On smoothness and uniqueness of multi-solitons of the non-linear Schrödinger equations

In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in with general non-linearities. Multi-solitons have already been constructed in in papers by Merle (1990), Martel and Merle (2006), and Côte, Martel and Merle (2011). We show here that multi-solitons...

Full description

Saved in:
Bibliographic Details
Published inCommunications in partial differential equations Vol. 46; no. 12; pp. 2325 - 2385
Main Authors Côte, Raphaël, Friederich, Xavier
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.12.2021
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0360-5302
1532-4133
DOI10.1080/03605302.2021.1941107

Cover

Loading…
Abstract In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in with general non-linearities. Multi-solitons have already been constructed in in papers by Merle (1990), Martel and Merle (2006), and Côte, Martel and Merle (2011). We show here that multi-solitons are smooth, depending on the regularity of the non-linearity. We obtain also a result of uniqueness in some class, either when the ground states are all stable, or in the mass-critical case.
AbstractList In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in with general non-linearities. Multi-solitons have already been constructed in in papers by Merle (1990), Martel and Merle (2006), and Côte, Martel and Merle (2011). We show here that multi-solitons are smooth, depending on the regularity of the non-linearity. We obtain also a result of uniqueness in some class, either when the ground states are all stable, or in the mass-critical case.
In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in with general non-linearities. Multi-solitons have already been constructed in in papers by Merle (1990), Martel and Merle (2006), and Côte, Martel and Merle (2011). We show here that multi-solitons are smooth, depending on the regularity of the non-linearity. We obtain also a result of uniqueness in some class, either when the ground states are all stable, or in the mass-critical case.
In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in R^d with general non-linearities. Multi-solitons have already been constructed in H^1, successively by Merle, by Martel and Merle, and by Côte, Martel and Merle. We show here that multi-solitons are smooth, depending on the regularity of the non-linearity. We obtain also a result of uniqueness in some class, either when the ground states are all stable, or in the mass-critical case.
Author Friederich, Xavier
Côte, Raphaël
Author_xml – sequence: 1
  givenname: Raphaël
  surname: Côte
  fullname: Côte, Raphaël
  organization: Institut de Recherche Mathématique Avancée UMR 7501, Université de Strasbourg
– sequence: 2
  givenname: Xavier
  surname: Friederich
  fullname: Friederich, Xavier
  organization: Institut de Recherche Mathématique Avancée UMR 7501, Université de Strasbourg
BackLink https://hal.science/hal-02873307$$DView record in HAL
BookMark eNqFkMFKAzEURYNUsFY_QRhw5WJq3mTSTHCjiFqh4ELFZUhmMjZlmmiSUfpj_oA_5kxbXbjQ1eNdzr28d_fRwDqrEToCPAZc4FNMJpgSnI0znMEYeA6A2Q4aAiVZmgMhAzTsmbSH9tB-CAuMoch4PkRPdzYJS-fi3OoQEmmrpLXmtdXr1dXJsm2iSYNrTHR2rcS5TroL0sZYLX1yX87950dl7LP2iX5tZTQdeIB2a9kEfbidI_R4ffVwOU1ndze3lxeztMyBx7RkOWcAlaxKnmOuJpRAxYAqTOlEgia8VlqVsqoJ6zSudF4rJRUlhcqKSUFG6GSTO5eNePFmKf1KOGnE9GImeg1nBSMEszfSsccb9sW77sMQxcK13nbniYwynjNKoafohiq9C8Hr-icWsOj7Ft99i75vse2785398pUmrsuIXprmX_f5xm1s7fxSvjvfVCLKVeN87aUtTRDk74gvziGbXQ
