Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications

The photocatalytic technology illustrates an eco-friendly and sustainable route to overcome environmental and energy issues. The successful construction of a photocatalyst depends on four key elements: light absorption ability, the density of active sites, redox capacity, and photoinduced electron-h...

Full description

Saved in:
Bibliographic Details
Published inAdvances in colloid and interface science Vol. 311; p. 102830
Main Authors Ahmad, Irshad, Zou, Yanhong, Yan, Jiaying, Liu, Yuyu, Shukrullah, Shazia, Naz, Muhammad Yasin, Hussain, Humaira, Khan, Waheed Qamar, Khalid, N.R.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The photocatalytic technology illustrates an eco-friendly and sustainable route to overcome environmental and energy issues. The successful construction of a photocatalyst depends on four key elements: light absorption ability, the density of active sites, redox capacity, and photoinduced electron-hole recombination rate. Sincemost of intrinsic semiconductor photocatalysts cannot meet all these requirements, they are often modified to boost their photocatalytic properties. Many strategies have been adopted to design novel and efficient photocatalysts for diverse applications. Herein, we review the most efficient of these strategies and methods focused on effectively overcoming the efficiency limitations of photocatalysts to promote their large-scale application. Subsequently, a particular aim is put on the most current studies for photocatalytic applications, including CO2 reduction, N2 fixation, H2 evolution, and pollutants degradation. Finally, key challenges and future perspectives in designing and implementing semiconductor photocatalysts for large-scale applications are discussed. Therefore, it is foreseen that this review will work as a guide for future research and provides a variety of strategies to develop novel and high-performance photocatalysts for various applications. [Display omitted] •Recent advances in strategies to design semiconductor catalysts are discussed.•The mechanism of various strategies for photocatalytic performance are highlighted.•The effect of diverse strategies on the photocatalytic performance is summarized.•Combination of different strategies leads to further increased performance.•Challenges pertaining the use of semiconductor catalysts are reviewed.
AbstractList The photocatalytic technology illustrates an eco-friendly and sustainable route to overcome environmental and energy issues. The successful construction of a photocatalyst depends on four key elements: light absorption ability, the density of active sites, redox capacity, and photoinduced electron-hole recombination rate. Sincemost of intrinsic semiconductor photocatalysts cannot meet all these requirements, they are often modified to boost their photocatalytic properties. Many strategies have been adopted to design novel and efficient photocatalysts for diverse applications. Herein, we review the most efficient of these strategies and methods focused on effectively overcoming the efficiency limitations of photocatalysts to promote their large-scale application. Subsequently, a particular aim is put on the most current studies for photocatalytic applications, including CO reduction, N fixation, H evolution, and pollutants degradation. Finally, key challenges and future perspectives in designing and implementing semiconductor photocatalysts for large-scale applications are discussed. Therefore, it is foreseen that this review will work as a guide for future research and provides a variety of strategies to develop novel and high-performance photocatalysts for various applications.
The photocatalytic technology illustrates an eco-friendly and sustainable route to overcome environmental and energy issues. The successful construction of a photocatalyst depends on four key elements: light absorption ability, the density of active sites, redox capacity, and photoinduced electron-hole recombination rate. Sincemost of intrinsic semiconductor photocatalysts cannot meet all these requirements, they are often modified to boost their photocatalytic properties. Many strategies have been adopted to design novel and efficient photocatalysts for diverse applications. Herein, we review the most efficient of these strategies and methods focused on effectively overcoming the efficiency limitations of photocatalysts to promote their large-scale application. Subsequently, a particular aim is put on the most current studies for photocatalytic applications, including CO2 reduction, N2 fixation, H2 evolution, and pollutants degradation. Finally, key challenges and future perspectives in designing and implementing semiconductor photocatalysts for large-scale applications are discussed. Therefore, it is foreseen that this review will work as a guide for future research and provides a variety of strategies to develop novel and high-performance photocatalysts for various applications.The photocatalytic technology illustrates an eco-friendly and sustainable route to overcome environmental and energy issues. The successful construction of a photocatalyst depends on four key elements: light absorption ability, the density of active sites, redox capacity, and photoinduced electron-hole recombination rate. Sincemost of intrinsic semiconductor photocatalysts cannot meet all these requirements, they are often modified to boost their photocatalytic properties. Many strategies have been adopted to design novel and efficient photocatalysts for diverse applications. Herein, we review the most efficient of these strategies and methods focused on effectively overcoming the efficiency limitations of photocatalysts to promote their large-scale application. Subsequently, a particular aim is put on the most current studies for photocatalytic applications, including CO2 reduction, N2 fixation, H2 evolution, and pollutants degradation. Finally, key challenges and future perspectives in designing and implementing semiconductor photocatalysts for large-scale applications are discussed. Therefore, it is foreseen that this review will work as a guide for future research and provides a variety of strategies to develop novel and high-performance photocatalysts for various applications.
The photocatalytic technology illustrates an eco-friendly and sustainable route to overcome environmental and energy issues. The successful construction of a photocatalyst depends on four key elements: light absorption ability, the density of active sites, redox capacity, and photoinduced electron-hole recombination rate. Sincemost of intrinsic semiconductor photocatalysts cannot meet all these requirements, they are often modified to boost their photocatalytic properties. Many strategies have been adopted to design novel and efficient photocatalysts for diverse applications. Herein, we review the most efficient of these strategies and methods focused on effectively overcoming the efficiency limitations of photocatalysts to promote their large-scale application. Subsequently, a particular aim is put on the most current studies for photocatalytic applications, including CO2 reduction, N2 fixation, H2 evolution, and pollutants degradation. Finally, key challenges and future perspectives in designing and implementing semiconductor photocatalysts for large-scale applications are discussed. Therefore, it is foreseen that this review will work as a guide for future research and provides a variety of strategies to develop novel and high-performance photocatalysts for various applications. [Display omitted] •Recent advances in strategies to design semiconductor catalysts are discussed.•The mechanism of various strategies for photocatalytic performance are highlighted.•The effect of diverse strategies on the photocatalytic performance is summarized.•Combination of different strategies leads to further increased performance.•Challenges pertaining the use of semiconductor catalysts are reviewed.
ArticleNumber 102830
Author Liu, Yuyu
Zou, Yanhong
Ahmad, Irshad
Shukrullah, Shazia
Naz, Muhammad Yasin
Yan, Jiaying
Khan, Waheed Qamar
Khalid, N.R.
Hussain, Humaira
Author_xml – sequence: 1
  givenname: Irshad
  surname: Ahmad
  fullname: Ahmad, Irshad
  email: irshadmahar55@yahoo.com
  organization: Department of Physics, University of Agriculture, Faisalabad 38040, Pakistan
– sequence: 2
  givenname: Yanhong
  surname: Zou
  fullname: Zou, Yanhong
  organization: Institute for Sustainable Energy, College of Sciences, Shanghai University, Shangda Road 99, Baoshan, Shanghai 20044, China
– sequence: 3
  givenname: Jiaying
  surname: Yan
  fullname: Yan, Jiaying
  organization: Institute for Sustainable Energy, College of Sciences, Shanghai University, Shangda Road 99, Baoshan, Shanghai 20044, China
– sequence: 4
  givenname: Yuyu
  surname: Liu
  fullname: Liu, Yuyu
  email: liuyuyu2014@126.com
  organization: Institute for Sustainable Energy, College of Sciences, Shanghai University, Shangda Road 99, Baoshan, Shanghai 20044, China
– sequence: 5
  givenname: Shazia
  surname: Shukrullah
  fullname: Shukrullah, Shazia
  organization: Department of Physics, University of Agriculture, Faisalabad 38040, Pakistan
– sequence: 6
  givenname: Muhammad Yasin
  surname: Naz
  fullname: Naz, Muhammad Yasin
  organization: Department of Physics, University of Agriculture, Faisalabad 38040, Pakistan
– sequence: 7
  givenname: Humaira
  surname: Hussain
  fullname: Hussain, Humaira
  organization: Department of Chemistry, University of Okara, Okara 56300, Pakistan
– sequence: 8
  givenname: Waheed Qamar
  surname: Khan
  fullname: Khan, Waheed Qamar
  organization: Institute of Advanced Materials, Bahauddin Zakariya University, Multan 6800, Pakistan
– sequence: 9
  givenname: N.R.
  surname: Khalid
  fullname: Khalid, N.R.
  organization: Department of Physics, University of Okara, Okara 56300, Pakistan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36592501$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u3CAUhVGVqpmkfYBsIpbdeMqPwXa6iqLmR4rURds1YuB65o5s4wAzVR6k71uSSauqiywQXPjOveKcE3I0hQkIOeNsyRnXn7ZLh2kpmBClFq1kb8iCt42sZCOaI7JgjPGq1a0-JicpbUspVKPekWOpVScU4wvy6xuM6MLkdy6HSOdNyMHZbIfHlNMFvaQuYkZnBxphj_CTbnC9GcrKOK1p3gDd24hhl2jK0WZYIySaA12FkPLz-z8tSyM6Q-xDHO3kClhO1OMeYgJq53kogzKGKb0nb3s7JPjwsp-SH9dfvl_dVvdfb-6uLu8rV_MuV671dVsz0XneedVp6xmve8El4y3U1jIvpeZSM2-h733daK2ZhlW5tKtaaXlKPh76zjE87CBlM2JyMAx2gvInIxrNVN0orQp6_oLuViN4M0ccbXw0f6wsAD8ALoaUIvR_Ec7MU1xma0pc5ikuc4iraJr_NA7zswXFTBxeVX4-KKHYU4KJJjmEYqrHCC4bH_AV9W9ODLJx
CitedBy_id crossref_primary_10_1016_j_diamond_2024_111398
crossref_primary_10_1039_D3RA01505J
crossref_primary_10_1016_j_envpol_2024_124375
crossref_primary_10_1016_j_biteb_2024_101865
crossref_primary_10_1016_j_jece_2024_114598
crossref_primary_10_1016_j_jcat_2023_115235
crossref_primary_10_1016_j_seppur_2024_130626
crossref_primary_10_1016_j_jwpe_2024_105369
crossref_primary_10_1016_j_ceramint_2024_06_143
crossref_primary_10_1016_j_materresbull_2024_113230
crossref_primary_10_1007_s11356_023_31236_7
crossref_primary_10_1177_09673911241288320
crossref_primary_10_1016_j_hybadv_2024_100318
crossref_primary_10_1002_ange_202408504
crossref_primary_10_1016_j_colsurfa_2024_134741
crossref_primary_10_1063_5_0223718
crossref_primary_10_1142_S1793292023500546
crossref_primary_10_1016_j_inoche_2024_113820
crossref_primary_10_1111_1541_4337_70127
crossref_primary_10_1080_00986445_2024_2414177
crossref_primary_10_1016_j_crbiot_2024_100252
crossref_primary_10_3390_molecules29225418
crossref_primary_10_1016_j_jenvman_2024_123703
crossref_primary_10_3390_jcs8020042
crossref_primary_10_1016_j_molstruc_2023_137139
crossref_primary_10_1016_j_jwpe_2025_107131
crossref_primary_10_1007_s10562_024_04887_5
crossref_primary_10_1016_j_colsurfa_2025_136121
crossref_primary_10_1007_s10876_024_02642_9
crossref_primary_10_1016_j_ces_2024_120537
crossref_primary_10_1039_D4NR01200C
crossref_primary_10_1016_j_jallcom_2023_172766
crossref_primary_10_1016_j_jece_2024_113409
crossref_primary_10_1016_j_materresbull_2024_113187
crossref_primary_10_3390_catal14050298
crossref_primary_10_1016_j_jcis_2024_12_180
crossref_primary_10_1016_j_jenvman_2024_121890
crossref_primary_10_1016_j_optmat_2024_115726
crossref_primary_10_3389_fchem_2023_1162183
crossref_primary_10_1016_j_ceramint_2025_03_073
crossref_primary_10_1177_02670836241284762
crossref_primary_10_1016_j_apsusc_2024_160516
crossref_primary_10_1016_j_inoche_2024_113284
crossref_primary_10_1016_j_rinp_2025_108114
crossref_primary_10_1002_ejic_202400197
crossref_primary_10_1016_j_jece_2023_111342
