 JY Douillard (2028_CR169) 2013; 369 2028_CR210 S Banerjee (2028_CR146) 2015; 62 2028_CR83 2028_CR81 SS Yip (2028_CR101) 2017; 58 J Zhang (2028_CR167) 2015; 5 Y Li (2028_CR67) 2018; 28 O Gevaert (2028_CR108) 2017; 7 2028_CR89 JE Park (2028_CR9) 2018; 52 ER Haspinger (2028_CR124) 2015; 3 N Irahara (2028_CR165) 2010; 19 B Zhao (2028_CR193) 2016; 6 2028_CR163 L Papp (2028_CR60) 2018; 57 Y Wang (2028_CR50) 2015; 22 HJ Aerts (2028_CR94) 2016; 6 MG Lubner (2028_CR170) 2015; 40 A Fernández-Medarde (2028_CR166) 2011; 2 S Rizzo (2028_CR96) 2016; 26 A Lecler (2028_CR191) 2019; 9 ZC Li (2028_CR80) 2018; 28 2028_CR154 2028_CR151 2028_CR150 S Narang (2028_CR77) 2017; 8 L Hutchinson (2028_CR132) 2013; 10 MA Mazurowski (2028_CR125) 2014; 273 N Emaminejad (2028_CR115) 2016; 63 2028_CR157 NF Boyd (2028_CR116) 2007; 356 2028_CR156 H Tang (2028_CR147) 2016; 64 T Gudbjartsson (2028_CR152) 2005; 66 HJ Aerts (2028_CR4) 2014; 5 CH Lee (2028_CR123) 2010; 7 S Sohrabi (2028_CR159) 2017; 42 H Li (2028_CR120) 2014; 1 2028_CR141 J Lee (2028_CR70) 2015; 2 2028_CR148 Y Zhu (2028_CR130) 2015; 5 GL Davis (2028_CR149) 2008; 21 AB Shinagare (2028_CR160) 2015; 40 M Lehrer (2028_CR78) 2017; 4 P Eichinger (2028_CR51) 2017; 7 PO Zinn (2028_CR37) 2011; 6 D Yang (2028_CR39) 2015; 42 2028_CR133 DA Gutman (2028_CR43) 2015; 57 S Bisdas (2028_CR55) 2018; 8 MA Mazurowski (2028_CR41) 2017; 133 2028_CR136 2028_CR135 |
References_xml | – reference: LovinfossePKoopmanschBLambertFJodogneSKustermansGHattMVisvikisDSeidelLPolusMAlbertADelvennePHustinxR(18)F-FDG PET/CT imaging in rectal cancer: relationship with the RAS mutational statusThe British journal of radiology20168910632016021210.1259/bjr.20160212271460675257332 – reference: Fave X, Mackin D, Yang J, Zhang J, Fried D, Balter P, Followill D, Gomez D, Jones AK, Stingo FJMp (2015) Can radiomics features be reproducibly measured from CBCT images for patients with non‐small cell lung cancer? 42 (12):6784-6797 – reference: Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi AJEr (2017) The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. 27 (11):4498-4509 – reference: ColenRHatamiMKotrotsouAChaddadABakhtiariALuediMZinnPORadiomic subclassification of glioblastomaNeuro-oncology20155v15510.1093/neuonc/nov225.11 – reference: LohmannPLercheCBauerEKStegerJStoffelsGBlauTDunklVKocherMViswanathanSFilssCPStegmayrCNeumaierBShahNJFinkGRLangenKJGalldiksNRadiomics for prediction of the IDH genotype in gliomasNuklearMedizin2018572A3610.1055/s00839473 – reference: LimKCChowPKAllenJCChiaGSLimMCheowPCChungAYOoiLLTanSBMicrovascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the Milan criteriaAnnals of surgery2011254110811310.1097/SLA.0b013e31821ad88421527845 – reference: ChandaranaHRobinsonEHajduCHDrozhininLBabbJSTaouliBMicrovascular invasion in hepatocellular carcinoma: is it predictable with pretransplant MRI?AJR American journal of roentgenology201119651083108910.2214/AJR.10.472021512074 – reference: ZhouMLeungAEchegaraySGentlesAShragerJBJensenKCBerryGJPlevritisSKRubinDLNapelSGevaertONon-Small Cell Lung Cancer Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with Prognostic ImplicationsRadiology2018286130731510.1148/radiol.201716184528727543 – reference: GrimmLJZhangJMazurowskiMAComputational approach to radiogenomics of breast cancer: Luminal A and luminal B molecular subtypes are associated with imaging features on routine breast MRI extracted using computer vision algorithmsJournal of magnetic resonance imaging: JMRI201542490290710.1002/jmri.2487925777181 – reference: JakolaASZhangYHSkjulsvikAJSolheimOBoHKBerntsenEMReinertsenIGulatiSForanderPBrismarTBQuantitative texture analysis in the prediction of IDH status in low-grade gliomasClinical neurology and neurosurgery201816411412010.1016/j.clineuro.2017.12.00729220731 – reference: Shin YR, Kim KA, Im S, Hwang SS, Kim KJAr (2016) Prediction of KRAS mutation in rectal cancer using MRI. 36 (9):4799-4804 – reference: HanahanDWeinbergRAHallmarks of cancer: the next generationCell201114456466741:CAS:528:DC%2BC3MXjsFeqtrk%3D10.1016/j.cell.2011.02.01321376230 – reference: NarangSKimDAithalaSHeimbergerABAhmedSRaoDRaoGRaoATumor image-derived texture features are associated with CD3 T-cell infiltration status in glioblastomaOncotarget201786010124410125410.18632/oncotarget.20643292541605731870 – reference: Beig N, Patel J, Prasanna P, Partovi S, Varadan V, Madabhushi A, Tiwari P Radiogenomic analysis of hypoxia pathway reveals computerized MRI descriptors predictive of overall survival in glioblastoma. In: Petrick NA, Armato SG (eds), 2017. SPIE. https://doi.org/10.1117/12.2255694 – reference: LiHZhuYBurnsideESDrukkerKHoadleyKAFanCConzenSDWhitmanGJSuttonEJNetJMGanottMHuangEMorrisEAPerouCMJiYGigerMLMR Imaging Radiomics Signatures for Predicting the Risk of Breast Cancer Recurrence as Given by Research Versions of MammaPrint, Oncotype DX, and PAM50 Gene AssaysRadiology2016281238239110.1148/radiol.2016152110271445365069147 – reference: AllegraCJJessupJMSomerfieldMRHamiltonSRHammondEHHayesDFMcAllisterPKMortonRFSchilskyRLAmerican Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapyJ Clin Oncol200927122091209610.1200/JCO.2009.21.9170 – reference: KangJRancatiTLeeSOhJHKernsSLScottJGSchwartzRKimSRosensteinBSMachine Learning and Radiogenomics: Lessons Learned and Future DirectionsFrontiers in oncology2018822810.3389/fonc.2018.00228299778646021505 – reference: VargasHAHuangEPLakhmanYIppolitoJEBhosalePMellnickVShinagareABAnelloMKirbyJFevrier-SullivanBJRRadiogenomics of high-grade serous ovarian cancer: multireader multi-institutional study from the Cancer Genome Atlas Ovarian Cancer Imaging Research Group.20172852482492 – reference: LubnerMGStaboNLubnerSJdel RioAMSongCHalbergRBPickhardtPJCT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomesAbdominal imaging20154072331233710.1007/s00261-015-0438-425968046 – reference: GutmanDADunnWDJrGrossmannPCooperLAHolderCALigonKLAlexanderBMAertsHJSomatic mutations associated with MRI-derived volumetric features in glioblastomaNeuroradiology201557121227123710.1007/s00234-015-1576-7263377654648958 – reference: RutmanAMKuoMDRadiogenomics: creating a link between molecular diagnostics and diagnostic imagingEuropean journal of radiology200970223224110.1016/j.ejrad.2009.01.05019303233 – reference: MazurowskiMAClarkKCzarnekNMShamsesfandabadiPPetersKBSahaARadiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with The Cancer Genome Atlas dataJournal of neuro-oncology2017133127351:CAS:528:DC%2BC2sXntVKnt7w%3D10.1007/s11060-017-2420-128470431 – reference: Hussain Z, Gimenez F, Yi D, Rubin D Differential data augmentation techniques for medical imaging classification tasks. In: AMIA Annual Symposium Proceedings, 2017. American Medical Informatics Association, p 979 – reference: Shaikh F, Franc B, Allen E, Sala E, Awan O, Hendrata K, Halabi S, Mohiuddin S, Malik S, Hadley D, Shrestha R (2018) Translational Radiomics: Defining the Strategy Pipeline and Considerations for Application-Part 2: From Clinical Implementation to Enterprise. Journal of the American College of Radiology: JACR 15 (3 Pt B):543-549. https://doi.org/10.1016/j.jacr.2017.12.006 – reference: Aherne EA, Pak LM, Goldman DA, Gonen M, Jarnagin WR, Simpson AL, Do RK (2018) Intrahepatic cholangiocarcinoma: can imaging phenotypes predict survival and tumor genetics? Abdominal radiology (New York). https://doi.org/10.1007/s00261-018-1505-4 – reference: CoxJWeinmanSMechanisms of doxorubicin resistance in hepatocellular carcinomaHepat Oncol201631575910.2217/hep.15.4126998221 – reference: YipSSFParmarCKimJHuynhEMakRHAertsHImpact of experimental design on PET radiomics in predicting somatic mutation statusEuropean journal of radiology20179781510.1016/j.ejrad.2017.10.00929153372 – reference: CorollerTBiWGreenwaldNZeleznikRHuynhEParmarCHuangRAertsHPredicting meningioma tumor recurrence using radiogenomics dataMedical physics2018456e67810.1002/mp.12938 – reference: West DL, Kotrotsou A, Niekamp AS, Idris T, Camejo DG, Mazal NJ, Cardenas NJ, Goldberg JL, Colen RR (2017) CT-based radiomic analysis of hepatocellular carcinoma patients to predict key genomic information. Journal of Clinical Oncology Conference 35 (15 Supplement 1) – reference: SohrabiSVikramRCorrelation of CT derived textual features with mutational status of clear cell renal cell carcinoma-preliminary findingsAbdominal Radiology20174282030203110.1007/s00261-017-1192-6 – reference: StoyanovaRPollackATakharMLynneCParraNLamLLAlshalalfaMBuerkiCCastilloRJordaMAshabHAKryvenkoONPunnenSParekhDJAbramowitzMCGilliesRJDavicioniEErhoNIshkanianAAssociation of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsiesOncotarget2016733533625337610.18632/oncotarget.10523274381425288193 – reference: MillerJJShihHAAndronesiOCCahillDPIsocitrate dehydrogenase-mutant glioma: Evolving clinical and therapeutic implicationsCancer201712323453545461:CAS:528:DC%2BC2sXhvVeqtrfF10.1002/cncr.31039 – reference: BisdasSShenHThustSKatsarosVStranjalisGBoskosCBrandnerSZhangJTexture analysis- and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary studyScientific reports20188161081:CAS:528:DC%2BC1cXhslegtbnI10.1038/s41598-018-24438-4296664135904150 – reference: ZhaoBTanYTsaiWYQiJXieCLuLSchwartzLHReproducibility of radiomics for deciphering tumor phenotype with imagingScientific reports20166234281:CAS:528:DC%2BC28XkvVCksb8%3D10.1038/srep23428270097654806325 – reference: MazurowskiMAZhangJGrimmLJYoonSCSilberJIRadiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imagingRadiology2014273236537210.1148/radiol.1413264125028781 – reference: Shafiq‐ul‐Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, Abdalah MA, Schabath MB, Goldgof DG, Mackin DJMp (2017) Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. 