CitedBy_id crossref_primary_10_1007_s00220_023_04904_5
crossref_primary_10_1063_5_0102156
crossref_primary_10_1007_s10013_023_00640_4
crossref_primary_10_1112_jlms_12974
crossref_primary_10_1007_s10013_023_00631_5
crossref_primary_10_1007_s00440_023_01201_z
crossref_primary_10_1090_tran_9025
crossref_primary_10_1007_s00208_022_02484_8
crossref_primary_10_1007_s00209_022_03137_x
Cites_doi 10.1215/S0012-7094-06-13331-8
10.1007/BF01221125
10.1016/j.anihpc.2006.01.001
10.1080/03605302.2010.503770
10.1103/RevModPhys.72.545
10.1017/fms.2014.13
10.1016/j.anihpc.2020.09.002
10.1007/s00205-017-1109-0
10.1112/plms/pds038
10.1512/iumj.2000.49.1893
10.1007/BF01403504
10.1016/j.matpur.2011.03.004
10.4171/RMI/592
10.1016/j.na.2010.05.045
10.1002/cpa.3160390103
10.1016/j.jde.2013.06.005
10.1353/ajm.2005.0033
10.1137/140960220
10.1016/S0021-7824(02)01274-6
10.1137/0516034
10.1007/BF02096981
10.1007/BF00275874
10.1017/S030821051500030X
10.1007/BF00251502
10.1088/0951-7715/27/11/2689
10.1007/BF00250555
10.1016/0022-1236(79)90076-4
10.1007/BF02787794
10.1016/j.cnsns.2014.06.028
10.1002/cpa.20292
10.4171/RMI/636
10.1016/0022-1236(90)90016-E
10.1090/tran/7303
ContentType Journal Article
Copyright 2021 Taylor & Francis Group, LLC 2021
2021 Taylor & Francis Group, LLC
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Taylor & Francis Group, LLC 2021
– notice: 2021 Taylor & Francis Group, LLC
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1080/03605302.2021.1941107
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4133
EndPage 2385
ExternalDocumentID oai_HAL_hal_02873307v3
10_1080_03605302_2021_1941107
1941107
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
N9A
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
TASJS
07G
1TA
1XC
AAIKQ
AAKBW
ABEFU
ACAGQ
ACGEE
AEUMN
AGCQS
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMEWO
AMXXU
BCCOT
BPLKW
C06
CAG
COF
CRFIH
DMQIW
DWIFK
EJD
IVXBP
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
VH1
VOOES
ZY4
ID FETCH-LOGICAL-c419t-c749711dadc9409b6531d715b0556a1e39fbebcadf37b059be4fbbab538b28683
ISSN 0360-5302
IngestDate Wed Jun 04 07:11:58 EDT 2025
Wed Aug 13 11:12:47 EDT 2025
Tue Jul 01 03:00:53 EDT 2025
Thu Apr 24 23:02:47 EDT 2025
Wed Dec 25 09:06:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords non-linear Schrödinger equations
smoothness
multi-solitons
uniqueness
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c419t-c749711dadc9409b6531d715b0556a1e39fbebcadf37b059be4fbbab538b28683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://hal.science/hal-02873307
PQID 2579475513
PQPubID 186205
PageCount 61
ParticipantIDs hal_primary_oai_HAL_hal_02873307v3
crossref_primary_10_1080_03605302_2021_1941107
informaworld_taylorfrancis_310_1080_03605302_2021_1941107
proquest_journals_2579475513
crossref_citationtrail_10_1080_03605302_2021_1941107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-02
PublicationDateYYYYMMDD 2021-12-02
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in partial differential equations
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Combet V. (CIT0039) 2014; 34
Pitaevskii L. P. (CIT0002) 2003
Pohozaev S. I. (CIT0009) 1965; 5
CIT0014
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
CIT0019
CIT0040
CIT0021
CIT0020
CIT0023
CIT0022
Duyckaerts T. (CIT0036) 2008; 2008
Zakharov V. E. (CIT0010) 1972; 34
CIT0003
CIT0025
Malomed B. (CIT0001) 2005