crossref_primary_10_14356_kona_2025013
crossref_primary_10_1088_2516_1075_ad88c3
crossref_primary_10_1016_j_ijbiomac_2025_139812
crossref_primary_10_1002_smll_202407206
crossref_primary_10_1007_s11270_024_07111_7
crossref_primary_10_1016_j_cscee_2023_100599
crossref_primary_10_1016_j_ijbiomac_2025_142421
crossref_primary_10_1016_j_jallcom_2025_178876
crossref_primary_10_1016_j_jallcom_2024_176732
crossref_primary_10_1016_j_jcrysgro_2025_128125
crossref_primary_10_1007_s11664_024_11407_z
crossref_primary_10_1007_s42247_024_00788_w
crossref_primary_10_1016_j_jallcom_2024_177098
crossref_primary_10_1016_j_jece_2025_116168
crossref_primary_10_1016_j_nxener_2024_100222
crossref_primary_10_1016_j_apcatb_2024_124293
crossref_primary_10_1007_s10562_024_04715_w
crossref_primary_10_1016_j_surfin_2024_104643
crossref_primary_10_1016_j_apsusc_2024_159552
crossref_primary_10_1016_j_seppur_2025_131891
crossref_primary_10_4028_p_WEf1i1
crossref_primary_10_1016_j_nanoso_2024_101184
crossref_primary_10_3390_catal13081204
crossref_primary_10_1016_j_jallcom_2024_175906
crossref_primary_10_1016_j_ccr_2023_215498
crossref_primary_10_1016_j_envres_2024_120209
crossref_primary_10_3390_en16155743
crossref_primary_10_1002_smll_202409735
crossref_primary_10_1016_j_ceramint_2024_10_343
crossref_primary_10_1016_j_jhazmat_2023_132995
crossref_primary_10_1016_j_apsusc_2025_162452
crossref_primary_10_1016_j_molliq_2024_124360
crossref_primary_10_1016_j_nanoen_2023_108508
crossref_primary_10_1038_s41570_024_00616_z
crossref_primary_10_3390_coatings14030366
crossref_primary_10_1016_j_mseb_2023_116934
crossref_primary_10_1016_j_jcis_2024_11_245
crossref_primary_10_1016_j_mtsust_2024_100961
crossref_primary_10_1039_D4TA00886C
crossref_primary_10_1016_j_jwpe_2024_106896
crossref_primary_10_1016_j_checat_2024_100929
crossref_primary_10_1016_S1872_5813_24_60510_4
crossref_primary_10_1038_s41598_025_93478_4
crossref_primary_10_1007_s13399_024_05374_y
crossref_primary_10_1039_D4NJ01105H
crossref_primary_10_1016_j_cej_2024_157173
crossref_primary_10_1016_j_envres_2025_121209
crossref_primary_10_1016_j_materresbull_2024_113271
crossref_primary_10_1016_j_jallcom_2023_171102
crossref_primary_10_3390_su152215768
crossref_primary_10_1016_j_molstruc_2025_141452
crossref_primary_10_1016_j_jallcom_2024_178017
crossref_primary_10_1016_j_jece_2024_115086
crossref_primary_10_1039_D4TA06732K
crossref_primary_10_1016_j_solmat_2024_113371
crossref_primary_10_1016_j_jcrysgro_2024_127894
crossref_primary_10_1016_j_cherd_2024_06_042
crossref_primary_10_1016_j_mcat_2024_113931
crossref_primary_10_1016_j_mtcomm_2025_111961
crossref_primary_10_1016_j_nexus_2025_100396
crossref_primary_10_1016_j_mseb_2025_118102
crossref_primary_10_1016_j_mcat_2024_113818
crossref_primary_10_1007_s11244_023_01809_4
crossref_primary_10_1016_j_jallcom_2025_179915
crossref_primary_10_1088_1402_4896_ad72ae
crossref_primary_10_1016_j_foodchem_2024_142194
crossref_primary_10_1021_acs_jpcc_4c06428
crossref_primary_10_1002_anie_202408504
crossref_primary_10_1016_j_ceramint_2024_05_248
crossref_primary_10_1016_j_colsurfa_2024_135406
crossref_primary_10_1016_j_surfin_2024_105071
crossref_primary_10_1002_solr_202400116
crossref_primary_10_1063_5_0244608
crossref_primary_10_1016_j_mssp_2024_108733
crossref_primary_10_1051_bioconf_202412922037
crossref_primary_10_3390_catal14120934
crossref_primary_10_1016_j_rineng_2024_103412
crossref_primary_10_3390_nano13192628
crossref_primary_10_1007_s11783_024_1911_5
crossref_primary_10_1016_j_jece_2024_112312
crossref_primary_10_1016_j_jwpe_2024_104974
crossref_primary_10_1016_j_jwpe_2024_105787
crossref_primary_10_1021_acsomega_3c06320
crossref_primary_10_1007_s10562_024_04821_9
crossref_primary_10_1016_j_diamond_2024_110917
crossref_primary_10_1016_j_jallcom_2024_175727
crossref_primary_10_1021_acsomega_4c07470
crossref_primary_10_1016_j_inoche_2023_111465
crossref_primary_10_1016_j_seppur_2024_128444
crossref_primary_10_1088_2058_6272_ad0c9a
crossref_primary_10_1021_acs_inorgchem_4c03269
crossref_primary_10_20517_energymater_2024_60
crossref_primary_10_1016_j_rsurfi_2025_100424
crossref_primary_10_1038_s41598_023_49290_z
crossref_primary_10_3390_polym15153252
crossref_primary_10_1016_j_polymer_2024_127828
crossref_primary_10_1016_j_jece_2025_115552
crossref_primary_10_3390_molecules29184348
crossref_primary_10_1016_j_fuel_2024_133734
crossref_primary_10_1016_j_inoche_2025_114124
crossref_primary_10_1039_D4CS00029C
crossref_primary_10_3390_inorganics13030097
crossref_primary_10_1016_j_scitotenv_2023_163702
crossref_primary_10_2147_IJN_S503465
crossref_primary_10_1007_s10854_024_12505_8
crossref_primary_10_1016_j_pes_2024_100018
crossref_primary_10_1007_s11164_025_05503_w
crossref_primary_10_1016_j_ces_2023_119551
crossref_primary_10_1016_j_colsurfa_2024_135748
crossref_primary_10_1016_j_mtener_2024_101774
Cites_doi 10.1039/c3cp52840e
10.1016/j.cattod.2018.10.059
10.1016/j.nanoen.2014.06.029
10.1016/j.ijhydene.2021.04.060
10.1002/asia.202000912
10.1039/C8RA09962F
10.1016/j.ijhydene.2021.12.254
10.1016/j.apcatb.2019.01.024
10.1002/advs.202105299
10.1016/j.ijhydene.2020.03.067
10.1016/S1872-2067(19)63382-6
10.1016/j.apcatb.2018.11.047
10.1016/j.ijhydene.2022.01.163
10.1016/j.inoche.2019.107451
10.1016/j.cej.2020.127377
10.1016/j.ijhydene.2018.12.166
10.1021/acsami.1c11740
10.1039/D1MA00539A
10.1016/j.apcata.2017.03.008
10.1021/ja512047k
10.1039/C8RA08008A
10.1016/j.ijhydene.2022.03.091
10.1016/j.apsusc.2018.09.061
10.1039/C1CC16082F
10.1016/j.jpowsour.2013.09.015
10.1016/j.apcatb.2021.120039
10.1007/s42247-020-00153-7
10.1016/j.envres.2021.111136
10.1002/smll.202103447
10.1016/j.electacta.2018.10.082
10.1039/C9CC06038C
10.1016/j.ijhydene.2019.08.066
10.1002/ente.202100034
10.1021/acsami.1c14371
10.1039/C9CY01185D
10.1016/j.ijhydene.2018.09.078
10.1021/jz100075c
10.1016/j.apcatb.2019.118249
10.1016/j.apcatb.2021.120802
10.1021/ja1086358
10.1016/j.jeurceramsoc.2019.02.046
10.1016/j.ijhydene.2021.08.019
10.1039/C8CP06922K
10.1016/j.ijhydene.2021.11.252
10.1016/j.ijhydene.2019.02.234
10.1021/ja5044787
10.1039/C2CC31773G
10.1016/j.jcis.2017.09.043
10.1016/j.electacta.2019.05.060
10.1016/j.ijhydene.2020.10.176
10.1016/j.apcatb.2017.09.073
10.1016/j.jssc.2020.121495
10.1016/j.ijhydene.2021.01.216
10.1016/j.apcatb.2017.07.078
10.1016/j.ijhydene.2018.01.055
10.1016/j.ijhydene.2019.11.127
10.1016/j.apcata.2020.117647
10.1016/j.ijhydene.2019.01.233
10.1021/acsami.9b14985
10.1016/j.jtice.2021.01.012
10.1039/D0NR05268J
10.1016/j.apcatb.2018.02.006
10.1016/j.jmst.2020.02.062
10.1016/j.ijhydene.2021.09.052
10.1002/anie.201811632
10.1016/j.ijhydene.2018.02.112
10.1016/j.apcatb.2019.118027
10.1016/j.jallcom.2020.155217
10.1016/j.ijhydene.2021.06.179
10.1021/acsanm.9b01833
10.1016/j.apcatb.2017.09.026
10.1039/C2TA00060A
10.1016/j.ijhydene.2019.12.074
10.1016/j.ijhydene.2022.02.067
10.1016/j.mssp.2019.104748
10.1016/j.ijhydene.2021.04.208
10.1016/j.jcis.2021.07.064
10.1016/j.ijhydene.2017.10.154
10.1016/j.jallcom.2021.159797
10.1016/j.mssp.2020.105584
10.1016/S1872-2067(20)63765-2
10.1016/j.cclet.2021.03.077
10.1016/j.ijhydene.2021.11.026
10.1016/j.cej.2019.123275
10.1016/j.cej.2021.129155
10.1016/j.ijhydene.2021.10.227
10.1016/j.ijhydene.2018.03.075
10.1016/j.ijhydene.2021.10.256
10.1016/S1872-2067(20)63698-1
10.1016/j.ijhydene.2021.10.143
10.1038/nmat2317
10.1002/adfm.202009807
10.1002/cctc.202001517
10.1021/jp806513t
10.1016/j.apcatb.2019.01.088
10.1016/j.catcom.2019.105841
10.1007/s11356-020-07827-z
10.3390/coatings11121500
10.1016/j.ijhydene.2019.09.129
10.1016/j.jcis.2021.06.049
10.1016/j.ijhydene.2020.09.261
10.1016/j.jcis.2022.02.057
10.1039/D0CP05238H
10.1016/j.ijhydene.2018.07.117
10.1016/j.cej.2020.126498
10.1002/cctc.201900095
10.1039/C6RA27766G
10.1039/c3ta14108j
10.1016/j.apcata.2009.10.011
10.1016/j.ijhydene.2019.06.168
10.1016/j.ijhydene.2021.09.214
10.1039/C8TA12076E
10.1016/j.jcis.2021.05.013
10.1016/j.ijhydene.2022.01.154
10.1016/j.ijhydene.2020.10.250
10.1021/acsami.0c08152
10.1007/s13204-020-01476-x
10.1039/C5RA28123G
10.1016/j.ijhydene.2022.02.012
10.1016/j.envres.2022.113148
10.1016/j.seppur.2022.120881
10.1016/j.jclepro.2017.09.095
10.1021/acsnano.8b00498
10.1016/j.ijbiomac.2019.03.217
10.1016/j.ijhydene.2022.01.219
10.1016/j.jallcom.2019.151670
10.1021/nl072046x
10.1016/j.apcatb.2020.119006
10.1007/s10853-019-03664-9
10.1016/j.seppur.2021.120207
10.3390/app9132741
10.1007/s12274-018-2164-z
10.1002/anie.201813417
10.1021/acs.jpcc.7b02275
10.1021/acs.jpcc.8b03383
10.1016/j.ijhydene.2021.04.013
10.1016/j.ijhydene.2017.10.169
10.1016/j.ijhydene.2017.12.050
10.1016/j.eng.2020.10.015
10.1039/C9NR09183A
10.1016/j.ijhydene.2018.03.217
10.1039/D2NJ00057A
10.1002/adma.201505281
10.1016/j.ijhydene.2019.10.231
10.1002/adma.202100317
10.1039/c3cp50927c
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cis.2022.102830
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
Physics
EISSN 1873-3727
ExternalDocumentID 36592501
10_1016_j_cis_2022_102830
S0001868622002329
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
WUQ
XPP
ZGI
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c419t-c8d484029d19d596ad014f213018e4aa0d3361360daeffd4766606eb361ab4563
IEDL.DBID .~1
ISSN 0001-8686
1873-3727
IngestDate Thu Jul 10 18:45:59 EDT 2025
Wed Feb 19 02:26:02 EST 2025
Tue Jul 01 03:12:05 EDT 2025
Thu Apr 24 22:51:21 EDT 2025
Fri Feb 23 02:37:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords N2 fixation
Pollutants degradation
CO2 reduction
H2 evolution
Photocatalysts
Strategies
CO reduction
H evolution
N fixation
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-c8d484029d19d596ad014f213018e4aa0d3361360daeffd4766606eb361ab4563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 36592501
PQID 2760547565
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2760547565
pubmed_primary_36592501
crossref_primary_10_1016_j_cis_2022_102830
crossref_citationtrail_10_1016_j_cis_2022_102830
elsevier_sciencedirect_doi_10_1016_j_cis_2022_102830
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
2023-Jan
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Advances in colloid and interface science
PublicationTitleAlternate Adv Colloid Interface Sci
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Meng, Cheng, Tan, Fan, Su, Yu (bb0640) 2021; 289
Wang, Huang, Pan, Chen, Zhang, Zou (bb0295) 2019; 335
Sultana, Mansingh, Parida (bb0325) 2021; 2
Zhao, Wang, Gao, Wen, Feng, Song (bb0705) 2021; 133
Wang, Wang, Li, Du, Ma, He (bb0625) 2020; 12
Ni, Qie, Du, Sang, Wang, Meng (bb0605) 2022; 47
An, Han, Li, Wang, Hou, Zhang (bb0145) 2021; 46
Holmes, Townsend, Osterloh (bb0455) 2012; 48
Xie, Zhao, Li, Xu, Chen (bb0390) 2019; 54
Liu, Wei, Sun, Guan, Zheng, Li (bb0645) 2021; 197
Fang, Wu, Sheng, Wang, Bu, Zhou (bb0440) 2022; 47
Lee, Chen, Wu (bb0215) 2019; 44
Yan, Chen, Li, Tian, Li, Jiang (bb0470) 2018; 12
Schaller, Pietryga, Klimov (bb0445) 2007; 7
Xiong, Lei, Ma, Chen, Gong, Zhao (bb0080) 2017; 219
Liu, Mateen, Cheng, Wu, Zhang, Cheong (bb0090) 2022; 47
Deng, Gan, Zhang, Li, Hou (bb0130) 2019; 44
Wang, Peng, Xu, Bai, Zhao, Han (bb0435) 2021; 46
Zhang, Mou, Cao, Meng, Li, Ling (bb0745) 2022; 47
Yu, Low, Xiao, Zhou, Jaroniec (bb0330) 2014; 136
Hu, Zhang, Bai, Lu, Zhang, Wu (bb0695) 2016; 6
Ojha, Bajpai, Kumar (bb0620) 2019; 9
Mandari, Police, Do, Kang, Byon (bb0750) 2018; 43
Ashraf, Khan, Baig, Hendi, Ehsan, Sarfraz (bb0010) 2021; 9
Deng, Fei, Yang, Fan, Yu, Cheng (bb0635) 2021; 409
Lee, Yamasue, Okumura, Ishihara (bb0125) 2009; 371
Zhao, Feng, Yang, Song, Zhang (bb0055) 2021; 13
Pan, Wang, Mi, Song, Zou, Wang (bb0280) 2014; 9
Wang, Chen, Zhang, Cheng, Yu, Fan (bb0405) 2020; 56
Liu, Shi, Liu, Li (bb0230) 2022; 47
Jin, Li, Liu, Sun, Li, Cai (bb0535) 2022; 284
Prabakaran, Pillay (bb0150) 2019; 9
Tang, Li, Chen, Han (bb0450) 2018; 8
Wang, Lin, Shen, Zhong, Cao (bb0005) 2021; 42
Zheng, Xu, Guo, Yu, Ji, Ying (bb0300) 2020; 12
Liu, Chen, Wang, Yan, Yan, Guo (bb0085) 2022; 47
Ning, Lu (bb0040) 2020; 12
Bento, Correa, Pillis (bb0155) 2019; 39
Meng, Rao, Tian, Cao, Yan, Li (bb0305) 2018; 57
Ahmad, Shukrullah, Ahmad, Ahmed, Naz, Akhtar (bb0490) 2021; 123
Chava, Son, Kang (bb0260) 2021; 873
Lin, Lin, Wang, Chen, Wang, Dong (bb0015) 2019; 11
Aragon, Kierulf-Vieira, Łęcki, Zarębska, Widera-Kalinowska, Skompska (bb0515) 2019; 314
Mahato, Kharwar, Ramanujam, Haridoss, Thomas (bb0225) 2021; 46
Hayat A., Syed J.A.S., Al-Sehemi A.G., El-Nasser K.S., Taha T.A., Al-Ghamdi A.A., et al. State of the art advancement in rational design of g-C3N4 photocatalyst for efficient solar fuel transformation, environmental decontamination and future perspectives. Int. J. Hydrogen Energy 2022:47(20):10837-10867.
