Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications
The photocatalytic technology illustrates an eco-friendly and sustainable route to overcome environmental and energy issues. The successful construction of a photocatalyst depends on four key elements: light absorption ability, the density of active sites, redox capacity, and photoinduced electron-h...
Saved in:
Published in | Advances in colloid and interface science Vol. 311; p. 102830 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The photocatalytic technology illustrates an eco-friendly and sustainable route to overcome environmental and energy issues. The successful construction of a photocatalyst depends on four key elements: light absorption ability, the density of active sites, redox capacity, and photoinduced electron-hole recombination rate. Sincemost of intrinsic semiconductor photocatalysts cannot meet all these requirements, they are often modified to boost their photocatalytic properties. Many strategies have been adopted to design novel and efficient photocatalysts for diverse applications. Herein, we review the most efficient of these strategies and methods focused on effectively overcoming the efficiency limitations of photocatalysts to promote their large-scale application. Subsequently, a particular aim is put on the most current studies for photocatalytic applications, including CO2 reduction, N2 fixation, H2 evolution, and pollutants degradation. Finally, key challenges and future perspectives in designing and implementing semiconductor photocatalysts for large-scale applications are discussed. Therefore, it is foreseen that this review will work as a guide for future research and provides a variety of strategies to develop novel and high-performance photocatalysts for various applications.
[Display omitted]
•Recent advances in strategies to design semiconductor catalysts are discussed.•The mechanism of various strategies for photocatalytic performance are highlighted.•The effect of diverse strategies on the photocatalytic performance is summarized.•Combination of different strategies leads to further increased performance.•Challenges pertaining the use of semiconductor catalysts are reviewed. |
---|---|
AbstractList | The photocatalytic technology illustrates an eco-friendly and sustainable route to overcome environmental and energy issues. The successful construction of a photocatalyst depends on four key elements: light absorption ability, the density of active sites, redox capacity, and photoinduced electron-hole recombination rate. Sincemost of intrinsic semiconductor photocatalysts cannot meet all these requirements, they are often modified to boost their photocatalytic properties. Many strategies have been adopted to design novel and efficient photocatalysts for diverse applications. Herein, we review the most efficient of these strategies and methods focused on effectively overcoming the efficiency limitations of photocatalysts to promote their large-scale application. Subsequently, a particular aim is put on the most current studies for photocatalytic applications, including CO
reduction, N
fixation, H
evolution, and pollutants degradation. Finally, key challenges and future perspectives in designing and implementing semiconductor photocatalysts for large-scale applications are discussed. Therefore, it is foreseen that this review will work as a guide for future research and provides a variety of strategies to develop novel and high-performance photocatalysts for various applications. The photocatalytic technology illustrates an eco-friendly and sustainable route to overcome environmental and energy issues. The successful construction of a photocatalyst depends on four key elements: light absorption ability, the density of active sites, redox capacity, and photoinduced electron-hole recombination rate. Sincemost of intrinsic semiconductor photocatalysts cannot meet all these requirements, they are often modified to boost their photocatalytic properties. Many strategies have been adopted to design novel and efficient photocatalysts for diverse applications. Herein, we review the most efficient of these strategies and methods focused on effectively overcoming the efficiency limitations of photocatalysts to promote their large-scale application. Subsequently, a particular aim is put on the most current studies for photocatalytic applications, including CO2 reduction, N2 fixation, H2 evolution, and pollutants degradation. Finally, key challenges and future perspectives in designing and implementing semiconductor photocatalysts for large-scale applications are discussed. Therefore, it is foreseen that this review will work as a guide for future research and provides a variety of strategies to develop novel and high-performance photocatalysts for various applications.The photocatalytic technology illustrates an eco-friendly and sustainable route to overcome environmental and energy issues. The successful construction of a photocatalyst depends on four key elements: light absorption ability, the density of active sites, redox capacity, and photoinduced electron-hole recombination rate. Sincemost of intrinsic semiconductor photocatalysts cannot meet all these requirements, they are often modified to boost their photocatalytic properties. Many strategies have been adopted to design novel and efficient photocatalysts for diverse applications. Herein, we review the most efficient of these strategies and methods focused on effectively overcoming the efficiency limitations of photocatalysts to promote their large-scale application. Subsequently, a particular aim is put on the most current studies for photocatalytic applications, including CO2 reduction, N2 fixation, H2 evolution, and pollutants degradation. Finally, key challenges and future perspectives in designing and implementing semiconductor photocatalysts for large-scale applications are discussed. Therefore, it is foreseen that this review will work as a guide for future research and provides a variety of strategies to develop novel and high-performance photocatalysts for various applications. The photocatalytic technology illustrates an eco-friendly and sustainable route to overcome environmental and energy issues. The successful construction of a photocatalyst depends on four key elements: light absorption ability, the density of active sites, redox capacity, and photoinduced electron-hole recombination rate. Sincemost of intrinsic semiconductor photocatalysts cannot meet all these requirements, they are often modified to boost their photocatalytic properties. Many strategies have been adopted to design novel and efficient photocatalysts for diverse applications. Herein, we review the most efficient of these strategies and methods focused on effectively overcoming the efficiency limitations of photocatalysts to promote their large-scale application. Subsequently, a particular aim is put on the most current studies for photocatalytic applications, including CO2 reduction, N2 fixation, H2 evolution, and pollutants degradation. Finally, key challenges and future perspectives in designing and implementing semiconductor photocatalysts for large-scale applications are discussed. Therefore, it is foreseen that this review will work as a guide for future research and provides a variety of strategies to develop novel and high-performance photocatalysts for various applications. [Display omitted] •Recent advances in strategies to design semiconductor catalysts are discussed.•The mechanism of various strategies for photocatalytic performance are highlighted.•The effect of diverse strategies on the photocatalytic performance is summarized.•Combination of different strategies leads to further increased performance.•Challenges pertaining the use of semiconductor catalysts are reviewed. |
ArticleNumber | 102830 |
Author | Liu, Yuyu Zou, Yanhong Ahmad, Irshad Shukrullah, Shazia Naz, Muhammad Yasin Yan, Jiaying Khan, Waheed Qamar Khalid, N.R. Hussain, Humaira |
Author_xml | – sequence: 1 givenname: Irshad surname: Ahmad fullname: Ahmad, Irshad email: irshadmahar55@yahoo.com organization: Department of Physics, University of Agriculture, Faisalabad 38040, Pakistan – sequence: 2 givenname: Yanhong surname: Zou fullname: Zou, Yanhong organization: Institute for Sustainable Energy, College of Sciences, Shanghai University, Shangda Road 99, Baoshan, Shanghai 20044, China – sequence: 3 givenname: Jiaying surname: Yan fullname: Yan, Jiaying organization: Institute for Sustainable Energy, College of Sciences, Shanghai University, Shangda Road 99, Baoshan, Shanghai 20044, China – sequence: 4 givenname: Yuyu surname: Liu fullname: Liu, Yuyu email: liuyuyu2014@126.com organization: Institute for Sustainable Energy, College of Sciences, Shanghai University, Shangda Road 99, Baoshan, Shanghai 20044, China – sequence: 5 givenname: Shazia surname: Shukrullah fullname: Shukrullah, Shazia organization: Department of Physics, University of Agriculture, Faisalabad 38040, Pakistan – sequence: 6 givenname: Muhammad Yasin surname: Naz fullname: Naz, Muhammad Yasin organization: Department of Physics, University of Agriculture, Faisalabad 38040, Pakistan – sequence: 7 givenname: Humaira surname: Hussain fullname: Hussain, Humaira organization: Department of Chemistry, University of Okara, Okara 56300, Pakistan – sequence: 8 givenname: Waheed Qamar surname: Khan fullname: Khan, Waheed Qamar organization: Institute of Advanced Materials, Bahauddin Zakariya University, Multan 6800, Pakistan – sequence: 9 givenname: N.R. surname: Khalid fullname: Khalid, N.R. organization: Department of Physics, University of Okara, Okara 56300, Pakistan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36592501$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u3CAUhVGVqpmkfYBsIpbdeMqPwXa6iqLmR4rURds1YuB65o5s4wAzVR6k71uSSauqiywQXPjOveKcE3I0hQkIOeNsyRnXn7ZLh2kpmBClFq1kb8iCt42sZCOaI7JgjPGq1a0-JicpbUspVKPekWOpVScU4wvy6xuM6MLkdy6HSOdNyMHZbIfHlNMFvaQuYkZnBxphj_CTbnC9GcrKOK1p3gDd24hhl2jK0WZYIySaA12FkPLz-z8tSyM6Q-xDHO3kClhO1OMeYgJq53kogzKGKb0nb3s7JPjwsp-SH9dfvl_dVvdfb-6uLu8rV_MuV671dVsz0XneedVp6xmve8El4y3U1jIvpeZSM2-h733daK2ZhlW5tKtaaXlKPh76zjE87CBlM2JyMAx2gvInIxrNVN0orQp6_oLuViN4M0ccbXw0f6wsAD8ALoaUIvR_Ec7MU1xma0pc5ikuc4iraJr_NA7zswXFTBxeVX4-KKHYU4KJJjmEYqrHCC4bH_AV9W9ODLJx |
CitedBy_id | crossref_primary_10_1016_j_diamond_2024_111398 crossref_primary_10_1039_D3RA01505J crossref_primary_10_1016_j_envpol_2024_124375 crossref_primary_10_1016_j_biteb_2024_101865 crossref_primary_10_1016_j_jece_2024_114598 crossref_primary_10_1016_j_jcat_2023_115235 crossref_primary_10_1016_j_seppur_2024_130626 crossref_primary_10_1016_j_jwpe_2024_105369 crossref_primary_10_1016_j_ceramint_2024_06_143 crossref_primary_10_1016_j_materresbull_2024_113230 crossref_primary_10_1007_s11356_023_31236_7 crossref_primary_10_1177_09673911241288320 crossref_primary_10_1016_j_hybadv_2024_100318 crossref_primary_10_1002_ange_202408504 crossref_primary_10_1016_j_colsurfa_2024_134741 crossref_primary_10_1063_5_0223718 crossref_primary_10_1142_S1793292023500546 crossref_primary_10_1016_j_inoche_2024_113820 crossref_primary_10_1111_1541_4337_70127 crossref_primary_10_1080_00986445_2024_2414177 crossref_primary_10_1016_j_crbiot_2024_100252 crossref_primary_10_3390_molecules29225418 crossref_primary_10_1016_j_jenvman_2024_123703 crossref_primary_10_3390_jcs8020042 crossref_primary_10_1016_j_molstruc_2023_137139 crossref_primary_10_1016_j_jwpe_2025_107131 crossref_primary_10_1007_s10562_024_04887_5 crossref_primary_10_1016_j_colsurfa_2025_136121 crossref_primary_10_1007_s10876_024_02642_9 crossref_primary_10_1016_j_ces_2024_120537 crossref_primary_10_1039_D4NR01200C crossref_primary_10_1016_j_jallcom_2023_172766 crossref_primary_10_1016_j_jece_2024_113409 crossref_primary_10_1016_j_materresbull_2024_113187 crossref_primary_10_3390_catal14050298 crossref_primary_10_1016_j_jcis_2024_12_180 crossref_primary_10_1016_j_jenvman_2024_121890 crossref_primary_10_1016_j_optmat_2024_115726 crossref_primary_10_3389_fchem_2023_1162183 crossref_primary_10_1016_j_ceramint_2025_03_073 crossref_primary_10_1177_02670836241284762 crossref_primary_10_1016_j_apsusc_2024_160516 crossref_primary_10_1016_j_inoche_2024_113284 crossref_primary_10_1016_j_rinp_2025_108114 crossref_primary_10_1002_ejic_202400197 crossref_primary_10_1016_j_jece_2023_111342 crossref_primary_10_14356_kona_2025013 crossref_primary_10_1088_2516_1075_ad88c3 crossref_primary_10_1016_j_ijbiomac_2025_139812 crossref_primary_10_1002_smll_202407206 crossref_primary_10_1007_s11270_024_07111_7 crossref_primary_10_1016_j_cscee_2023_100599 crossref_primary_10_1016_j_ijbiomac_2025_142421 crossref_primary_10_1016_j_jallcom_2025_178876 crossref_primary_10_1016_j_jallcom_2024_176732 crossref_primary_10_1016_j_jcrysgro_2025_128125 crossref_primary_10_1007_s11664_024_11407_z crossref_primary_10_1007_s42247_024_00788_w crossref_primary_10_1016_j_jallcom_2024_177098 crossref_primary_10_1016_j_jece_2025_116168 crossref_primary_10_1016_j_nxener_2024_100222 crossref_primary_10_1016_j_apcatb_2024_124293 crossref_primary_10_1007_s10562_024_04715_w crossref_primary_10_1016_j_surfin_2024_104643 crossref_primary_10_1016_j_apsusc_2024_159552 crossref_primary_10_1016_j_seppur_2025_131891 crossref_primary_10_4028_p_WEf1i1 crossref_primary_10_1016_j_nanoso_2024_101184 crossref_primary_10_3390_catal13081204 crossref_primary_10_1016_j_jallcom_2024_175906 crossref_primary_10_1016_j_ccr_2023_215498 crossref_primary_10_1016_j_envres_2024_120209 crossref_primary_10_3390_en16155743 crossref_primary_10_1002_smll_202409735 crossref_primary_10_1016_j_ceramint_2024_10_343 crossref_primary_10_1016_j_jhazmat_2023_132995 crossref_primary_10_1016_j_apsusc_2025_162452 crossref_primary_10_1016_j_molliq_2024_124360 