44 (3):1050-1062 – reference: LiZCBaiHSunQLiQLiuLZouYChenYLiangCZhengHMultiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: A multicentre studyEuropean radiology20182893640365010.1007/s00330-017-5302-129564594 – reference: YangDRaoGMartinezJVeeraraghavanARaoAEvaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastomaMedical physics20154211672567351:CAS:528:DC%2BC2MXhslemsL%2FK10.1118/1.4934373265207625148162 – reference: SunYWXuJZhouJLiuWJTargeted drugs for systemic therapy of lung cancer with brain metastasesOncotarget2018945459547210.18632/oncotarget.2361629435193 – reference: Anuradha S, Webb PM, Blomfield P, Brand AH, Friedlander M, Leung Y, Obermair A, Oehler MK, Quinn M, Steer CJMJoA (2014) Survival of Australian women with invasive epithelial ovarian cancer: a population‐based study. 201 (5):283-288 – reference: PeekenJCBernhoferMWiestlerBGoldbergTCremersDRostBWilkensJJCombsSENusslinFRadiomics in radiooncology - Challenging the medical physicistPhysica medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB)201848273610.1016/j.ejmp.2018.03.012 – reference: Simonetti RG, Camma C, Fiorello F, Politi F, D’Amico G, Pagliaro L (1991) Hepatocellular carcinoma. A worldwide problem and the major risk factors. Dig Dis Sci 36 (7):962-972 – reference: ShoftyBArtziMBen BashatDLibermanGHaimOKashanianABoksteinFBlumenthalDTRamZShaharTMRI radiomics analysis of molecular alterations in low-grade gliomasInternational journal of computer assisted radiology and surgery201813456357110.1007/s11548-017-1691-529270916 – reference: Perrin T, Midya A, Yamashita R, Chakraborty J, Saidon T, Jarnagin WR, Gonen M, Simpson AL, Do RKJAR (2018) Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging. 43 (12):3271-3278 – reference: Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B, Rodriguez-Rivera E, Dodge C, Jones AK, Court LJIr (2015) Measuring CT scanner variability of radiomics features. 50 (11):757 – reference: BanerjeeSMitraSShankarBUHayashiYA Novel GBM Saliency Detection Model Using Multi-Channel MRIPloS one2016111e01463881:CAS:528:DC%2BC28XmtVyqtb8%3D10.1371/journal.pone.0146388267527354709039 – reference: YamamotoSMakiDDKornRLKuoMDRadiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscapeAJR American journal of roentgenology2012199365466310.2214/ajr.11.782422915408 – reference: BrayFFerlayJSoerjomataramISiegelRLTorreLAJemalAGlobal cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countriesCA Cancer J Clin201868639442410.3322/caac.21492 – reference: TamKThe roles of doxorubicin in hepatocellular carcinomaADMET and DMPK201313294410.5599/admet.1.3.7 – reference: BergerMFMardisERThe emerging clinical relevance of genomics in cancer medicineNat Rev Clin Oncol20181563533651:CAS:528:DC%2BC1cXos1Snsbk%3D10.1038/s41571-018-0002-6295994766658089 – reference: Altazi BA, Zhang GG, Fernandez DC, Montejo ME, Hunt D, Werner J, Biagioli MC, Moros EGJJoacmp (2017) Reproducibility of F18‐FDG PET radiomic features for different cervical tumor segmentation methods, gray‐level discretization, and reconstruction algorithms. 18 (6):32-48 – reference: Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL (2015) Machine Learning methods for Quantitative Radiomic Biomarkers. Scientific reports 5:13087. https://doi.org/10.1038/srep13087. https://www.nature.com/articles/srep13087#supplementary-information – reference: ChanTAYarchoanMJaffeeESwantonCQuezadaSAStenzingerAPetersSDevelopment of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinicAnn Oncol201930144561:STN:280:DC%2BB3cvmslSktQ%3D%3D10.1093/annonc/mdy49530395155 – reference: WeissGJGaneshanBMilesKACampbellDHCheungPYFrankSKornRLNoninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognosticPloS one201497e1002441:CAS:528:DC%2BC2cXhs1eqtrfF10.1371/journal.pone.0100244249878384079229 – reference: Bi WL, Corroller T, Greenwald NF, Huynh E, Aizer MAA, Santagata S, Al-Mefty O, Alexander B, Dunn IF, Huang R, Aerts H (2017) Radiographic prediction of meningioma grade and genomic profile. Journal of Neurological Surgery Part B: Skull Base Conference: 27th Annual Meeting North American Skull Base Society United States 78 (Supplement 1). doi:http://dx.doi.org/10.1055/s-0037-1600633 – reference: HalpennyDFRielyGJHayesSYuHZhengJMoskowitzCSGinsbergMSAre there imaging characteristics associated with lung adenocarcinomas harboring ALK rearrangements?Lung cancer (Amsterdam, Netherlands)201486219019410.1016/j.lungcan.2014.09.007 – reference: LeeCHDershawDDKopansDEvansPMonseesBMonticcioloDBrennerRJBassettLBergWFeigSBreast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancerJournal of the American college of radiology201071182710.1016/j.jacr.2009.09.022 – reference: BinderZAThorneAHBakasSWileytoEPBilelloMAkbariHRathoreSHaSMZhangLFergusonCJDahiyaSBiWLReardonDAIdbaihAFelsbergJHentschelBWellerMBagleySJMorrissetteJJDNasrallahMPMaJZancaCScottAMOrellanaLDavatzikosCFurnariFBO’RourkeDMEpidermal Growth Factor Receptor Extracellular Domain Mutations in Glioblastoma Present Opportunities for Clinical Imaging and Therapeutic DevelopmentCancer cell2018341163177.e1671:CAS:528:DC%2BC1cXht12ltr%2FL10.1016/j.ccell.2018.06.006299904986424337 – reference: DavisGLDempsterJMelerJDOrrDWWalbergMWBrownBBergerBDO’ConnorJKGoldsteinRMHepatocellular carcinoma: management of an increasingly common problemProc (Bayl Univ Med Cent)200821326628010.1080/08998280.2008.11928410 – reference: ZhuYLiHGuoWDrukkerKLanLGigerMLJiYDeciphering Genomic Underpinnings of Quantitative MRI-based Radiomic Phenotypes of Invasive Breast CarcinomaScientific reports20155177871:CAS:528:DC%2BC2MXhvFKitrvL10.1038/srep17787266390254671006 – reference: Hassan I, Kotrotsou A, Matsuoka CK, Alfaro-Munoz K, Elshafeey N, Zinn P, De Groot J, Colen R (2017) Increased mutation burden (Hypermutation) in gliomas is associated with a unique radiomic texture signature in magnetic resonance imaging. Neuro-oncology 19 (Supplement 6):vi147-vi148. doi:http://dx.doi.org/10.1093/neuonc/nox168 – reference: LeeJNarangSMartinezJJRaoGRaoAAssociating spatial diversity features of radiologically defined tumor habitats with epidermal growth factor receptor driver status and 12-month survival in glioblastoma: methods and preliminary investigationJournal of medical imaging (Bellingham, Wash)20152404100610.1117/1.jmi.2.4.041006 – reference: Chen X, Zhou Z, Thomas K, Wang J (2016) Predicting gene mutations in renal cell carcinoma based on CT imaging features: Validation using TCGA-TCIA datasets. Medical physics 43 (6 PART2):3705 – reference: CheonDJOrsulicSTen-gene biomarker panel: a new hope for ovarian cancer?Biomark Med2014845235261:CAS:528:DC%2BC2cXnsVSrt7g%3D10.2217/bmm.14.16247966164330556 – reference: ShinagareABVikramRJaffeCAkinOKirbyJHuangEFreymannJSainaniNISadowCABathalaTKRubinDLOtoAHellerMTSurabhiVRKatabathinaVSilvermanSGRadiogenomics of clear cell renal cell carcinoma: preliminary findings of The Cancer Genome Atlas-Renal Cell Carcinoma (TCGA-RCC) Imaging Research GroupAbdominal imaging20154061684169210.1007/s00261-015-0386-z257539554534327 – reference: LiHGigerMLHuynhBQAntropovaNODeep learning in breast cancer risk assessment: evaluation of convolutional neural networks on a clinical dataset of full-field digital mammogramsJournal of medical imaging (Bellingham, Wash)20174404130410.1117/1.jmi.4.4.041304 – reference: AkbariHBakasSPisapiaJMNasrallahMPRozyckiMMartinez-LageMMorrissetteJJDDahmaneNO’RourkeDMDavatzikosCIn vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signatureNeuro-oncology2018208106810791:CAS:528:DC%2BC1MXhtlKntbzM10.1093/neuonc/noy033296178436280148 – reference: LiZWangYYuJGuoYCaoWDeep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade gliomaScientific reports20177154671:CAS:528:DC%2BC1cXhtlCks7bL10.1038/s41598-017-05848-2287104975511238 – reference: HsiehKLChenCYLoCMRadiomic model for predicting mutations in the isocitrate dehydrogenase gene in glioblastomasOncotarget2017828458884589710.18632/oncotarget.17585285268135542235 – reference: BoydNFGuoHMartinLJSunLStoneJFishellEJongRAHislopGChiarelliAMinkinSYaffeMJMammographic density and the risk and detection of breast cancerN Engl J Med200735632272361:CAS:528:DC%2BD2sXnslSjsg%3D%3D10.1056/NEJMoa062790 – reference: WiYCMoonAJungMJKimYBangSSJangKPaikSSShinSJLoss of Nuclear BAP1 Expression Is Associated with High WHO/ISUP Grade in Clear Cell Renal Cell CarcinomaJ Pathol Transl Med201852637838510.4132/jptm.2018.09.21302694736250939 – reference: BeigNPatelJPrasannaPHillVGuptaACorreaRBeraKSinghSPartoviSVaradanVAhluwaliaMMadabhushiATiwariPRadiogenomic analysis of hypoxia pathway is predictive of overall survival in GlioblastomaScientific reports20188171:CAS:528:DC%2BC1cXhsFGitbrF10.1038/s41598-017-18310-0293115585758516 – reference: Chen S-W, Lin C-Y, Ho C-M, Chang Y-S, Yang S-F, Kao C-H, Chang J-GJCnm (2015) Genetic alterations in colorectal Cancer have different patterns on 18F-FDG PET/CT. 40 (8):621-626 – reference: Jia T, Xiong J, Li X, Ma J, Ren Y, Xu Z, Cai X, Zhang J, Zhao J, Fu X (2017) Detecting epidermal growth factor receptor mutation status in patients with lung adenocarcinoma using radiomics and random forest. Journal of Thoracic Oncology 12 (11 Supplement 2):S1860 – reference: WangYZhangTLiSFanXMaJWangLJiangTAnatomical localization of isocitrate dehydrogenase 1 mutation: a voxel-based radiographic study of 146 low-grade gliomasEuropean journal of neurology20152223483541:STN:280:DC%2BC2M3gvFensw%3D%3D10.1111/ene.1257825318355 – reference: Zhang X, Tian Q, Wu YX, Xu XP, Li BJ, Liu YX, Liu Y, Lu HB IDH mutation assessment of glioma using texture features of multimodal MR images. In: Petrick NA, Armato SG (eds), 2017. SPIE. https://doi.org/10.1117/12.2254212 – reference: AertsHJGrossmannPTanYOxnardGRRizviNSchwartzLHZhaoBDefining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLCScientific reports20166338601:CAS:528:DC%2BC28XhsFGrtr%2FI10.1038/srep33860276458035028716 – reference: PaulRHawkinsSHSchabathMBGilliesRJHallLOGoldgofDBPredicting malignant nodules by fusing deep features with classical radiomics featuresJournal of medical imaging (Bellingham, Wash)20185101102110.1117/1.JMI.5.1.011021 – reference: GierachGLLiHLoudJTGreeneMHChowCKLanLPrindivilleSAEng-WongJSoballePWGiambartolomeiCMaiPLGalboCENicholsKCalzoneKAOlopadeOIGailMHGigerMLRelationships between computer-extracted mammographic texture pattern features and BRCA1/2 mutation status: a cross-sectional studyBreast cancer research: BCR20141644241:CAS:528:DC%2BC2cXhvV2ksLfN10.1186/s13058-014-0424-825159706 – reference: Zhang J, Qiu Q, Duan J, Gong G, Jiang Q, Sun G, Yin YJTCR (2019) Variability of radiomic features extracted from multi-b-value diffusion-weighted images in hepatocellular carcinoma. 