Ahmad, Shukrullah, Naz, Ahmed, Ahmad, Akhtar (bb0115) 2022; 47
Zhao, Dai, Guo, Chen, Liu, Chen (bb0730) 2019; 244
Gupta, Fakhri, Azad, Agarwal (bb0740) 2018; 510
Xue, Fujitsuka, Majima (bb0285) 2019; 21
Wei, Zhang, Zhang, Cui, Wang, Qin (bb0220) 2021; 46
Ouyang, Kikugawa, Chen, Zou, Ye (bb0335) 2009; 113
Lin, Wang, Wang, Liu, Le, Lin (bb0020) 2019; 294
Saadetnejad, Yıldırım (bb0185) 2018; 43
Wu, Wang, Wang, Yu (bb0430) 2019; 247
Cheng, He, Fan, Cheng, Cao, Yu (bb0400) 2021; 33
Meng, Fu, Du, Chen, Lin, Wei (bb0190) 2018; 43
Zhang, Wang, Cui, Sui (bb0380) 2017; 7
Su, Che, Tang, Cheng, Zhao, Zhang (bb0065) 2018; 122
Rather, Mehta, Lu, Valant, Fang, Liu (bb0420) 2021; 46
Liang, Liao, Mishra, Perng (bb0385) 2019; 44
Ghodsi, Jin, Byers, Pan, Radovanovic (bb0345) 2017; 121
Farhadian, Akbarzadeh, Pirsaheb, Jen, Fakhri, Asadi (bb0240) 2019; 132
Lu, Wang, Xie, Shi, Li, Tong (bb0525) 2012; 48
Li, Ren, Ouyang, Hou, Petit, Song (bb0425) 2019; 259
Amirav, Alivisatos (bb0460) 2010; 1
Jia, Sun, Zhang, Zhang, Hu, Liu (bb0360) 2020; 261
Sargin, Yanalak, Arslan, Patir (bb0540) 2019; 44
Yu, Zhao, Zhou, Shang, Peng, Cao (bb0475) 2014; 2
Chen, Xing, Chen, Lin, He (bb0135) 2018; 43
Tahir, Sohaib, Rafique, Sagir, Rehman, Muhammad (bb0485) 2020; 10
Maihemllti, Okitsu, Talifur, Tursun, Abulizi (bb0665) 2021; 556
Yang, Li, Liu, Shen, Ye, Shi (bb0030) 2013; 1
Chen, Su, Xie, Wang, Ding, Huang (bb0760) 2021; 404
Li, Ma, Chen, An, Zhao, Wang (bb0610) 2020; 45
Wu, Gong, Nie, Zhang, Wang, Wang (bb0415) 2019; 7
Gao, Si, Zhang, Fang, Chen, Yang (bb0520) 2019; 44
Wang, Sayed, Ruzimuradov, Zhang, Fan, Li (bb0045) 2022; 29
Ma, Cui, Lv, Sa, Wu, Li (bb0140) 2020; 45
Jiang, Zhou, Zhang, Song, Zhou, Shi (bb0565) 2021; 13
Wang, Maeda, Thomas, Takanabe, Xin, Carlsson (bb0060) 2009; 8
Qiu, Wang, Liang, Xue, Zhou, Zhang (bb0710) 2021; 32
Qin, Li, Lu, Meng, Ma, Yan (bb0755) 2020; 384
Gomes Silva, Juárez, Marino, Molinari, García (bb0510) 2011; 133
Tang, Xia, Chen, Liu, Zhou (bb0270) 2020; 15
Gaudillere, González, Chica, Serra (bb0075) 2017; 538
Li, Bi, Zhang, Tao, Chu, Zhang (bb0070) 2016; 28
Chen, Wang, Zhao, Gao, Li (bb0170) 2020; 27
Kumar, Krishnan (bb0255) 2021; 31
Verma, Singh, Samdarshi, Srivastava (bb0530) 2022; 46
Liang, Sui, Li, Guo, Luo, Xu (bb0545) 2022; 47
Yao, Zhang, Huang, Du, Hong, Chen (bb0245) 2020; 601
Wang, Xiao, Ru, Yang, Liu, Ma (bb0675) 2022; 212
Vaiano, Iervolino (bb0195) 2019; 9
Kovalevskiy, Selishchev, Svintsitskiy, Selishcheva, Berezin, Kozlov (bb0160) 2020; 134
Camposeco, Hinojosa-Reyes, Zanella (bb0560) 2021; 46
Lee, Tan, Sumathi, Chai (bb0180) 2018; 43
Zeng, Xu, Luo, Peng, Ma, Wang (bb0365) 2021; 23
Zhu, Yamamoto, Imai, Tanaka, Kominami, Yoshida (bb0570) 2019; 55
Ahmad, Ahmed, Ahmad, Akhtar, Basharat, Khan (bb0100) 2020; 105
Zhao, Liu, Wang, Fang, Qi, Zhou (bb0235) 2022; 616
Miao, Wang, Zhang, Meng, Wang (bb0670) 2022; 301
Wang, Pan, Song, Mi, Zou, Wang (bb0275) 2015; 137
Bao, Lv, Wang, Wang, Liu, Dai (bb0250) 2021; 46
Zeng, Xie, Yu, Yang, Lu, Tong (bb0370) 2014; 247
Sun, Yu, Jiang, Hou, Sun, Qian (bb0105) 2020; 12
Zhu, Wang, Xu, Li, Wang (bb0095) 2019; 464
He, Meng, Cheng, Ho, Yu (bb0395) 2020; 41
Orak C., Yüksel A. Comparison of photocatalytic performances of solar-driven hybrid catalysts for hydrogen energy evolution from 1, 8–Diazabicyclo [5.4. 0] undec-7-ene (DBU) solution. Int J Hydrogen Energy 2022:47(14):8841-8857.
Humayun, Xu, Zhou, Zheng, Fu, Luo (bb0555) 2018; 11
Bahadoran, Masudy-Panah, De Lile, Li, Gu, Sadeghi (bb0355) 2021; 46
Yan, Wu, Guan, Li, Li, Cao (bb0340) 2013; 15
Wang, Cheng, Zhang, Yu (bb0630) 2021; 17
Hua, Jin, Wang, Ni, Liu, Xu (bb0375) 2019; 245
Huang, Lu, Wang, He, Dong, Sui (bb0585) 2021; 46
Guo, Liang, Liu, Hu, Wang, An (bb0265) 2021; 600
Yang, Sun, Chen, Lan, Li, Li (bb0715) 2022; 290
Hezam, Namratha, Drmosh, Ponnamma, Wang, Prasad (bb0615) 2019; 3
Nguyen, Mousavi, Ghasemi, Van Le, Delbari, Asl (bb0690) 2021; 118
Hayat, Sohail, Al-Sehemi, Alghamdi, Taha, AlSalem (bb0575) 2022; 47
Li, Ding, Guo, Liang, Cui, Tian (bb0050) 2019; 11
Yu, Chen, Chen, Wang, Lin, Hu (bb0120) 2018; 43
Li, Zhang, Wang, Yang, Li, Zhu (bb0320) 2013; 4
Hailili, Wang, Li, Wang, Sharma, Gong (bb0725) 2018; 221
He, Zhu, Cheng, Yu, Ho, Macyk (bb0650) 2020; 272
Zhao, Zhou, Dou, Zhou, Bai, Li (bb0025) 2021; 416
Sun, Deng, Song, Yang (bb0350) 2013; 15
Liu, Jia, Long, Wang, Gao, Gu (bb0110) 2018; 222
Wang, Zheng, Han, Fan, Zhang, Meng (bb0210) 2020; 289
Ma, Shen, Zhaoa, Xue, Guan, Liu (bb0205) 2019; 107
Gultom, Abdullah, Kuo (bb0580) 2019; 44
Li, Wu, Huang, Chen, Wu, Wu (bb0595) 2022; 47
Li, Zheng, Liu, Dall’Agnese, Dall’Agnese, Liu (bb0590) 2022; 47
Tie, Sun, Jiang, Liu, Xia, Li (bb0165) 2019; 807
Gogoi, Shah, Rambabu, Qureshi, Golder, Peela (bb0315) 2021; 13
Gogoi, Namdeo, Golder, Peela (bb0175) 2020; 45
Chen, Wang, Shangguan (bb0550) 2019; 44
Mustapha, Jalil, Mohamed, Triwahyono, Hassan, Khusnun (bb0735) 2017; 168
Sumadevi, Krishnamurthy, Walmik, Rani, Naik, Naik (bb0200) 2021; 4
Dai, Liang, Zhang, Wang, Wu, Bao (bb0310) 2022
Hu, Qian, Lin, Ding, Cui (bb0600) 2020; 45
Chen, Li, Wu, Xu, Zhu, Gao (bb0680) 2021; 602
Kuehnel, Creissen, Sahm, Wielend, Schlosser, Orchard (bb0465) 2019; 131
Hao, Zhou, Cui, Wang, Wang, Zou (bb0290) 2018; 229
Kumar, Singh, Khare (bb0500) 2018; 43
Hu, Chen, Mo, Li, Xu, Li (bb0720) 2019; 58
Lin, Wang, Shen, Chen, Du, Tao (bb0035) 2020; 834
Zhou, Jin, Luo, Ning, Zhan, Xu (bb0495) 2019; 44
Zhang, Hu, Liu, Fan (bb0660) 2021; 42
Čižmar, Grčić, Bohač, Razum, Pavić, Gajović (bb0685) 2021; 11
Ramírez-Ortega, Guerrero-Araque, Acevedo-Peña, Reguera, Calderon, Zanella (bb0505) 2021; 46
Liu, Dai, Zhang, Li (bb0655) 2021; 604
Chen, Zhang, Wang, Li, Li, Hu (bb0700) 2021
Sultana (10.1016/j.cis.2022.102830_bb0325) 2021; 2
Amirav (10.1016/j.cis.2022.102830_bb0460) 2010; 1
Chen (10.1016/j.cis.2022.102830_bb0760) 2021; 404
Xiong (10.1016/j.cis.2022.102830_bb0080) 2017; 219
Liu (10.1016/j.cis.2022.102830_bb0110) 2018; 222
Maihemllti (10.1016/j.cis.2022.102830_bb0665) 2021; 556
Zhang (10.1016/j.cis.2022.102830_bb0745) 2022; 47
Ramírez-Ortega (10.1016/j.cis.2022.102830_bb0505) 2021; 46
Zhao (10.1016/j.cis.2022.102830_bb0025) 2021; 416
Li (10.1016/j.cis.2022.102830_bb0590) 2022; 47
Tang (10.1016/j.cis.2022.102830_bb0270) 2020; 15
Liu (10.1016/j.cis.2022.102830_bb0230) 2022; 47
Yu (10.1016/j.cis.2022.102830_bb0475) 2014; 2
Huang (10.1016/j.cis.2022.102830_bb0585) 2021; 46
Ma (10.1016/j.cis.2022.102830_bb0140) 2020; 45
Wang (10.1016/j.cis.2022.102830_bb0625) 2020; 12
Mustapha (10.1016/j.cis.2022.102830_bb0735) 2017; 168
Hu (10.1016/j.cis.2022.102830_bb0600) 2020; 45
Zhang (10.1016/j.cis.2022.102830_bb0380) 2017; 7
Lin (10.1016/j.cis.2022.102830_bb0020) 2019; 294
Zhao (10.1016/j.cis.2022.102830_bb0235) 2022; 616
Hua (10.1016/j.cis.2022.102830_bb0375) 2019; 245
Hu (10.1016/j.cis.2022.102830_bb0695) 2016; 6
Meng (10.1016/j.cis.2022.102830_bb0190) 2018; 43
Kuehnel (10.1016/j.cis.2022.102830_bb0465) 2019; 131
Sargin (10.1016/j.cis.2022.102830_bb0540) 2019; 44
Wang (10.1016/j.cis.2022.102830_bb0630) 2021; 17
Jiang (10.1016/j.cis.2022.102830_bb0565) 2021; 13
Guo (10.1016/j.cis.2022.102830_bb0265) 2021; 600
Čižmar (10.1016/j.cis.2022.102830_bb0685) 2021; 11
Gomes Silva (10.1016/j.cis.2022.102830_bb0510) 2011; 133
Lin (10.1016/j.cis.2022.102830_bb0035) 2020; 834
Cheng (10.1016/j.cis.2022.102830_bb0400) 2021; 33
Liu (10.1016/j.cis.2022.102830_bb0655) 2021; 604
Jin (10.1016/j.cis.2022.102830_bb0535) 2022; 284
Jia (10.1016/j.cis.2022.102830_bb0360) 2020; 261
Wang (10.1016/j.cis.2022.102830_bb0405) 2020; 56
Zhao (10.1016/j.cis.2022.102830_bb0730) 2019; 244
Liu (10.1016/j.cis.2022.102830_bb0085) 2022; 47
Qin (10.1016/j.cis.2022.102830_bb0755) 2020; 384
Li (10.1016/j.cis.2022.102830_bb0050) 2019; 11
Mandari (10.1016/j.cis.2022.102830_bb0750) 2018; 43
Yu (10.1016/j.cis.2022.102830_bb0330) 2014; 136
Chava (10.1016/j.cis.2022.102830_bb0260) 2021; 873
Yao (10.1016/j.cis.2022.102830_bb0245) 2020; 601
Lin (10.1016/j.cis.2022.102830_bb0015) 2019; 11
Sun (10.1016/j.cis.2022.102830_bb0350) 2013; 15
Xue (10.1016/j.cis.2022.102830_bb0285) 2019; 21
Wang (10.1016/j.cis.2022.102830_bb0675) 2022; 212
10.1016/j.cis.2022.102830_bb0480
Zhao (10.1016/j.cis.2022.102830_bb0705) 2021; 133
Camposeco (10.1016/j.cis.2022.102830_bb0560) 2021; 46
Chen (10.1016/j.cis.2022.102830_bb0700) 2021
Li (10.1016/j.cis.2022.102830_bb0320) 2013; 4
Aragon (10.1016/j.cis.2022.102830_bb0515) 2019; 314
Ahmad (10.1016/j.cis.2022.102830_bb0100) 2020; 105
Chen (10.1016/j.cis.2022.102830_bb0550) 2019; 44
Nguyen (10.1016/j.cis.2022.102830_bb0690) 2021; 118
Liu (10.1016/j.cis.2022.102830_bb0090) 2022; 47
Ghodsi (10.1016/j.cis.2022.102830_bb0345) 2017; 121
Deng (10.1016/j.cis.2022.102830_bb0130) 2019; 44
10.1016/j.cis.2022.102830_bb0410
Hezam (10.1016/j.cis.2022.102830_bb0615) 2019; 3
Ahmad (10.1016/j.cis.2022.102830_bb0115) 2022; 47
Wei (10.1016/j.cis.2022.102830_bb0220) 2021; 46
Fang (10.1016/j.cis.2022.102830_bb0440) 2022; 47
Gupta (10.1016/j.cis.2022.102830_bb0740) 2018; 510
Humayun (10.1016/j.cis.2022.102830_bb0555) 2018; 11
Kovalevskiy (10.1016/j.cis.2022.102830_bb0160) 2020; 134
Vaiano (10.1016/j.cis.2022.102830_bb0195) 2019; 9
Chen (10.1016/j.cis.2022.102830_bb0170) 2020; 27
Gao (10.1016/j.cis.2022.102830_bb0520) 2019; 44
Wang (10.1016/j.cis.2022.102830_bb0060) 2009; 8
Wang (10.1016/j.cis.2022.102830_bb0210) 2020; 289
Pan (10.1016/j.cis.2022.102830_bb0280) 2014; 9
Yang (10.1016/j.cis.2022.102830_bb0715) 2022; 290
Hu (10.1016/j.cis.2022.102830_bb0720) 2019; 58
Gogoi (10.1016/j.cis.2022.102830_bb0315) 2021; 13
Bento (10.1016/j.cis.2022.102830_bb0155) 2019; 39
Lee (10.1016/j.cis.2022.102830_bb0180) 2018; 43
Wang (10.1016/j.cis.2022.102830_bb0045) 2022; 29
Yang (10.1016/j.cis.2022.102830_bb0030) 2013; 1
Li (10.1016/j.cis.2022.102830_bb0425) 2019; 259
Rather (10.1016/j.cis.2022.102830_bb0420) 2021; 46
Wang (10.1016/j.cis.2022.102830_bb0005) 2021; 42
Ni (10.1016/j.cis.2022.102830_bb0605) 2022; 47
Gogoi (10.1016/j.cis.2022.102830_bb0175) 2020; 45
Wang (10.1016/j.cis.2022.102830_bb0435) 2021; 46
Prabakaran (10.1016/j.cis.2022.102830_bb0150) 2019; 9
Liang (10.1016/j.cis.2022.102830_bb0385) 2019; 44
Hailili (10.1016/j.cis.2022.102830_bb0725) 2018; 221
Chen (10.1016/j.cis.2022.102830_bb0135) 2018; 43
Yan (10.1016/j.cis.2022.102830_bb0340) 2013; 15
Ashraf (10.1016/j.cis.2022.102830_bb0010) 2021; 9
Holmes (10.1016/j.cis.2022.102830_bb0455) 2012; 48
Li (10.1016/j.cis.2022.102830_bb0070) 2016; 28
Zhang (10.1016/j.cis.2022.102830_bb0660) 2021; 42
Wu (10.1016/j.cis.2022.102830_bb0430) 2019; 247
Bao (10.1016/j.cis.2022.102830_bb0250) 2021; 46
Dai (10.1016/j.cis.2022.102830_bb0310) 2022
Lee (10.1016/j.cis.2022.102830_bb0215) 2019; 44
Gultom (10.1016/j.cis.2022.102830_bb0580) 2019; 44
Farhadian (10.1016/j.cis.2022.102830_bb0240) 2019; 132
Ojha (10.1016/j.cis.2022.102830_bb0620) 2019; 9
Ahmad (10.1016/j.cis.2022.102830_bb0490) 2021; 123
Chen (10.1016/j.cis.2022.102830_bb0680) 2021; 602
Zeng (10.1016/j.cis.2022.102830_bb0370) 2014; 247
Verma (10.1016/j.cis.2022.102830_bb0530) 2022; 46
Hao (10.1016/j.cis.2022.102830_bb0290) 2018; 229
Bahadoran (10.1016/j.cis.2022.102830_bb0355) 2021; 46
Mahato (10.1016/j.cis.2022.102830_bb0225) 2021; 46
Meng (10.1016/j.cis.2022.102830_bb0305) 2018; 57
Zhu (10.1016/j.cis.2022.102830_bb0570) 2019; 55
An (10.1016/j.cis.2022.102830_bb0145) 2021; 46
He (10.1016/j.cis.2022.102830_bb0650) 2020; 272
Zhao (10.1016/j.cis.2022.102830_bb0055) 2021; 13
Lee (10.1016/j.cis.2022.102830_bb0125) 2009; 371
Tie (10.1016/j.cis.2022.102830_bb0165) 2019; 807
Zeng (10.1016/j.cis.2022.102830_bb0365) 2021; 23
Kumar (10.1016/j.cis.2022.102830_bb0500) 2018; 43
Xie (10.1016/j.cis.2022.102830_bb0390) 2019; 54
Li (10.1016/j.cis.2022.102830_bb0610) 2020; 45
Liu (10.1016/j.cis.2022.102830_bb0645) 2021; 197
Zhu (10.1016/j.cis.2022.102830_bb0095) 2019; 464
Sun (10.1016/j.cis.2022.102830_bb0105) 2020; 12
Ma (10.1016/j.cis.2022.102830_bb0205) 2019; 107
Lu (10.1016/j.cis.2022.102830_bb0525) 2012; 48
Wang (10.1016/j.cis.2022.102830_bb0295) 2019; 335
Kumar (10.1016/j.cis.2022.102830_bb0255) 2021; 31
Yan (10.1016/j.cis.2022.102830_bb0470) 2018; 12
Zheng (10.1016/j.cis.2022.102830_bb0300) 2020; 12
Tang (10.1016/j.cis.2022.102830_bb0450) 2018; 8
Saadetnejad (10.1016/j.cis.2022.102830_bb0185) 2018; 43
Yu (10.1016/j.cis.2022.102830_bb0120) 2018; 43
Liang (10.1016/j.cis.2022.102830_bb0545) 2022; 47
Ouyang (10.1016/j.cis.2022.102830_bb0335) 2009; 113
Li (10.1016/j.cis.2022.102830_bb0595) 2022; 47
Hayat (10.1016/j.cis.2022.102830_bb0575) 2022; 47
Gaudillere (10.1016/j.cis.2022.102830_bb0075) 2017; 538
Ning (10.1016/j.cis.2022.102830_bb0040) 2020; 12
Wu (10.1016/j.cis.2022.102830_bb0415) 2019; 7
Meng (10.1016/j.cis.2022.102830_bb0640) 2021; 289
Zhou (10.1016/j.cis.2022.102830_bb0495) 2019; 44
Schaller (10.1016/j.cis.2022.102830_bb0445) 2007; 7
Deng (10.1016/j.cis.2022.102830_bb0635) 2021; 409
He (10.1016/j.cis.2022.102830_bb0395) 2020; 41
Wang (10.1016/j.cis.2022.102830_bb0275) 2015; 137
Tahir (10.1016/j.cis.2022.102830_bb0485) 2020; 10
Miao (10.1016/j.cis.2022.102830_bb0670) 2022; 301
Sumadevi (10.1016/j.cis.2022.102830_bb0200) 2021; 4
Qiu (10.1016/j.cis.2022.102830_bb0710) 2021; 32
Su (10.1016/j.cis.2022.102830_bb0065) 2018; 122
References_xml – volume: 47
  start-page: 3824
  year: 2022
  end-page: 3833
  ident: bb0590
  article-title: Chlorophyll derivatives/MXene hybrids for photocatalytic hydrogen evolution: dependence of performance on the central coordinating metals
  publication-title: Int J Hydrogen Energy
– volume: 45
  start-page: 13939
  year: 2020
  end-page: 13946
  ident: bb0610
  article-title: Carbon vacancies improved photocatalytic hydrogen generation of g-C
  publication-title: Int J Hydrogen Energy
– volume: 538
  start-page: 165
  year: 2017
  end-page: 173
  ident: bb0075
  article-title: YSZ monoliths promoted with Co as catalysts for the production of H
  publication-title: Appl Catal Gen
– volume: 47
  start-page: 11211
  year: 2022
  end-page: 11223
  ident: bb0230
  article-title: Facile synthesis of C–Ta4+ co-doped NaTaO
  publication-title: Int J Hydrogen Energy
– volume: 335
  start-page: 151
  year: 2019
  end-page: 159
  ident: bb0295
  article-title: Controllable fabrication of homogeneous ZnO pn junction with enhanced charge separation for efficient photocatalysis
  publication-title: Catalysis Today
– volume: 105
  start-page: 104748
  year: 2020
  ident: bb0100
  article-title: The investigation of hydrogen evolution using Ca doped ZnO catalysts under visible light illumination
  publication-title: Mater. Sci. Semiconductor Process.
– volume: 27
  start-page: 15103
  year: 2020
  end-page: 15112
  ident: bb0170