crossref_primary_10_1016_j_nanoen_2023_108508 crossref_primary_10_1038_s41570_024_00616_z crossref_primary_10_3390_coatings14030366 crossref_primary_10_1016_j_mseb_2023_116934 crossref_primary_10_1016_j_jcis_2024_11_245 crossref_primary_10_1016_j_mtsust_2024_100961 crossref_primary_10_1039_D4TA00886C crossref_primary_10_1016_j_jwpe_2024_106896 crossref_primary_10_1016_j_checat_2024_100929 crossref_primary_10_1016_S1872_5813_24_60510_4 crossref_primary_10_1038_s41598_025_93478_4 crossref_primary_10_1007_s13399_024_05374_y crossref_primary_10_1039_D4NJ01105H crossref_primary_10_1016_j_cej_2024_157173 crossref_primary_10_1016_j_envres_2025_121209 crossref_primary_10_1016_j_materresbull_2024_113271 crossref_primary_10_1016_j_jallcom_2023_171102 crossref_primary_10_3390_su152215768 crossref_primary_10_1016_j_molstruc_2025_141452 crossref_primary_10_1016_j_jallcom_2024_178017 crossref_primary_10_1016_j_jece_2024_115086 crossref_primary_10_1039_D4TA06732K crossref_primary_10_1016_j_solmat_2024_113371 crossref_primary_10_1016_j_jcrysgro_2024_127894 crossref_primary_10_1016_j_cherd_2024_06_042 crossref_primary_10_1016_j_mcat_2024_113931 crossref_primary_10_1016_j_mtcomm_2025_111961 crossref_primary_10_1016_j_nexus_2025_100396 crossref_primary_10_1016_j_mseb_2025_118102 crossref_primary_10_1016_j_mcat_2024_113818 crossref_primary_10_1007_s11244_023_01809_4 crossref_primary_10_1016_j_jallcom_2025_179915 crossref_primary_10_1088_1402_4896_ad72ae crossref_primary_10_1016_j_foodchem_2024_142194 crossref_primary_10_1021_acs_jpcc_4c06428 crossref_primary_10_1002_anie_202408504 crossref_primary_10_1016_j_ceramint_2024_05_248 crossref_primary_10_1016_j_colsurfa_2024_135406 crossref_primary_10_1016_j_surfin_2024_105071 crossref_primary_10_1002_solr_202400116 crossref_primary_10_1063_5_0244608 crossref_primary_10_1016_j_mssp_2024_108733 crossref_primary_10_1051_bioconf_202412922037 crossref_primary_10_3390_catal14120934 crossref_primary_10_1016_j_rineng_2024_103412 crossref_primary_10_3390_nano13192628 crossref_primary_10_1007_s11783_024_1911_5 crossref_primary_10_1016_j_jece_2024_112312 crossref_primary_10_1016_j_jwpe_2024_104974 crossref_primary_10_1016_j_jwpe_2024_105787 crossref_primary_10_1021_acsomega_3c06320 crossref_primary_10_1007_s10562_024_04821_9 crossref_primary_10_1016_j_diamond_2024_110917 crossref_primary_10_1016_j_jallcom_2024_175727 crossref_primary_10_1021_acsomega_4c07470 crossref_primary_10_1016_j_inoche_2023_111465 crossref_primary_10_1016_j_seppur_2024_128444 crossref_primary_10_1088_2058_6272_ad0c9a crossref_primary_10_1021_acs_inorgchem_4c03269 crossref_primary_10_20517_energymater_2024_60 crossref_primary_10_1016_j_rsurfi_2025_100424 crossref_primary_10_1038_s41598_023_49290_z crossref_primary_10_3390_polym15153252 crossref_primary_10_1016_j_polymer_2024_127828 crossref_primary_10_1016_j_jece_2025_115552 crossref_primary_10_3390_molecules29184348 crossref_primary_10_1016_j_fuel_2024_133734 crossref_primary_10_1016_j_inoche_2025_114124 crossref_primary_10_1039_D4CS00029C crossref_primary_10_3390_inorganics13030097 crossref_primary_10_1016_j_scitotenv_2023_163702 crossref_primary_10_2147_IJN_S503465 crossref_primary_10_1007_s10854_024_12505_8 crossref_primary_10_1016_j_pes_2024_100018 crossref_primary_10_1007_s11164_025_05503_w crossref_primary_10_1016_j_ces_2023_119551 crossref_primary_10_1016_j_colsurfa_2024_135748 crossref_primary_10_1016_j_mtener_2024_101774 |
Cites_doi | 10.1039/c3cp52840e 10.1016/j.cattod.2018.10.059 10.1016/j.nanoen.2014.06.029 10.1016/j.ijhydene.2021.04.060 10.1002/asia.202000912 10.1039/C8RA09962F 10.1016/j.ijhydene.2021.12.254 10.1016/j.apcatb.2019.01.024 10.1002/advs.202105299 10.1016/j.ijhydene.2020.03.067 10.1016/S1872-2067(19)63382-6 10.1016/j.apcatb.2018.11.047 10.1016/j.ijhydene.2022.01.163 10.1016/j.inoche.2019.107451 10.1016/j.cej.2020.127377 10.1016/j.ijhydene.2018.12.166 10.1021/acsami.1c11740 10.1039/D1MA00539A 10.1016/j.apcata.2017.03.008 10.1021/ja512047k 10.1039/C8RA08008A 10.1016/j.ijhydene.2022.03.091 10.1016/j.apsusc.2018.09.061 10.1039/C1CC16082F 10.1016/j.jpowsour.2013.09.015 10.1016/j.apcatb.2021.120039 10.1007/s42247-020-00153-7 10.1016/j.envres.2021.111136 10.1002/smll.202103447 10.1016/j.electacta.2018.10.082 10.1039/C9CC06038C 10.1016/j.ijhydene.2019.08.066 10.1002/ente.202100034 10.1021/acsami.1c14371 10.1039/C9CY01185D 10.1016/j.ijhydene.2018.09.078 10.1021/jz100075c 10.1016/j.apcatb.2019.118249 10.1016/j.apcatb.2021.120802 10.1021/ja1086358 10.1016/j.jeurceramsoc.2019.02.046 10.1016/j.ijhydene.2021.08.019 10.1039/C8CP06922K 10.1016/j.ijhydene.2021.11.252 10.1016/j.ijhydene.2019.02.234 10.1021/ja5044787 10.1039/C2CC31773G 10.1016/j.jcis.2017.09.043 10.1016/j.electacta.2019.05.060 10.1016/j.ijhydene.2020.10.176 10.1016/j.apcatb.2017.09.073 10.1016/j.jssc.2020.121495 10.1016/j.ijhydene.2021.01.216 10.1016/j.apcatb.2017.07.078 10.1016/j.ijhydene.2018.01.055 10.1016/j.ijhydene.2019.11.127 10.1016/j.apcata.2020.117647 10.1016/j.ijhydene.2019.01.233 10.1021/acsami.9b14985 10.1016/j.jtice.2021.01.012 10.1039/D0NR05268J 10.1016/j.apcatb.2018.02.006 10.1016/j.jmst.2020.02.062 10.1016/j.ijhydene.2021.09.052 10.1002/anie.201811632 10.1016/j.ijhydene.2018.02.112 10.1016/j.apcatb.2019.118027 10.1016/j.jallcom.2020.155217 10.1016/j.ijhydene.2021.06.179 10.1021/acsanm.9b01833 10.1016/j.apcatb.2017.09.026 10.1039/C2TA00060A 10.1016/j.ijhydene.2019.12.074 10.1016/j.ijhydene.2022.02.067 10.1016/j.mssp.2019.104748 10.1016/j.ijhydene.2021.04.208 10.1016/j.jcis.2021.07.064 10.1016/j.ijhydene.2017.10.154 10.1016/j.jallcom.2021.159797 10.1016/j.mssp.2020.105584 10.1016/S1872-2067(20)63765-2 10.1016/j.cclet.2021.03.077 10.1016/j.ijhydene.2021.11.026 10.1016/j.cej.2019.123275 10.1016/j.cej.2021.129155 10.1016/j.ijhydene.2021.10.227 10.1016/j.ijhydene.2018.03.075 10.1016/j.ijhydene.2021.10.256 10.1016/S1872-2067(20)63698-1 10.1016/j.ijhydene.2021.10.143 10.1038/nmat2317 10.1002/adfm.202009807 10.1002/cctc.202001517 10.1021/jp806513t 10.1016/j.apcatb.2019.01.088 10.1016/j.catcom.2019.105841 10.1007/s11356-020-07827-z 10.3390/coatings11121500 10.1016/j.ijhydene.2019.09.129 10.1016/j.jcis.2021.06.049 10.1016/j.ijhydene.2020.09.261 10.1016/j.jcis.2022.02.057 10.1039/D0CP05238H 10.1016/j.ijhydene.2018.07.117 10.1016/j.cej.2020.126498 10.1002/cctc.201900095 10.1039/C6RA27766G 10.1039/c3ta14108j 10.1016/j.apcata.2009.10.011 10.1016/j.ijhydene.2019.06.168 10.1016/j.ijhydene.2021.09.214 10.1039/C8TA12076E 10.1016/j.jcis.2021.05.013 10.1016/j.ijhydene.2022.01.154 10.1016/j.ijhydene.2020.10.250 10.1021/acsami.0c08152 10.1007/s13204-020-01476-x 10.1039/C5RA28123G 10.1016/j.ijhydene.2022.02.012 10.1016/j.envres.2022.113148 10.1016/j.seppur.2022.120881 10.1016/j.jclepro.2017.09.095 10.1021/acsnano.8b00498 10.1016/j.ijbiomac.2019.03.217 10.1016/j.ijhydene.2022.01.219 10.1016/j.jallcom.2019.151670 10.1021/nl072046x 10.1016/j.apcatb.2020.119006 10.1007/s10853-019-03664-9 10.1016/j.seppur.2021.120207 10.3390/app9132741 10.1007/s12274-018-2164-z 10.1002/anie.201813417 10.1021/acs.jpcc.7b02275 10.1021/acs.jpcc.8b03383 10.1016/j.ijhydene.2021.04.013 10.1016/j.ijhydene.2017.10.169 10.1016/j.ijhydene.2017.12.050 10.1016/j.eng.2020.10.015 10.1039/C9NR09183A 10.1016/j.ijhydene.2018.03.217 10.1039/D2NJ00057A 10.1002/adma.201505281 10.1016/j.ijhydene.2019.10.231 10.1002/adma.202100317 10.1039/c3cp50927c |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cis.2022.102830 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology Physics |
EISSN | 1873-3727 |
ExternalDocumentID | 36592501 10_1016_j_cis_2022_102830 S0001868622002329 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCB SCE SDF SDG SDP SES SEW SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K WUQ XPP ZGI ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7X8 |
ID | FETCH-LOGICAL-c419t-c8d484029d19d596ad014f213018e4aa0d3361360daeffd4766606eb361ab4563 |
IEDL.DBID | .~1 |
ISSN | 0001-8686 1873-3727 |
IngestDate | Thu Jul 10 18:45:59 EDT 2025 Wed Feb 19 02:26:02 EST 2025 Tue Jul 01 03:12:05 EDT 2025 Thu Apr 24 22:51:21 EDT 2025 Fri Feb 23 02:37:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | N2 fixation Pollutants degradation CO2 reduction H2 evolution Photocatalysts Strategies CO reduction H evolution N fixation |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-c8d484029d19d596ad014f213018e4aa0d3361360daeffd4766606eb361ab4563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 36592501 |
PQID | 2760547565 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2760547565 pubmed_primary_36592501 crossref_primary_10_1016_j_cis_2022_102830 crossref_citationtrail_10_1016_j_cis_2022_102830 elsevier_sciencedirect_doi_10_1016_j_cis_2022_102830 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 2023-Jan 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Advances in colloid and interface science |
PublicationTitleAlternate | Adv Colloid Interface Sci |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Meng, Cheng, Tan, Fan, Su, Yu (bb0640) 2021; 289 Wang, Huang, Pan, Chen, Zhang, Zou (bb0295) 2019; 335 Sultana, Mansingh, Parida (bb0325) 2021; 2 Zhao, Wang, Gao, Wen, Feng, Song (bb0705) 2021; 133 Wang, Wang, Li, Du, Ma, He (bb0625) 2020; 12 Ni, Qie, Du, Sang, Wang, Meng (bb0605) 2022; 47 An, Han, Li, Wang, Hou, Zhang (bb0145) 2021; 46 Holmes, Townsend, Osterloh (bb0455) 2012; 48 Xie, Zhao, Li, Xu, Chen (bb0390) 2019; 54 Liu, Wei, Sun, Guan, Zheng, Li (bb0645) 2021; 197 Fang, Wu, Sheng, Wang, Bu, Zhou (bb0440) 2022; 47 Lee, Chen, Wu (bb0215) 2019; 44 Yan, Chen, Li, Tian, Li, Jiang (bb0470) 2018; 12 Schaller, Pietryga, Klimov (bb0445) 2007; 7 Xiong, Lei, Ma, Chen, Gong, Zhao (bb0080) 2017; 219 Liu, Mateen, Cheng, Wu, Zhang, Cheong (bb0090) 2022; 47 Deng, Gan, Zhang, Li, Hou (bb0130) 2019; 44 Wang, Peng, Xu, Bai, Zhao, Han (bb0435) 2021; 46 Zhang, Mou, Cao, Meng, Li, Ling (bb0745) 2022; 47 Yu, Low, Xiao, Zhou, Jaroniec (bb0330) 2014; 136 Hu, Zhang, Bai, Lu, Zhang, Wu (bb0695) 2016; 6 Ojha, Bajpai, Kumar (bb0620) 2019; 9 Mandari, Police, Do, Kang, Byon (bb0750) 2018; 43 Ashraf, Khan, Baig, Hendi, Ehsan, Sarfraz (bb0010) 2021; 9 Deng, Fei, Yang, Fan, Yu, Cheng (bb0635) 2021; 409 Lee, Yamasue, Okumura, Ishihara (bb0125) 2009; 371 Zhao, Feng, Yang, Song, Zhang (bb0055) 2021; 13 Pan, Wang, Mi, Song, Zou, Wang (bb0280) 2014; 9 Wang, Chen, Zhang, Cheng, Yu, Fan (bb0405) 2020; 56 Liu, Shi, Liu, Li (bb0230) 2022; 47 Jin, Li, Liu, Sun, Li, Cai (bb0535) 2022; 284 Prabakaran, Pillay (bb0150) 2019; 9 Tang, Li, Chen, Han (bb0450) 2018; 8 Wang, Lin, Shen, Zhong, Cao (bb0005) 2021; 42 Zheng, Xu, Guo, Yu, Ji, Ying (bb0300) 2020; 12 Liu, Chen, Wang, Yan, Yan, Guo (bb0085) 2022; 47 Ning, Lu (bb0040) 2020; 12 Bento, Correa, Pillis (bb0155) 2019; 39 Meng, Rao, Tian, Cao, Yan, Li (bb0305) 2018; 57 Ahmad, Shukrullah, Ahmad, Ahmed, Naz, Akhtar (bb0490) 2021; 123 Chava, Son, Kang (bb0260) 2021; 873 Lin, Lin, Wang, Chen, Wang, Dong (bb0015) 2019; 11 Aragon, Kierulf-Vieira, Łęcki, Zarębska, Widera-Kalinowska, Skompska (bb0515) 2019; 314 Mahato, Kharwar, Ramanujam, Haridoss, Thomas (bb0225) 2021; 46 Hayat A., Syed J.A.S., Al-Sehemi A.G., El-Nasser K.S., Taha T.A., Al-Ghamdi A.A., et al. State of the art advancement in rational design of g-C3N4 photocatalyst for efficient solar fuel transformation, environmental decontamination and future perspectives. Int. J. Hydrogen Energy 2022:47(20):10837-10867. Ahmad, Shukrullah, Naz, Ahmed, Ahmad, Akhtar (bb0115) 2022; 47 Zhao, Dai, Guo, Chen, Liu, Chen (bb0730) 2019; 244 Gupta, Fakhri, Azad, Agarwal (bb0740) 2018; 510 Xue, Fujitsuka, Majima (bb0285) 2019; 21 Wei, Zhang, Zhang, Cui, Wang, Qin (bb0220) 2021; 46 Ouyang, Kikugawa, Chen, Zou, Ye (bb0335) 2009; 113 Lin, Wang, Wang, Liu, Le, Lin (bb0020) 2019; 294 Saadetnejad, Yıldırım (bb0185) 2018; 43 Wu, Wang, Wang, Yu (bb0430) 2019; 247 Cheng, He, Fan, Cheng, Cao, Yu (bb0400) 2021; 33 Meng, Fu, Du, Chen, Lin, Wei (bb0190) 2018; 43 Zhang, Wang, Cui, Sui (bb0380) 2017; 7 Su, Che, Tang, Cheng, Zhao, Zhang (bb0065) 2018; 122 Rather, Mehta, Lu, Valant, Fang, Liu (bb0420) 2021; 46 Liang, Liao, Mishra, Perng (bb0385) 2019; 44 Ghodsi, Jin, Byers, Pan, Radovanovic (bb0345) 2017; 121 Farhadian, Akbarzadeh, Pirsaheb, Jen, Fakhri, Asadi (bb0240) 2019; 132 Lu, Wang, Xie, Shi, Li, Tong (bb0525) 2012; 48 Li, Ren, Ouyang, Hou, Petit, Song (bb0425) 2019; 259 Amirav, Alivisatos (bb0460) 2010; 1 Jia, Sun, Zhang, Zhang, Hu, Liu (bb0360) 2020; 261 Sargin, Yanalak, Arslan, Patir (bb0540) 2019; 44 Yu, Zhao, Zhou, Shang, Peng, Cao (bb0475) 2014; 2 Chen, Xing, Chen, Lin, He (bb0135) 2018; 43 Tahir, Sohaib, Rafique, Sagir, Rehman, Muhammad (bb0485) 2020; 10 Maihemllti, Okitsu, Talifur, Tursun, Abulizi (bb0665) 2021; 556 Yang, Li, Liu, Shen, Ye, Shi (bb0030) 2013; 1 Chen, Su, Xie, Wang, Ding, Huang (bb0760) 2021; 404 Li, Ma, Chen, An, Zhao, Wang (bb0610) 2020; 45 Wu, Gong, Nie, Zhang, Wang, Wang (bb0415) 2019; 7 Gao, Si, Zhang, Fang, Chen, Yang (bb0520) 2019; 44 Wang, Sayed, Ruzimuradov, Zhang, Fan, Li (bb0045) 2022; 29 Ma, Cui, Lv, Sa, Wu, Li (bb0140) 2020; 45 Jiang, Zhou, Zhang, Song, Zhou, Shi (bb0565) 2021; 13 Wang, Maeda, Thomas, Takanabe, Xin, Carlsson (bb0060) 2009; 8 Qiu, Wang, Liang, Xue, Zhou, Zhang (bb0710) 2021; 32 Qin, Li, Lu, Meng, Ma, Yan (bb0755) 2020; 384 Gomes Silva, Juárez, Marino, Molinari, García (bb0510) 2011; 133 Tang, Xia, Chen, Liu, Zhou (bb0270) 2020; 15 Gaudillere, González, Chica, Serra (bb0075) 2017; 538 Li, Bi, Zhang, Tao, Chu, Zhang (bb0070) 2016; 28 Chen, Wang, Zhao, Gao, Li (bb0170) 2020; 27 Kumar, Krishnan (bb0255) 2021; 31 Verma, Singh, Samdarshi, Srivastava (bb0530) 2022; 46 Liang, Sui, Li, Guo, Luo, Xu (bb0545) 2022; 47 Yao, Zhang, Huang, Du, Hong, Chen (bb0245) 2020; 601 Wang, Xiao, Ru, Yang, Liu, Ma (bb0675) 2022; 212 Vaiano, Iervolino (bb0195) 2019; 9 Kovalevskiy, Selishchev, Svintsitskiy, Selishcheva, Berezin, Kozlov (bb0160) 2020; 134 Camposeco, Hinojosa-Reyes, Zanella (bb0560) 2021; 46 Lee, Tan, Sumathi, Chai (bb0180) 2018; 43 Zeng, Xu, Luo, Peng, Ma, Wang (bb0365) 2021; 23 Zhu, Yamamoto, Imai, Tanaka, Kominami, Yoshida (bb0570) 2019; 55 Ahmad, Ahmed, Ahmad, Akhtar, Basharat, Khan (bb0100) 2020; 105 Zhao, Liu, Wang, Fang, Qi, Zhou (bb0235) 2022; 616 Miao, Wang, Zhang, Meng, Wang (bb0670) 2022; 301 Wang, Pan, Song, Mi, Zou, Wang (bb0275) 2015; 137 Bao, Lv, Wang, Wang, Liu, Dai (bb0250) 2021; 46 Zeng, Xie, Yu, Yang, Lu, Tong (bb0370) 2014; 247 Sun, Yu, Jiang, Hou, Sun, Qian (bb0105) 2020; 12 Zhu, Wang, Xu, Li, Wang (bb0095) 2019; 464 He, Meng, Cheng, Ho, Yu (bb0395) 2020; 41 Orak C., Yüksel A. Comparison of photocatalytic performances of solar-driven hybrid catalysts for hydrogen energy evolution from 1, 8–Diazabicyclo [5.4. 