8 (1):130-140 – reference: McCormackVAdos SantosSilva IBreast density and parenchymal patterns as markers of breast cancer risk: a meta-analysisCancer Epidemiol Biomarkers Prev20061561159116910.1158/1055-9965.EPI-06-003416775176 – reference: Vander-Weele DJ, McCann S, Fan X, Antic T, Jiang Y, Oto A (2015) Radiogenomics of prostate cancer: Association between quantitative multi-parametric MRI features and PTEN. Journal of Clinical Oncology Conference 33 (7 SUPPL. 1) – reference: GevaertOMitchellLAAchrolASXuJEchegaraySSteinbergGKCheshierSHNapelSZaharchukGPlevritisSKGlioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image featuresRadiology2014273116817410.1148/radiol.1413173142637724263772 – reference: Dasgupta A, Gupta T, Pungavkar S, Janu A, Shirsat N, Chinnaswamy G, Jalali R (2014) Can we predict molecular subtypes of medulloblastoma based on MRI? Encouraging data from a blinded study. Journal of Cancer Research and Therapeutics 1):S5-S6 – reference: YangLDongDFangMZhuYZangYLiuZZhangHYingJZhaoXTianJCan CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer?European radiology20182852058206710.1007/s00330-017-5146-829335867 – reference: AritaHKinoshitaMKawaguchiATakahashiMNaritaYTerakawaYTsuyuguchiNOkitaYNonakaMMoriuchiSTakagakiMFujimotoYFukaiJIzumotoSIshibashiKNakajimaYShofudaTKanematsuDYoshiokaEKodamaYManoMMoriKIchimuraKKanemuraYLesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomasScientific reports201881117731:CAS:528:DC%2BC1MXkt1Gkug%3D%3D10.1038/s41598-018-30273-4300828566078954 – reference: Joskowicz L, Cohen D, Caplan N, Sosna J (2018) Inter-observer variability of manual contour delineation of structures in CT. European radiology. https://doi.org/10.1007/s00330-018-5695-5 – reference: Parmar C, Velazquez ER, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, Mitra S, Shankar BU, Kikinis R, Haibe-Kains BJPo (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. 9 (7):e102107 – reference: WangHCruz-RoaABasavanhallyAGilmoreHShihNFeldmanMTomaszewskiJGonzalezFMadabhushiAMitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network featuresJournal of medical imaging (Bellingham, Wash)20141303400310.1117/1.JMI.1.3.034003 – reference: Zhang J, Zhang Q (2018) VHL and Hypoxia Signaling: Beyond HIF in Cancer. Biomedicines 6 (1). https://doi.org/10.3390/biomedicines6010035 – reference: Clay R, Johnson T, Bartholmai BJ, Karwoski R, Maldonado F, Rajagopalan S, Peikert T (2018) Canary (computer aided nodule analysis and risk yield) as a radiologic biomarker to predict tumor response to EGFR-targeted therapy in adenocarcinoma of the lung. American Journal of Respiratory and Critical Care Medicine Conference: American Thoracic Society International Conference, ATS 197 (MeetingAbstracts) – reference: Leijenaar RT, Carvalho S, Velazquez ER, Van Elmpt WJ, Parmar C, Hoekstra OS, Hoekstra CJ, Boellaard R, Dekker AL, Gillies RJJAo (2013) Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability. 52 (7):1391-1397 – reference: Qiu Q, Duan J, Duan Z, Meng X, Ma C, Zhu J, Lu J, Liu T, Yin YJQIiM, Surgery (2019) Reproducibility and non-redundancy of radiomic features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability. – reference: Kalra M, Wang G, Orton CGJMp (2018) Radiomics in lung cancer: Its time is here. 45 (3):997-1000 – reference: DouillardJYOlinerKSSienaSTaberneroJBurkesRBarugelMHumbletYBodokyGCunninghamDJassemJRiveraFKocakovaIRuffPBlasinska-MorawiecMSmakalMCanonJLRotherMWilliamsRRongAWiezorekJSidhuRPattersonSDPanitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancerN Engl J Med201336911102310341:CAS:528:DC%2BC3sXhsFGktr3L10.1056/NEJMoa1305275 – reference: Colen RR, Mahajan B, Jolesz FA, Zinn PO (2011) Radiogenomic mapping in GBM in patients with high versus low edema/tumor infiltration using an image-genomic analysis of 12,764 genes and 555 micrornas. Neuro-oncology 3):iii142-iii143. doi:http://dx.doi.org/10.1093/neuonc/nor162 – reference: AertsHJVelazquezERLeijenaarRTParmarCGrossmannPCarvalhoSBussinkJMonshouwerRHaibe-KainsBRietveldDHoebersFRietbergenMMLeemansCRDekkerAQuackenbushJGilliesRJLambinPDecoding tumour phenotype by noninvasive imaging using a quantitative radiomics approachNature communications2014540061:CAS:528:DC%2BC2cXitVShsb3L10.1038/ncomms5006248924064059926 – reference: YipSSKimJCorollerTPParmarCVelazquezERHuynhEMakRHAertsHJAssociations Between Somatic Mutations and Metabolic Imaging Phenotypes in Non-Small Cell Lung CancerJournal of nuclear medicine: official publication, Society of Nuclear Medicine20175845695761:CAS:528:DC%2BC1cXmtVOjsbg%3D10.2967/jnumed.116.181826 – reference: Wiki FQ, Body QF-PW The Radiological Society of North America (RSNA) Quantitative Imaging Biomarker Alliance (QIBA) FDG-PET Technical Committee: Proffered Protocol for Quantifying the Standard Uptake (SUV) in Patients with Cancer. – reference: Grossmann P, Stringfield O, El-Hachem N, Bui MM, Rios Velazquez E, Parmar C, Leijenaar RT, Haibe-Kains B, Lambin P, Gillies RJ, Aerts HJ (2017) Defining the biological basis of radiomic phenotypes in lung cancer. eLife 6. https://doi.org/10.7554/elife.23421 – reference: KarloCADi PaoloPLChaimJHakimiAAOstrovnayaIRussoPHricakHMotzerRHsiehJJAkinORadiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutationsRadiology2014270246447110.1148/radiol.13130663 – reference: ZhangBHeXOuyangFGuDDongYZhangLMoXHuangWTianJZhang SJClRadiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma.201740321271:CAS:528:DC%2BC2sXhtVWrt7zF – reference: LiYQianZXuKWangKFanXLiSLiuXWangYJiangTRadiomic features predict Ki-67 expression level and survival in lower grade gliomasJournal of neuro-oncology201713523173241:CAS:528:DC%2BC2sXhsVyiur7E10.1007/s11060-017-2576-828900812 – reference: ChouCTChenRCLeeCWKoCJWuHKChenYLPrediction of microvascular invasion of hepatocellular carcinoma by pre-operative CT imagingThe British journal of radiology201285101477878310.1259/bjr/65897774218281493474124 – reference: KickingerederPBonekampDNowosielskiMKratzASillMBurthSWickAEidelOSchlemmerHPRadbruchADebusJHerold-MendeCUnterbergAJonesDPfisterSWickWvon DeimlingABendszusMCapperDRadiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging FeaturesRadiology2016281390791810.1148/radiol.2016161382 – reference: LeclerADuronLBalvayDSavatovskyJBergèsOZmudaMFarahEGalatoireOBouchouichaAFournierLSCombining Multiple Magnetic Resonance Imaging Sequences Provides Independent Reproducible Radiomics FeaturesScientific reports20199120681:CAS:528:DC%2BC1MXnslemtro%3D10.1038/s41598-018-37984-8307657326376058 – reference: Winterhoff B, Hamidi H, Wang C, Kalli KR, Fridley BL, Dering J, Chen H-W, Cliby WA, Wang H-J, Dowdy SJGo (2016) Molecular classification of high grade endometrioid and clear cell ovarian cancer using TCGA gene expression signatures. 141 (1):95-100 – reference: Fernández-MedardeASantosERas in Cancer and Developmental DiseasesGenes & Cancer2011233443581:CAS:528:DC%2BC3MXpvFWlsbs%3D10.1177/1947601911411084 – reference: IraharaNBabaYNoshoKShimaKYanLDias-SantagataDIafrateAJFuchsCSHaigisKMOginoSNRAS mutations are rare in colorectal cancerDiagn Mol Pathol20101931571631:CAS:528:DC%2BC3cXhtVOhs7vN10.1097/PDM.0b013e3181c93fd1207367452929976 – reference: AertsHJThe Potential of Radiomic-Based Phenotyping in Precision Medicine: A ReviewJAMA oncology20162121636164210.1001/jamaoncol.2016.263127541161 – reference: Wang S, Fan M, Zhang J, Zheng B, Wang X, Li L Radiogenomic analysis of breast cancer: Dynamic contrast enhanced - Magnetic resonance imaging based features are associated with molecular subtypes. In: Cook TS, Zhang J (eds), 2016. SPIE. https://doi.org/10.1117/12.2217658 – reference: LiHGigerMLLanLJanardananJSennettCAComparative analysis of image-based phenotypes of mammographic density and parenchymal patterns in distinguishing between BRCA1/2 cases, unilateral cancer cases, and controlsJournal of medical imaging (Bellingham, Wash)20141303100910.1117/1.jmi.1.3.031009 – reference: SawanPPlodkowskiAJLiAELiBTDrilonACapanuMGinsbergMSCT features of HER2-mutant lung adenocarcinomasClinical imaging20185127928310.1016/j.clinimag.2018.05.02829906786 – reference: HaspingerERRoselliniSAmmariSDercleLBluthgenMVBesseBCaramellaCMassardCLacroixLDe BaereTDeschampsFMichielsSSoriaJCFerteCRadiomics to identify HER2 amplification or mutation in metastatic patients with solid tumors prospectively enrolled in MOSCATO-01European Journal of Cancer20153S10110.1016/S0959-8049(16)30301-X – reference: Maraka S, Kotrotsou A, Abrol S, Hassan A, Elshafeey N, Starostina O, Alfaro-Munoz K, Colen R, De Groot J (2017) Radiomic analysis on apparent diffusion coefficient (ADC) maps predicts platelet-derived growth factor receptor alpha (PDGFRA) gene amplification for newly diagnosed glioblastoma patients. Neuro-oncology 19 (Supplement 6):vi148. doi:http://dx.doi.org/10.1093/neuonc/nox168 – reference: WuJLiBSunXCaoGRubinDLNapelSIkedaDMKurianAWLiRHeterogeneous Enhancement Patterns of Tumor-adjacent Parenchyma at MR Imaging Are Associated with Dysregulated Signaling Pathways and Poor Survival in Breast CancerRadiology2017285240141310.1148/radiol.2017162823287084625673053 – reference: GevaertOEchegaraySKhuongAHoangCDShragerJBJensenKCBerryGJGuoHHLauCPlevritisSKRubinDLNapelSLeungANPredictive radiogenomics modeling of EGFR mutation status in lung cancerScientific reports20177416741:CAS:528:DC%2BC2sXitVyisro%3D10.1038/srep41674281397045282551 – reference: ParkJEKimHSRadiomics as a Quantitative Imaging Biomarker: Practical Considerations and the Current Standpoint in Neuro-oncologic StudiesNuclear medicine and molecular imaging20185229910810.1007/s13139-017-0512-7296625585897262 – reference: Gevaert O, Mitchell L, Achrol A, Xu J, Steinberg G, Cheshier S, Napel S, Zaharchuk G, Plevritis S (2013) Creating a radiogenomics map of multi-omics and quantitative image features in glioblastoma multiforme. Neuro-oncology 3):iii140-iii141. doi:http://dx.doi.org/10.1093/neuonc/not183 – reference: ZhangJZhengJYangYLuJGaoJLuTSunJJiangHZhuYZhengYLiangZLiuTMolecular spectrum of KRAS, NRAS, BRAF and PIK3CA mutations in Chinese colorectal cancer patients: analysis of 1,110 casesScientific reports20155186781:CAS:528:DC%2BC2MXitVynsLvJ10.1038/srep18678266914484687048 – reference: Ger RB, Zhou S, Chi P-CM, Goff DL, Zhang L, Lee HJ, Fuller CD, Howell RM, Li H, Stafford RJ Quantitative image feature variability amongst CT scanners with a controlled scan protocol. In: Medical Imaging 2018: Computer-Aided Diagnosis, 2018. International Society for Optics and Photonics, p 105751O – reference: Zhao L, Lee VH, Ng MK, Yan H, Bijlsma MFJBib (2018) Molecular subtyping of cancer: current status and moving toward clinical applications. – reference: Moon H, Choi JH, Park JH, Byun BH, Lim I, Kim BI, Choi CW, Lim SM (2015) Differences of < sup > 18 </sup > F-FDG PET tumor texture parameters according to the presence of epidermal growth factor receptor mutation in non-small cell lung cancer. Journal of Nuclear Medicine Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI 56 (SUPPL. 