  article-title: Synthesis and photocatalytic activity study of S-doped WO
  publication-title: Environ Sci Pollut Res
– volume: 13
  start-page: 46772
  year: 2021
  end-page: 46782
  ident: bb0565
  article-title: Synergistic integration of AuCu co-catalyst with oxygen vacancies on TiO
  publication-title: ACS Appl Mater Interfaces
– start-page: 2105299
  year: 2022
  ident: bb0310
  article-title: Strain adjustment realizes the photocatalytic overall water splitting on tetragonal zircon BiVO
  publication-title: Advanced Science
– volume: 42
  start-page: 710
  year: 2021
  end-page: 730
  ident: bb0005
  article-title: Advances in designing heterojunction photocatalytic materials
  publication-title: Chinese Journal of Catalysis
– volume: 1
  start-page: 541
  year: 2013
  end-page: 547
  ident: bb0030
  article-title: Hierarchical TiO
  publication-title: J Mater Chem A
– volume: 46
  start-page: 21866
  year: 2021
  end-page: 21888
  ident: bb0420
  article-title: Influence of exposed facets, morphology and hetero-interfaces of BiVO
  publication-title: Int J Hydrogen Energy
– volume: 48
  start-page: 7717
  year: 2012
  end-page: 7719
  ident: bb0525
  article-title: Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays
  publication-title: Chem Commun
– volume: 43
  start-page: 1116
  year: 2018
  end-page: 1122
  ident: bb0185
  article-title: Photocatalytic hydrogen production by water splitting over au/Al-SrTiO
  publication-title: Int J Hydrogen Energy
– volume: 47
  start-page: 14280
  year: 2022
  end-page: 14293
  ident: bb0575
  article-title: Molecular engineering control defects within carbon nitride for optimized co-catalyst Pt induced photocatalytic CO
  publication-title: Int J Hydrogen Energy
– volume: 134
  year: 2020
  ident: bb0160
  article-title: Synergistic effect of polychromatic radiation on visible light activity of N-doped TiO
  publication-title: Catalysis Communications
– volume: 44
  start-page: 21781
  year: 2019
  end-page: 21789
  ident: bb0540
  article-title: Green synthesized carbon quantum dots as TiO
  publication-title: Int J Hydrogen Energy
– volume: 47
  start-page: 15505
  year: 2022
  end-page: 15515
  ident: bb0115
  article-title: Microwave-assisted one-pot hydrothermal synthesis of V and La co-doped ZnO/CNTs nanocomposite for boosted photocatalytic hydrogen production
  publication-title: Int J Hydrogen Energy
– volume: 6
  start-page: 25695
  year: 2016
  end-page: 25702
  ident: bb0695
  article-title: Construction of a 2D/2D gC
  publication-title: RSC Adv
– volume: 54
  start-page: 10836
  year: 2019
  end-page: 10845
  ident: bb0390
  article-title: 2D BiVO
  publication-title: J Mater Sci
– volume: 259
  year: 2019
  ident: bb0425
  article-title: Atomic carbon chains-mediated carriers transfer over polymeric carbon nitride for efficient photocatalysis
  publication-title: Appl Catal Environ
– volume: 7
  start-page: 3469
  year: 2007
  end-page: 3476
  ident: bb0445
  article-title: Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit
  publication-title: Nano Lett
– volume: 58
  start-page: 2073
  year: 2019
  end-page: 2077
  ident: bb0720
  article-title: Z-Scheme 2D/2D heterojunction of black phosphorus/monolayer Bi
  publication-title: AngewandteChemie International Edition
– volume: 21
  start-page: 2318
  year: 2019
  end-page: 2324
  ident: bb0285
  article-title: The role of nitrogen defects in graphitic carbon nitride for visible-light-driven hydrogen evolution
  publication-title: Phys Chem Chem Phys
– volume: 46
  start-page: 30393
  year: 2021
  end-page: 30401
  ident: bb0435
  article-title: Hollow In
  publication-title: Int J Hydrogen Energy
– volume: 168
  start-page: 1150
  year: 2017
  end-page: 1162
  ident: bb0735
  article-title: New insight into self-modified surfaces with defect-rich rutile TiO
  publication-title: J Clean Prod
– volume: 15
  start-page: 3456
  year: 2020
  end-page: 3461
  ident: bb0270
  article-title: Oxygen doped g-C
  publication-title: Chemistry–An Asian Journal
– volume: 43
  start-page: 2073
  year: 2018
  end-page: 2082
  ident: bb0750
  article-title: Rare earth metal Gd influenced defect sites in N doped TiO
  publication-title: Int J Hydrogen Energy
– volume: 12
  start-page: 31477
  year: 2020
  end-page: 31485
  ident: bb0625
  article-title: Direct Z-scheme 0D/2D heterojunction of CsPbBr
  publication-title: ACS Appl Mater Interfaces
– volume: 409
  year: 2021
  ident: bb0635
  article-title: S-scheme heterojunction based on p-type ZnMn
  publication-title: Chem Eng J
– volume: 47
  start-page: 2967
  year: 2022
  end-page: 2975
  ident: bb0745
  article-title: MoS
  publication-title: Int J Hydrogen Energy
– volume: 44
  start-page: 29516
  year: 2019
  end-page: 29528
  ident: bb0580
  article-title: Effects of graphene oxide and sacrificial reagent for highly efficient hydrogen production with the costless Zn (O, S) photocatalyst
  publication-title: Int J Hydrogen Energy
– volume: 601
  year: 2020
  ident: bb0245
  article-title: Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C
  publication-title: Appl Catal Gen
– volume: 43
  start-page: 8198
  year: 2018
  end-page: 8205
  ident: bb0500
  article-title: Plasmonic ag nanoparticles decorated NaNbO
  publication-title: Int J Hydrogen Energy
– volume: 47
  start-page: 11190
  year: 2022
  end-page: 11202
  ident: bb0545
  article-title: ZIF-L-derived porous C-doped ZnO/CdS graded nanorods with Z-scheme heterojunctions for enhanced photocatalytic hydrogen evolution
  publication-title: Int J Hydrogen Energy
– volume: 807
  year: 2019
  ident: bb0165
  article-title: Facile fabrication of N-doped ZnS nanomaterials for efficient photocatalytic performance of organic pollutant removal and H
  publication-title: J Alloys Compd
– volume: 301
  year: 2022
  ident: bb0670
  article-title: In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO
  publication-title: Appl Catal Environ
– volume: 45
  start-page: 629
  year: 2020
  end-page: 639
  ident: bb0600
  article-title: Oxygen vacancies mediated in-situ growth of noble-metal (ag, au, Pt) nanoparticles on 3D TiO
  publication-title: Int J Hydrogen Energy
– volume: 247
  start-page: 545
  year: 2014
  end-page: 550
  ident: bb0370
  article-title: Facile synthesis of large-area CeO
  publication-title: J Power Sources
– volume: 122
  start-page: 21108
  year: 2018
  end-page: 21114
  ident: bb0065
  article-title: Valence band engineering via PtII single-atom confinement realizing photocatalytic water splitting
  publication-title: J Phys Chem C
– volume: 371
  start-page: 179
  year: 2009
  end-page: 190
  ident: bb0125
  article-title: Effect of oxygen and nitrogen concentration of nitrogen doped TiO
  publication-title: Appl Catal Gen
– volume: 2
  start-page: 6942
  year: 2021
  end-page: 6983
  ident: bb0325
  article-title: Crystal facet and surface defect engineered low dimensional CeO
  publication-title: Materials Advances
– volume: 55
  start-page: 13514
  year: 2019
  end-page: 13517
  ident: bb0570
  article-title: A silver–manganese dual co-catalyst for selective reduction of carbon dioxide into carbon monoxide over a potassium hexatitanate photocatalyst with water
  publication-title: Chem Commun
– volume: 46
  start-page: 3530
  year: 2021
  end-page: 3538
  ident: bb0585
  article-title: Synthesis and photocatalytic performance of MoS
  publication-title: Int J Hydrogen Energy
– volume: 46
  start-page: 234
  year: 2021
  end-page: 246
  ident: bb0220
  article-title: In situ W/O co-doped hollow carbon nitride tubular structures with enhanced visible-light-driven photocatalytic performance for hydrogen evolution
  publication-title: Int J Hydrogen Energy
– volume: 416
  year: 2021
  ident: bb0025
  article-title: Dual MOFs template-directed fabrication of hollow-structured heterojunction photocatalysts for efficient CO
  publication-title: Chem Eng J
– volume: 44
  start-page: 4123
  year: 2019
  end-page: 4132
  ident: bb0550
  article-title: Metal (oxide) modified (M= Pd, ag, au and cu) H
  publication-title: Int J Hydrogen Energy
– volume: 13
  start-page: 45475
  year: 2021
  end-page: 45487
  ident: bb0315
  article-title: Step-scheme heterojunction between CdS nanowires and facet-selective assembly of MnO
  publication-title: ACS Appl Mater Interfaces
– volume: 56
  start-page: 143
  year: 2020
  end-page: 150
  ident: bb0405
  article-title: Step-scheme CdS/TiO
  publication-title: Journal of Materials Science & Technology
– volume: 8
  start-page: 42233
  year: 2018
  end-page: 42245
  ident: bb0450
  article-title: In situ fabrication of a direct Z-scheme photocatalyst by immobilizing CdS quantum dots in the channels of graphene-hybridized and supported mesoporous titanium nanocrystals for high photocatalytic performance under visible light
  publication-title: RSC Adv
– volume: 44
  start-page: 30084
  year: 2019
  end-page: 30092
  ident: bb0130
  article-title: Non-noble-metal Ni nanoparticles modified N-doped g-C
  publication-title: Int J Hydrogen Energy
– volume: 41
  start-page: 9
  year: 2020
  end-page: 20
  ident: bb0395
  article-title: Enhanced photocatalytic H
  publication-title: Chinese Journal of Catalysis
– volume: 261
  year: 2020
  ident: bb0360
  article-title: Inter-plane heterojunctions within 2D/2D FeSe
  publication-title: Appl Catal Environ
– volume: 23
  start-page: 2812
  year: 2021
  end-page: 2818
  ident: bb0365
  article-title: A novel design of SiH/CeO
  publication-title: Phys Chem Chem Phys
– volume: 7
  start-page: 8167
  year: 2017
  end-page: 8177
  ident: bb0380
  article-title: Synthesis and characterization of a core–shell BiVO
  publication-title: RSC Adv
– volume: 602
  start-page: 553
  year: 2021
  end-page: 562
  ident: bb0680
  article-title: Bi
  publication-title: J Colloid Interface Sci
– volume: 28
  start-page: 2427
  year: 2016
  end-page: 2431
  ident: bb0070
  article-title: Single-atom Pt as co-catalyst for enhanced photocatalytic H
  publication-title: Adv Mater
– volume: 290
  year: 2022
  ident: bb0715
  article-title: S-scheme 1 T phase MoSe
  publication-title: Sep Purif Technol
– volume: 11
  start-page: 6391
  year: 2018
  end-page: 6404
  ident: bb0555
  article-title: Exceptional co-catalyst free photocatalytic activities of B and Fe co-doped SrTiO
  publication-title: Nano Research
– volume: 229
  start-page: 41
  year: 2018
  end-page: 51
  ident: bb0290
  article-title: Zn-vacancy mediated electron-hole separation in ZnS/g-C
  publication-title: Appl Catal Environ
– volume: 113
  start-page: 1560
  year: 2009
  end-page: 1566
  ident: bb0335
  article-title: A systematical study on photocatalytic properties of AgMO
  publication-title: J Phys Chem C
– volume: 133
  start-page: 12017
  year: 2021
  end-page: 12025
  ident: bb0705
  article-title: Magnetic-field-stimulated efficient photocatalytic N
  publication-title: AngewandteChemie
– volume: 1
  start-page: 1051
  year: 2010
  end-page: 1054
  ident: bb0460
  article-title: Photocatalytic hydrogen production with tunable nanorod heterostructures
  publication-title: The Journal of Physical Chemistry Letters
– volume: 44
  start-page: 10585
  year: 2019
  end-page: 10592
  ident: bb0495
  article-title: One-pot solvothermal synthesis of 1D plasmonic TiO
  publication-title: Int J Hydrogen Energy
– volume: 43
  start-page: 9224
  year: 2018
  end-page: 9232
  ident: bb0190
  article-title: BaZrO
  publication-title: Int J Hydrogen Energy
– volume: 33
  start-page: 2100317
  year: 2021
  ident: bb0400
  article-title: An inorganic/organic S-scheme heterojunction H
  publication-title: Adv Mater
– volume: 133
  start-page: 595
  year: 2011
  end-page: 602
  ident: bb0510
  article-title: Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water
  publication-title: J Am Chem Soc
– volume: 2
  start-page: 3344
  year: 2014
  end-page: 3351
  ident: bb0475
  article-title: Carbon quantum dots/TiO
  publication-title: J Mater Chem A
– volume: 9
  start-page: 4598
  year: 2019
  end-page: 4613
  ident: bb0620
  article-title: Visible light-driven enhanced CO
  publication-title: Cat Sci Technol
– volume: 48
  start-page: 371
  year: 2012
  end-page: 373
  ident: bb0455
  article-title: Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals
  publication-title: Chem Commun
– volume: 42
  start-page: 1519
  year: 2021
  end-page: 1529
  ident: bb0660
  article-title: Novel S-scheme 2D/2D BiOBr/g-C
  publication-title: Chinese Journal of Catalysis
– volume: 29
  year: 2022
  ident: bb0045
  article-title: A review of step-scheme photocatalysts
  publication-title: Appl Mater Today
– volume: 8
  start-page: 76
  year: 2009
  end-page: 80
  ident: bb0060
  article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light
  publication-title: Nat Mater
– volume: 107
  year: 2019
  ident: bb0205
  article-title: Facile synthesis of Fe-doped g-C
  publication-title: Inorganic Chemistry Communications
– volume: 136
  start-page: 8839
  year: 2014
  end-page: 8842
  ident: bb0330
  article-title: Enhanced photocatalytic CO
  publication-title: J Am Chem Soc
– volume: 131
  start-page: 5113
  year: 2019
  end-page: 5117
  ident: bb0465
  article-title: ZnSe nanorods as visible-light absorbers for photocatalytic and photoelectrochemical H
  publication-title: AngewandteChemie
– volume: 45
  start-page: 4534
  year: 2020
  end-page: 4544
  ident: bb0140
  article-title: Three-in-one: opened charge-transfer channel, positively shifted oxidation potential, and enhanced visible light response of g-C
  publication-title: Int J Hydrogen Energy
– volume: 13
  start-page: 1250
  year: 2021
  end-page: 1270
  ident: bb0055
  article-title: Recent advances in graphitic carbon nitride supported single-atom catalysts for energy conversion
  publication-title: ChemCatChem
– volume: 43
  start-page: 4347
  year: 2018
  end-page: 4354
  ident: bb0120
  article-title: Giant enhancement of photocatalytic H
  publication-title: Int J Hydrogen Energy
– volume: 314
  start-page: 73
  year: 2019
  end-page: 80
  ident: bb0515
  article-title: Synthesis and application of N-doped TiO2/CdS/poly (1, 8-diaminocarbazole) composite for photocatalytic degradation of 4-chlorophenol under visible light
  publication-title: Electrochimica Acta
– volume: 12
  start-page: 90
  year: 2020
  end-page: 100
  ident: bb0300
  article-title: Genomic and phenotypic diversity of carbapenemase-producing enterobacteriaceae isolates from bacteremia in China: a multicenter epidemiological, microbiological, and genetic study
  publication-title: Engineering
– volume: 45
  start-page: 2729
  year: 2020