0] undec-7-ene (DBU) solution. Int J Hydrogen Energy 2022:47(14):8841-8857. Humayun, Xu, Zhou, Zheng, Fu, Luo (bb0555) 2018; 11 Bahadoran, Masudy-Panah, De Lile, Li, Gu, Sadeghi (bb0355) 2021; 46 Yan, Wu, Guan, Li, Li, Cao (bb0340) 2013; 15 Wang, Cheng, Zhang, Yu (bb0630) 2021; 17 Hua, Jin, Wang, Ni, Liu, Xu (bb0375) 2019; 245 Huang, Lu, Wang, He, Dong, Sui (bb0585) 2021; 46 Guo, Liang, Liu, Hu, Wang, An (bb0265) 2021; 600 Yang, Sun, Chen, Lan, Li, Li (bb0715) 2022; 290 Hezam, Namratha, Drmosh, Ponnamma, Wang, Prasad (bb0615) 2019; 3 Nguyen, Mousavi, Ghasemi, Van Le, Delbari, Asl (bb0690) 2021; 118 Hayat, Sohail, Al-Sehemi, Alghamdi, Taha, AlSalem (bb0575) 2022; 47 Li, Ding, Guo, Liang, Cui, Tian (bb0050) 2019; 11 Yu, Chen, Chen, Wang, Lin, Hu (bb0120) 2018; 43 Li, Zhang, Wang, Yang, Li, Zhu (bb0320) 2013; 4 Hailili, Wang, Li, Wang, Sharma, Gong (bb0725) 2018; 221 He, Zhu, Cheng, Yu, Ho, Macyk (bb0650) 2020; 272 Zhao, Zhou, Dou, Zhou, Bai, Li (bb0025) 2021; 416 Sun, Deng, Song, Yang (bb0350) 2013; 15 Liu, Jia, Long, Wang, Gao, Gu (bb0110) 2018; 222 Wang, Zheng, Han, Fan, Zhang, Meng (bb0210) 2020; 289 Ma, Shen, Zhaoa, Xue, Guan, Liu (bb0205) 2019; 107 Gultom, Abdullah, Kuo (bb0580) 2019; 44 Li, Wu, Huang, Chen, Wu, Wu (bb0595) 2022; 47 Li, Zheng, Liu, Dall’Agnese, Dall’Agnese, Liu (bb0590) 2022; 47 Tie, Sun, Jiang, Liu, Xia, Li (bb0165) 2019; 807 Gogoi, Shah, Rambabu, Qureshi, Golder, Peela (bb0315) 2021; 13 Gogoi, Namdeo, Golder, Peela (bb0175) 2020; 45 Chen, Wang, Shangguan (bb0550) 2019; 44 Mustapha, Jalil, Mohamed, Triwahyono, Hassan, Khusnun (bb0735) 2017; 168 Sumadevi, Krishnamurthy, Walmik, Rani, Naik, Naik (bb0200) 2021; 4 Dai, Liang, Zhang, Wang, Wu, Bao (bb0310) 2022 Hu, Qian, Lin, Ding, Cui (bb0600) 2020; 45 Chen, Li, Wu, Xu, Zhu, Gao (bb0680) 2021; 602 Kuehnel, Creissen, Sahm, Wielend, Schlosser, Orchard (bb0465) 2019; 131 Hao, Zhou, Cui, Wang, Wang, Zou (bb0290) 2018; 229 Kumar, Singh, Khare (bb0500) 2018; 43 Hu, Chen, Mo, Li, Xu, Li (bb0720) 2019; 58 Lin, Wang, Shen, Chen, Du, Tao (bb0035) 2020; 834 Zhou, Jin, Luo, Ning, Zhan, Xu (bb0495) 2019; 44 Zhang, Hu, Liu, Fan (bb0660) 2021; 42 Čižmar, Grčić, Bohač, Razum, Pavić, Gajović (bb0685) 2021; 11 Ramírez-Ortega, Guerrero-Araque, Acevedo-Peña, Reguera, Calderon, Zanella (bb0505) 2021; 46 Liu, Dai, Zhang, Li (bb0655) 2021; 604 Chen, Zhang, Wang, Li, Li, Hu (bb0700) 2021 Sultana (10.1016/j.cis.2022.102830_bb0325) 2021; 2 Amirav (10.1016/j.cis.2022.102830_bb0460) 2010; 1 Chen (10.1016/j.cis.2022.102830_bb0760) 2021; 404 Xiong (10.1016/j.cis.2022.102830_bb0080) 2017; 219 Liu (10.1016/j.cis.2022.102830_bb0110) 2018; 222 Maihemllti (10.1016/j.cis.2022.102830_bb0665) 2021; 556 Zhang (10.1016/j.cis.2022.102830_bb0745) 2022; 47 Ramírez-Ortega (10.1016/j.cis.2022.102830_bb0505) 2021; 46 Zhao (10.1016/j.cis.2022.102830_bb0025) 2021; 416 Li (10.1016/j.cis.2022.102830_bb0590) 2022; 47 Tang (10.1016/j.cis.2022.102830_bb0270) 2020; 15 Liu (10.1016/j.cis.2022.102830_bb0230) 2022; 47 Yu (10.1016/j.cis.2022.102830_bb0475) 2014; 2 Huang (10.1016/j.cis.2022.102830_bb0585) 2021; 46 Ma (10.1016/j.cis.2022.102830_bb0140) 2020; 45 Wang (10.1016/j.cis.2022.102830_bb0625) 2020; 12 Mustapha (10.1016/j.cis.2022.102830_bb0735) 2017; 168 Hu (10.1016/j.cis.2022.102830_bb0600) 2020; 45 Zhang (10.1016/j.cis.2022.102830_bb0380) 2017; 7 Lin (10.1016/j.cis.2022.102830_bb0020) 2019; 294 Zhao (10.1016/j.cis.2022.102830_bb0235) 2022; 616 Hua (10.1016/j.cis.2022.102830_bb0375) 2019; 245 Hu (10.1016/j.cis.2022.102830_bb0695) 2016; 6 Meng (10.1016/j.cis.2022.102830_bb0190) 2018; 43 Kuehnel (10.1016/j.cis.2022.102830_bb0465) 2019; 131 Sargin (10.1016/j.cis.2022.102830_bb0540) 2019; 44 Wang (10.1016/j.cis.2022.102830_bb0630) 2021; 17 Jiang (10.1016/j.cis.2022.102830_bb0565) 2021; 13 Guo (10.1016/j.cis.2022.102830_bb0265) 2021; 600 Čižmar (10.1016/j.cis.2022.102830_bb0685) 2021; 11 Gomes Silva (10.1016/j.cis.2022.102830_bb0510) 2011; 133 Lin (10.1016/j.cis.2022.102830_bb0035) 2020; 834 Cheng (10.1016/j.cis.2022.102830_bb0400) 2021; 33 Liu (10.1016/j.cis.2022.102830_bb0655) 2021; 604 Jin (10.1016/j.cis.2022.102830_bb0535) 2022; 284 Jia (10.1016/j.cis.2022.102830_bb0360) 2020; 261 Wang (10.1016/j.cis.2022.102830_bb0405) 2020; 56 Zhao (10.1016/j.cis.2022.102830_bb0730) 2019; 244 Liu (10.1016/j.cis.2022.102830_bb0085) 2022; 47 Qin (10.1016/j.cis.2022.102830_bb0755) 2020; 384 Li (10.1016/j.cis.2022.102830_bb0050) 2019; 11 Mandari (10.1016/j.cis.2022.102830_bb0750) 2018; 43 Yu (10.1016/j.cis.2022.102830_bb0330) 2014; 136 Chava (10.1016/j.cis.2022.102830_bb0260) 2021; 873 Yao (10.1016/j.cis.2022.102830_bb0245) 2020; 601 Lin (10.1016/j.cis.2022.102830_bb0015) 2019; 11 Sun (10.1016/j.cis.2022.102830_bb0350) 2013; 15 Xue (10.1016/j.cis.2022.102830_bb0285) 2019; 21 Wang (10.1016/j.cis.2022.102830_bb0675) 2022; 212 10.1016/j.cis.2022.102830_bb0480 Zhao (10.1016/j.cis.2022.102830_bb0705) 2021; 133 Camposeco (10.1016/j.cis.2022.102830_bb0560) 2021; 46 Chen (10.1016/j.cis.2022.102830_bb0700) 2021 Li (10.1016/j.cis.2022.102830_bb0320) 2013; 4 Aragon (10.1016/j.cis.2022.102830_bb0515) 2019; 314 Ahmad (10.1016/j.cis.2022.102830_bb0100) 2020; 105 Chen (10.1016/j.cis.2022.102830_bb0550) 2019; 44 Nguyen (10.1016/j.cis.2022.102830_bb0690) 2021; 118 Liu (10.1016/j.cis.2022.102830_bb0090) 2022; 47 Ghodsi (10.1016/j.cis.2022.102830_bb0345) 2017; 121 Deng (10.1016/j.cis.2022.102830_bb0130) 2019; 44 10.1016/j.cis.2022.102830_bb0410 Hezam (10.1016/j.cis.2022.102830_bb0615) 2019; 3 Ahmad (10.1016/j.cis.2022.102830_bb0115) 2022; 47 Wei (10.1016/j.cis.2022.102830_bb0220) 2021; 46 Fang (10.1016/j.cis.2022.102830_bb0440) 2022; 47 Gupta (10.1016/j.cis.2022.102830_bb0740) 2018; 510 Humayun (10.1016/j.cis.2022.102830_bb0555) 2018; 11 Kovalevskiy (10.1016/j.cis.2022.102830_bb0160) 2020; 134 Vaiano (10.1016/j.cis.2022.102830_bb0195) 2019; 9 Chen (10.1016/j.cis.2022.102830_bb0170) 2020; 27 Gao (10.1016/j.cis.2022.102830_bb0520) 2019; 44 Wang (10.1016/j.cis.2022.102830_bb0060) 2009; 8 Wang (10.1016/j.cis.2022.102830_bb0210) 2020; 289 Pan (10.1016/j.cis.2022.102830_bb0280) 2014; 9 Yang (10.1016/j.cis.2022.102830_bb0715) 2022; 290 Hu (10.1016/j.cis.2022.102830_bb0720) 2019; 58 Gogoi (10.1016/j.cis.2022.102830_bb0315) 2021; 13 Bento (10.1016/j.cis.2022.102830_bb0155) 2019; 39 Lee (10.1016/j.cis.2022.102830_bb0180) 2018; 43 Wang (10.1016/j.cis.2022.102830_bb0045) 2022; 29 Yang (10.1016/j.cis.2022.102830_bb0030) 2013; 1 Li (10.1016/j.cis.2022.102830_bb0425) 2019; 259 Rather (10.1016/j.cis.2022.102830_bb0420) 2021; 46 Wang (10.1016/j.cis.2022.102830_bb0005) 2021; 42 Ni (10.1016/j.cis.2022.102830_bb0605) 2022; 47 Gogoi (10.1016/j.cis.2022.102830_bb0175) 2020; 45 Wang (10.1016/j.cis.2022.102830_bb0435) 2021; 46 Prabakaran (10.1016/j.cis.2022.102830_bb0150) 2019; 9 Liang (10.1016/j.cis.2022.102830_bb0385) 2019; 44 Hailili (10.1016/j.cis.2022.102830_bb0725) 2018; 221 Chen (10.1016/j.cis.2022.102830_bb0135) 2018; 43 Yan (10.1016/j.cis.2022.102830_bb0340) 2013; 15 Ashraf (10.1016/j.cis.2022.102830_bb0010) 2021; 9 Holmes (10.1016/j.cis.2022.102830_bb0455) 2012; 48 Li (10.1016/j.cis.2022.102830_bb0070) 2016; 28 Zhang (10.1016/j.cis.2022.102830_bb0660) 2021; 42 Wu (10.1016/j.cis.2022.102830_bb0430) 2019; 247 Bao (10.1016/j.cis.2022.102830_bb0250) 2021; 46 Dai (10.1016/j.cis.2022.102830_bb0310) 2022 Lee (10.1016/j.cis.2022.102830_bb0215) 2019; 44 Gultom (10.1016/j.cis.2022.102830_bb0580) 2019; 44 Farhadian (10.1016/j.cis.2022.102830_bb0240) 2019; 132 Ojha (10.1016/j.cis.2022.102830_bb0620) 2019; 9 Ahmad (10.1016/j.cis.2022.102830_bb0490) 2021; 123 Chen (10.1016/j.cis.2022.102830_bb0680) 2021; 602 Zeng (10.1016/j.cis.2022.102830_bb0370) 2014; 247 Verma (10.1016/j.cis.2022.102830_bb0530) 2022; 46 Hao (10.1016/j.cis.2022.102830_bb0290) 2018; 229 Bahadoran (10.1016/j.cis.2022.102830_bb0355) 2021; 46 Mahato (10.1016/j.cis.2022.102830_bb0225) 2021; 46 Meng (10.1016/j.cis.2022.102830_bb0305) 2018; 57 Zhu (10.1016/j.cis.2022.102830_bb0570) 2019; 55 An (10.1016/j.cis.2022.102830_bb0145) 2021; 46 He (10.1016/j.cis.2022.102830_bb0650) 2020; 272 Zhao (10.1016/j.cis.2022.102830_bb0055) 2021; 13 Lee (10.1016/j.cis.2022.102830_bb0125) 2009; 371 Tie (10.1016/j.cis.2022.102830_bb0165) 2019; 807 Zeng (10.1016/j.cis.2022.102830_bb0365) 2021; 23 Kumar (10.1016/j.cis.2022.102830_bb0500) 2018; 43 Xie (10.1016/j.cis.2022.102830_bb0390) 2019; 54 Li (10.1016/j.cis.2022.102830_bb0610) 2020; 45 Liu (10.1016/j.cis.2022.102830_bb0645) 2021; 197 Zhu (10.1016/j.cis.2022.102830_bb0095) 2019; 464 Sun (10.1016/j.cis.2022.102830_bb0105) 2020; 12 Ma (10.1016/j.cis.2022.102830_bb0205) 2019; 107 Lu (10.1016/j.cis.2022.102830_bb0525) 2012; 48 Wang (10.1016/j.cis.2022.102830_bb0295) 2019; 335 Kumar (10.1016/j.cis.2022.102830_bb0255) 2021; 31 Yan (10.1016/j.cis.2022.102830_bb0470) 2018; 12 Zheng (10.1016/j.cis.2022.102830_bb0300) 2020; 12 Tang (10.1016/j.cis.2022.102830_bb0450) 2018; 8 Saadetnejad (10.1016/j.cis.2022.102830_bb0185) 2018; 43 Yu (10.1016/j.cis.2022.102830_bb0120) 2018; 43 Liang (10.1016/j.cis.2022.102830_bb0545) 2022; 47 Ouyang (10.1016/j.cis.2022.102830_bb0335) 2009; 113 Li (10.1016/j.cis.2022.102830_bb0595) 2022; 47 Hayat (10.1016/j.cis.2022.102830_bb0575) 2022; 47 Gaudillere (10.1016/j.cis.2022.102830_bb0075) 2017; 538 Ning (10.1016/j.cis.2022.102830_bb0040) 2020; 12 Wu (10.1016/j.cis.2022.102830_bb0415) 2019; 7 Meng (10.1016/j.cis.2022.102830_bb0640) 2021; 289 Zhou (10.1016/j.cis.2022.102830_bb0495) 2019; 44 Schaller (10.1016/j.cis.2022.102830_bb0445) 2007; 7 Deng (10.1016/j.cis.2022.102830_bb0635) 2021; 409 He (10.1016/j.cis.2022.102830_bb0395) 2020; 41 Wang (10.1016/j.cis.2022.102830_bb0275) 2015; 137 Tahir (10.1016/j.cis.2022.102830_bb0485) 2020; 10 Miao (10.1016/j.cis.2022.102830_bb0670) 2022; 301 Sumadevi (10.1016/j.cis.2022.102830_bb0200) 2021; 4 Qiu (10.1016/j.cis.2022.102830_bb0710) 2021; 32 Su (10.1016/j.cis.2022.102830_bb0065) 2018; 122 |
References_xml | – volume: 47 start-page: 3824 year: 2022 end-page: 3833 ident: bb0590 article-title: Chlorophyll derivatives/MXene hybrids for photocatalytic hydrogen evolution: dependence of performance on the central coordinating metals publication-title: Int J Hydrogen Energy – volume: 45 start-page: 13939 year: 2020 end-page: 13946 ident: bb0610 article-title: Carbon vacancies improved photocatalytic hydrogen generation of g-C publication-title: Int J Hydrogen Energy – volume: 538 start-page: 165 year: 2017 end-page: 173 ident: bb0075 article-title: YSZ monoliths promoted with Co as catalysts for the production of H publication-title: Appl Catal Gen – volume: 47 start-page: 11211 year: 2022 end-page: 11223 ident: bb0230 article-title: Facile synthesis of C–Ta4+ co-doped NaTaO publication-title: Int J Hydrogen Energy – volume: 335 start-page: 151 year: 2019 end-page: 159 ident: bb0295 article-title: Controllable fabrication of homogeneous ZnO pn junction with enhanced charge separation for efficient photocatalysis publication-title: Catalysis Today – volume: 105 start-page: 104748 year: 2020 ident: bb0100 article-title: The investigation of hydrogen evolution using Ca doped ZnO catalysts under visible light illumination publication-title: Mater. Sci. Semiconductor Process. – volume: 27 start-page: 15103 year: 2020 end-page: 15112 ident: bb0170 article-title: Synthesis and photocatalytic activity study of S-doped WO publication-title: Environ Sci Pollut Res – volume: 13 start-page: 46772 year: 2021 end-page: 46782 ident: bb0565 article-title: Synergistic integration of AuCu co-catalyst with oxygen vacancies on TiO publication-title: ACS Appl Mater Interfaces – start-page: 2105299 year: 2022 ident: bb0310 article-title: Strain adjustment realizes the photocatalytic overall water splitting on tetragonal zircon BiVO publication-title: Advanced Science – volume: 42 start-page: 710 year: 2021 end-page: 730 ident: bb0005 article-title: Advances in designing heterojunction photocatalytic materials publication-title: Chinese Journal of Catalysis – volume: 1 start-page: 541 year: 2013 end-page: 547 ident: bb0030 article-title: Hierarchical TiO publication-title: J Mater Chem A – volume: 46 start-page: 21866 year: 2021 end-page: 21888 ident: bb0420 article-title: Influence of exposed facets, morphology and hetero-interfaces of BiVO publication-title: Int J Hydrogen Energy – volume: 48 start-page: 7717 year: 2012 end-page: 7719 ident: bb0525 article-title: Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays publication-title: Chem Commun – volume: 43 start-page: 1116 year: 2018 end-page: 1122 ident: bb0185 article-title: Photocatalytic hydrogen production by water splitting over au/Al-SrTiO publication-title: Int J Hydrogen Energy – volume: 47 start-page: 14280 year: 2022 end-page: 14293 ident: bb0575 article-title: Molecular engineering control defects within carbon nitride for optimized co-catalyst Pt induced photocatalytic CO publication-title: Int J Hydrogen Energy – volume: 134 year: 2020 ident: bb0160 article-title: Synergistic effect of polychromatic radiation on visible light activity of N-doped TiO