3) – reference: ZhangYOikonomouAWongAHaiderMAKhalvatiFRadiomics-based Prognosis Analysis for Non-Small Cell Lung CancerScientific reports20177463491:CAS:528:DC%2BC2sXmtFKgtb8%3D10.1038/srep46349284180065394465 – reference: LvJZhangHMaJMaYGaoGSongZYangYComparison of CT radiogenomic and clinical characteristics between EGFR and KRAS mutations in lung adenocarcinomasClinical radiology2018736590.e591590.e59810.1016/j.crad.2018.01.009 – reference: Stoyanova R, Pollack A, Lynne C, Jorda M, Erho N, Lam LLC, Buerki C, Davicioni E, Ishkanian A (2015) Using radiogenomics to characterize MRI-guided prostate cancer biopsy heterogenity. Journal of Clinical Oncology Conference 33 (7 SUPPL. 1) – reference: Coroller TP, Bi WL, Huynh E, Abedalthagafi M, Aizer AA, Greenwald NF, Parmar C, Narayan V, Wu WW, de Moura SMJPo (2017) Radiographic prediction of meningioma grade by semantic and radiomic features. 12 (11):e0187908 – reference: RizzoSPetrellaFBuscarinoVDe MariaFRaimondiSBarberisMFumagalliCSpitaleriGRampinelliCDe MarinisFSpaggiariLBellomiMCT Radiogenomic Characterization of EGFR, K-RAS, and ALK Mutations in Non-Small Cell Lung CancerEuropean radiology2016261324210.1007/s00330-015-3814-025956936 – reference: SorensenJErasmusJJrShroffGRaoAStingoFCourtLGoldKALeeJHeymachJVSwisherSGodoyMCombining CT texture analysis with semantic imaging descriptions for the radiogenomic detection of EGFR and KRAS mutations in NSCLCJournal of Thoracic Oncology20152S700 – reference: JamaspishviliTBermanDMRossAEScherHIDe MarzoAMSquireJALotanTLClinical implications of PTEN loss in prostate cancerNat Rev Urol20181542222341:CAS:528:DC%2BC1cXivFGmsb4%3D10.1038/nrurol.2018.929460925 – reference: Traverso A, Wee L, Dekker A, Gillies RJIJoROBP (2018) Repeatability and reproducibility of radiomic features: a systematic review. 102 (4):1143-1158 – reference: Zhang X, Tian Q, Wang L, Liu Y, Li B, Liang Z, Gao P, Zheng K, Zhao B, Lu H (2018) Radiomics Strategy for Molecular Subtype Stratification of Lower-Grade Glioma: Detecting IDH and TP53 Mutations Based on Multimodal MRI. Journal of magnetic resonance imaging: JMRI. https://doi.org/10.1002/jmri.25960 – reference: LehrerMBhadraARavikumarVChenJYWintermarkMHwangSNHolderCAHuangEPFevrier-SullivanBFreymannJBRaoAMultiple-response regression analysis links magnetic resonance imaging features to de-regulated protein expression and pathway activity in lower grade gliomaOncoscience201745–6576610.18632/oncoscience.35355388495538849 – reference: Dagogo-Jack I, Shaw ATJTo (2016) Screening for ALK rearrangements in lung cancer: time for a new generation of diagnostics? 21 (6):662-663 – reference: GrossmannPGutmanDADunnWDJrHolderCAAertsHJImaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in GlioblastomaBMC cancer2016166111:CAS:528:DC%2BC2sXhslaks7nE10.1186/s12885-016-2659-5275021804977720 – reference: HutchinsonLCLOVAR validates prognostic gene-expression signatureNat Rev Clin Oncol2013106810.1038/nrclinonc.2013.223337919 – reference: GudbjartssonTThoroddsenAPetursdottirVHardarsonSMagnussonJEinarssonGVEffect of incidental detection for survival of patients with renal cell carcinoma: results of population-based study of 701 patientsUrology20056661186119110.1016/j.urology.2005.07.00916360438 – reference: WinerAGHoetkerAVacchioMJZaborECOstravnayaIRussoPHsiehJJAkinOHakimiAARadiogenomics of clear cell renal cell carcinoma: Associations between imaging, molecular alterations and pathologic featuresJournal of Urology20151e423 – reference: GevaertOXuJHoangCDLeungANXuYQuonARubinDLNapelSPlevritisSKNon-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data–methods and preliminary resultsRadiology2012264238739610.1148/radiol.12111607227234993401348 – reference: LuLEhmkeRCSchwartzLHZhaoBAssessing agreement between radiomic features computed for multiple CT imaging settingsPloS one20161112e016655010.1371/journal.pone.0166550 – reference: KimTJLeeCTJheonSHParkJSChungJHRadiologic Characteristics of Surgically Resected Non-Small Cell Lung Cancer With ALK Rearrangement or EGFR MutationsThe Annals of thoracic surgery2016101247348010.1016/j.athoracsur.2015.07.06226454747 – reference: PappLPoetschNGrahovacMMitterhauserMWadsakWBeyerTHackerMTraub-WeidingerTPrediction of IDH1-R132H mutation status of glioma patients from 11-C-Methionine-PET radiomics features utilizing machine learning approachesNuklearMedizin2018572A7810.1055/s00839473 – reference: Berenguer R, Pastor-Juan MdR, Canales-Vázquez J, Castro-García M, Villas MV, Mansilla Legorburo F, Sabater SJR (2018) Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. 288 (2):407-415 – reference: GuoFGongHZhaoHChenJZhangYZhangLShiXZhangAJinHZhangJHeYMutation status and prognostic values of KRAS, NRAS, BRAF and PIK3CA in 353 Chinese colorectal cancer patientsScientific reports20188160761:CAS:528:DC%2BC1cXhslegtbrF10.1038/s41598-018-24306-1296663875904111 – reference: Coroller TP, Agrawal V, Narayan V, Hou Y, Grossmann P, Lee SW, Mak RH, Aerts HJJR, Oncology (2016) Radiomic phenotype features predict pathological response in non-small cell lung cancer. 119 (3):480-486 – reference: EfremovaMFinotelloFRiederDTrajanoskiZNeoantigens Generated by Individual Mutations and Their Role in Cancer Immunity and ImmunotherapyFront Immunol2017816791:CAS:528:DC%2BC1cXitFOgsL7K10.3389/fimmu.2017.01679292343295712389 – reference: GilliesRJKinahanPEHricakHRadiomics: Images Are More than PicturesThey Are Data. Radiology2016278256357710.1148/radiol.201515116926579733 – reference: Rios VelazquezEParmarCLiuYCorollerTPCruzGStringfieldOYeZMakrigiorgosMFennessyFMakRHGilliesRQuackenbushJAertsHSomatic Mutations Drive Distinct Imaging Phenotypes in Lung CancerCancer research20177714392239301:CAS:528:DC%2BC2sXhtFKiurvP10.1158/0008-5472.can-17-012228566328 – reference: VikramRGhoshPTamboliPRaoAImage texture analysis to predict bap1 mutational status in patients with clear cell renal carcinomaAbdominal imaging201439366810.1007/s00261-014-0161-6 – reference: ShaikhFAKolowitzBJAwanOAertsHJvon RedenAHalabiSMohiuddinSAMalikSShresthaRBDeibleCTechnical challenges in the clinical application of radiomicsJCO Clinical Cancer Informatics201711810.1200/CCI.17.00004 – reference: HalpennyDFPlodkowskiARielyGZhengJLitvakAMoscowitzCGinsbergMSRadiogenomic evaluation of lung cancer - Are there imaging characteristics associated with lung adenocarcinomas harboring BRAF mutations?Clinical imaging20174214715110.1016/j.clinimag.2016.11.01528012356 – reference: ZinnPOMahajanBSathyanPSinghSKMajumderSJoleszFAColenRRRadiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiformePloS one2011610e254511:CAS:528:DC%2BC3MXhtlOitLvI10.1371/journal.pone.0025451219986593187774 – reference: Jeon H, Cho HR, Park CK, Park SH, Kumarir N, Thakur N, Chung J, Choi SH (2017) CD49D correlated with apparent diffusion coefficient as a promising biomarker for prognosis prediction of glioblastoma: Radiogenomics study. Neuro-oncology 19 (Supplement 6):vi157. doi:http://dx.doi.org/10.1093/neuonc/nox168 – reference: da Costa WH, da Cunha IW, Fares AF, Bezerra SM, Shultz L, Clavijo DA, da Silva DV, Netto GJ, Guimaraes GC, Cassio Zequi S (2018) Prognostic impact of concomitant loss of PBRM1 and BAP1 protein expression in early stages of clear cell renal cell carcinoma. Urol Oncol 36 (5):243 e241-243 e248. https://doi.org/10.1016/j.urolonc.2018.01.002 – reference: LiYLiuXXuKQianZWangKFanXLiSWangYJiangTMRI features can predict EGFR expression in lower grade gliomas: A voxel-based radiomic analysisEuropean radiology201828135636210.1007/s00330-017-4964-z28755054 – reference: AfsharPMohammadiAPlataniotisKNOikonomouABenali HJapa2018Challenges and OpportunitiesFrom Hand-Crafted to Deep Learning-based Cancer Radiomics – reference: KuoMDGollubJSirlinCBOoiCChenXRadiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinomaJournal of vascular and interventional radiology: JVIR200718782183110.1016/j.jvir.2007.04.03117609439 – reference: BrisseHJBlancTSchleiermacherGMosseriVPhilippe-ChomettePJanoueix-LeroseyIPierronGLapoubleEPeuchmaurMFreneauxPGalmicheLAlgretNPeycelonMMichonJDelattreOSarnackiSRadiogenomics of neuroblastomas: Relationships between imaging phenotypes, tumor genomic profile and survivalPloS one2017129e01851901:CAS:528:DC%2BC1cXosVOqu7o%3D10.1371/journal.pone.0185190289457815612658 – reference: Lohmann P, Lerche C, Bauer E, Steger J, Stoffels G, Filss CP, Stegmayr C, Neumaier B, Shah NJ, Langen K, Galldiks N (2017) Predicting isocitrate dehydrogenase genotype in malignant glioma using fet pet radiomics. Neuro-oncology 19 (Supplement 3):iii88-iii89. doi:http://dx.doi.org/10.1093/neuonc/nox036 – reference: DeLeon T, Borad MJ, Wu T, Li J, Zwart CM, Yang G, Holeman S, Silva AC (2017) Utility of CT texture for identification of FGFR2 fusion in cholangiocarcinoma: A radiogenomic pilot study. Journal of Clinical Oncology Conference 35 (15 Supplement 1) – reference: Hong H-S, Kim SH, Park H-J, Park M-S, Kim KW, Kim WH, Kim NK, Lee JM, Cho HJJYmj (2013) Correlations of dynamic contrast-enhanced magnetic resonance imaging with morphologic, angiogenic, and molecular prognostic factors in rectal cancer. 