  end-page: 2744
  ident: bb0175
  article-title: Ag-doped TiO
  publication-title: Int J Hydrogen Energy
– volume: 46
  start-page: 34333
  year: 2021
  end-page: 34343
  ident: bb0505
  article-title: Enhancing the photocatalytic hydrogen production of the ZnO–TiO
  publication-title: Int J Hydrogen Energy
– volume: 221
  start-page: 422
  year: 2018
  end-page: 432
  ident: bb0725
  article-title: Oxygen vacancies induced visible-light photocatalytic activities of CaCu
  publication-title: Appl Catal Environ
– volume: 289
  year: 2020
  ident: bb0210
  article-title: Photocatalytic hydrogen evolution from biomass (glucose solution) on au/CdS nanorods with Au
  publication-title: J Solid State Chem
– volume: 7
  start-page: 5324
  year: 2019
  end-page: 5332
  ident: bb0415
  article-title: Template-free synthesis of nanocage-like gC
  publication-title: J Mater Chem A
– volume: 32
  start-page: 3501
  year: 2021
  end-page: 3504
  ident: bb0710
  article-title: The metallic 1T-WS
  publication-title: Chin Chem Lett
– volume: 4
  start-page: 447
  year: 2021
  end-page: 456
  ident: bb0200
  article-title: Photocatalytic degradation of Eriochrome black-T and Evan’s blue dyes under the visible light using PVA capped and uncapped Ag doped ZnS nanoparticles
  publication-title: Emergent Materials
– volume: 12
  start-page: 19203
  year: 2020
  end-page: 19212
  ident: bb0105
  article-title: CoP QD anchored carbon skeleton modified CdS nanorods as a co-catalyst for photocatalytic hydrogen production
  publication-title: Nanoscale
– volume: 46
  start-page: 3996
  year: 2021
  end-page: 4006
  ident: bb0145
  article-title: One step synthesis of self-doped F–Ta
  publication-title: Int J Hydrogen Energy
– volume: 272
  year: 2020
  ident: bb0650
  article-title: 2D/2D/0D TiO
  publication-title: Appl Catal Environ
– reference: Orak C., Yüksel A. Comparison of photocatalytic performances of solar-driven hybrid catalysts for hydrogen energy evolution from 1, 8–Diazabicyclo [5.4. 0] undec-7-ene (DBU) solution. Int J Hydrogen Energy 2022:47(14):8841-8857.
– volume: 289
  year: 2021
  ident: bb0640
  article-title: TiO
  publication-title: Appl Catal Environ
– volume: 244
  start-page: 206
  year: 2019
  end-page: 214
  ident: bb0730
  article-title: Highly selective oxidation of glycerol over Bi/Bi
  publication-title: Appl Catal Environ
– volume: 46
  start-page: 37782
  year: 2021
  end-page: 37791
  ident: bb0250
  article-title: Nitrogen vacancy enhanced photocatalytic selective oxidation of benzyl alcohol in g-C
  publication-title: Int J Hydrogen Energy
– volume: 121
  start-page: 9433
  year: 2017
  end-page: 9441
  ident: bb0345
  article-title: Anomalous photocatalytic activity of nanocrystalline γ-phase Ga
  publication-title: J Phys Chem C
– volume: 47
  start-page: 13044
  year: 2022
  end-page: 13053
  ident: bb0605
  article-title: A novel all-solid-state S-scheme in CdS/ZnTHPP binary nanosystem for hydrogen evolution
  publication-title: Int J Hydrogen Energy
– volume: 44
  start-page: 19162
  year: 2019
  end-page: 19167
  ident: bb0385
  article-title: Fabrication of Ta
  publication-title: Int J Hydrogen Energy
– volume: 616
  start-page: 152
  year: 2022
  end-page: 162
  ident: bb0235
  article-title: Carbon and phosphorus co-doped carbon nitride hollow tube for improved photocatalytic hydrogen evolution
  publication-title: J Colloid Interface Sci
– volume: 57
  start-page: 16882
  year: 2018
  end-page: 16887
  ident: bb0305
  article-title: Simultaneous manipulation of O-doping and metal vacancy in atomically thin Zn
  publication-title: AngewandteChemie International Edition
– volume: 873
  year: 2021
  ident: bb0260
  article-title: Controllable oxygen doping and sulfur vacancies in one dimensional CdS nanorods for boosted hydrogen evolution reaction
  publication-title: J Alloys Compd
– volume: 284
  year: 2022
  ident: bb0535
  article-title: Effective promotion of spacial charge separation of dual S-scheme (1D/2D/0D) WO
  publication-title: Sep Purif Technol
– volume: 3
  start-page: 138
  year: 2019
  end-page: 148
  ident: bb0615
  article-title: CeO
  publication-title: ACS Applied Nano Materials
– volume: 294
  start-page: 142
  year: 2019
  end-page: 147
  ident: bb0020
  article-title: The role of conductivity and phase structure in enhancing catalytic activity of CoSe for hydrogen evolution reaction
  publication-title: Electrochim Acta
– volume: 11
  start-page: 2217
  year: 2019
  end-page: 2222
  ident: bb0015
  article-title: Facile preparation of 1T/2H-Mo (S
  publication-title: ChemCatChem
– volume: 39
  start-page: 3498
  year: 2019
  end-page: 3504
  ident: bb0155
  article-title: Photocatalytic activity of undoped and sulfur-doped TiO
  publication-title: J Eur Ceram Soc
– volume: 600
  start-page: 138
  year: 2021
  end-page: 149
  ident: bb0265
  article-title: Core-shell structure of sulphur vacancies-CdS@ CuS: enhanced photocatalytic hydrogen generation activity based on photoinduced interfacial charge transfer
  publication-title: J Colloid Interface Sci
– volume: 15
  start-page: 15964
  year: 2013
  end-page: 15970
  ident: bb0350
  article-title: Elucidating a twin-dependent chemical activity of hierarchical copper sulfide nanocages
  publication-title: Phys Chem Chem Phys
– volume: 510
  start-page: 95
  year: 2018
  end-page: 102
  ident: bb0740
  article-title: Synthesis and characterization of Ag doped ZnS quantum dots for enhanced photocatalysis of Strychnine as a poison: charge transfer behavior study by electrochemical impedance and time-resolved photoluminescence spectroscopy
  publication-title: J Colloid Interface Sci
– volume: 247
  start-page: 70
  year: 2019
  end-page: 77
  ident: bb0430
  article-title: Soluble g-C
  publication-title: Appl Catal Environ
– volume: 9
  start-page: 7509
  year: 2019
  end-page: 7535
  ident: bb0150
  article-title: Synthesis of N-doped ZnO nanoparticles with cabbage morphology as a catalyst for the efficient photocatalytic degradation of methylene blue under UV and visible light
  publication-title: RSC Adv
– volume: 43
  start-page: 748
  year: 2018
  end-page: 756
  ident: bb0180
  article-title: Copper-doped flower-like molybdenum disulfide/bismuth sulfide photocatalysts for enhanced solar water splitting
  publication-title: Int J Hydrogen Energy
– volume: 11
  start-page: 1500
  year: 2021
  ident: bb0685
  article-title: Dual use of copper-modified TiO
  publication-title: Coatings
– volume: 47
  start-page: 15641
  year: 2022
  end-page: 15654
  ident: bb0595
  article-title: A novel lattice-embeddedZnO@TiO
  publication-title: Int J Hydrogen Energy
– volume: 137
  start-page: 2975
  year: 2015
  end-page: 2983
  ident: bb0275
  article-title: Titanium-defected undoped anatase TiO
  publication-title: J Am Chem Soc
– volume: 118
  start-page: 140
  year: 2021
  end-page: 151
  ident: bb0690
  article-title: High-impressive separation of photoinduced charge carriers on step-scheme ZnO/ZnSnO
  publication-title: J Taiwan Inst Chem Eng
– volume: 15
  start-page: 10978
  year: 2013
  end-page: 10988
  ident: bb0340
  article-title: Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO
  publication-title: Phys Chem Chem Phys
– volume: 834
  year: 2020
  ident: bb0035
  article-title: One-step method to achieve multiple decorations on lamellar MoS
  publication-title: J Alloys Compd
– volume: 9
  start-page: 2741
  year: 2019
  ident: bb0195
  article-title: Photocatalytic hydrogen production from glycerol aqueous solution using cu-doped ZnO under visible light irradiation
  publication-title: Applied Sciences
– volume: 17
  start-page: 2103447
  year: 2021
  ident: bb0630
  article-title: In situ irradiated XPS investigation on S-scheme TiO
  publication-title: Small
– volume: 44
  start-page: 110
  year: 2019
  end-page: 117
  ident: bb0215
  article-title: (In, Cu) Co-doped ZnS nanoparticles for photoelectrochemical hydrogen production
  publication-title: Int J Hydrogen Energy
– volume: 31
  start-page: 2009807
  year: 2021
  ident: bb0255
  article-title: Vacancy engineering in semiconductor photocatalysts: implications in hydrogen evolution and nitrogen fixation applications
  publication-title: Adv Funct Mater
– volume: 464
  start-page: 36
  year: 2019
  end-page: 42
  ident: bb0095
  article-title: Size effect of Pt co-catalyst on photocatalytic efficiency of g-C
  publication-title: Appl Surf Sci
– volume: 123
  year: 2021
  ident: bb0490
  article-title: Effect of Al doping on the photocatalytic activity of ZnO nanoparticles decorated on CNTs and graphene: Solvothermal synthesis and study of experimental parameters
  publication-title: Mater Sci Semicond Process
– volume: 12
  start-page: 1213
  year: 2020
  end-page: 1223
  ident: bb0040
  article-title: Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting
  publication-title: Nanoscale
– volume: 219
  start-page: 412
  year: 2017
  end-page: 424
  ident: bb0080
  article-title: Photocatalytic CO
  publication-title: Appl Catal Environ
– volume: 222
  start-page: 35
  year: 2018
  end-page: 43
  ident: bb0110
  article-title: Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C
  publication-title: Appl Catal Environ
– volume: 212
  year: 2022
  ident: bb0675
  article-title: In
  publication-title: Environ Res
– year: 2021
  ident: bb0700
  article-title: High piezo/photocatalytic efficiency of ag/Bi
– volume: 43
  start-page: 19984
  year: 2018
  end-page: 19989
  ident: bb0135
  article-title: Rapid and energy-efficient preparation of boron doped g-C
  publication-title: Int J Hydrogen Energy
– volume: 46
  start-page: 21549
  year: 2021
  end-page: 21565
  ident: bb0225
  article-title: S, N co-doped graphene quantum dots decorated TiO
  publication-title: Int J Hydrogen Energy
– volume: 9
  start-page: 71
  year: 2014
  end-page: 79
  ident: bb0280
  article-title: Undoped ZnO abundant with metal vacancies
  publication-title: Nano Energy
– volume: 197
  year: 2021
  ident: bb0645
  article-title: Fabrication of S-scheme CdS-g-C
  publication-title: Environ Res
– volume: 47
  start-page: 1656
  year: 2022
  end-page: 1668
  ident: bb0440
  article-title: A nano heterostructure with step-accelerated system toward optimized photocatalytic hydrogen evolution
  publication-title: Int J Hydrogen Energy
– volume: 46
  start-page: 24094
  year: 2021
  end-page: 24106
  ident: bb0355
  article-title: Novel 0D/1D ZnBi
  publication-title: Int J Hydrogen Energy
– volume: 47
  start-page: 2327
  year: 2022
  end-page: 2337
  ident: bb0085
  article-title: Promoting the photocatalytic H
  publication-title: Int J Hydrogen Energy
– volume: 384
  year: 2020
  ident: bb0755
  article-title: Nitrogen-doped hydrogenated TiO
  publication-title: Chem Eng J
– volume: 12
  start-page: 3523
  year: 2018
  end-page: 3532
  ident: bb0470
  article-title: Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO
  publication-title: ACS Nano
– volume: 46
  start-page: 5869
  year: 2022
  end-page: 5880
  ident: bb0530
  article-title: Autonomous self-optimizing defects by refining energy levels through hydrogenation in CeO
  publication-title: New J Chem
– volume: 404
  year: 2021
  ident: bb0760
  article-title: One-step construction of S-scheme heterojunctions of N-doped MoS
  publication-title: Chem Eng J
– volume: 9
  start-page: 2100034
  year: 2021
  ident: bb0010
  article-title: A bifunctional 2D interlayered β-Cu
  publication-title: Energ Technol
– volume: 44
  start-page: 8011
  year: 2019
  end-page: 8019
  ident: bb0520
  article-title: Hydrogenated F-doped TiO
  publication-title: Int J Hydrogen Energy
– volume: 132
  start-page: 360
  year: 2019
  end-page: 373
  ident: bb0240
  article-title: Chitosan modified N, S-doped TiO
  publication-title: Int J Biol Macromol
– volume: 604
  start-page: 844
  year: 2021
  end-page: 855
  ident: bb0655
  article-title: Plasmonic Bi-enhanced ammoniated α-MnS/Bi
  publication-title: J Colloid Interface Sci
– volume: 47
  start-page: 12592
  year: 2022
  end-page: 12604
  ident: bb0090
  article-title: Constructing atomic Co1–N
  publication-title: Int J Hydrogen Energy
– volume: 11
  start-page: 41440
  year: 2019
  end-page: 41447
  ident: bb0050
  article-title: Boosting the photocatalytic ability of g-C
  publication-title: ACS Appl Mater Interfaces
– volume: 245
  start-page: 733
  year: 2019
  end-page: 742
  ident: bb0375
  article-title: Ultrathin 2D type-II pn heterojunctions La
  publication-title: Appl Catal Environ
– volume: 46
  start-page: 26074
  year: 2021
  end-page: 26086
  ident: bb0560
  article-title: Highly efficient photocatalytic hydrogen evolution by using Rh as co-catalyst in the cu/TiO
  publication-title: Int J Hydrogen Energy
– volume: 556
  year: 2021
  ident: bb0665
  article-title: In situ self-assembled S-scheme BiOBr/pCN hybrid with enhanced photocatalytic activity for organic pollutant degradation and CO
  publication-title: Appl Surf Sci
– volume: 4
  start-page: 1
  year: 2013
  end-page: 7
  ident: bb0320
  article-title: Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO
  publication-title: Nat Commun
– reference: Hayat A., Syed J.A.S., Al-Sehemi A.G., El-Nasser K.S., Taha T.A., Al-Ghamdi A.A., et al. State of the art advancement in rational design of g-C3N4 photocatalyst for efficient solar fuel transformation, environmental decontamination and future perspectives. Int. J. Hydrogen Energy 2022:47(20):10837-10867.
– volume: 10
  start-page: 3925
  year: 2020
  end-page: 3931
  ident: bb0485
  article-title: Visible light responsive photocatalytic hydrogen evolution using MoS
  publication-title: Applied Nanoscience
– volume: 15
  start-page: 15964
  issue: 38
  year: 2013
  ident: 10.1016/j.cis.2022.102830_bb0350
  article-title: Elucidating a twin-dependent chemical activity of hierarchical copper sulfide nanocages
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c3cp52840e
– volume: 335
  start-page: 151
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0295
  article-title: Controllable fabrication of homogeneous ZnO pn junction with enhanced charge separation for efficient photocatalysis
  publication-title: Catalysis Today
  doi: 10.1016/j.cattod.2018.10.059
– volume: 9
  start-page: 71
  year: 2014
  ident: 10.1016/j.cis.2022.102830_bb0280
  article-title: Undoped ZnO abundant with metal vacancies
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.06.029
– volume: 46
  start-page: 21866
  issue: 42
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0420