publication-title: Catalysis Communications – volume: 44 start-page: 21781 year: 2019 end-page: 21789 ident: bb0540 article-title: Green synthesized carbon quantum dots as TiO publication-title: Int J Hydrogen Energy – volume: 47 start-page: 15505 year: 2022 end-page: 15515 ident: bb0115 article-title: Microwave-assisted one-pot hydrothermal synthesis of V and La co-doped ZnO/CNTs nanocomposite for boosted photocatalytic hydrogen production publication-title: Int J Hydrogen Energy – volume: 6 start-page: 25695 year: 2016 end-page: 25702 ident: bb0695 article-title: Construction of a 2D/2D gC publication-title: RSC Adv – volume: 54 start-page: 10836 year: 2019 end-page: 10845 ident: bb0390 article-title: 2D BiVO publication-title: J Mater Sci – volume: 259 year: 2019 ident: bb0425 article-title: Atomic carbon chains-mediated carriers transfer over polymeric carbon nitride for efficient photocatalysis publication-title: Appl Catal Environ – volume: 7 start-page: 3469 year: 2007 end-page: 3476 ident: bb0445 article-title: Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit publication-title: Nano Lett – volume: 58 start-page: 2073 year: 2019 end-page: 2077 ident: bb0720 article-title: Z-Scheme 2D/2D heterojunction of black phosphorus/monolayer Bi publication-title: AngewandteChemie International Edition – volume: 21 start-page: 2318 year: 2019 end-page: 2324 ident: bb0285 article-title: The role of nitrogen defects in graphitic carbon nitride for visible-light-driven hydrogen evolution publication-title: Phys Chem Chem Phys – volume: 46 start-page: 30393 year: 2021 end-page: 30401 ident: bb0435 article-title: Hollow In publication-title: Int J Hydrogen Energy – volume: 168 start-page: 1150 year: 2017 end-page: 1162 ident: bb0735 article-title: New insight into self-modified surfaces with defect-rich rutile TiO publication-title: J Clean Prod – volume: 15 start-page: 3456 year: 2020 end-page: 3461 ident: bb0270 article-title: Oxygen doped g-C publication-title: Chemistry–An Asian Journal – volume: 43 start-page: 2073 year: 2018 end-page: 2082 ident: bb0750 article-title: Rare earth metal Gd influenced defect sites in N doped TiO publication-title: Int J Hydrogen Energy – volume: 12 start-page: 31477 year: 2020 end-page: 31485 ident: bb0625 article-title: Direct Z-scheme 0D/2D heterojunction of CsPbBr publication-title: ACS Appl Mater Interfaces – volume: 409 year: 2021 ident: bb0635 article-title: S-scheme heterojunction based on p-type ZnMn publication-title: Chem Eng J – volume: 47 start-page: 2967 year: 2022 end-page: 2975 ident: bb0745 article-title: MoS publication-title: Int J Hydrogen Energy – volume: 44 start-page: 29516 year: 2019 end-page: 29528 ident: bb0580 article-title: Effects of graphene oxide and sacrificial reagent for highly efficient hydrogen production with the costless Zn (O, S) photocatalyst publication-title: Int J Hydrogen Energy – volume: 601 year: 2020 ident: bb0245 article-title: Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C publication-title: Appl Catal Gen – volume: 43 start-page: 8198 year: 2018 end-page: 8205 ident: bb0500 article-title: Plasmonic ag nanoparticles decorated NaNbO publication-title: Int J Hydrogen Energy – volume: 47 start-page: 11190 year: 2022 end-page: 11202 ident: bb0545 article-title: ZIF-L-derived porous C-doped ZnO/CdS graded nanorods with Z-scheme heterojunctions for enhanced photocatalytic hydrogen evolution publication-title: Int J Hydrogen Energy – volume: 807 year: 2019 ident: bb0165 article-title: Facile fabrication of N-doped ZnS nanomaterials for efficient photocatalytic performance of organic pollutant removal and H publication-title: J Alloys Compd – volume: 301 year: 2022 ident: bb0670 article-title: In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO publication-title: Appl Catal Environ – volume: 45 start-page: 629 year: 2020 end-page: 639 ident: bb0600 article-title: Oxygen vacancies mediated in-situ growth of noble-metal (ag, au, Pt) nanoparticles on 3D TiO publication-title: Int J Hydrogen Energy – volume: 247 start-page: 545 year: 2014 end-page: 550 ident: bb0370 article-title: Facile synthesis of large-area CeO publication-title: J Power Sources – volume: 122 start-page: 21108 year: 2018 end-page: 21114 ident: bb0065 article-title: Valence band engineering via PtII single-atom confinement realizing photocatalytic water splitting publication-title: J Phys Chem C – volume: 371 start-page: 179 year: 2009 end-page: 190 ident: bb0125 article-title: Effect of oxygen and nitrogen concentration of nitrogen doped TiO publication-title: Appl Catal Gen – volume: 2 start-page: 6942 year: 2021 end-page: 6983 ident: bb0325 article-title: Crystal facet and surface defect engineered low dimensional CeO publication-title: Materials Advances – volume: 55 start-page: 13514 year: 2019 end-page: 13517 ident: bb0570 article-title: A silver–manganese dual co-catalyst for selective reduction of carbon dioxide into carbon monoxide over a potassium hexatitanate photocatalyst with water publication-title: Chem Commun – volume: 46 start-page: 3530 year: 2021 end-page: 3538 ident: bb0585 article-title: Synthesis and photocatalytic performance of MoS publication-title: Int J Hydrogen Energy – volume: 46 start-page: 234 year: 2021 end-page: 246 ident: bb0220 article-title: In situ W/O co-doped hollow carbon nitride tubular structures with enhanced visible-light-driven photocatalytic performance for hydrogen evolution publication-title: Int J Hydrogen Energy – volume: 416 year: 2021 ident: bb0025 article-title: Dual MOFs template-directed fabrication of hollow-structured heterojunction photocatalysts for efficient CO publication-title: Chem Eng J – volume: 44 start-page: 4123 year: 2019 end-page: 4132 ident: bb0550 article-title: Metal (oxide) modified (M= Pd, ag, au and cu) H publication-title: Int J Hydrogen Energy – volume: 13 start-page: 45475 year: 2021 end-page: 45487 ident: bb0315 article-title: Step-scheme heterojunction between CdS nanowires and facet-selective assembly of MnO publication-title: ACS Appl Mater Interfaces – volume: 56 start-page: 143 year: 2020 end-page: 150 ident: bb0405 article-title: Step-scheme CdS/TiO publication-title: Journal of Materials Science & Technology – volume: 8 start-page: 42233 year: 2018 end-page: 42245 ident: bb0450 article-title: In situ fabrication of a direct Z-scheme photocatalyst by immobilizing CdS quantum dots in the channels of graphene-hybridized and supported mesoporous titanium nanocrystals for high photocatalytic performance under visible light publication-title: RSC Adv – volume: 44 start-page: 30084 year: 2019 end-page: 30092 ident: bb0130 article-title: Non-noble-metal Ni nanoparticles modified N-doped g-C publication-title: Int J Hydrogen Energy – volume: 41 start-page: 9 year: 2020 end-page: 20 ident: bb0395 article-title: Enhanced photocatalytic H publication-title: Chinese Journal of Catalysis – volume: 261 year: 2020 ident: bb0360 article-title: Inter-plane heterojunctions within 2D/2D FeSe publication-title: Appl Catal Environ – volume: 23 start-page: 2812 year: 2021 end-page: 2818 ident: bb0365 article-title: A novel design of SiH/CeO publication-title: Phys Chem Chem Phys – volume: 7 start-page: 8167 year: 2017 end-page: 8177 ident: bb0380 article-title: Synthesis and characterization of a core–shell BiVO publication-title: RSC Adv – volume: 602 start-page: 553 year: 2021 end-page: 562 ident: bb0680 article-title: Bi publication-title: J Colloid Interface Sci – volume: 28 start-page: 2427 year: 2016 end-page: 2431 ident: bb0070 article-title: Single-atom Pt as co-catalyst for enhanced photocatalytic H publication-title: Adv Mater – volume: 290 year: 2022 ident: bb0715 article-title: S-scheme 1 T phase MoSe publication-title: Sep Purif Technol – volume: 11 start-page: 6391 year: 2018 end-page: 6404 ident: bb0555 article-title: Exceptional co-catalyst free photocatalytic activities of B and Fe co-doped SrTiO publication-title: Nano Research – volume: 229 start-page: 41 year: 2018 end-page: 51 ident: bb0290 article-title: Zn-vacancy mediated electron-hole separation in ZnS/g-C publication-title: Appl Catal Environ – volume: 113 start-page: 1560 year: 2009 end-page: 1566 ident: bb0335 article-title: A systematical study on photocatalytic properties of AgMO publication-title: J Phys Chem C – volume: 133 start-page: 12017 year: 2021 end-page: 12025 ident: bb0705 article-title: Magnetic-field-stimulated efficient photocatalytic N publication-title: AngewandteChemie – volume: 1 start-page: 1051 year: 2010 end-page: 1054 ident: bb0460 article-title: Photocatalytic hydrogen production with tunable nanorod heterostructures publication-title: The Journal of Physical Chemistry Letters – volume: 44 start-page: 10585 year: 2019 end-page: 10592 ident: bb0495 article-title: One-pot solvothermal synthesis of 1D plasmonic TiO publication-title: Int J Hydrogen Energy – volume: 43 start-page: 9224 year: 2018 end-page: 9232 ident: bb0190 article-title: BaZrO publication-title: Int J Hydrogen Energy – volume: 33 start-page: 2100317 year: 2021 ident: bb0400 article-title: An inorganic/organic S-scheme heterojunction H publication-title: Adv Mater – volume: 133 start-page: 595 year: 2011 end-page: 602 ident: bb0510 article-title: Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water publication-title: J Am Chem Soc – volume: 2 start-page: 3344 year: 2014 end-page: 3351 ident: bb0475 article-title: Carbon quantum dots/TiO publication-title: J Mater Chem A – volume: 9 start-page: 4598 year: 2019 end-page: 4613 ident: bb0620 article-title: Visible light-driven enhanced CO publication-title: Cat Sci Technol – volume: 48 start-page: 371 year: 2012 end-page: 373 ident: bb0455 article-title: Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals publication-title: Chem Commun – volume: 42 start-page: 1519 year: 2021 end-page: 1529 ident: bb0660 article-title: Novel S-scheme 2D/2D BiOBr/g-C publication-title: Chinese Journal of Catalysis – volume: 29 year: 2022 ident: bb0045 article-title: A review of step-scheme photocatalysts publication-title: Appl Mater Today – volume: 8 start-page: 76 year: 2009 end-page: 80 ident: bb0060 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat Mater – volume: 107 year: 2019 ident: bb0205 article-title: Facile synthesis of Fe-doped g-C publication-title: Inorganic Chemistry Communications – volume: 136 start-page: 8839 year: 2014 end-page: 8842 ident: bb0330 article-title: Enhanced photocatalytic CO publication-title: J Am Chem Soc – volume: 131 start-page: 5113 year: 2019 end-page: 5117 ident: bb0465 article-title: ZnSe nanorods as visible-light absorbers for photocatalytic and photoelectrochemical H publication-title: AngewandteChemie – volume: 45 start-page: 4534 year: 2020 end-page: 4544 ident: bb0140 article-title: Three-in-one: opened charge-transfer channel, positively shifted oxidation potential, and enhanced visible light response of g-C publication-title: Int J Hydrogen Energy – volume: 13 start-page: 1250 year: 2021 end-page: 1270 ident: bb0055 article-title: Recent advances in graphitic carbon nitride supported single-atom catalysts for energy conversion publication-title: ChemCatChem – volume: 43 start-page: 4347 year: 2018 end-page: 4354 ident: bb0120 article-title: Giant enhancement of photocatalytic H publication-title: Int J Hydrogen Energy – volume: 314 start-page: 73 year: 2019 end-page: 80 ident: bb0515 article-title: Synthesis and application of N-doped TiO2/CdS/poly (1, 8-diaminocarbazole) composite for photocatalytic degradation of 4-chlorophenol under visible light publication-title: Electrochimica Acta – volume: 12 start-page: 90 year: 2020 end-page: 100 ident: bb0300 article-title: Genomic and phenotypic diversity of carbapenemase-producing enterobacteriaceae isolates from bacteremia in China: a multicenter epidemiological, microbiological, and genetic study publication-title: Engineering – volume: 45 start-page: 2729 year: 2020 end-page: 2744 ident: bb0175 article-title: Ag-doped TiO publication-title: Int J Hydrogen Energy – volume: 46 start-page: 34333 year: 2021 end-page: 34343 ident: bb0505 article-title: Enhancing the photocatalytic hydrogen production of the ZnO–TiO publication-title: Int J Hydrogen Energy – volume: 221 start-page: 422 year: 2018 end-page: 432 ident: bb0725 article-title: Oxygen vacancies induced visible-light photocatalytic activities of CaCu publication-title: Appl Catal Environ – volume: 289 year: 2020 ident: bb0210 article-title: Photocatalytic hydrogen evolution from biomass (glucose solution) on au/CdS nanorods with Au publication-title: J Solid State Chem – volume: 7 start-page: 5324 year: 2019 end-page: 5332 ident: bb0415 article-title: Template-free synthesis of nanocage-like gC publication-title: J Mater Chem A – volume: 32 start-page: 3501 year: 2021 end-page: 3504 ident: bb0710 article-title: The metallic 1T-WS publication-title: Chin Chem Lett – volume: 4 start-page: 447 year: 2021 end-page: 456 ident: bb0200 article-title: Photocatalytic degradation of Eriochrome black-T and Evan’s blue dyes under the visible light using PVA capped and uncapped Ag doped ZnS nanoparticles publication-title: Emergent Materials – volume: 12 start-page: 19203 year: 2020 end-page: 19212 ident: bb0105 article-title: CoP QD anchored carbon skeleton modified CdS nanorods as a co-catalyst for photocatalytic hydrogen production publication-title: Nanoscale – volume: 46 start-page: 3996 year: 2021 end-page: 4006 ident: bb0145 article-title: One step synthesis of self-doped F–Ta publication-title: Int J Hydrogen Energy – volume: 272 year: 2020 ident: bb0650 article-title: 2D/2D/0D TiO publication-title: Appl Catal Environ – reference: Orak C., Yüksel A. Comparison of photocatalytic performances of solar-driven hybrid catalysts for hydrogen energy evolution from 1, 8–Diazabicyclo [5.4. 