54 (1):123-130 – reference: ColenRFosterIGatenbyRGigerMEGilliesRGutmanDHellerMJainRMadabhushiAMadhavanSNapelSRaoASaltzJTatumJVerhaakRWhitmanGNCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics SignaturesTranslational oncology20147555656910.1016/j.tranon.2014.07.007253894514225695 – reference: Rios Velazquez E, Liu Y, Parmar C, Narayan V, Gillies R, Aerts H (2016) Radiomic CT features complement semantic annotations to predict EGFR mutations in lung adenocarcinomas. Medical physics 43 (6 PART2):3706 – reference: Song B, Zhang G, Lu H, Wang H, Zhu W, Pickhardt PJ, Liang ZJIjocar, surgery (2014) Volumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography. 9 (6):1021-1031 – reference: RathoreSAkbariHRozyckiMAbdullahKGNasrallahMPBinderZADavuluriRVLustigRADahmaneNBilelloMO’RourkeDMDavatzikosCRadiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1Scientific reports20188150871:CAS:528:DC%2BC1cXhslWgurzK10.1038/s41598-018-22739-2295724925865162 – reference: SegalESirlinCBOoiCAdlerASGollubJChenXChanBKMatcukGRBarryCTChangHYKuoMDDecoding global gene expression programs in liver cancer by noninvasive imagingNat Biotechnol20072566756801:CAS:528:DC%2BD2sXmtlersrk%3D10.1038/nbt1306 – reference: HuLSNingSEschbacherJMBaxterLCGawNRanjbarSPlasenciaJDueckACPengSSmithKANakajiPKarisJPQuarlesCCWuTLoftusJCJenkinsRBSicotteHKollmeyerTMO’NeillBPElmquistWHoxworthJMFrakesDSarkariaJSwansonKRTranNLLiJMitchellJRRadiogenomics to characterize regional genetic heterogeneity in glioblastomaNeuro-oncology20171911281371:CAS:528:DC%2BC1cXitFSntrrM10.1093/neuonc/now13527502248 – reference: Duddalwar V, Liang G, Siegmund K, Cen S, Varghese B, Hwang D, Desai B, Desai M, Aron M, Gill I (2018) Association of computed tomography-based radiomic features with epigenetic variation of clear cell renal cell carcinoma using dna methylation. Journal of Urology 199 (4 Supplement 1):e959 – reference: YoonHJSohnIChoJHLeeHYKimJHChoiYLKimHLeeGLeeKSKimJDecoding Tumor Phenotypes for ALK, ROS1, and RET Fusions in Lung Adenocarcinoma Using a Radiomics ApproachMedicine20159441e17531:CAS:528:DC%2BC2MXhs1yltLrM10.1097/md.0000000000001753264699154616787 – reference: He J (2018) Comparison of PET conventional parameters and PET texture parameters for predicting KRAS gene mutation in colorectal cancer. Journal of Nuclear Medicine Conference: Society of Nuclear Medicine and Molecular Imaging Annual Meeting, SNMMI 59 (Supplement 1) – reference: KhalvatiFZhangYBaigSLobo-MuellerEMKaranicolasPGallingerSHaiderMAPrognostic Value of CT Radiomic Features in Resectable Pancreatic Ductal AdenocarcinomaScientific reports20199154491:CAS:528:DC%2BC1MXoslWjsr8%3D10.1038/s41598-019-41728-7309319546443807 – reference: EichingerPAlbertsEDelbridgeCTrebeschiSValentinitschABetteSHuberTGemptJMeyerBSchlegelJZimmerCKirschkeJSMenzeBHWiestlerBDiffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomasScientific reports201771133961:CAS:528:DC%2BC1cXhsVyksL3M10.1038/s41598-017-13679-4290426195645407 – reference: RomanMBaraibarILopezINadalERolfoCVicentSGil-BazoIKRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old targetMol Cancer2018171331:CAS:528:DC%2BC1cXitF2nt7vE10.1186/s12943-018-0789-x58177245817724 – reference: YuJShiZLianYLiZLiuTGaoYWangYChenLMaoYNoninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II gliomaEuropean radiology20172783509352210.1007/s00330-016-4653-328004160 – reference: Cho H, Hong B, Park C, Park S, Choi S (2017) Is BCAT1 a new MR imaging-related biomarker for prognosis prediction in IDH1-wildtype glioblastoma patients?: Radiogenomics study. Neuro-oncology 19 (Supplement 3):iii41. doi:http://dx.doi.org/10.1093/neuonc/nox036 – reference: Antropova N Deep Learning and Radiomics of Breast Cancer on DCE-MRI in Assessment of Malignancy and Response to Therapy.143. https://doi.org/10.6082/3jah-5j51 – reference: De JongEECVan ElmptWHendriksLELLeijenaarRTHDingemansAMCLambinPRadiomic CT features for evaluation of EGFR and KRAS mutation status in patients with advanced NSCLCRadiotherapy and Oncology2016119Supplement 1S290S29110.1016/S0167-8140(16)31859-X – reference: GoodmanAMKatoSBazhenovaLPatelSPFramptonGMMillerVStephensPJDanielsGAKurzrockRTumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse CancersMol Cancer Ther20171611259826081:CAS:528:DC%2BC2sXhslGisrvL10.1158/1535-7163.MCT-17-0386288353865670009 – reference: PershadYGovindanSHaraABoradMBekaii-SaabTWallaceAAlbadawiHOkluRJDUsing Naïve Bayesian Analysis to Determine Imaging Characteristics of KRAS Mutations in Metastatic Colon Cancer.20177350 – reference: TangHBaiHXSuCLeeAMYangLThe effect of cirrhosis on radiogenomic biomarker’s ability to predict microvascular invasion and outcome in hepatocellular carcinomaHepatology (Baltimore, Md)201664269169210.1002/hep.28620 – reference: Hong EK, Choi SH, Shin DJ, Jo SW, Yoo RE, Kang KM, Yun TJ, Kim JH, Sohn CH, Park SH, Won JK, Kim TM, Park CK, Kim IH, Lee ST (2018) Radiogenomics correlation between MR imaging features and major genetic profiles in glioblastoma. European radiology. https://doi.org/10.1007/s00330-018-5400-8 – reference: Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJJFio (2015) Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. 5:272 – reference: PereiraCBLealMFde SouzaCRMontenegroRCReyJACarvalhoAAAssumpcaoPPKhayatASPintoGRDemachkiSde Arruda Cardoso SmithMBurbanoRRPrognostic and predictive significance of MYC and KRAS alterations in breast cancer from women treated with neoadjuvant chemotherapyPloS one201383e605761:CAS:528:DC%2BC3sXlslCgsrk%3D10.1371/journal.pone.0060576235559923608596 – reference: ZhouHVallieresMBaiHXSuCTangHOldridgeDZhangZXiaoBLiaoWTaoYZhouJZhangPYangLMRI features predict survival and molecular markers in diffuse lower-grade gliomasNeuro-oncology20171968628701:CAS:528:DC%2BC1cXitFSntLrK10.1093/neuonc/now256283395885464433 – reference: Li H, Giger ML, Lan L, Yuan Y, Bhooshan N, Olopade OI Effect of variable gain on computerized texture analysis on digitalized mammograms. In: Summers RM, Karssemeijer N (eds), 2010. SPIE. https://doi.org/10.1117/12.845321 – reference: ChanBAHughesBGTargeted therapy for non-small cell lung cancer: current standards and the promise of the futureTransl Lung Cancer Res20154136541:CAS:528:DC%2BC2MXhtFCms7vL10.3978/j.issn.2218-6751.2014.05.0143677114367711 – reference: SacconiBAnzideiMLeonardiABoniFSabaLScipioneRAnileMRengoMLongoFBezziMVenutaFNapoliALaghiACatalanoCAnalysis of CT features and quantitative texture analysis in patients with lung adenocarcinoma: a correlation with EGFR mutations and survival ratesClinical radiology20177264434501:STN:280:DC%2BC1czislejtQ%3D%3D10.1016/j.crad.2017.01.01528258739 – reference: Van Der Voort SR, Gahrmann R, Van Den Bent MJ, Vincent AJPE, Niessen WJ, Smits M, Klein S Radiogenomic classification of the 1p/19q status in presumed low-grade gliomas. In, 2017. IEEE Computer Society, pp 638-641. https://doi.org/10.1109/isbi.2017.7950601 – reference: EmaminejadNQianWGuanYTanMQiuYLiuHZhengBFusion of Quantitative Image and Genomic Biomarkers to Improve Prognosis Assessment of Early Stage Lung Cancer PatientsIEEE Trans Biomed Eng20166351034104310.1109/TBME.2015.247768826390440 – reference: LiYLiuXQianZSunZXuKWangKFanXZhangZLiSWangYJiangTGenotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signatureEuropean radiology20182872960296810.1007/s00330-017-5267-029404769 – reference: McCannSMJiangYFanXWangJAnticTPriorFVanderWeeleDOtoAQuantitative Multiparametric MRI Features and PTEN Expression of Peripheral Zone Prostate Cancer: A Pilot StudyAJR American journal of roentgenology2016206355956510.2214/ajr.15.1496726901012 – reference: He L, Huang Y, Ma Z, Liang C, Liang C, Liu Z (2016) Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Scientific reports 6:34921. https://doi.org/10.1038/srep34921. https://www.nature.com/articles/srep34921#supplementary-information – reference: FisetSWelchMLWeissJPintilieMConwayJLMilosevicMFylesATraversoAJaffrayDMetserUJROncologyRepeatability and reproducibility of MRI-based radiomic features in cervical cancer.2019135107114 – reference: YarchoanMJohnsonBA3rdLutzERLaheruDAJaffeeEMTargeting neoantigens to augment antitumour immunityNat Rev Cancer20171742092221:CAS:528:DC%2BC2sXkt1Ontrc%3D10.1038/nrc.2016.154282338025575801 – reference: Chaunzwa TL, Christiani DC, Lanuti M, Shafer A, Diao N, Mak RH, Aerts H (2018) A deep-learning radiomics model for predicting survival in early-stage non-small cell lung cancer. 36 (15_suppl):8528-8528. https://doi.org/10.1200/jco.2018.36.15_suppl.8528 – reference: Saha A, Harowicz MR, Grimm LJ, Kim CE, Ghate SV, Walsh R, Mazurowski MA (2018) A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features. British journal of cancer. https://doi.org/10.1038/s41416-018-0185-8 – reference: YipSSLiuYParmarCLiQLiuSQuFYeZGilliesRJAertsHJAssociations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancerScientific reports201771351910.1038/s41598-017-02425-5 – reference: DiehnMNardiniCWangDSMcGovernSJayaramanMLiangYAldapeKChaSKuoMDIdentification of noninvasive imaging surrogates for brain tumor gene-expression modulesProc Natl Acad Sci U S A2008105135213521810.1073/pnas.080127910522782242278224 – reference: VelazquezERParmarCJermoumiMMakRHvan BaardwijkAFennessyFMLewisJHDe RuysscherDKikinisRLambinPAertsHJVolumetric CT-based segmentation of NSCLC using 3D-SlicerScientific reports20133352910.1038/srep03529243462413866632 – reference: Boots-SprengerSHESijbenARijntjesJTopsBBJIdemaAJRiveraALBleekerFEGijtenbeekAMDiefesKHeathcockLAldapeKDJeukenJWMWesselingPSignificance of complete 1p/19q co-deletion, IDH1 mutation and MGMT promoter methylation in gliomas: use with cautionModern Pathology2013269221:CAS:528:DC%2BC3sXhtVGksLnP10.1038/modpathol.2012.16623429602 – reference: CoweyCLRathmellWKVHL gene mutations in renal cell carcinoma: role as a biomarker of disease outcome and drug efficacyCurr Oncol Rep2009112941011:CAS:528:DC%2BD1MXltVSluro%3D10.1007/s11912-009-0015-5 – reference: OzkanEWestADedelowJAChuBFZhaoWYildizVOOttersonGAShiloKGhoshSKingMWhiteRDErdalBSCT