  article-title: Influence of exposed facets, morphology and hetero-interfaces of BiVO4 on photocatalytic water oxidation: a review
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.04.060
– volume: 15
  start-page: 3456
  issue: 21
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0270
  article-title: Oxygen doped g-C3N4 with nitrogen vacancy for enhanced photocatalytic hydrogen evolution
  publication-title: Chemistry–An Asian Journal
  doi: 10.1002/asia.202000912
– volume: 9
  start-page: 7509
  issue: 13
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0150
  article-title: Synthesis of N-doped ZnO nanoparticles with cabbage morphology as a catalyst for the efficient photocatalytic degradation of methylene blue under UV and visible light
  publication-title: RSC Adv
  doi: 10.1039/C8RA09962F
– ident: 10.1016/j.cis.2022.102830_bb0480
  doi: 10.1016/j.ijhydene.2021.12.254
– volume: 245
  start-page: 733
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0375
  article-title: Ultrathin 2D type-II pn heterojunctions La2Ti2O7/In2S3 with efficient charge separations and photocatalytic hydrogen evolution under visible light illumination
  publication-title: Appl Catal Environ
  doi: 10.1016/j.apcatb.2019.01.024
– start-page: 2105299
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0310
  article-title: Strain adjustment realizes the photocatalytic overall water splitting on tetragonal zircon BiVO4
  publication-title: Advanced Science
  doi: 10.1002/advs.202105299
– volume: 45
  start-page: 13939
  issue: 27
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0610
  article-title: Carbon vacancies improved photocatalytic hydrogen generation of g-C3N4 photocatalyst via magnesium vapor etching
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.03.067
– volume: 41
  start-page: 9
  issue: 1
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0395
  article-title: Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification
  publication-title: Chinese Journal of Catalysis
  doi: 10.1016/S1872-2067(19)63382-6
– volume: 244
  start-page: 206
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0730
  article-title: Highly selective oxidation of glycerol over Bi/Bi3.64Mo0.36O6.55 heterostructure: dual reaction pathways induced by photogenerated 1O2 and holes
  publication-title: Appl Catal Environ
  doi: 10.1016/j.apcatb.2018.11.047
– volume: 47
  start-page: 11211
  issue: 21
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0230
  article-title: Facile synthesis of C–Ta4+ co-doped NaTaO3 and rGO nanocomposites with enhanced visible light photocatalytic performance
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.01.163
– volume: 107
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0205
  article-title: Facile synthesis of Fe-doped g-C3N4 for enhanced visible-light photocatalytic activity
  publication-title: Inorganic Chemistry Communications
  doi: 10.1016/j.inoche.2019.107451
– volume: 409
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0635
  article-title: S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.127377
– volume: 44
  start-page: 4123
  issue: 8
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0550
  article-title: Metal (oxide) modified (M= Pd, ag, au and cu) H2SrTa2O7 for photocatalytic CO2 reduction with H2O: the effect of cocatalysts on promoting activity toward CO and H2 evolution
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.12.166
– volume: 13
  start-page: 45475
  issue: 38
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0315
  article-title: Step-scheme heterojunction between CdS nanowires and facet-selective assembly of MnOx-BiVO4 for an efficient visible-light-driven overall water splitting
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c11740
– volume: 2
  start-page: 6942
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0325
  article-title: Crystal facet and surface defect engineered low dimensional CeO2 (OD, 1D, 2D) based photocatalytic materials towards energy generation and pollutant abatement
  publication-title: Materials Advances
  doi: 10.1039/D1MA00539A
– volume: 538
  start-page: 165
  year: 2017
  ident: 10.1016/j.cis.2022.102830_bb0075
  article-title: YSZ monoliths promoted with Co as catalysts for the production of H2 by steam reforming of ethanol
  publication-title: Appl Catal Gen
  doi: 10.1016/j.apcata.2017.03.008
– volume: 137
  start-page: 2975
  issue: 8
  year: 2015
  ident: 10.1016/j.cis.2022.102830_bb0275
  article-title: Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance
  publication-title: J Am Chem Soc
  doi: 10.1021/ja512047k
– volume: 8
  start-page: 42233
  issue: 73
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0450
  article-title: In situ fabrication of a direct Z-scheme photocatalyst by immobilizing CdS quantum dots in the channels of graphene-hybridized and supported mesoporous titanium nanocrystals for high photocatalytic performance under visible light
  publication-title: RSC Adv
  doi: 10.1039/C8RA08008A
– volume: 47
  start-page: 15641
  issue: 35
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0595
  article-title: A novel lattice-embeddedZnO@TiO2 (B) nanoflowers promotes photocatalytic production of H2
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.03.091
– volume: 464
  start-page: 36
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0095
  article-title: Size effect of Pt co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2018.09.061
– volume: 48
  start-page: 371
  issue: 3
  year: 2012
  ident: 10.1016/j.cis.2022.102830_bb0455
  article-title: Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals
  publication-title: Chem Commun
  doi: 10.1039/C1CC16082F
– volume: 247
  start-page: 545
  year: 2014
  ident: 10.1016/j.cis.2022.102830_bb0370
  article-title: Facile synthesis of large-area CeO2/ZnO nanotube arrays for enhanced photocatalytic hydrogen evolution
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.09.015
– volume: 289
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0640
  article-title: TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity
  publication-title: Appl Catal Environ
  doi: 10.1016/j.apcatb.2021.120039
– volume: 4
  start-page: 447
  issue: 2
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0200
  article-title: Photocatalytic degradation of Eriochrome black-T and Evan’s blue dyes under the visible light using PVA capped and uncapped Ag doped ZnS nanoparticles
  publication-title: Emergent Materials
  doi: 10.1007/s42247-020-00153-7
– volume: 197
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0645
  article-title: Fabrication of S-scheme CdS-g-C3N4-graphene aerogel heterojunction for enhanced visible light driven photocatalysis
  publication-title: Environ Res
  doi: 10.1016/j.envres.2021.111136
– volume: 17
  start-page: 2103447
  issue: 41
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0630
  article-title: In situ irradiated XPS investigation on S-scheme TiO2@ ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction
  publication-title: Small
  doi: 10.1002/smll.202103447
– volume: 294
  start-page: 142
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0020
  article-title: The role of conductivity and phase structure in enhancing catalytic activity of CoSe for hydrogen evolution reaction
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2018.10.082
– volume: 55
  start-page: 13514
  issue: 90
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0570
  article-title: A silver–manganese dual co-catalyst for selective reduction of carbon dioxide into carbon monoxide over a potassium hexatitanate photocatalyst with water
  publication-title: Chem Commun
  doi: 10.1039/C9CC06038C
– volume: 44
  start-page: 29516
  issue: 56
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0580
  article-title: Effects of graphene oxide and sacrificial reagent for highly efficient hydrogen production with the costless Zn (O, S) photocatalyst
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.08.066
– volume: 9
  start-page: 2100034
  issue: 7
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0010
  article-title: A bifunctional 2D interlayered β-Cu2V2O7/Zn2V2O6 (CZVO) heterojunction for solar-driven nonsacrificial dye degradation and water oxidation
  publication-title: Energ Technol
  doi: 10.1002/ente.202100034
– volume: 13
  start-page: 46772
  issue: 39
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0565
  article-title: Synergistic integration of AuCu co-catalyst with oxygen vacancies on TiO2 for efficient photocatalytic conversion of CO2 to CH4
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c14371
– volume: 9
  start-page: 4598
  issue: 17
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0620
  article-title: Visible light-driven enhanced CO2 reduction by water over cu modified S-doped gC3N4
  publication-title: Cat Sci Technol
  doi: 10.1039/C9CY01185D
– volume: 43
  start-page: 19984
  issue: 43
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0135
  article-title: Rapid and energy-efficient preparation of boron doped g-C3N4 with excellent performance in photocatalytic H2-evolution
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.09.078
– volume: 1
  start-page: 1051
  issue: 7
  year: 2010
  ident: 10.1016/j.cis.2022.102830_bb0460
  article-title: Photocatalytic hydrogen production with tunable nanorod heterostructures
  publication-title: The Journal of Physical Chemistry Letters
  doi: 10.1021/jz100075c
– volume: 261
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0360
  article-title: Inter-plane heterojunctions within 2D/2D FeSe2/g-C3N4 nanosheet semiconductors for photocatalytic hydrogen generation
  publication-title: Appl Catal Environ
  doi: 10.1016/j.apcatb.2019.118249
– volume: 301
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0670
  article-title: In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O
  publication-title: Appl Catal Environ
  doi: 10.1016/j.apcatb.2021.120802
– volume: 133
  start-page: 595
  issue: 3
  year: 2011
  ident: 10.1016/j.cis.2022.102830_bb0510
  article-title: Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water
  publication-title: J Am Chem Soc
  doi: 10.1021/ja1086358
– volume: 39
  start-page: 3498
  issue: 12
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0155
  article-title: Photocatalytic activity of undoped and sulfur-doped TiO2 films grown by MOCVD for water treatment under visible light
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2019.02.046
– volume: 46
  start-page: 34333
  issue: 69
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0505
  article-title: Enhancing the photocatalytic hydrogen production of the ZnO–TiO2 heterojunction by supporting nanoscale Au islands
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.08.019
– volume: 21
  start-page: 2318
  issue: 5
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0285
  article-title: The role of nitrogen defects in graphitic carbon nitride for visible-light-driven hydrogen evolution
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C8CP06922K
– volume: 29
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0045
  article-title: A review of step-scheme photocatalysts
  publication-title: Appl Mater Today
– volume: 556
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0665
  article-title: In situ self-assembled S-scheme BiOBr/pCN hybrid with enhanced photocatalytic activity for organic pollutant degradation and CO2 reduction
  publication-title: Appl Surf Sci
– ident: 10.1016/j.cis.2022.102830_bb0410
  doi: 10.1016/j.ijhydene.2021.11.252
– volume: 44
  start-page: 10585
  issue: 21
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0495
  article-title: One-pot solvothermal synthesis of 1D plasmonic TiO2@Ag nanorods with enhanced visible-light photocatalytic performance
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.02.234
– volume: 136
  start-page: 8839
  issue: 25
  year: 2014
  ident: 10.1016/j.cis.2022.102830_bb0330
  article-title: Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets
  publication-title: J Am Chem Soc
  doi: 10.1021/ja5044787
– volume: 48
  start-page: 7717
  issue: 62
  year: 2012
  ident: 10.1016/j.cis.2022.102830_bb0525
  article-title: Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays
  publication-title: Chem Commun
  doi: 10.1039/C2CC31773G
– volume: 510
  start-page: 95
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0740
  article-title: Synthesis and characterization of Ag doped ZnS quantum dots for enhanced photocatalysis of Strychnine as a poison: charge transfer behavior study by electrochemical impedance and time-resolved photoluminescence spectroscopy
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2017.09.043
– volume: 314
  start-page: 73
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0515
  article-title: Synthesis and application of N-doped TiO2/CdS/poly (1, 8-diaminocarbazole) composite for photocatalytic degradation of 4-chlorophenol under visible light
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2019.05.060
– volume: 46
  start-page: 3530
  issue: 5
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0585
  article-title: Synthesis and photocatalytic performance of MoS2/polycrystalline black phosphorus heterojunction composite
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.10.176
– volume: 222
  start-page: 35
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0110
  article-title: Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst
  publication-title: Appl Catal Environ
  doi: 10.1016/j.apcatb.2017.09.073
– volume: 289
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0210
  article-title: Photocatalytic hydrogen evolution from biomass (glucose solution) on au/CdS nanorods with Au3+ self-reduction
  publication-title: J Solid State Chem
  doi: 10.1016/j.jssc.2020.121495
– volume: 46
  start-page: 26074
  issue: 51
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0560
  article-title: Highly efficient photocatalytic hydrogen evolution by using Rh as co-catalyst in the cu/TiO2 system
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.01.216
– volume: 219
  start-page: 412
  year: 2017
  ident: 10.1016/j.cis.2022.102830_bb0080
  article-title: Photocatalytic CO2 reduction over V and W codoped TiO2 catalyst in an internal-illuminated honeycomb photoreactor under simulated sunlight irradiation
  publication-title: Appl Catal Environ
  doi: 10.1016/j.apcatb.2017.07.078
– volume: 43
  start-page: 4347
  issue: 9
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0120