0] undec-7-ene (DBU) solution. Int J Hydrogen Energy 2022:47(14):8841-8857. – volume: 289 year: 2021 ident: bb0640 article-title: TiO publication-title: Appl Catal Environ – volume: 244 start-page: 206 year: 2019 end-page: 214 ident: bb0730 article-title: Highly selective oxidation of glycerol over Bi/Bi publication-title: Appl Catal Environ – volume: 46 start-page: 37782 year: 2021 end-page: 37791 ident: bb0250 article-title: Nitrogen vacancy enhanced photocatalytic selective oxidation of benzyl alcohol in g-C publication-title: Int J Hydrogen Energy – volume: 121 start-page: 9433 year: 2017 end-page: 9441 ident: bb0345 article-title: Anomalous photocatalytic activity of nanocrystalline γ-phase Ga publication-title: J Phys Chem C – volume: 47 start-page: 13044 year: 2022 end-page: 13053 ident: bb0605 article-title: A novel all-solid-state S-scheme in CdS/ZnTHPP binary nanosystem for hydrogen evolution publication-title: Int J Hydrogen Energy – volume: 44 start-page: 19162 year: 2019 end-page: 19167 ident: bb0385 article-title: Fabrication of Ta publication-title: Int J Hydrogen Energy – volume: 616 start-page: 152 year: 2022 end-page: 162 ident: bb0235 article-title: Carbon and phosphorus co-doped carbon nitride hollow tube for improved photocatalytic hydrogen evolution publication-title: J Colloid Interface Sci – volume: 57 start-page: 16882 year: 2018 end-page: 16887 ident: bb0305 article-title: Simultaneous manipulation of O-doping and metal vacancy in atomically thin Zn publication-title: AngewandteChemie International Edition – volume: 873 year: 2021 ident: bb0260 article-title: Controllable oxygen doping and sulfur vacancies in one dimensional CdS nanorods for boosted hydrogen evolution reaction publication-title: J Alloys Compd – volume: 284 year: 2022 ident: bb0535 article-title: Effective promotion of spacial charge separation of dual S-scheme (1D/2D/0D) WO publication-title: Sep Purif Technol – volume: 3 start-page: 138 year: 2019 end-page: 148 ident: bb0615 article-title: CeO publication-title: ACS Applied Nano Materials – volume: 294 start-page: 142 year: 2019 end-page: 147 ident: bb0020 article-title: The role of conductivity and phase structure in enhancing catalytic activity of CoSe for hydrogen evolution reaction publication-title: Electrochim Acta – volume: 11 start-page: 2217 year: 2019 end-page: 2222 ident: bb0015 article-title: Facile preparation of 1T/2H-Mo (S publication-title: ChemCatChem – volume: 39 start-page: 3498 year: 2019 end-page: 3504 ident: bb0155 article-title: Photocatalytic activity of undoped and sulfur-doped TiO publication-title: J Eur Ceram Soc – volume: 600 start-page: 138 year: 2021 end-page: 149 ident: bb0265 article-title: Core-shell structure of sulphur vacancies-CdS@ CuS: enhanced photocatalytic hydrogen generation activity based on photoinduced interfacial charge transfer publication-title: J Colloid Interface Sci – volume: 15 start-page: 15964 year: 2013 end-page: 15970 ident: bb0350 article-title: Elucidating a twin-dependent chemical activity of hierarchical copper sulfide nanocages publication-title: Phys Chem Chem Phys – volume: 510 start-page: 95 year: 2018 end-page: 102 ident: bb0740 article-title: Synthesis and characterization of Ag doped ZnS quantum dots for enhanced photocatalysis of Strychnine as a poison: charge transfer behavior study by electrochemical impedance and time-resolved photoluminescence spectroscopy publication-title: J Colloid Interface Sci – volume: 247 start-page: 70 year: 2019 end-page: 77 ident: bb0430 article-title: Soluble g-C publication-title: Appl Catal Environ – volume: 9 start-page: 7509 year: 2019 end-page: 7535 ident: bb0150 article-title: Synthesis of N-doped ZnO nanoparticles with cabbage morphology as a catalyst for the efficient photocatalytic degradation of methylene blue under UV and visible light publication-title: RSC Adv – volume: 43 start-page: 748 year: 2018 end-page: 756 ident: bb0180 article-title: Copper-doped flower-like molybdenum disulfide/bismuth sulfide photocatalysts for enhanced solar water splitting publication-title: Int J Hydrogen Energy – volume: 11 start-page: 1500 year: 2021 ident: bb0685 article-title: Dual use of copper-modified TiO publication-title: Coatings – volume: 47 start-page: 15641 year: 2022 end-page: 15654 ident: bb0595 article-title: A novel lattice-embeddedZnO@TiO publication-title: Int J Hydrogen Energy – volume: 137 start-page: 2975 year: 2015 end-page: 2983 ident: bb0275 article-title: Titanium-defected undoped anatase TiO publication-title: J Am Chem Soc – volume: 118 start-page: 140 year: 2021 end-page: 151 ident: bb0690 article-title: High-impressive separation of photoinduced charge carriers on step-scheme ZnO/ZnSnO publication-title: J Taiwan Inst Chem Eng – volume: 15 start-page: 10978 year: 2013 end-page: 10988 ident: bb0340 article-title: Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO publication-title: Phys Chem Chem Phys – volume: 834 year: 2020 ident: bb0035 article-title: One-step method to achieve multiple decorations on lamellar MoS publication-title: J Alloys Compd – volume: 9 start-page: 2741 year: 2019 ident: bb0195 article-title: Photocatalytic hydrogen production from glycerol aqueous solution using cu-doped ZnO under visible light irradiation publication-title: Applied Sciences – volume: 17 start-page: 2103447 year: 2021 ident: bb0630 article-title: In situ irradiated XPS investigation on S-scheme TiO publication-title: Small – volume: 44 start-page: 110 year: 2019 end-page: 117 ident: bb0215 article-title: (In, Cu) Co-doped ZnS nanoparticles for photoelectrochemical hydrogen production publication-title: Int J Hydrogen Energy – volume: 31 start-page: 2009807 year: 2021 ident: bb0255 article-title: Vacancy engineering in semiconductor photocatalysts: implications in hydrogen evolution and nitrogen fixation applications publication-title: Adv Funct Mater – volume: 464 start-page: 36 year: 2019 end-page: 42 ident: bb0095 article-title: Size effect of Pt co-catalyst on photocatalytic efficiency of g-C publication-title: Appl Surf Sci – volume: 123 year: 2021 ident: bb0490 article-title: Effect of Al doping on the photocatalytic activity of ZnO nanoparticles decorated on CNTs and graphene: Solvothermal synthesis and study of experimental parameters publication-title: Mater Sci Semicond Process – volume: 12 start-page: 1213 year: 2020 end-page: 1223 ident: bb0040 article-title: Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting publication-title: Nanoscale – volume: 219 start-page: 412 year: 2017 end-page: 424 ident: bb0080 article-title: Photocatalytic CO publication-title: Appl Catal Environ – volume: 222 start-page: 35 year: 2018 end-page: 43 ident: bb0110 article-title: Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C publication-title: Appl Catal Environ – volume: 212 year: 2022 ident: bb0675 article-title: In publication-title: Environ Res – year: 2021 ident: bb0700 article-title: High piezo/photocatalytic efficiency of ag/Bi – volume: 43 start-page: 19984 year: 2018 end-page: 19989 ident: bb0135 article-title: Rapid and energy-efficient preparation of boron doped g-C publication-title: Int J Hydrogen Energy – volume: 46 start-page: 21549 year: 2021 end-page: 21565 ident: bb0225 article-title: S, N co-doped graphene quantum dots decorated TiO publication-title: Int J Hydrogen Energy – volume: 9 start-page: 71 year: 2014 end-page: 79 ident: bb0280 article-title: Undoped ZnO abundant with metal vacancies publication-title: Nano Energy – volume: 197 year: 2021 ident: bb0645 article-title: Fabrication of S-scheme CdS-g-C publication-title: Environ Res – volume: 47 start-page: 1656 year: 2022 end-page: 1668 ident: bb0440 article-title: A nano heterostructure with step-accelerated system toward optimized photocatalytic hydrogen evolution publication-title: Int J Hydrogen Energy – volume: 46 start-page: 24094 year: 2021 end-page: 24106 ident: bb0355 article-title: Novel 0D/1D ZnBi publication-title: Int J Hydrogen Energy – volume: 47 start-page: 2327 year: 2022 end-page: 2337 ident: bb0085 article-title: Promoting the photocatalytic H publication-title: Int J Hydrogen Energy – volume: 384 year: 2020 ident: bb0755 article-title: Nitrogen-doped hydrogenated TiO publication-title: Chem Eng J – volume: 12 start-page: 3523 year: 2018 end-page: 3532 ident: bb0470 article-title: Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO publication-title: ACS Nano – volume: 46 start-page: 5869 year: 2022 end-page: 5880 ident: bb0530 article-title: Autonomous self-optimizing defects by refining energy levels through hydrogenation in CeO publication-title: New J Chem – volume: 404 year: 2021 ident: bb0760 article-title: One-step construction of S-scheme heterojunctions of N-doped MoS publication-title: Chem Eng J – volume: 9 start-page: 2100034 year: 2021 ident: bb0010 article-title: A bifunctional 2D interlayered β-Cu publication-title: Energ Technol – volume: 44 start-page: 8011 year: 2019 end-page: 8019 ident: bb0520 article-title: Hydrogenated F-doped TiO publication-title: Int J Hydrogen Energy – volume: 132 start-page: 360 year: 2019 end-page: 373 ident: bb0240 article-title: Chitosan modified N, S-doped TiO publication-title: Int J Biol Macromol – volume: 604 start-page: 844 year: 2021 end-page: 855 ident: bb0655 article-title: Plasmonic Bi-enhanced ammoniated α-MnS/Bi publication-title: J Colloid Interface Sci – volume: 47 start-page: 12592 year: 2022 end-page: 12604 ident: bb0090 article-title: Constructing atomic Co1–N publication-title: Int J Hydrogen Energy – volume: 11 start-page: 41440 year: 2019 end-page: 41447 ident: bb0050 article-title: Boosting the photocatalytic ability of g-C publication-title: ACS Appl Mater Interfaces – volume: 245 start-page: 733 year: 2019 end-page: 742 ident: bb0375 article-title: Ultrathin 2D type-II pn heterojunctions La publication-title: Appl Catal Environ – volume: 46 start-page: 26074 year: 2021 end-page: 26086 ident: bb0560 article-title: Highly efficient photocatalytic hydrogen evolution by using Rh as co-catalyst in the cu/TiO publication-title: Int J Hydrogen Energy – volume: 556 year: 2021 ident: bb0665 article-title: In situ self-assembled S-scheme BiOBr/pCN hybrid with enhanced photocatalytic activity for organic pollutant degradation and CO publication-title: Appl Surf Sci – volume: 4 start-page: 1 year: 2013 end-page: 7 ident: bb0320 article-title: Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO publication-title: Nat Commun – reference: Hayat A., Syed J.A.S., Al-Sehemi A.G., El-Nasser K.S., Taha T.A., Al-Ghamdi A.A., et al. State of the art advancement in rational design of g-C3N4 photocatalyst for efficient solar fuel transformation, environmental decontamination and future perspectives. Int. J. Hydrogen Energy 2022:47(20):10837-10867. – volume: 10 start-page: 3925 year: 2020 end-page: 3931 ident: bb0485 article-title: Visible light responsive photocatalytic hydrogen evolution using MoS publication-title: Applied Nanoscience – volume: 15 start-page: 15964 issue: 38 year: 2013 ident: 10.1016/j.cis.2022.102830_bb0350 article-title: Elucidating a twin-dependent chemical activity of hierarchical copper sulfide nanocages publication-title: Phys Chem Chem Phys doi: 10.1039/c3cp52840e – volume: 335 start-page: 151 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0295 article-title: Controllable fabrication of homogeneous ZnO pn junction with enhanced charge separation for efficient photocatalysis publication-title: Catalysis Today doi: 10.1016/j.cattod.2018.10.059 – volume: 9 start-page: 71 year: 2014 ident: 10.1016/j.cis.2022.102830_bb0280 article-title: Undoped ZnO abundant with metal vacancies publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.06.029 – volume: 46 start-page: 21866 issue: 42 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0420 article-title: Influence of exposed facets, morphology and hetero-interfaces of BiVO4 on photocatalytic water oxidation: a review publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.04.060 – volume: 15 start-page: 3456 issue: 21 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0270 article-title: Oxygen doped g-C3N4 with nitrogen vacancy for enhanced photocatalytic hydrogen evolution publication-title: Chemistry–An Asian Journal doi: 10.1002/asia.202000912 – volume: 9 start-page: 7509 issue: 13 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0150 article-title: Synthesis of N-doped ZnO nanoparticles with cabbage morphology as a catalyst for the efficient photocatalytic degradation of methylene blue under UV and visible light publication-title: RSC Adv doi: 10.1039/C8RA09962F – ident: 10.1016/j.cis.2022.102830_bb0480 doi: 10.1016/j.ijhydene.2021.12.254 – volume: 245 start-page: 733 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0375 article-title: Ultrathin 2D type-II pn heterojunctions La2Ti2O7/In2S3 with efficient charge separations and photocatalytic hydrogen evolution under visible light illumination publication-title: Appl Catal Environ doi: 10.1016/j.apcatb.2019.01.024 – start-page: 2105299 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0310 article-title: Strain adjustment realizes the photocatalytic overall water splitting on tetragonal zircon BiVO4 publication-title: Advanced Science doi: 10.1002/advs.202105299 – volume: 45 start-page: 13939 issue: 27 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0610 article-title: Carbon vacancies improved photocatalytic hydrogen generation of g-C3N4 photocatalyst via magnesium vapor etching publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.03.067 – volume: 41 start-page: 9 issue: 1 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0395 