Gray-Level Texture Analysis as a Quantitative Imaging Biomarker of Epidermal Growth Factor Receptor Mutation Status in Adenocarcinoma of the LungAJR American journal of roentgenology201520551016102510.2214/ajr.14.1414726496549 – reference: Tamez-PenaJGRodriguez-RojasJAGomez-RuedaHCelaya-PadillaJMRivera-PrietoRAPalacios-CoronaRGarza-MontemayorMCardona-HuertaSTrevinoVRadiogenomics analysis identifies correlations of digital mammography with clinical molecular signatures in breast cancerPloS one2018133e01938711:CAS:528:DC%2BC1cXhslenurnK10.1371/journal.pone.0193871295964965875760 – reference: BanerjeeSWangDSKimHJSirlinCBChanMGKornRLRutmanAMSiripongsakunSLuDImanbayevGKuoMDA computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinomaHepatology (Baltimore, Md)201562379280010.1002/hep.27877 – reference: ZhangLChenBLiuXSongJFangMHuCDongDLiWTianJQuantitative Biomarkers for Prediction of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung CancerTranslational oncology20181119410110.1016/j.tranon.2017.10.01229216508 – reference: De FauwJLedsamJRRomera-ParedesBNikolovSTomasevNBlackwellSAskhamHGlorotXO’DonoghueBVisentinDvan den DriesscheGLakshminarayananBMeyerCMackinderFBoutonSAyoubKChopraRKingDKarthikesalingamAHughesCORaineRHughesJSimDAEganCTufailAMontgomeryHHassabisDReesGBackTKhawPTSuleymanMCornebiseJKeanePARonnebergerOClinically applicable deep learning for diagnosis and referral in retinal diseaseNature Medicine2018249134213501:CAS:528:DC%2BC1cXhsFSqtbzN10.1038/s41591-018-0107-630104768 – reference: Buckler AJ, Mozley PD, Schwartz L, Petrick N, McNitt-Gray M, Fenimore C, O’Donnell K, Hayes W, Kim HJ, Clarke LJAr (2010) Volumetric CT in lung cancer: an example for the qualification of imaging as a biomarker. 17 (1):107-115 – reference: Czarnek NM, Clark K, Peters KB, Collins LM, Mazurowski MA Radiogenomics of glioblastoma: A pilot multi-institutional study to investigate a relationship between tumor shape features and tumor molecular subtype. In: Tourassi GD, Armato SG (eds), 2016. SPIE. https://doi.org/10.1117/12.2217084 – reference: Zinn PO, Singh SK, Kotrotsou A, Abrol S, Thomas G, Mosley J, Elakkad A, Hassan I, Kumar A, Colen RR (2017) Distinct Radiomic Phenotypes Define Glioblastoma TP53-PTEN-EGFR Mutational Landscape. Neurosurgery 64 (CN_suppl_1):203-210. https://doi.org/10.1093/neuros/nyx316 – reference: Caramella C, Bluthgen MV, Rosellini S, Leduc C, Facchinetti F, Haspinger E, Ferte C, Michiels S, Soria JC, Besse B (2015) Prognostic value of texture analysis and correlation with molecular profile in EGFR mutated/ALK rearranged advanced non-small cell lung cancer (NSCLC). European Journal of Cancer 3):S647-S648 – reference: CourtLERaoAKrishnanSRadiomics in cancer diagnosis, cancer staging, and prediction of response to treatmentTranslational cancer research20165433733910.21037/tcr.2016.07.14 – reference: KimHParkCMLeeMParkSJSongYSLeeJHHwangEJGooJMImpact of reconstruction algorithms on CT radiomic features of pulmonary tumors: analysis of intra-and inter-reader variability and inter-reconstruction algorithm variabilityPloS one20161110e016492410.1371/journal.pone.0164924 – reference: van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, Hoekstra OS, Smit EF, Boellaard RJMi, biology (2016) Repeatability of radiomic features in non-small-cell lung cancer [18 F] FDG-PET/CT studies: impact of reconstruction and delineation. 18 (5):788-795 – reference: Lu H, Arshad M, Thornton A, Avesani G, Cunnea P, Curry E, Kanavati F, Liang J, Nixon K, Williams STJNc (2019) A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic-and molecular-phenotypes of epithelial ovarian cancer. 10 (1):764 – ident: 2028_CR194 – ident: 2028_CR81 doi: 10.1055/s-0037-1600633 – volume: 1 start-page: 29 issue: 3 year: 2013 ident: 2028_CR139 publication-title: ADMET and DMPK doi: 10.5599/admet.1.3.7 – ident: 2028_CR83 – volume: 6 start-page: 23428 year: 2016 ident: 2028_CR193 publication-title: Scientific reports doi: 10.1038/srep23428 – volume: 1 start-page: e423 year: 2015 ident: 2028_CR161 publication-title: Journal of Urology – volume: 16 start-page: 611 year: 2016 ident: 2028_CR42 publication-title: BMC cancer doi: 10.1186/s12885-016-2659-5 – volume: 7 start-page: 53362 issue: 33 year: 2016 ident: 2028_CR183 publication-title: Oncotarget doi: 10.18632/oncotarget.10523 – volume: 273 start-page: 365 issue: 2 year: 2014 ident: 2028_CR125 publication-title: Radiology doi: 10.1148/radiol.14132641 – volume: 8 start-page: 11773 issue: 1 year: 2018 ident: 2028_CR58 publication-title: Scientific reports doi: 10.1038/s41598-018-30273-4 – volume: 135 start-page: 317 issue: 2 year: 2017 ident: 2028_CR75 publication-title: Journal of neuro-oncology doi: 10.1007/s11060-017-2576-8 – volume: 40 start-page: 1684 issue: 6 year: 2015 ident: 2028_CR160 publication-title: Abdominal imaging doi: 10.1007/s00261-015-0386-z – volume: 7 start-page: 3519 issue: 1 year: 2017 ident: 2028_CR2 publication-title: Scientific reports doi: 10.1038/s41598-017-02425-5 – ident: 2028_CR127 doi: 10.1117/12.2217658 – volume: 86 start-page: 190 issue: 2 year: 2014 ident: 2028_CR91 publication-title: Lung cancer (Amsterdam, Netherlands) doi: 10.1016/j.lungcan.2014.09.007 – ident: 2028_CR204 – volume: 403 start-page: 21 year: 2017 ident: 2028_CR17 publication-title: Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. – ident: 2028_CR148 doi: 10.1007/BF01297149 – ident: 2028_CR136 doi: 10.1038/s41467-019-08718-9 – volume: 28 start-page: 2960 issue: 7 year: 2018 ident: 2028_CR73 publication-title: European radiology doi: 10.1007/s00330-017-5267-0 – volume: 1 start-page: 031009 issue: 3 year: 2014 ident: 2028_CR120 publication-title: Journal of medical imaging (Bellingham, Wash) doi: 10.1117/1.jmi.1.3.031009 – volume: 123 start-page: 4535 issue: 23 year: 2017 ident: 2028_CR49 publication-title: Cancer doi: 10.1002/cncr.31039 – volume: 52 start-page: 99 issue: 2 year: 2018 ident: 2028_CR9 publication-title: Nuclear medicine and molecular imaging doi: 10.1007/s13139-017-0512-7 – ident: 2028_CR135 doi: 10.5694/mja14.00132 – volume: 101 start-page: 473 issue: 2 year: 2016 ident: 2028_CR102 publication-title: The Annals of thoracic surgery doi: 10.1016/j.athoracsur.2015.07.062 – volume: 11 start-page: e0146388 issue: 1 year: 2016 ident: 2028_CR207 publication-title: PloS one doi: 10.1371/journal.pone.0146388 – ident: 2028_CR188 – ident: 2028_CR186 doi: 10.1016/j.ijrobp.2018.05.053 – ident: 2028_CR63 doi: 10.1109/isbi.2017.7950601 – volume: 64 start-page: 691 issue: 2 year: 2016 ident: 2028_CR147 publication-title: Hepatology (Baltimore, Md) doi: 10.1002/hep.28620 – ident: 2028_CR154 doi: 10.3390/biomedicines6010035 – ident: 2028_CR210 doi: 10.1007/s00330-018-5695-5 – ident: 2028_CR71 – ident: 2028_CR197 doi: 10.1007/s00261-018-1600-6 – ident: 2028_CR177 – ident: 2028_CR89 doi: 10.1634/theoncologist.2016-0179 – ident: 2028_CR61 doi: 10.1002/jmri.25960 – volume: 8 start-page: 6108 issue: 1 year: 2018 ident: 2028_CR55 publication-title: Scientific reports doi: 10.1038/s41598-018-24438-4 – volume: 68 start-page: 394 issue: 6 year: 2018 ident: 2028_CR138 publication-title: CA Cancer J Clin doi: 10.3322/caac.21492 – volume: 369 start-page: 1023 issue: 11 year: 2013 ident: 2028_CR169 publication-title: N Engl J Med doi: 10.1056/NEJMoa1305275 – volume: 21 start-page: 266 issue: 3 year: 2008 ident: 2028_CR149 publication-title: Proc (Bayl Univ Med Cent) doi: 10.1080/08998280.2008.11928410 – ident: 2028_CR72 doi: 10.1093/neuonc/nox168 – ident: 2028_CR57 doi: 10.1117/12.2254212 – volume: 281 start-page: 382 issue: 2 year: 2016 ident: 2028_CR131 publication-title: Radiology doi: 10.1148/radiol.2016152110 – volume: 42 start-page: 902 issue: 4 year: 2015 ident: 2028_CR126 publication-title: Journal of magnetic resonance imaging: JMRI doi: 10.1002/jmri.24879 – volume: 3 start-page: S101 year: 2015 ident: 2028_CR124 publication-title: European Journal of Cancer doi: 10.1016/S0959-8049(16)30301-X – ident: 2028_CR114 doi: 10.7554/elife.23421 – ident: 2028_CR133 doi: 10.1016/j.ygyno.2016.02.023 – ident: 2028_CR76 doi: 10.1093/neuonc/nox168 – ident: 2028_CR48 doi: 10.1093/neuonc/nox168 – ident: 2028_CR12 doi: 10.1117/12.2293701 – volume: 8 start-page: 523 issue: 4 year: 2014 ident: 2028_CR30 publication-title: Biomark Med doi: 10.2217/bmm.14.16 – volume: 133 start-page: 27 issue: 1 year: 2017 ident: 2028_CR41 publication-title: Journal of neuro-oncology doi: 10.1007/s11060-017-2420-1 – ident: 2028_CR110 doi: 10.1118/1.4957257 – volume: 11 start-page: e0164924 issue: 10 year: 2016 ident: 2028_CR13 publication-title: PloS one doi: 10.1371/journal.pone.0164924 – volume: 17 start-page: 33 issue: 1 year: 2018 ident: 2028_CR87 publication-title: Mol Cancer doi: 10.1186/s12943-018-0789-x – volume: 196 start-page: 1083 issue: 5 year: 2011 ident: 2028_CR144 publication-title: AJR American journal of roentgenology doi: 10.2214/AJR.10.4720 – volume: 19 start-page: 862 issue: 6 year: 2017 ident: 2028_CR65 publication-title: Neuro-oncology doi: 10.1093/neuonc/now256 – volume: 356 start-page: 227 issue: 3 year: 2007 ident: 2028_CR116 publication-title: N Engl J Med doi: 10.1056/NEJMoa062790 – ident: 2028_CR11 doi: 10.1016/j.jacr.2017.12.006 – ident: 2028_CR200 doi: 10.1016/j.radonc.2016.04.004 – ident: 2028_CR151 doi: 10.1200/JCO.2017.35.15_suppl.e15626 – volume: 24 start-page: 1342 issue: 9 year: 2018 ident: 2028_CR208 publication-title: Nature Medicine doi: 10.1038/s41591-018-0107-6 – volume: 45 start-page: e678 issue: 6 year: 2018 ident: 2028_CR82 publication-title: Medical physics doi: 10.1002/mp.12938 – volume: 5 start-page: 17787 year: 2015 ident: 2028_CR130 publication-title: Scientific reports doi: 10.1038/srep17787 – volume: 199 start-page: 654 issue: 3 year: 2012 ident: 2028_CR122 publication-title: AJR American journal of roentgenology doi: 10.2214/ajr.11.7824 – volume: 6 start-page: 33860 year: 2016 ident: 2028_CR94 publication-title: Scientific reports doi: 10.1038/srep33860 – volume: 51 start-page: 279 year: 2018 ident: 2028_CR103 publication-title: Clinical imaging doi: 10.1016/j.clinimag.2018.05.028 – ident: 