  article-title: Giant enhancement of photocatalytic H2 production over KNbO3 photocatalyst obtained via carbon doping and MoS2 decoration
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.01.055
– year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0700
– volume: 45
  start-page: 2729
  issue: 4
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0175
  article-title: Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.11.127
– volume: 601
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0245
  article-title: Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C3N4 nanosheets by one-step in-situ decomposition-thermal polymerization method
  publication-title: Appl Catal Gen
  doi: 10.1016/j.apcata.2020.117647
– volume: 4
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.cis.2022.102830_bb0320
  article-title: Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4
  publication-title: Nat Commun
– volume: 44
  start-page: 8011
  issue: 16
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0520
  article-title: Hydrogenated F-doped TiO2 for photocatalytic hydrogen evolution and pollutant degradation
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.01.233
– volume: 11
  start-page: 41440
  issue: 44
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0050
  article-title: Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b14985
– volume: 118
  start-page: 140
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0690
  article-title: High-impressive separation of photoinduced charge carriers on step-scheme ZnO/ZnSnO3/carbon dots heterojunction with efficient activity in photocatalytic NH3 production
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2021.01.012
– volume: 12
  start-page: 19203
  issue: 37
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0105
  article-title: CoP QD anchored carbon skeleton modified CdS nanorods as a co-catalyst for photocatalytic hydrogen production
  publication-title: Nanoscale
  doi: 10.1039/D0NR05268J
– volume: 229
  start-page: 41
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0290
  article-title: Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production
  publication-title: Appl Catal Environ
  doi: 10.1016/j.apcatb.2018.02.006
– volume: 56
  start-page: 143
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0405
  article-title: Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity
  publication-title: Journal of Materials Science & Technology
  doi: 10.1016/j.jmst.2020.02.062
– volume: 46
  start-page: 37782
  issue: 76
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0250
  article-title: Nitrogen vacancy enhanced photocatalytic selective oxidation of benzyl alcohol in g-C3N4
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.09.052
– volume: 57
  start-page: 16882
  issue: 51
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0305
  article-title: Simultaneous manipulation of O-doping and metal vacancy in atomically thin Zn10In16S34 nanosheet arrays toward improved photoelectrochemical performance
  publication-title: AngewandteChemie International Edition
  doi: 10.1002/anie.201811632
– volume: 44
  start-page: 110
  issue: 1
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0215
  article-title: (In, Cu) Co-doped ZnS nanoparticles for photoelectrochemical hydrogen production
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.02.112
– volume: 259
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0425
  article-title: Atomic carbon chains-mediated carriers transfer over polymeric carbon nitride for efficient photocatalysis
  publication-title: Appl Catal Environ
  doi: 10.1016/j.apcatb.2019.118027
– volume: 834
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0035
  article-title: One-step method to achieve multiple decorations on lamellar MoS2 to synergistically enhance the electrocatalytic HER performance
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2020.155217
– volume: 46
  start-page: 30393
  issue: 59
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0435
  article-title: Hollow In2O3 nanotubes decorated with Cd0.67Mo0.33Se QDs for enhanced photocatalytic hydrogen production performance
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.06.179
– volume: 3
  start-page: 138
  issue: 1
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0615
  article-title: CeO2 nanostructures enriched with oxygen vacancies for photocatalytic CO2 reduction
  publication-title: ACS Applied Nano Materials
  doi: 10.1021/acsanm.9b01833
– volume: 221
  start-page: 422
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0725
  article-title: Oxygen vacancies induced visible-light photocatalytic activities of CaCu3Ti4O12 with controllable morphologies for antibiotic degradation
  publication-title: Appl Catal Environ
  doi: 10.1016/j.apcatb.2017.09.026
– volume: 1
  start-page: 541
  issue: 3
  year: 2013
  ident: 10.1016/j.cis.2022.102830_bb0030
  article-title: Hierarchical TiO2 photonic crystal spheres prepared by spray drying for highly efficient photocatalysis
  publication-title: J Mater Chem A
  doi: 10.1039/C2TA00060A
– volume: 45
  start-page: 4534
  issue: 7
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0140
  article-title: Three-in-one: opened charge-transfer channel, positively shifted oxidation potential, and enhanced visible light response of g-C3N4 photocatalyst through K and S co-doping
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.12.074
– volume: 47
  start-page: 13044
  issue: 26
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0605
  article-title: A novel all-solid-state S-scheme in CdS/ZnTHPP binary nanosystem for hydrogen evolution
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.02.067
– volume: 105
  start-page: 104748
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0100
  article-title: The investigation of hydrogen evolution using Ca doped ZnO catalysts under visible light illumination
  publication-title: Mater. Sci. Semiconductor Process.
  doi: 10.1016/j.mssp.2019.104748
– volume: 46
  start-page: 24094
  issue: 47
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0355
  article-title: Novel 0D/1D ZnBi2O4/ZnO S-scheme photocatalyst for hydrogen production and BPA removal
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.04.208
– volume: 604
  start-page: 844
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0655
  article-title: Plasmonic Bi-enhanced ammoniated α-MnS/Bi2MoO6 S-scheme heterostructure for visible-light-driven CO2 reduction
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.07.064
– volume: 43
  start-page: 1116
  issue: 2
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0185
  article-title: Photocatalytic hydrogen production by water splitting over au/Al-SrTiO3
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.10.154
– volume: 873
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0260
  article-title: Controllable oxygen doping and sulfur vacancies in one dimensional CdS nanorods for boosted hydrogen evolution reaction
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2021.159797
– volume: 123
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0490
  article-title: Effect of Al doping on the photocatalytic activity of ZnO nanoparticles decorated on CNTs and graphene: Solvothermal synthesis and study of experimental parameters
  publication-title: Mater Sci Semicond Process
  doi: 10.1016/j.mssp.2020.105584
– volume: 42
  start-page: 1519
  issue: 9
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0660
  article-title: Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity
  publication-title: Chinese Journal of Catalysis
  doi: 10.1016/S1872-2067(20)63765-2
– volume: 32
  start-page: 3501
  issue: 11
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0710
  article-title: The metallic 1T-WS2 as cocatalysts for promoting photocatalytic N2 fixation performance of Bi5O7Br nanosheets
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2021.03.077
– volume: 47
  start-page: 3824
  issue: 6
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0590
  article-title: Chlorophyll derivatives/MXene hybrids for photocatalytic hydrogen evolution: dependence of performance on the central coordinating metals
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.11.026
– volume: 384
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0755
  article-title: Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.123275
– volume: 416
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0025
  article-title: Dual MOFs template-directed fabrication of hollow-structured heterojunction photocatalysts for efficient CO2 reduction
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.129155
– volume: 47
  start-page: 2327
  issue: 4
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0085
  article-title: Promoting the photocatalytic H2 evolution activity of CdLa2S4 nanocrystalline using few-layered WS2 nanosheet as a co-catalyst
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.10.227
– volume: 43
  start-page: 8198
  issue: 17
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0500
  article-title: Plasmonic ag nanoparticles decorated NaNbO3 nanorods for efficient photoelectrochemical water splitting
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.03.075
– volume: 47
  start-page: 2967
  issue: 5
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0745
  article-title: MoS2 grown in situ on CdS nanosheets for boosted photocatalytic hydrogen evolution under visible light
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.10.256
– volume: 42
  start-page: 710
  issue: 5
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0005
  article-title: Advances in designing heterojunction photocatalytic materials
  publication-title: Chinese Journal of Catalysis
  doi: 10.1016/S1872-2067(20)63698-1
– volume: 47
  start-page: 1656
  issue: 3
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0440
  article-title: A nano heterostructure with step-accelerated system toward optimized photocatalytic hydrogen evolution
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.10.143
– volume: 8
  start-page: 76
  issue: 1
  year: 2009
  ident: 10.1016/j.cis.2022.102830_bb0060
  article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light
  publication-title: Nat Mater
  doi: 10.1038/nmat2317
– volume: 31
  start-page: 2009807
  issue: 28
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0255
  article-title: Vacancy engineering in semiconductor photocatalysts: implications in hydrogen evolution and nitrogen fixation applications
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202009807
– volume: 13
  start-page: 1250
  issue: 5
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0055
  article-title: Recent advances in graphitic carbon nitride supported single-atom catalysts for energy conversion
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202001517
– volume: 113
  start-page: 1560
  issue: 4
  year: 2009
  ident: 10.1016/j.cis.2022.102830_bb0335
  article-title: A systematical study on photocatalytic properties of AgMO2 (M= Al, Ga, In): effects of chemical compositions, crystal structures, and electronic structures
  publication-title: J Phys Chem C
  doi: 10.1021/jp806513t
– volume: 247
  start-page: 70
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0430
  article-title: Soluble g-C3N4 nanosheets: facile synthesis and application in photocatalytic hydrogen evolution
  publication-title: Appl Catal Environ
  doi: 10.1016/j.apcatb.2019.01.088
– volume: 134
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0160
  article-title: Synergistic effect of polychromatic radiation on visible light activity of N-doped TiO2 photocatalyst
  publication-title: Catalysis Communications
  doi: 10.1016/j.catcom.2019.105841
– volume: 27
  start-page: 15103
  issue: 13
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0170
  article-title: Synthesis and photocatalytic activity study of S-doped WO3 under visible light irradiation
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-07827-z
– volume: 11
  start-page: 1500
  issue: 12
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0685
  article-title: Dual use of copper-modified TiO2 nanotube arrays as material for photocatalytic NH3 degradation and relative humidity sensing
  publication-title: Coatings
  doi: 10.3390/coatings11121500
– volume: 44
  start-page: 30084
  issue: 57
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0130
  article-title: Non-noble-metal Ni nanoparticles modified N-doped g-C3N4 for efficient photocatalytic hydrogen evolution
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.09.129
– volume: 602
  start-page: 553
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0680
  article-title: Bi4O5Br2 anchored on Ti3C2 MXene with ohmic heterojunction in photocatalytic NH3 production: Insights from combined experimental and theoretical calculations
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.06.049
– volume: 46
  start-page: 234
  issue: 1
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0220
  article-title: In situ W/O co-doped hollow carbon nitride tubular structures with enhanced visible-light-driven photocatalytic performance for hydrogen evolution
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.09.261
– volume: 616
  start-page: 152
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0235
  article-title: Carbon and phosphorus co-doped carbon nitride hollow tube for improved photocatalytic hydrogen evolution
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2022.02.057
– volume: 23
  start-page: 2812
  issue: 4
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0365
  article-title: A novel design of SiH/CeO2 (111) van der Waals type-II heterojunction for water splitting
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D0CP05238H
– volume: 131
  start-page: 5113
  issue: 15
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0465
  article-title: ZnSe nanorods as visible-light absorbers for photocatalytic and photoelectrochemical H2 evolution in water
  publication-title: AngewandteChemie
– volume: 44
  start-page: 19162
  issue: 35
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0385
  article-title: Fabrication of Ta3N5ZnO direct Z-scheme photocatalyst for hydrogen generation
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.07.117
– volume: 404
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0760
  article-title: One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.126498
– volume: 11
  start-page: 2217
  issue: 8
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0015