article-title: Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification publication-title: Chinese Journal of Catalysis doi: 10.1016/S1872-2067(19)63382-6 – volume: 244 start-page: 206 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0730 article-title: Highly selective oxidation of glycerol over Bi/Bi3.64Mo0.36O6.55 heterostructure: dual reaction pathways induced by photogenerated 1O2 and holes publication-title: Appl Catal Environ doi: 10.1016/j.apcatb.2018.11.047 – volume: 47 start-page: 11211 issue: 21 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0230 article-title: Facile synthesis of C–Ta4+ co-doped NaTaO3 and rGO nanocomposites with enhanced visible light photocatalytic performance publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.01.163 – volume: 107 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0205 article-title: Facile synthesis of Fe-doped g-C3N4 for enhanced visible-light photocatalytic activity publication-title: Inorganic Chemistry Communications doi: 10.1016/j.inoche.2019.107451 – volume: 409 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0635 article-title: S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity publication-title: Chem Eng J doi: 10.1016/j.cej.2020.127377 – volume: 44 start-page: 4123 issue: 8 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0550 article-title: Metal (oxide) modified (M= Pd, ag, au and cu) H2SrTa2O7 for photocatalytic CO2 reduction with H2O: the effect of cocatalysts on promoting activity toward CO and H2 evolution publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.12.166 – volume: 13 start-page: 45475 issue: 38 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0315 article-title: Step-scheme heterojunction between CdS nanowires and facet-selective assembly of MnOx-BiVO4 for an efficient visible-light-driven overall water splitting publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c11740 – volume: 2 start-page: 6942 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0325 article-title: Crystal facet and surface defect engineered low dimensional CeO2 (OD, 1D, 2D) based photocatalytic materials towards energy generation and pollutant abatement publication-title: Materials Advances doi: 10.1039/D1MA00539A – volume: 538 start-page: 165 year: 2017 ident: 10.1016/j.cis.2022.102830_bb0075 article-title: YSZ monoliths promoted with Co as catalysts for the production of H2 by steam reforming of ethanol publication-title: Appl Catal Gen doi: 10.1016/j.apcata.2017.03.008 – volume: 137 start-page: 2975 issue: 8 year: 2015 ident: 10.1016/j.cis.2022.102830_bb0275 article-title: Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance publication-title: J Am Chem Soc doi: 10.1021/ja512047k – volume: 8 start-page: 42233 issue: 73 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0450 article-title: In situ fabrication of a direct Z-scheme photocatalyst by immobilizing CdS quantum dots in the channels of graphene-hybridized and supported mesoporous titanium nanocrystals for high photocatalytic performance under visible light publication-title: RSC Adv doi: 10.1039/C8RA08008A – volume: 47 start-page: 15641 issue: 35 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0595 article-title: A novel lattice-embeddedZnO@TiO2 (B) nanoflowers promotes photocatalytic production of H2 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.03.091 – volume: 464 start-page: 36 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0095 article-title: Size effect of Pt co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2018.09.061 – volume: 48 start-page: 371 issue: 3 year: 2012 ident: 10.1016/j.cis.2022.102830_bb0455 article-title: Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals publication-title: Chem Commun doi: 10.1039/C1CC16082F – volume: 247 start-page: 545 year: 2014 ident: 10.1016/j.cis.2022.102830_bb0370 article-title: Facile synthesis of large-area CeO2/ZnO nanotube arrays for enhanced photocatalytic hydrogen evolution publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.09.015 – volume: 289 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0640 article-title: TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity publication-title: Appl Catal Environ doi: 10.1016/j.apcatb.2021.120039 – volume: 4 start-page: 447 issue: 2 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0200 article-title: Photocatalytic degradation of Eriochrome black-T and Evan’s blue dyes under the visible light using PVA capped and uncapped Ag doped ZnS nanoparticles publication-title: Emergent Materials doi: 10.1007/s42247-020-00153-7 – volume: 197 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0645 article-title: Fabrication of S-scheme CdS-g-C3N4-graphene aerogel heterojunction for enhanced visible light driven photocatalysis publication-title: Environ Res doi: 10.1016/j.envres.2021.111136 – volume: 17 start-page: 2103447 issue: 41 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0630 article-title: In situ irradiated XPS investigation on S-scheme TiO2@ ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction publication-title: Small doi: 10.1002/smll.202103447 – volume: 294 start-page: 142 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0020 article-title: The role of conductivity and phase structure in enhancing catalytic activity of CoSe for hydrogen evolution reaction publication-title: Electrochim Acta doi: 10.1016/j.electacta.2018.10.082 – volume: 55 start-page: 13514 issue: 90 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0570 article-title: A silver–manganese dual co-catalyst for selective reduction of carbon dioxide into carbon monoxide over a potassium hexatitanate photocatalyst with water publication-title: Chem Commun doi: 10.1039/C9CC06038C – volume: 44 start-page: 29516 issue: 56 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0580 article-title: Effects of graphene oxide and sacrificial reagent for highly efficient hydrogen production with the costless Zn (O, S) photocatalyst publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.08.066 – volume: 9 start-page: 2100034 issue: 7 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0010 article-title: A bifunctional 2D interlayered β-Cu2V2O7/Zn2V2O6 (CZVO) heterojunction for solar-driven nonsacrificial dye degradation and water oxidation publication-title: Energ Technol doi: 10.1002/ente.202100034 – volume: 13 start-page: 46772 issue: 39 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0565 article-title: Synergistic integration of AuCu co-catalyst with oxygen vacancies on TiO2 for efficient photocatalytic conversion of CO2 to CH4 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c14371 – volume: 9 start-page: 4598 issue: 17 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0620 article-title: Visible light-driven enhanced CO2 reduction by water over cu modified S-doped gC3N4 publication-title: Cat Sci Technol doi: 10.1039/C9CY01185D – volume: 43 start-page: 19984 issue: 43 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0135 article-title: Rapid and energy-efficient preparation of boron doped g-C3N4 with excellent performance in photocatalytic H2-evolution publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.09.078 – volume: 1 start-page: 1051 issue: 7 year: 2010 ident: 10.1016/j.cis.2022.102830_bb0460 article-title: Photocatalytic hydrogen production with tunable nanorod heterostructures publication-title: The Journal of Physical Chemistry Letters doi: 10.1021/jz100075c – volume: 261 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0360 article-title: Inter-plane heterojunctions within 2D/2D FeSe2/g-C3N4 nanosheet semiconductors for photocatalytic hydrogen generation publication-title: Appl Catal Environ doi: 10.1016/j.apcatb.2019.118249 – volume: 301 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0670 article-title: In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O publication-title: Appl Catal Environ doi: 10.1016/j.apcatb.2021.120802 – volume: 133 start-page: 595 issue: 3 year: 2011 ident: 10.1016/j.cis.2022.102830_bb0510 article-title: Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water publication-title: J Am Chem Soc doi: 10.1021/ja1086358 – volume: 39 start-page: 3498 issue: 12 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0155 article-title: Photocatalytic activity of undoped and sulfur-doped TiO2 films grown by MOCVD for water treatment under visible light publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2019.02.046 – volume: 46 start-page: 34333 issue: 69 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0505 article-title: Enhancing the photocatalytic hydrogen production of the ZnO–TiO2 heterojunction by supporting nanoscale Au islands publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.08.019 – volume: 21 start-page: 2318 issue: 5 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0285 article-title: The role of nitrogen defects in graphitic carbon nitride for visible-light-driven hydrogen evolution publication-title: Phys Chem Chem Phys doi: 10.1039/C8CP06922K – volume: 29 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0045 article-title: A review of step-scheme photocatalysts publication-title: Appl Mater Today – volume: 556 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0665 article-title: In situ self-assembled S-scheme BiOBr/pCN hybrid with enhanced photocatalytic activity for organic pollutant degradation and CO2 reduction publication-title: Appl Surf Sci – ident: 10.1016/j.cis.2022.102830_bb0410 doi: 10.1016/j.ijhydene.2021.11.252 – volume: 44 start-page: 10585 issue: 21 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0495 article-title: One-pot solvothermal synthesis of 1D plasmonic TiO2@Ag nanorods with enhanced visible-light photocatalytic performance publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.02.234 – volume: 136 start-page: 8839 issue: 25 year: 2014 ident: 10.1016/j.cis.2022.102830_bb0330 article-title: Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets publication-title: J Am Chem Soc doi: 10.1021/ja5044787 – volume: 48 start-page: 7717 issue: 62 year: 2012 ident: 10.1016/j.cis.2022.102830_bb0525 article-title: Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays publication-title: Chem Commun doi: 10.1039/C2CC31773G – volume: 510 start-page: 95 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0740 article-title: Synthesis and characterization of Ag doped ZnS quantum dots for enhanced photocatalysis of Strychnine as a poison: charge transfer behavior study by electrochemical impedance and time-resolved photoluminescence spectroscopy publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2017.09.043 – volume: 314 start-page: 73 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0515 article-title: Synthesis and application of N-doped TiO2/CdS/poly (1, 8-diaminocarbazole) composite for photocatalytic degradation of 4-chlorophenol under visible light publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2019.05.060 – volume: 46 start-page: 3530 issue: 5 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0585 article-title: Synthesis and photocatalytic performance of MoS2/polycrystalline black phosphorus heterojunction composite publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.10.176 – volume: 222 start-page: 35 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0110 article-title: Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst publication-title: Appl Catal Environ doi: 10.1016/j.apcatb.2017.09.073 – volume: 289 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0210 article-title: Photocatalytic hydrogen evolution from biomass (glucose solution) on au/CdS nanorods with Au3+ self-reduction publication-title: J Solid State Chem doi: 10.1016/j.jssc.2020.121495 – volume: 46 start-page: 26074 issue: 51 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0560 article-title: Highly efficient photocatalytic hydrogen evolution by using Rh as co-catalyst in the cu/TiO2 system publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.01.216 – volume: 219 start-page: 412 year: 2017 ident: 10.1016/j.cis.2022.102830_bb0080 article-title: Photocatalytic CO2 reduction over V and W codoped TiO2 catalyst in an internal-illuminated honeycomb photoreactor under simulated sunlight irradiation publication-title: Appl Catal Environ doi: 10.1016/j.apcatb.2017.07.078 – volume: 43 start-page: 4347 issue: 9 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0120 article-title: Giant enhancement of photocatalytic H2 production over KNbO3 photocatalyst obtained via carbon doping and MoS2 decoration publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.01.055 – year: 2021 ident: 10.1016/j.cis.2022.102830_bb0700 – volume: 45 start-page: 2729 issue: 4 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0175 article-title: Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.11.127 – volume: 601 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0245 article-title: Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C3N4 nanosheets by one-step in-situ decomposition-thermal polymerization method publication-title: Appl Catal Gen doi: 10.1016/j.apcata.2020.117647 – volume: 4 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.cis.2022.102830_bb0320 article-title: Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4 publication-title: Nat Commun – volume: 44 start-page: 8011 issue: 16 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0520 article-title: Hydrogenated F-doped TiO2 for photocatalytic hydrogen evolution and pollutant degradation publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.233 – volume: 11 start-page: 41440 issue: 44 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0050 article-title: Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b14985 – volume: 118 start-page: 140 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0690 article-title: High-impressive separation of photoinduced charge carriers on step-scheme ZnO/ZnSnO3/carbon dots heterojunction with efficient activity in photocatalytic NH3 production publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2021.01.012 – volume: 12 start-page: 19203 issue: 37 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0105 article-title: CoP QD anchored carbon skeleton modified CdS nanorods as a co-catalyst for photocatalytic hydrogen production publication-title: Nanoscale doi: 10.1039/D0NR05268J – volume: 229 start-page: 41 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0290 article-title: Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production publication-title: Appl Catal Environ doi: 10.1016/j.apcatb.2018.02.006 – volume: 56 start-page: 143 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0405 article-title: Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity publication-title: Journal of Materials Science & Technology doi: 10.1016/j.jmst.2020.02.062 – volume: 46 start-page: 37782 issue: 76 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0250 article-title: Nitrogen vacancy enhanced photocatalytic selective oxidation of benzyl alcohol in g-C3N4 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.09.052 – volume: 57 start-page: 16882 issue: 51 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0305 article-title: Simultaneous manipulation of O-doping and metal vacancy in atomically thin Zn10In16S34 nanosheet arrays toward improved photoelectrochemical performance publication-title: AngewandteChemie International Edition doi: 10.1002/anie.201811632 – volume: 44 start-page: 110 issue: 1 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0215 article-title: (In, Cu) Co-doped ZnS nanoparticles for photoelectrochemical hydrogen production publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.02.112 – volume: 259 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0425 article-title: Atomic carbon chains-mediated carriers transfer over polymeric carbon nitride for efficient photocatalysis publication-title: Appl Catal Environ doi: 10.1016/j.apcatb.2019.118027 – volume: 834 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0035 article-title: One-step method to achieve multiple decorations on lamellar MoS2 to synergistically enhance the electrocatalytic HER performance publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2020.155217 – volume: 46 start-page: 30393 issue: 59 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0435 article-title: Hollow In2O3 nanotubes decorated with Cd0.67Mo0.33Se QDs for enhanced photocatalytic hydrogen production performance publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.06.179 – volume: 3 start-page: 138 issue: 1 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0615 article-title: CeO2 nanostructures enriched with oxygen vacancies for photocatalytic CO2 reduction publication-title: ACS Applied Nano Materials doi: 10.1021/acsanm.9b01833 – volume: 221 start-page: 422 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0725 article-title: Oxygen vacancies induced visible-light photocatalytic activities of CaCu3Ti4O12 with controllable morphologies for antibiotic degradation publication-title: Appl Catal Environ doi: 10.1016/j.apcatb.2017.09.026 – volume: 1 start-page: 541 issue: 3 year: 2013 ident: 10.1016/j.cis.2022.102830_bb0030 article-title: Hierarchical TiO2 photonic crystal spheres prepared by spray drying for highly efficient photocatalysis publication-title: J Mater Chem A doi: 10.1039/C2TA00060A – volume: 45 start-page: 4534 issue: 7 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0140 article-title: Three-in-one: opened charge-transfer channel, positively shifted oxidation potential, and enhanced visible light response of g-C3N4 photocatalyst through K and S co-doping publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.12.074 – volume: 47 start-page: 13044 issue: 26 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0605 article-title: A novel all-solid-state S-scheme in CdS/ZnTHPP binary nanosystem for hydrogen evolution publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.02.067 – volume: 105 start-page: 104748 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0100 article-title: The investigation of hydrogen evolution using Ca doped ZnO catalysts under visible light illumination publication-title: Mater. Sci. Semiconductor Process. doi: 10.1016/j.mssp.2019.104748 – volume: 46 start-page: 24094 issue: 47 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0355 article-title: Novel 0D/1D ZnBi2O4/ZnO S-scheme photocatalyst for hydrogen production and BPA removal publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.04.208 – volume: 604 start-page: 844 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0655 article-title: Plasmonic Bi-enhanced ammoniated α-MnS/Bi2MoO6 S-scheme heterostructure for visible-light-driven CO2 reduction publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2021.07.064 – volume: 43 start-page: 1116 issue: 2 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0185 article-title: Photocatalytic hydrogen production by water splitting over au/Al-SrTiO3 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.10.154 – volume: 873 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0260 article-title: Controllable oxygen doping and sulfur vacancies in one dimensional CdS nanorods for boosted hydrogen evolution reaction publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2021.159797 – volume: 123 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0490 article-title: Effect of Al doping on the photocatalytic activity of ZnO nanoparticles decorated on CNTs and graphene: Solvothermal synthesis and study of experimental parameters publication-title: Mater Sci Semicond Process doi: 10.1016/j.mssp.2020.105584 – volume: 42 start-page: 1519 issue: 9 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0660 article-title: Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity publication-title: Chinese Journal of Catalysis doi: 10.1016/S1872-2067(20)63765-2 – volume: 32 start-page: 3501 issue: 11 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0710 article-title: The metallic 1T-WS2 as cocatalysts for promoting photocatalytic N2 fixation performance of Bi5O7Br nanosheets publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2021.03.077 – volume: 47 start-page: 3824 issue: 6 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0590 article-title: Chlorophyll derivatives/MXene hybrids for photocatalytic hydrogen evolution: dependence of performance on the central coordinating metals publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.11.026 – volume: 384 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0755 article-title: Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution publication-title: Chem Eng J doi: 10.1016/j.cej.2019.123275 – volume: 416 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0025 article-title: Dual MOFs template-directed fabrication of hollow-structured heterojunction photocatalysts for efficient CO2 reduction publication-title: Chem Eng J doi: 10.1016/j.cej.2021.129155 – volume: 47 start-page: 2327 issue: 4 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0085 article-title: Promoting the photocatalytic H2 evolution activity of CdLa2S4 nanocrystalline using few-layered WS2 nanosheet as a co-catalyst publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.10.227 – volume: 43 start-page: 8198 issue: 17 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0500 article-title: Plasmonic ag nanoparticles decorated NaNbO3 nanorods for efficient photoelectrochemical water splitting publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.03.075 – volume: 47 start-page: 2967 issue: 5 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0745 article-title: MoS2 grown in situ on CdS nanosheets for boosted photocatalytic hydrogen evolution under visible light publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.10.256 – volume: 42 start-page: 710 issue: 5 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0005 article-title: Advances in designing heterojunction photocatalytic materials publication-title: Chinese Journal of Catalysis doi: 10.1016/S1872-2067(20)63698-1 – volume: 47 start-page: 1656 issue: 3 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0440 article-title: A nano heterostructure with step-accelerated system toward optimized photocatalytic hydrogen evolution publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.10.143 – volume: 8 start-page: 76 issue: 1 year: 2009 ident: 10.1016/j.cis.2022.102830_bb0060 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat Mater doi: 10.1038/nmat2317 – volume: 31 start-page: 2009807 issue: 28 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0255 article-title: Vacancy engineering in semiconductor photocatalysts: implications in hydrogen evolution and nitrogen fixation applications publication-title: Adv Funct Mater doi: 10.1002/adfm.202009807 – volume: 13 start-page: 1250 issue: 5 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0055 article-title: Recent advances in graphitic carbon nitride supported single-atom catalysts for energy conversion publication-title: ChemCatChem doi: 10.1002/cctc.202001517 – volume: 113 start-page: 1560 issue: 4 year: 2009 ident: 10.1016/j.cis.2022.102830_bb0335 article-title: A systematical study on photocatalytic properties of AgMO2 (M= Al, Ga, In): effects of chemical compositions, crystal structures, and electronic structures publication-title: J Phys Chem C doi: 10.1021/jp806513t – volume: 247 start-page: 70 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0430 article-title: Soluble g-C3N4 nanosheets: facile synthesis and application in photocatalytic hydrogen evolution publication-title: Appl Catal Environ doi: 10.1016/j.apcatb.2019.01.088 – volume: 134 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0160 article-title: Synergistic effect of polychromatic radiation on visible light activity of N-doped TiO2 photocatalyst publication-title: Catalysis Communications doi: 10.1016/j.catcom.2019.105841 – volume: 27 start-page: 15103 issue: 13 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0170 article-title: Synthesis and photocatalytic activity study of S-doped WO3 under visible light irradiation publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-07827-z – volume: 11 start-page: 1500 issue: 12 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0685 article-title: Dual use of copper-modified TiO2 nanotube arrays as material for photocatalytic NH3 degradation and relative humidity sensing publication-title: Coatings doi: 10.3390/coatings11121500 – volume: 44 start-page: 30084 issue: 57 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0130 article-title: Non-noble-metal Ni nanoparticles modified N-doped g-C3N4 for efficient photocatalytic hydrogen evolution publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.09.129 – volume: 602 start-page: 553 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0680 article-title: Bi4O5Br2 anchored on Ti3C2 MXene with ohmic heterojunction in photocatalytic NH3 production: Insights from combined experimental and theoretical calculations publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2021.06.049 – volume: 46 start-page: 234 issue: 1 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0220 article-title: In situ W/O co-doped hollow carbon nitride tubular structures with enhanced visible-light-driven photocatalytic performance for hydrogen evolution publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.09.261 – volume: 616 start-page: 152 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0235 article-title: Carbon and phosphorus co-doped carbon nitride hollow tube for improved photocatalytic hydrogen evolution publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2022.02.057 – volume: 23 start-page: 2812 issue: 4 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0365 article-title: A novel design of SiH/CeO2 (111) van der Waals type-II heterojunction for water splitting publication-title: Phys Chem Chem Phys doi: 10.1039/D0CP05238H – volume: 131 start-page: 5113 issue: 15 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0465 article-title: ZnSe nanorods as visible-light absorbers for photocatalytic and photoelectrochemical H2 evolution in water publication-title: AngewandteChemie – volume: 44 start-page: 19162 issue: 35 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0385 article-title: Fabrication of Ta3N5ZnO direct Z-scheme photocatalyst for hydrogen generation publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.07.117 – volume: 404 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0760 article-title: One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution publication-title: Chem Eng J doi: 10.1016/j.cej.2020.126498 – volume: 11 start-page: 2217 issue: 8 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0015 article-title: Facile preparation of 1T/2H-Mo (S1-xSex)2 nanoparticles for boosting hydrogen evolution reaction publication-title: ChemCatChem doi: 10.1002/cctc.201900095 – volume: 7 start-page: 8167 issue: 14 year: 2017 ident: 10.1016/j.cis.2022.102830_bb0380 article-title: Synthesis and characterization of a core–shell BiVO4@ gC3N4 photo-catalyst with enhanced photocatalytic activity under visible light irradiation publication-title: RSC Adv doi: 10.1039/C6RA27766G – volume: 2 start-page: 3344 issue: 10 year: 2014 ident: 10.1016/j.cis.2022.102830_bb0475 article-title: Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution publication-title: J Mater Chem