2028_CR25 doi: 10.1002/mp.12685 – volume: 8 start-page: e60576 issue: 3 year: 2013 ident: 2028_CR28 publication-title: PloS one doi: 10.1371/journal.pone.0060576 – volume: 8 start-page: 1679 year: 2017 ident: 2028_CR33 publication-title: Front Immunol doi: 10.3389/fimmu.2017.01679 – volume: 9 start-page: e100244 issue: 7 year: 2014 ident: 2028_CR95 publication-title: PloS one doi: 10.1371/journal.pone.0100244 – volume: 3 start-page: 57 issue: 1 year: 2016 ident: 2028_CR29 publication-title: Hepat Oncol doi: 10.2217/hep.15.41 – volume: 57 start-page: A78 issue: 2 year: 2018 ident: 2028_CR60 publication-title: NuklearMedizin doi: 10.1055/s00839473 – volume: 15 start-page: 222 issue: 4 year: 2018 ident: 2028_CR179 publication-title: Nat Rev Urol doi: 10.1038/nrurol.2018.9 – volume: 19 start-page: 128 issue: 1 year: 2017 ident: 2028_CR47 publication-title: Neuro-oncology doi: 10.1093/neuonc/now135 – volume: 22 start-page: 348 issue: 2 year: 2015 ident: 2028_CR50 publication-title: European journal of neurology doi: 10.1111/ene.12578 – volume: 4 start-page: 041304 issue: 4 year: 2017 ident: 2028_CR121 publication-title: Journal of medical imaging (Bellingham, Wash) doi: 10.1117/1.jmi.4.4.041304 – ident: 2028_CR163 doi: 10.1016/j.juro.2018.02.2302 – ident: 2028_CR182 doi: 10.1200/jco.2015.33.7_suppl.25 – volume: 20 start-page: 1068 issue: 8 year: 2018 ident: 2028_CR69 publication-title: Neuro-oncology doi: 10.1093/neuonc/noy033 – volume: 6 start-page: e25451 issue: 10 year: 2011 ident: 2028_CR37 publication-title: PloS one doi: 10.1371/journal.pone.0025451 – volume: 7 start-page: 18 issue: 1 year: 2010 ident: 2028_CR123 publication-title: Journal of the American college of radiology doi: 10.1016/j.jacr.2009.09.022 – volume: 8 start-page: 101244 issue: 60 year: 2017 ident: 2028_CR77 publication-title: Oncotarget doi: 10.18632/oncotarget.20643 – volume: 66 start-page: 1186 issue: 6 year: 2005 ident: 2028_CR152 publication-title: Urology doi: 10.1016/j.urology.2005.07.009 – volume: 26 start-page: 32 issue: 1 year: 2016 ident: 2028_CR96 publication-title: European radiology doi: 10.1007/s00330-015-3814-0 – volume: 62 start-page: 792 issue: 3 year: 2015 ident: 2028_CR146 publication-title: Hepatology (Baltimore, Md) doi: 10.1002/hep.27877 – volume: 5 start-page: 18678 year: 2015 ident: 2028_CR167 publication-title: Scientific reports doi: 10.1038/srep18678 – volume: 286 start-page: 307 issue: 1 year: 2018 ident: 2028_CR107 publication-title: Radiology doi: 10.1148/radiol.2017161845 – ident: 2028_CR190 doi: 10.1148/radiol.2018172361 – volume: 8 start-page: 5087 issue: 1 year: 2018 ident: 2028_CR79 publication-title: Scientific reports doi: 10.1038/s41598-018-22739-2 – volume: 7 start-page: 556 issue: 5 year: 2014 ident: 2028_CR213 publication-title: Translational oncology doi: 10.1016/j.tranon.2014.07.007 – volume: 5 start-page: 011021 issue: 1 year: 2018 ident: 2028_CR15 publication-title: Journal of medical imaging (Bellingham, Wash) doi: 10.1117/1.JMI.5.1.011021 – volume: 72 start-page: 443 issue: 6 year: 2017 ident: 2028_CR109 publication-title: Clinical radiology doi: 10.1016/j.crad.2017.01.015 – ident: 2028_CR19 doi: 10.3389/fonc.2015.00272 – volume: 119 start-page: S290 issue: Supplement 1 year: 2016 ident: 2028_CR88 publication-title: Radiotherapy and Oncology doi: 10.1016/S0167-8140(16)31859-X – volume: 9 start-page: 5449 issue: 1 year: 2019 ident: 2028_CR198 publication-title: Scientific reports doi: 10.1038/s41598-019-41728-7 – volume: 15 start-page: 353 issue: 6 year: 2018 ident: 2028_CR27 publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-018-0002-6 – volume: 4 start-page: 57 issue: 5–6 year: 2017 ident: 2028_CR78 publication-title: Oncoscience doi: 10.18632/oncoscience.353 – volume: 48 start-page: 27 year: 2018 ident: 2028_CR8 publication-title: Physica medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB) doi: 10.1016/j.ejmp.2018.03.012 – ident: 2028_CR174 – volume: 7 start-page: 46349 year: 2017 ident: 2028_CR10 publication-title: Scientific reports doi: 10.1038/srep46349 – volume: 40 start-page: 2331 issue: 7 year: 2015 ident: 2028_CR170 publication-title: Abdominal imaging doi: 10.1007/s00261-015-0438-4 – volume: 26 start-page: 922 year: 2013 ident: 2028_CR66 publication-title: Modern Pathology doi: 10.1038/modpathol.2012.166 – ident: 2028_CR202 doi: 10.21037/qims.2019.03.02 – volume: 7 start-page: 5467 issue: 1 year: 2017 ident: 2028_CR20 publication-title: Scientific reports doi: 10.1038/s41598-017-05848-2 – volume: 1 start-page: 1 year: 2017 ident: 2028_CR184 publication-title: JCO Clinical Cancer Informatics doi: 10.1200/CCI.17.00004 – ident: 2028_CR18 doi: 10.1038/srep13087 – ident: 2028_CR192 doi: 10.1007/s00330-017-4859-z – ident: 2028_CR195 doi: 10.1371/journal.pone.0102107 – ident: 2028_CR199 doi: 10.1002/acm2.12170 – volume: 25 start-page: 675 issue: 6 year: 2007 ident: 2028_CR145 publication-title: Nat Biotechnol doi: 10.1038/nbt1306 – volume: 5 start-page: v155 year: 2015 ident: 2028_CR214 publication-title: Neuro-oncology doi: 10.1093/neuonc/nov225.11 – ident: 2028_CR185 doi: 10.3109/0284186X.2013.812798 – volume: 5 start-page: 4006 year: 2014 ident: 2028_CR4 publication-title: Nature communications doi: 10.1038/ncomms5006 – volume: 2 start-page: 344 issue: 3 year: 2011 ident: 2028_CR166 publication-title: Genes & Cancer doi: 10.1177/1947601911411084 – volume: 15 start-page: 1159 issue: 6 year: 2006 ident: 2028_CR117 publication-title: Cancer Epidemiol Biomarkers Prev doi: 10.1158/1055-9965.EPI-06-0034 – volume: 42 start-page: 2030 issue: 8 year: 2017 ident: 2028_CR159 publication-title: Abdominal Radiology doi: 10.1007/s00261-017-1192-6 – volume: 144 start-page: 646 issue: 5 year: 2011 ident: 2028_CR26 publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 28 start-page: 3640 issue: 9 year: 2018 ident: 2028_CR80 publication-title: European radiology doi: 10.1007/s00330-017-5302-1 – volume: 164 start-page: 114 year: 2018 ident: 2028_CR59 publication-title: Clinical neurology and neurosurgery doi: 10.1016/j.clineuro.2017.12.007 – volume: 97 start-page: 8 year: 2017 ident: 2028_CR100 publication-title: European journal of radiology doi: 10.1016/j.ejrad.2017.10.009 – volume: 57 start-page: A36 issue: 2 year: 2018 ident: 2028_CR54 publication-title: NuklearMedizin doi: 10.1055/s00839473 – volume: 7 start-page: 13396 issue: 1 year: 2017 ident: 2028_CR51 publication-title: Scientific reports doi: 10.1038/s41598-017-13679-4 – volume: 94 start-page: e1753 issue: 41 year: 2015 ident: 2028_CR92 publication-title: Medicine doi: 10.1097/md.0000000000001753 – volume: 10 start-page: 68 year: 2013 ident: 2028_CR132 publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2013.2 – volume: 13 start-page: 563 issue: 4 year: 2018 ident: 2028_CR62 publication-title: International journal of computer assisted radiology and surgery doi: 10.1007/s11548-017-1691-5 – volume: 16 start-page: 2598 issue: 11 year: 2017 ident: 2028_CR32 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-17-0386 – volume: 19 start-page: 157 issue: 3 year: 2010 ident: 2028_CR165 publication-title: Diagn Mol Pathol doi: 10.1097/PDM.0b013e3181c93fd1 – volume: 28 start-page: 2058 issue: 5 year: 2018 ident: 2028_CR171 publication-title: European radiology doi: 10.1007/s00330-017-5146-8 – ident: 2028_CR46 doi: 10.1093/neuros/nyx316 – volume: 85 start-page: 778 issue: 1014 year: 2012 ident: 2028_CR143 publication-title: The British journal of radiology doi: 10.1259/bjr/65897774 – volume: 285 start-page: 482 issue: 2 year: 2017 ident: 2028_CR134 publication-title: Radiogenomics of high-grade serous ovarian cancer: multireader multi-institutional study from the Cancer Genome Atlas Ovarian Cancer Imaging Research Group. – ident: 2028_CR150 doi: 10.1007/s00261-018-1505-4 – volume: 52 start-page: 378 issue: 6 year: 2018 ident: 2028_CR158 publication-title: J Pathol Transl Med doi: 10.4132/jptm.2018.09.21 – ident: 2028_CR157 doi: 10.1016/j.urolonc.2018.01.002 – volume: 5 start-page: 337 issue: 4 year: 2016 ident: 2028_CR5 publication-title: Translational cancer research doi: 10.21037/tcr.2016.07.14 – volume: 57 start-page: 1227 issue: 12 year: 2015 ident: 2028_CR43 publication-title: Neuroradiology doi: 10.1007/s00234-015-1576-7 – volume: 11 start-page: 94 issue: 2 year: 2009 ident: 2028_CR153 publication-title: Curr Oncol Rep doi: 10.1007/s11912-009-0015-5 – volume: 105 start-page: 5213 issue: 13 year: 2008 ident: 2028_CR35 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0801279105 – volume: 273 start-page: 168 issue: 1 year: 2014 ident: 2028_CR45 publication-title: Radiology doi: 10.1148/radiol.14131731 – volume: 254 start-page: 108 issue: 1 year: 2011 ident: 2028_CR142 publication-title: Annals of surgery doi: 10.1097/SLA.0b013e31821ad884 – volume: 27 start-page: 2091 issue: 12 year: 2009 ident: 2028_CR168 publication-title: J Clin Oncol doi: 10.1200/JCO.2009.21.9170 – volume: 27 start-page: 3509 issue: 8 year: 2017 ident: 2028_CR64 publication-title: European radiology doi: 10.1007/s00330-016-4653-3 – volume: 270 start-page: 464 issue: 2 year: 2014 ident: 2028_CR155 publication-title: Radiology doi: 10.1148/radiol.13130663 – ident: 2028_CR172 doi: 10.21873/anticanres.11039 – volume: 2 start-page: S700 year: 2015 ident: 2028_CR98 publication-title: Journal of Thoracic Oncology – volume: 58 start-page: 569 issue: 4 year: 2017 ident: 2028_CR101 publication-title: Journal of nuclear medicine: official publication, Society of Nuclear Medicine doi: 10.2967/jnumed.116.181826 – volume: 8 start-page: 6076 issue: 1 year: 2018 ident: 2028_CR164 publication-title: Scientific reports doi: 10.1038/s41598-018-24306-1 – volume: 205 start-page: 1016 issue: 5 year: 2015 ident: 2028_CR105 publication-title: AJR American journal of roentgenology doi: 10.2214/ajr.14.14147 – ident: 2028_CR156 doi: 10.1118/1.4957254 – volume: 7 start-page: 41674 year: 2017 ident: 2028_CR108 publication-title: Scientific reports doi: 10.1038/srep41674 – ident: 2028_CR111 doi: 10.1016/j.jtho.2017.09.581 – volume: 3 start-page: 3529 year: 2013 ident: 2028_CR209 publication-title: Scientific reports doi: 10.1038/srep03529 – volume: 9 start-page: 5459 issue: 4 year: 2018 ident: 2028_CR85 publication-title: Oncotarget doi: 10.18632/oncotarget.23616 – volume: 77 start-page: 3922 issue: 14 year: 2017 ident: 2028_CR99 publication-title: Cancer research doi: 10.1158/0008-5472.can-17-0122 – volume: 281 start-page: 907 issue: 3 year: 2016 ident: 2028_CR68 publication-title: Radiology doi: 10.1148/radiol.2016161382 – volume: 8 start-page: 45888 issue: 28 year: 2017 ident: 2028_CR52 publication-title: Oncotarget doi: 10.18632/oncotarget.17585 – volume: 135 start-page: 107 year: 2019 ident: 2028_CR201 publication-title: Repeatability and reproducibility of MRI-based radiomic features in cervical cancer. – ident: 2028_CR118 doi: 10.1117/12.845321 – volume: 206 start-page: 559 issue: 3 year: 2016 ident: 2028_CR180 publication-title: AJR American journal of roentgenology doi: 10.2214/ajr.15.14967 – volume: 285 start-page: 401 issue: 2 year: 2017 ident: 2028_CR129 publication-title: Radiology doi: 10.1148/radiol.2017162823 – volume: 8 start-page: 7 issue: 1 year: 2018 ident: 2028_CR212 publication-title: Scientific reports doi: 10.1038/s41598-017-18310-0 – volume: 30 start-page: 44 issue: 1 year: 2019 ident: 2028_CR31 publication-title: Ann Oncol doi: 10.1093/annonc/mdy495 – volume: 2 start-page: 041006 issue: 4 year: 2015 ident: 2028_CR70 publication-title: Journal of medical imaging (Bellingham, Wash) doi: 10.1117/1.jmi.2.4.041006 – ident: 2028_CR206 – ident: 2028_CR74 doi: 10.1117/12.2255694 – ident: 2028_CR187 doi: 10.1118/1.4934826 – volume: 42 start-page: 147 year: 2017 ident: 2028_CR104 publication-title: Clinical imaging doi: 10.1016/j.clinimag.2016.11.015 – volume: 7 start-page: 50 issue: 3 year: 2017 ident: 2028_CR178 publication-title: Using Naïve Bayesian Analysis to Determine Imaging Characteristics of KRAS Mutations in Metastatic Colon Cancer. – ident: 2028_CR141 doi: 10.1200/JCO.2017.35.15_suppl.e15623 – volume: 63 start-page: 1034 issue: 5 year: 2016 ident: 2028_CR115 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2477688 – volume: 9 start-page: 2068 issue: 1 year: 2019 ident: 2028_CR191 publication-title: Scientific reports doi: 10.1038/s41598-018-37984-8 – ident: 2028_CR44 doi: 10.1093/neuonc/not183 – volume: 4 start-page: 36 issue: 1 year: 2015 ident: 2028_CR86 publication-title: Transl Lung Cancer Res doi: 10.3978/j.issn.2218-6751.2014.05.01 – ident: 2028_CR1 doi: 10.1371/journal.pone.0187908 – ident: 2028_CR93 – ident: 2028_CR36 doi: 10.1093/neuonc/nor162 – volume: 18 start-page: 821 issue: 7 year: 2007 ident: 2028_CR140 publication-title: Journal of vascular and interventional radiology: JVIR doi: 10.1016/j.jvir.2007.04.031 – volume: 73 start-page: 590.e591 issue: 6 year: 2018 ident: 2028_CR97 publication-title: Clinical radiology doi: 10.1016/j.crad.2018.01.009 – volume: 70 start-page: 232 issue: 2 year: 2009 ident: 2028_CR6 publication-title: European journal of radiology doi: 10.1016/j.ejrad.2009.01.050 – ident: 2028_CR38 doi: 10.1093/bib/bby026 – ident: 2028_CR56 doi: 10.1007/s00330-018-5400-8 – ident: 2028_CR205 – volume: 11 start-page: e0166550 issue: 12 year: 2016 ident: 2028_CR14 publication-title: PloS one doi: 10.1371/journal.pone.0166550 – ident: 2028_CR173 – ident: 2028_CR196 doi: 10.1038/srep34921 – volume: 89 start-page: 20160212 issue: 1063 year: 2016 ident: 2028_CR175 publication-title: The British journal of radiology doi: 10.1259/bjr.20160212 – ident: 2028_CR128 doi: 10.1038/s41416-018-0185-8 – volume: 28 start-page: 356 issue: 1 year: 2018 ident: 2028_CR67 publication-title: European radiology doi: 10.1007/s00330-017-4964-z – volume: 264 start-page: 387 issue: 2 year: 2012 ident: 2028_CR90 publication-title: Radiology doi: 10.1148/radiol.12111607 – ident: 2028_CR106 – volume: 13 start-page: e0193871 issue: 3 year: 2018 ident: 2028_CR137 publication-title: PloS one doi: 10.1371/journal.pone.0193871 – volume: 1 start-page: 034003 issue: 3 year: 2014 ident: 2028_CR23 publication-title: Journal of medical imaging (Bellingham, Wash) doi: 10.1117/1.JMI.1.3.034003 – volume: 2 start-page: 1636 issue: 12 year: 2016 ident: 2028_CR24 publication-title: JAMA oncology doi: 10.1001/jamaoncol.2016.2631 – volume: 34 start-page: 163 issue: 1 year: 2018 ident: 2028_CR211 publication-title: Cancer cell doi: 10.1016/j.ccell.2018.06.006 – volume-title: Benali HJapa year: 2018 ident: 2028_CR16 – volume: 39 start-page: 668 issue: 3 year: 2014 ident: 2028_CR162 publication-title: Abdominal imaging doi: 10.1007/s00261-014-0161-6 – ident: 2028_CR22 doi: 10.6082/3jah-5j51 – volume: 42 start-page: 6725 issue: 11 year: 2015 ident: 2028_CR39 publication-title: Medical physics doi: 10.1118/1.4934373 – ident: 2028_CR181 doi: 10.1200/jco.2015.33.7_suppl.126 – ident: 2028_CR112 – ident: 2028_CR189 doi: 10.1002/mp.12123 – ident: 2028_CR53 – ident: 2028_CR21 doi: 10.1200/jco.2018.36.15_suppl.8528 – volume: 17 start-page: 209 issue: 4 year: 2017 ident: 2028_CR34 publication-title: Nat Rev Cancer doi: 10.1038/nrc.2016.154 – volume: 278 start-page: 563 issue: 2 year: 2016 ident: 2028_CR3 publication-title: They Are Data. Radiology doi: 10.1148/radiol.2015151169 – volume: 16 start-page: 424 issue: 4 year: 2014 ident: 2028_CR119 publication-title: Breast cancer research: BCR doi: 10.1186/s13058-014-0424-8 – ident: 2028_CR203 doi: 10.21037/tcr.2019.01.14 – volume: 8 start-page: 228 year: 2018 ident: 2028_CR7 publication-title: Frontiers in oncology doi: 10.3389/fonc.2018.00228 – volume: 11 start-page: 94 issue: 1 year: 2018 ident: 2028_CR113 publication-title: Translational oncology doi: 10.1016/j.tranon.2017.10.012 – volume: 12 start-page: e0185190 issue: 9 year: 2017 ident: 2028_CR84 publication-title: PloS one doi: 10.1371/journal.pone.0185190 – ident: 2028_CR176 doi: 10.1007/s11548-014-0991-2 – ident: 2028_CR40 doi: 10.1117/12.2217084 |
SSID | ssj0001651125 ssj0008379 |
Score | 2.609758 |
SecondaryResourceType | review_article |
Snippet | From diagnostics to prognosis to response prediction, new applications for radiomics are rapidly being developed. One of the fastest evolving branches involves... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1960 |
SubjectTerms | Biological evolution Brain cancer Breast cancer CME articles Colorectal cancer Gastroenterology Hepatology Image processing Imaging Kidney cancer Liver cancer Medicine Medicine & Public Health Mutation Phenotypes Prostate cancer Radiology Radiomics Special Section: Radiogenomics Tumors |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90A_HF74_qlAq-uY5-pG3q2xDnUOaDOJhPJUlTGLpOXMfAv95L1taPqbDnpNf0Ltf87i53B3CeIsZQZadQxR2uvFWppaJLlh-EnHiCSaZ9ur37oNsntwN_UCSFTcrb7mVIUv-pq2Q3bS6g6RtZCHFcas1WoY74wyY1qLdvnu6--FYCBSN83VcuQIPZJoMiX-Z3Qt_PpAWguRAk1WdPZxP65arnV06eW9Oct8T7j4KOy37WFmwUYNRsz3fPNqzIbAfWekW4fReaDywZjlUZ19FQTC5Nnd2FxM3hSDc3MlmWmOXwHvQ7149XXator2AJ4kS5JWTq-8wRduqLkKPdxFEyAY3ClNLEJTyNHCJSKgPCiCrCI7jtJCzwBWF4zkfS24daNs7kIZhU5atKjzBUfxImgvIklMKNXE5tzok0wCkZHIui9rhqgfESV1WTNRtiZEOs2RDPDLionnmdV974d3ajlFtcaOEkdlXDLep5ETXgrBpG_VFBEZbJ8VTNcRXGRVRpwMFc3tXrEPqSCPGLAc1Sdp_E_17L0XLTj2Hd1eJXrp0G1PK3qTxBpJPz02JjfwAW6PAM priority: 102 providerName: Springer Nature |
Title | Radiogenomics: bridging imaging and genomics |
URI | https://link.springer.com/article/10.1007/s00261-019-02028-w https://www.ncbi.nlm.nih.gov/pubmed/31049614 https://www.proquest.com/docview/2218683398 https://www.proquest.com/docview/2229231423 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LS_QwEB98gHgRX99nfVHBmxa3adqmXmR32VUUFxEX1lNJ0hQWtKvuiv--M9m0IqKX5JA0DTN5_GYmMwNwXCLGoLBTuMVDRdqqMiDrUhAnqeKRlkZane7tILka8utRPHIKt6l7VlmfifagLiaadORnjJIniSjKxMXLa0BZo8i66lJoLMIyhS6jJ13pqBG4EF3YWHssSlBqbvGRc5qxrnNW-EBBOgsQMDERfHy_mH6gzR-WUnsB9ddhzSFHvz1n9QYsmGoTVm6dbXwLTu9lMZ5QzNXnsZ6e-9YVC0fyx882E5Evq8Kvm7dh2O89dK8Clwsh0DzMZoE2ZRzLULfKWKcKhRyFZExElpZCFIyrMgu5LoVJuOQUMUerVljIJNZc4qWcmegfLFWTyuyAL8i51ERc4l7laaGFKlKjWcaUaCnFjQdhTYhcu0DhlK_iKW9CHFvi5Ui83BIv__DgpPnmZR4m48_e-zV9c7dlpvkXgz04appxsZMFQ1Zm8k59GAFShIAe_J_zpfkd4lSeIdjw4LRm1Nfgv89l9--57MEqs4uE9C77sDR7ezcHCENm6tCuNSxF__IQltv9TmdA9eXjTQ_rTm9wd4-t3aSL5ZC1PwGQd9xa |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9NADLdGkYAXBGODQGGZNJ5YRHO5JBckhBDQdWu7B9RKfcvuLhep0pp2tFXFl-IzYl_-VKiib3vO5WL5bN_PdmwDnOWIMajtFKq4ryhalXuUXfLCKFY80NJIG9MdXke9Mb-ahJMD-FPXwtBvlbVNtIY6m2uKkX9kNDxJBEEivizuPJoaRdnVeoRGKRZ983uDLtvy8-V3PN_3jHV_jL71vGqqgKe5n6w8bfIwlL7u5KGOFboLCgmKRBLnQmSMqzzxuc6Fibjk1HtGq46fySjUXOL1lpgA930ADzmSQholuheN5Rdlbz8WROild_ikKtKxpXrW2UHHPfEQoDHhbf69CHfQ7U5m1l543WfwtEKq7tdStJ7DgSkO4dGwysW_gPOfMpvOqcfrbKqXn1xb-oU7udOZnXzkyiJz68dHML4XLh1Dq5gX5hW4gopZTcAl2gYeZ1qoLDaaJUyJjlLcOODXjEh11Zic5mPcpk1LZcu8FJmXWualGwc-NO8syrYce1e3a_6mlYou061AOXDaPEblooyJLMx8TWsYAWCEnA68LM-l-RziYp4guHHgvD6o7eb_p-X1flpO4HFvNBykg8vr_ht4wqzAUMynDa3Vr7V5ixBopd5ZuXPh5r4F_S8WmxLh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS8QwEB48QHwRb-tZQZ-0uE3TNhVERF28EVHYt5qkKSy4XXVXFv-av86ZbFsR0Tefk6ZhjuSbmcwMwFaOGIPKTqGK-4q8VblH0SUvjGLFAy2NtD7d65vo7IFftMLWCHxUuTD0rLI6E-1BnXU1-cj3GDVPEkGQiL28fBZxe9I8fH7xqIMURVqrdhpDEbk07wM033oH5yfI623Gmqf3x2de2WHA09xP-p42eRhKXzfyUMcKTQeFm4tEEudCZIyrPPG5zoWJuORUh0arhp_JKNRc4lWXmADXHYXxOAh90rG4VRt7iGxsnT8WRGixN3irTNixaXvW8EEjPvEQrDHhDb5fij-Q7o8orb38mtMwVaJW92goZjMwYopZmLgu4_JzsHsns3aX6r122rq379o0MFzJbXdsFyRXFplbDc_Dw79QaQHGim5hlsAVlNhqAi7xnOBxpoXKYqNZwpRoKMWNA35FiFSXRcqpV8ZTWpdXtsRLkXipJV46cGCn_uZ5WKLjz9mrFX3TUl176ZdwObBZD6OiUfREFqb7RnMYgWGEnw4sDvlS_w4xMk8Q6DiwWzHqa_Hf97L89142YAJFPL06v7lcgUlm5YXcP6sw1n99M2uIhvpq3YqdC4__Leef21kXDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiogenomics%3A+bridging+imaging+and+genomics&rft.jtitle=Abdominal+radiology+%28New+York%29&rft.au=Bodalal%2C+Zuhir&rft.au=Trebeschi%2C+Stefano&rft.au=Nguyen-Kim%2C+Thi+Dan+Linh&rft.au=Schats%2C+Winnie&rft.date=2019-06-01&rft.eissn=2366-0058&rft.volume=44&rft.issue=6&rft.spage=1960&rft_id=info:doi/10.1007%2Fs00261-019-02028-w&rft_id=info%3Apmid%2F31049614&rft.externalDocID=31049614 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-004X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-004X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-004X&client=summon |