  article-title: Facile preparation of 1T/2H-Mo (S1-xSex)2 nanoparticles for boosting hydrogen evolution reaction
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201900095
– volume: 7
  start-page: 8167
  issue: 14
  year: 2017
  ident: 10.1016/j.cis.2022.102830_bb0380
  article-title: Synthesis and characterization of a core–shell BiVO4@ gC3N4 photo-catalyst with enhanced photocatalytic activity under visible light irradiation
  publication-title: RSC Adv
  doi: 10.1039/C6RA27766G
– volume: 2
  start-page: 3344
  issue: 10
  year: 2014
  ident: 10.1016/j.cis.2022.102830_bb0475
  article-title: Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta14108j
– volume: 371
  start-page: 179
  issue: 1–2
  year: 2009
  ident: 10.1016/j.cis.2022.102830_bb0125
  article-title: Effect of oxygen and nitrogen concentration of nitrogen doped TiOx film as photocatalyst prepared by reactive sputtering
  publication-title: Appl Catal Gen
  doi: 10.1016/j.apcata.2009.10.011
– volume: 44
  start-page: 21781
  issue: 39
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0540
  article-title: Green synthesized carbon quantum dots as TiO2 sensitizers for photocatalytic hydrogen evolution
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.06.168
– volume: 47
  start-page: 15505
  issue: 34
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0115
  article-title: Microwave-assisted one-pot hydrothermal synthesis of V and La co-doped ZnO/CNTs nanocomposite for boosted photocatalytic hydrogen production
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.09.214
– volume: 7
  start-page: 5324
  issue: 10
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0415
  article-title: Template-free synthesis of nanocage-like gC3N4 with high surface area and nitrogen defects for enhanced photocatalytic H2 activity
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA12076E
– volume: 600
  start-page: 138
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0265
  article-title: Core-shell structure of sulphur vacancies-CdS@ CuS: enhanced photocatalytic hydrogen generation activity based on photoinduced interfacial charge transfer
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.05.013
– volume: 47
  start-page: 11190
  issue: 21
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0545
  article-title: ZIF-L-derived porous C-doped ZnO/CdS graded nanorods with Z-scheme heterojunctions for enhanced photocatalytic hydrogen evolution
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.01.154
– volume: 46
  start-page: 3996
  issue: 5
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0145
  article-title: One step synthesis of self-doped F–Ta2O5 nanoshuttles photocatalyst and enhanced photocatalytic hydrogen evolution
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.10.250
– volume: 12
  start-page: 31477
  issue: 28
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0625
  article-title: Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c08152
– volume: 10
  start-page: 3925
  issue: 10
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0485
  article-title: Visible light responsive photocatalytic hydrogen evolution using MoS2 incorporated ZnO
  publication-title: Applied Nanoscience
  doi: 10.1007/s13204-020-01476-x
– volume: 6
  start-page: 25695
  issue: 31
  year: 2016
  ident: 10.1016/j.cis.2022.102830_bb0695
  article-title: Construction of a 2D/2D gC3N4/rGO hybrid heterojunction catalyst with outstanding charge separation ability and nitrogen photofixation performance via a surface protonation process
  publication-title: RSC Adv
  doi: 10.1039/C5RA28123G
– volume: 47
  start-page: 12592
  issue: 25
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0090
  article-title: Constructing atomic Co1–N4 sites in 2D polymeric carbon nitride for boosting photocatalytic hydrogen harvesting under visible light
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.02.012
– volume: 212
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0675
  article-title: In2S3 nanoflakes grounded in Bi2WO6 nanoplates: a novel hierarchical heterojunction catalyst anchored on W mesh for efficient elimination of toluene
  publication-title: Environ Res
  doi: 10.1016/j.envres.2022.113148
– volume: 290
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0715
  article-title: S-scheme 1 T phase MoSe2/AgBr heterojunction toward antibiotic degradation: photocatalytic mechanism, degradation pathways, and intermediates toxicity evaluation
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2022.120881
– volume: 168
  start-page: 1150
  year: 2017
  ident: 10.1016/j.cis.2022.102830_bb0735
  article-title: New insight into self-modified surfaces with defect-rich rutile TiO2 as a visible-light-driven photocatalyst
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.09.095
– volume: 12
  start-page: 3523
  issue: 4
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0470
  article-title: Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO2 reduction
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00498
– volume: 132
  start-page: 360
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0240
  article-title: Chitosan modified N, S-doped TiO2 and N, S-doped ZnO for visible light photocatalytic degradation of tetracycline
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.03.217
– volume: 47
  start-page: 14280
  issue: 31
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0575
  article-title: Molecular engineering control defects within carbon nitride for optimized co-catalyst Pt induced photocatalytic CO2 reduction and NO2 oxidation reaction
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.01.219
– volume: 807
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0165
  article-title: Facile fabrication of N-doped ZnS nanomaterials for efficient photocatalytic performance of organic pollutant removal and H2 production
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2019.151670
– volume: 7
  start-page: 3469
  issue: 11
  year: 2007
  ident: 10.1016/j.cis.2022.102830_bb0445
  article-title: Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit
  publication-title: Nano Lett
  doi: 10.1021/nl072046x
– volume: 272
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0650
  article-title: 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity
  publication-title: Appl Catal Environ
  doi: 10.1016/j.apcatb.2020.119006
– volume: 54
  start-page: 10836
  issue: 15
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0390
  article-title: 2D BiVO4/g-C3N4 Z-scheme photocatalyst for enhanced overall water splitting
  publication-title: J Mater Sci
  doi: 10.1007/s10853-019-03664-9
– volume: 284
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0535
  article-title: Effective promotion of spacial charge separation of dual S-scheme (1D/2D/0D) WO3@ ZnIn2S4/Bi2S3 heterojunctions for enhanced photocatalytic performance under visible light
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2021.120207
– volume: 9
  start-page: 2741
  issue: 13
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0195
  article-title: Photocatalytic hydrogen production from glycerol aqueous solution using cu-doped ZnO under visible light irradiation
  publication-title: Applied Sciences
  doi: 10.3390/app9132741
– volume: 11
  start-page: 6391
  issue: 12
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0555
  article-title: Exceptional co-catalyst free photocatalytic activities of B and Fe co-doped SrTiO3 for CO2 conversion and H2 evolution
  publication-title: Nano Research
  doi: 10.1007/s12274-018-2164-z
– volume: 58
  start-page: 2073
  issue: 7
  year: 2019
  ident: 10.1016/j.cis.2022.102830_bb0720
  article-title: Z-Scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities
  publication-title: AngewandteChemie International Edition
  doi: 10.1002/anie.201813417
– volume: 121
  start-page: 9433
  issue: 17
  year: 2017
  ident: 10.1016/j.cis.2022.102830_bb0345
  article-title: Anomalous photocatalytic activity of nanocrystalline γ-phase Ga2O3 enabled by long-lived defect trap states
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.7b02275
– volume: 122
  start-page: 21108
  issue: 37
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0065
  article-title: Valence band engineering via PtII single-atom confinement realizing photocatalytic water splitting
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.8b03383
– volume: 46
  start-page: 21549
  issue: 41
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0225
  article-title: S, N co-doped graphene quantum dots decorated TiO2 and supported with carbon for oxygen reduction reaction catalysis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.04.013
– volume: 43
  start-page: 748
  issue: 2
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0180
  article-title: Copper-doped flower-like molybdenum disulfide/bismuth sulfide photocatalysts for enhanced solar water splitting
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.10.169
– volume: 133
  start-page: 12017
  issue: 21
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0705
  article-title: Magnetic-field-stimulated efficient photocatalytic N2 fixation over defective BaTiO3 perovskites
  publication-title: AngewandteChemie
– volume: 43
  start-page: 2073
  issue: 4
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0750
  article-title: Rare earth metal Gd influenced defect sites in N doped TiO2: defect mediated improved charge transfer for enhanced photocatalytic hydrogen production
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.12.050
– volume: 12
  start-page: 90
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0300
  article-title: Genomic and phenotypic diversity of carbapenemase-producing enterobacteriaceae isolates from bacteremia in China: a multicenter epidemiological, microbiological, and genetic study
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.10.015
– volume: 12
  start-page: 1213
  issue: 3
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0040
  article-title: Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting
  publication-title: Nanoscale
  doi: 10.1039/C9NR09183A
– volume: 43
  start-page: 9224
  issue: 19
  year: 2018
  ident: 10.1016/j.cis.2022.102830_bb0190
  article-title: BaZrO3 hollow nanostructure with Fe (III) doping for photocatalytic hydrogen evolution under visible light
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.03.217
– volume: 46
  start-page: 5869
  issue: 12
  year: 2022
  ident: 10.1016/j.cis.2022.102830_bb0530
  article-title: Autonomous self-optimizing defects by refining energy levels through hydrogenation in CeO2–x polymorphism: a walking mobility of oxygen vacancy with enhanced adsorption capabilities and photocatalytic stability
  publication-title: New J Chem
  doi: 10.1039/D2NJ00057A
– volume: 28
  start-page: 2427
  issue: 12
  year: 2016
  ident: 10.1016/j.cis.2022.102830_bb0070
  article-title: Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution
  publication-title: Adv Mater
  doi: 10.1002/adma.201505281
– volume: 45
  start-page: 629
  issue: 1
  year: 2020
  ident: 10.1016/j.cis.2022.102830_bb0600
  article-title: Oxygen vacancies mediated in-situ growth of noble-metal (ag, au, Pt) nanoparticles on 3D TiO2 hierarchical spheres for efficient photocatalytic hydrogen evolution from water splitting
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.10.231
– volume: 33
  start-page: 2100317
  issue: 22
  year: 2021
  ident: 10.1016/j.cis.2022.102830_bb0400
  article-title: An inorganic/organic S-scheme heterojunction H2-production Photocatalyst and its charge transfer mechanism
  publication-title: Adv Mater
  doi: 10.1002/adma.202100317
– volume: 15
  start-page: 10978
  issue: 26
  year: 2013
  ident: 10.1016/j.cis.2022.102830_bb0340
  article-title: Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c3cp50927c
SSID ssj0002575
Score 2.7029042
SecondaryResourceType review_article
Snippet The photocatalytic technology illustrates an eco-friendly and sustainable route to overcome environmental and energy issues. The successful construction of a...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102830
SubjectTerms CO2 reduction
H2 evolution
N2 fixation
Photocatalysts
Pollutants degradation
Semiconductors
Strategies
Title Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications
URI https://dx.doi.org/10.1016/j.cis.2022.102830
https://www.ncbi.nlm.nih.gov/pubmed/36592501
https://www.proquest.com/docview/2760547565
Volume 311
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYQCMEF8WY8piBxQiq0adot3KYJNJjgwENwq7ImE0NTO9GCtAv_gv-LnbQ8DnDg0lZpmkaxFdux_RngQA2EDlGyelKExhNpS3ptgxc5DEwQDfiAW4_p5VXcuxMXD9HDDHTrXBgKq6z2fren2926ajmuVvN4MhpRjq9PWO8xpziDkFMSnxAt4vKjt68wD2RJV8UAzWbqXXs2bYxXOiLEbs6PrJj1f5NNv-meVgadLcNSpTyyjpvfCsyYbBXmXTnJ6SosdOvqbdhqQzvTYg3ebyj-Pc8I2DV_ZpPHvMztoc20KIsT1mFpVe2AuTQWRgjGY7LZUaox1A_ZK9rT-UvBirLGlWBlzlA9L0r7_tuQOBCbfOUiFAyfmLaxH4Z9d5avw93Z6W2351XFGLxUBLL00rYWaAxyqQOpIxkrjcbVkKMIDNpGKOXrMETVIPa1MsOhRkLEaBuhqR4HyA9RHG7AbJZnZguYVqESOFSK3YUyXBHolrAeUdWWsWyAX5MhSSukciqYMU7qkLQnbC8SolziKNeAw89PJg6m46_OoqZt8oPXEhQjf322X_NBgsQkx4rKDC5_wltoFIoW6sYN2HQM8jmLkPzWkR9s_--nO7BIBe7doc8uzJbPL2YP1aBy0LR83oS5znm_d0X3_vV9_wNeigiu
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5RqopeUEtburS0U6m9VAoktpNdI3FAtGgpP5eCxM31xl51K5SscGi1l74FT8ILMrYToAc4VOISRXbsJB57fjyfZwA-6pEwnCRrIgW3iSj7MhlYushxZrN8xEYseEwPDovhsfh2kp_MwWV3FsbDKlveH3l64NZtyXo7muvTycSf8U19rPeCeZwBZ7JFVu7Z2R-y29zm7hci8ifGdr4ebQ-TNrVAUopMNkk5MIJMGyZNJk0uC23IVBgzYujZwAqtU8M5CboiNdqOx0b0SctPCzI8i4z-Li849fsIHgtiFz5twtrfG1wJrYGYNoHsdP95nSs1gMrKiQ8RzthakOvpXcLwLmU3CL2dZ7DYaqu4FQfkOczZagmexPyVsyVY2O7SxVFpwJKW7gVcfPeA-7rykWTrM5z-rJs67BLNXOM2cAvLNr0CxnMz6EMmn_pNAhKjSAop_iYDvj536JoukAU2NZI94JpQf6tL6ginN4cfHNIdmgA2sXjbO_8Sjh-ERK9gvqor-xrQaK4FdVXS40Jbpn2ULxFcsHogC9mDtCODKtvQ6D5Dx6nqMHC_qNwpTzkVKdeDz9dNpjEuyH0Pi4626p_JrUhu3dfsQzcPFBHTe3J0ZWn4FeuTFSr6pIz3YDlOkOuv4N5RnqfZyv-99D0sDI8O9tX-7uHeG3hKNTzuOL2F-ebs3K6SDtaM3oU5j_DjoRfZFaVFQTM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiconductor+photocatalysts%3A+A+critical+review+highlighting+the+various+strategies+to+boost+the+photocatalytic+performances+for+diverse+applications&rft.jtitle=Advances+in+colloid+and+interface+science&rft.au=Ahmad%2C+Irshad&rft.au=Zou%2C+Yanhong&rft.au=Yan%2C+Jiaying&rft.au=Liu%2C+Yuyu&rft.date=2023-01-01&rft.eissn=1873-3727&rft.volume=311&rft.spage=102830&rft_id=info:doi/10.1016%2Fj.cis.2022.102830&rft_id=info%3Apmid%2F36592501&rft.externalDocID=36592501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8686&client=summon