A doi: 10.1039/c3ta14108j – volume: 371 start-page: 179 issue: 1–2 year: 2009 ident: 10.1016/j.cis.2022.102830_bb0125 article-title: Effect of oxygen and nitrogen concentration of nitrogen doped TiOx film as photocatalyst prepared by reactive sputtering publication-title: Appl Catal Gen doi: 10.1016/j.apcata.2009.10.011 – volume: 44 start-page: 21781 issue: 39 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0540 article-title: Green synthesized carbon quantum dots as TiO2 sensitizers for photocatalytic hydrogen evolution publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.06.168 – volume: 47 start-page: 15505 issue: 34 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0115 article-title: Microwave-assisted one-pot hydrothermal synthesis of V and La co-doped ZnO/CNTs nanocomposite for boosted photocatalytic hydrogen production publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.09.214 – volume: 7 start-page: 5324 issue: 10 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0415 article-title: Template-free synthesis of nanocage-like gC3N4 with high surface area and nitrogen defects for enhanced photocatalytic H2 activity publication-title: J Mater Chem A doi: 10.1039/C8TA12076E – volume: 600 start-page: 138 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0265 article-title: Core-shell structure of sulphur vacancies-CdS@ CuS: enhanced photocatalytic hydrogen generation activity based on photoinduced interfacial charge transfer publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2021.05.013 – volume: 47 start-page: 11190 issue: 21 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0545 article-title: ZIF-L-derived porous C-doped ZnO/CdS graded nanorods with Z-scheme heterojunctions for enhanced photocatalytic hydrogen evolution publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.01.154 – volume: 46 start-page: 3996 issue: 5 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0145 article-title: One step synthesis of self-doped F–Ta2O5 nanoshuttles photocatalyst and enhanced photocatalytic hydrogen evolution publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.10.250 – volume: 12 start-page: 31477 issue: 28 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0625 article-title: Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c08152 – volume: 10 start-page: 3925 issue: 10 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0485 article-title: Visible light responsive photocatalytic hydrogen evolution using MoS2 incorporated ZnO publication-title: Applied Nanoscience doi: 10.1007/s13204-020-01476-x – volume: 6 start-page: 25695 issue: 31 year: 2016 ident: 10.1016/j.cis.2022.102830_bb0695 article-title: Construction of a 2D/2D gC3N4/rGO hybrid heterojunction catalyst with outstanding charge separation ability and nitrogen photofixation performance via a surface protonation process publication-title: RSC Adv doi: 10.1039/C5RA28123G – volume: 47 start-page: 12592 issue: 25 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0090 article-title: Constructing atomic Co1–N4 sites in 2D polymeric carbon nitride for boosting photocatalytic hydrogen harvesting under visible light publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.02.012 – volume: 212 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0675 article-title: In2S3 nanoflakes grounded in Bi2WO6 nanoplates: a novel hierarchical heterojunction catalyst anchored on W mesh for efficient elimination of toluene publication-title: Environ Res doi: 10.1016/j.envres.2022.113148 – volume: 290 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0715 article-title: S-scheme 1 T phase MoSe2/AgBr heterojunction toward antibiotic degradation: photocatalytic mechanism, degradation pathways, and intermediates toxicity evaluation publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2022.120881 – volume: 168 start-page: 1150 year: 2017 ident: 10.1016/j.cis.2022.102830_bb0735 article-title: New insight into self-modified surfaces with defect-rich rutile TiO2 as a visible-light-driven photocatalyst publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.09.095 – volume: 12 start-page: 3523 issue: 4 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0470 article-title: Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO2 reduction publication-title: ACS Nano doi: 10.1021/acsnano.8b00498 – volume: 132 start-page: 360 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0240 article-title: Chitosan modified N, S-doped TiO2 and N, S-doped ZnO for visible light photocatalytic degradation of tetracycline publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.03.217 – volume: 47 start-page: 14280 issue: 31 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0575 article-title: Molecular engineering control defects within carbon nitride for optimized co-catalyst Pt induced photocatalytic CO2 reduction and NO2 oxidation reaction publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.01.219 – volume: 807 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0165 article-title: Facile fabrication of N-doped ZnS nanomaterials for efficient photocatalytic performance of organic pollutant removal and H2 production publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.151670 – volume: 7 start-page: 3469 issue: 11 year: 2007 ident: 10.1016/j.cis.2022.102830_bb0445 article-title: Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit publication-title: Nano Lett doi: 10.1021/nl072046x – volume: 272 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0650 article-title: 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity publication-title: Appl Catal Environ doi: 10.1016/j.apcatb.2020.119006 – volume: 54 start-page: 10836 issue: 15 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0390 article-title: 2D BiVO4/g-C3N4 Z-scheme photocatalyst for enhanced overall water splitting publication-title: J Mater Sci doi: 10.1007/s10853-019-03664-9 – volume: 284 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0535 article-title: Effective promotion of spacial charge separation of dual S-scheme (1D/2D/0D) WO3@ ZnIn2S4/Bi2S3 heterojunctions for enhanced photocatalytic performance under visible light publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2021.120207 – volume: 9 start-page: 2741 issue: 13 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0195 article-title: Photocatalytic hydrogen production from glycerol aqueous solution using cu-doped ZnO under visible light irradiation publication-title: Applied Sciences doi: 10.3390/app9132741 – volume: 11 start-page: 6391 issue: 12 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0555 article-title: Exceptional co-catalyst free photocatalytic activities of B and Fe co-doped SrTiO3 for CO2 conversion and H2 evolution publication-title: Nano Research doi: 10.1007/s12274-018-2164-z – volume: 58 start-page: 2073 issue: 7 year: 2019 ident: 10.1016/j.cis.2022.102830_bb0720 article-title: Z-Scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities publication-title: AngewandteChemie International Edition doi: 10.1002/anie.201813417 – volume: 121 start-page: 9433 issue: 17 year: 2017 ident: 10.1016/j.cis.2022.102830_bb0345 article-title: Anomalous photocatalytic activity of nanocrystalline γ-phase Ga2O3 enabled by long-lived defect trap states publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.7b02275 – volume: 122 start-page: 21108 issue: 37 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0065 article-title: Valence band engineering via PtII single-atom confinement realizing photocatalytic water splitting publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.8b03383 – volume: 46 start-page: 21549 issue: 41 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0225 article-title: S, N co-doped graphene quantum dots decorated TiO2 and supported with carbon for oxygen reduction reaction catalysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.04.013 – volume: 43 start-page: 748 issue: 2 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0180 article-title: Copper-doped flower-like molybdenum disulfide/bismuth sulfide photocatalysts for enhanced solar water splitting publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.10.169 – volume: 133 start-page: 12017 issue: 21 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0705 article-title: Magnetic-field-stimulated efficient photocatalytic N2 fixation over defective BaTiO3 perovskites publication-title: AngewandteChemie – volume: 43 start-page: 2073 issue: 4 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0750 article-title: Rare earth metal Gd influenced defect sites in N doped TiO2: defect mediated improved charge transfer for enhanced photocatalytic hydrogen production publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.12.050 – volume: 12 start-page: 90 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0300 article-title: Genomic and phenotypic diversity of carbapenemase-producing enterobacteriaceae isolates from bacteremia in China: a multicenter epidemiological, microbiological, and genetic study publication-title: Engineering doi: 10.1016/j.eng.2020.10.015 – volume: 12 start-page: 1213 issue: 3 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0040 article-title: Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting publication-title: Nanoscale doi: 10.1039/C9NR09183A – volume: 43 start-page: 9224 issue: 19 year: 2018 ident: 10.1016/j.cis.2022.102830_bb0190 article-title: BaZrO3 hollow nanostructure with Fe (III) doping for photocatalytic hydrogen evolution under visible light publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.03.217 – volume: 46 start-page: 5869 issue: 12 year: 2022 ident: 10.1016/j.cis.2022.102830_bb0530 article-title: Autonomous self-optimizing defects by refining energy levels through hydrogenation in CeO2–x polymorphism: a walking mobility of oxygen vacancy with enhanced adsorption capabilities and photocatalytic stability publication-title: New J Chem doi: 10.1039/D2NJ00057A – volume: 28 start-page: 2427 issue: 12 year: 2016 ident: 10.1016/j.cis.2022.102830_bb0070 article-title: Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution publication-title: Adv Mater doi: 10.1002/adma.201505281 – volume: 45 start-page: 629 issue: 1 year: 2020 ident: 10.1016/j.cis.2022.102830_bb0600 article-title: Oxygen vacancies mediated in-situ growth of noble-metal (ag, au, Pt) nanoparticles on 3D TiO2 hierarchical spheres for efficient photocatalytic hydrogen evolution from water splitting publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.10.231 – volume: 33 start-page: 2100317 issue: 22 year: 2021 ident: 10.1016/j.cis.2022.102830_bb0400 article-title: An inorganic/organic S-scheme heterojunction H2-production Photocatalyst and its charge transfer mechanism publication-title: Adv Mater doi: 10.1002/adma.202100317 – volume: 15 start-page: 10978 issue: 26 year: 2013 ident: 10.1016/j.cis.2022.102830_bb0340 article-title: Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile publication-title: Phys Chem Chem Phys doi: 10.1039/c3cp50927c |
SSID | ssj0002575 |
Score | 2.7029042 |
SecondaryResourceType | review_article |
Snippet | The photocatalytic technology illustrates an eco-friendly and sustainable route to overcome environmental and energy issues. The successful construction of a... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102830 |
SubjectTerms | CO2 reduction H2 evolution N2 fixation Photocatalysts Pollutants degradation Semiconductors Strategies |
Title | Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications |
URI | https://dx.doi.org/10.1016/j.cis.2022.102830 https://www.ncbi.nlm.nih.gov/pubmed/36592501 https://www.proquest.com/docview/2760547565 |
Volume | 311 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYQCMEF8WY8piBxQiq0adot3KYJNJjgwENwq7ImE0NTO9GCtAv_gv-LnbQ8DnDg0lZpmkaxFdux_RngQA2EDlGyelKExhNpS3ptgxc5DEwQDfiAW4_p5VXcuxMXD9HDDHTrXBgKq6z2fren2926ajmuVvN4MhpRjq9PWO8xpziDkFMSnxAt4vKjt68wD2RJV8UAzWbqXXs2bYxXOiLEbs6PrJj1f5NNv-meVgadLcNSpTyyjpvfCsyYbBXmXTnJ6SosdOvqbdhqQzvTYg3ebyj-Pc8I2DV_ZpPHvMztoc20KIsT1mFpVe2AuTQWRgjGY7LZUaox1A_ZK9rT-UvBirLGlWBlzlA9L0r7_tuQOBCbfOUiFAyfmLaxH4Z9d5avw93Z6W2351XFGLxUBLL00rYWaAxyqQOpIxkrjcbVkKMIDNpGKOXrMETVIPa1MsOhRkLEaBuhqR4HyA9RHG7AbJZnZguYVqESOFSK3YUyXBHolrAeUdWWsWyAX5MhSSukciqYMU7qkLQnbC8SolziKNeAw89PJg6m46_OoqZt8oPXEhQjf322X_NBgsQkx4rKDC5_wltoFIoW6sYN2HQM8jmLkPzWkR9s_--nO7BIBe7doc8uzJbPL2YP1aBy0LR83oS5znm_d0X3_vV9_wNeigiu |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5RqopeUEtburS0U6m9VAoktpNdI3FAtGgpP5eCxM31xl51K5SscGi1l74FT8ILMrYToAc4VOISRXbsJB57fjyfZwA-6pEwnCRrIgW3iSj7MhlYushxZrN8xEYseEwPDovhsfh2kp_MwWV3FsbDKlveH3l64NZtyXo7muvTycSf8U19rPeCeZwBZ7JFVu7Z2R-y29zm7hci8ifGdr4ebQ-TNrVAUopMNkk5MIJMGyZNJk0uC23IVBgzYujZwAqtU8M5CboiNdqOx0b0SctPCzI8i4z-Li849fsIHgtiFz5twtrfG1wJrYGYNoHsdP95nSs1gMrKiQ8RzthakOvpXcLwLmU3CL2dZ7DYaqu4FQfkOczZagmexPyVsyVY2O7SxVFpwJKW7gVcfPeA-7rykWTrM5z-rJs67BLNXOM2cAvLNr0CxnMz6EMmn_pNAhKjSAop_iYDvj536JoukAU2NZI94JpQf6tL6ginN4cfHNIdmgA2sXjbO_8Sjh-ERK9gvqor-xrQaK4FdVXS40Jbpn2ULxFcsHogC9mDtCODKtvQ6D5Dx6nqMHC_qNwpTzkVKdeDz9dNpjEuyH0Pi4626p_JrUhu3dfsQzcPFBHTe3J0ZWn4FeuTFSr6pIz3YDlOkOuv4N5RnqfZyv-99D0sDI8O9tX-7uHeG3hKNTzuOL2F-ebs3K6SDtaM3oU5j_DjoRfZFaVFQTM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiconductor+photocatalysts%3A+A+critical+review+highlighting+the+various+strategies+to+boost+the+photocatalytic+performances+for+diverse+applications&rft.jtitle=Advances+in+colloid+and+interface+science&rft.au=Ahmad%2C+Irshad&rft.au=Zou%2C+Yanhong&rft.au=Yan%2C+Jiaying&rft.au=Liu%2C+Yuyu&rft.date=2023-01-01&rft.eissn=1873-3727&rft.volume=311&rft.spage=102830&rft_id=info:doi/10.1016%2Fj.cis.2022.102830&rft_id=info%3Apmid%2F36592501&rft.externalDocID=36592501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8686&client=summon |