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0008
References_xml – ident: CIT0038
  doi: 10.1215/S0012-7094-06-13331-8
– ident: CIT0024
  doi: 10.1007/BF01221125
– ident: CIT0013
  doi: 10.1016/j.anihpc.2006.01.001
– ident: CIT0022
  doi: 10.1080/03605302.2010.503770
– ident: CIT0003
  doi: 10.1103/RevModPhys.72.545
– ident: CIT0017
  doi: 10.1017/fms.2014.13
– volume-title: Encyclopedia of Nonlinear Science
  year: 2005
  ident: CIT0001
– ident: CIT0023
  doi: 10.1016/j.anihpc.2020.09.002
– ident: CIT0030
  doi: 10.1007/s00205-017-1109-0
– volume: 2008
  start-page: rpn002
  issue: 4
  year: 2008
  ident: CIT0036
  publication-title: Int. Math. Res. Pap
– ident: CIT0025
  doi: 10.1112/plms/pds038
– ident: CIT0028
  doi: 10.1512/iumj.2000.49.1893
– ident: CIT0035
  doi: 10.1007/BF01403504
– volume-title: Bose-Einstein condensation
  year: 2003
  ident: CIT0002
– volume: 5
  start-page: 1408
  year: 1965
  ident: CIT0009
  publication-title: Sov. Math. J
– ident: CIT0020
  doi: 10.1016/j.matpur.2011.03.004
– ident: CIT0037
  doi: 10.4171/RMI/592
– ident: CIT0029
  doi: 10.1016/j.na.2010.05.045
– ident: CIT0033
  doi: 10.1002/cpa.3160390103
– ident: CIT0040
  doi: 10.1016/j.jde.2013.06.005
– ident: CIT0012
  doi: 10.1353/ajm.2005.0033
– ident: CIT0019
  doi: 10.1137/140960220
– ident: CIT0034
  doi: 10.1016/S0021-7824(02)01274-6
– ident: CIT0032
  doi: 10.1137/0516034
– ident: CIT0011
  doi: 10.1007/BF02096981
– ident: CIT0027
  doi: 10.1007/BF00275874
– ident: CIT0016
  doi: 10.1017/S030821051500030X
– ident: CIT0026
  doi: 10.1007/BF00251502
– ident: CIT0015
  doi: 10.1088/0951-7715/27/11/2689
– ident: CIT0008
  doi: 10.1007/BF00250555
– ident: CIT0006
  doi: 10.1016/0022-1236(79)90076-4
– ident: CIT0007
  doi: 10.1007/BF02787794
– ident: CIT0004
  doi: 10.1016/j.cnsns.2014.06.028
– ident: CIT0018
  doi: 10.1002/cpa.20292
– ident: CIT0005
– volume: 34
  start-page: 1961
  issue: 5
  year: 2014
  ident: CIT0039
  publication-title: Am. Inst. Math. Sci
– volume: 34
  start-page: 62
  year: 1972
  ident: CIT0010
  publication-title: Sov. Phys. JETP
– ident: CIT0014
  doi: 10.4171/RMI/636
– ident: CIT0031
  doi: 10.1016/0022-1236(90)90016-E
– ident: CIT0021
  doi: 10.1090/tran/7303
SSID ssj0018294
Score 2.3997588
Snippet In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in with general non-linearities. Multi-solitons have already...
In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in with general non-linearities. Multi-solitons have already...
In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in R^d with general non-linearities. Multi-solitons have...
SourceID hal
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2325
SubjectTerms 35B40 (primary)
Analysis of PDEs
Mathematical analysis
Mathematics
Multi-solitons
non-linear Schrödinger equations
Nonlinearity
Schrodinger equation
Smoothness
Solitary waves
Uniqueness
Title On smoothness and uniqueness of multi-solitons of the non-linear Schrödinger equations
URI https://www.tandfonline.com/doi/abs/10.1080/03605302.2021.1941107
https://www.proquest.com/docview/2579475513
https://hal.science/hal-02873307
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa63QscEL-isKAIcUOp4sRN4mMXtqpQdyuhVltxsezE1h6W7rJNOXDmmXgBXowZ2_mptmKBS9S4dex6Jp4Zz8w3hLzNIyMjE_OwYJqBgZLIkBvKQgOyM-cgkXOJicKnZ-l0yT6uRqte70cnamlbqWHxfW9eyf9QFdqArpgl-w-UbR4KDfAZ6AtXoDBc_4rG8_W7zZcrWGu7X-ER-NbisdpbdJxjtGC4wRA3H-6GaiYY_CEql_IGMTitq_w4LR0gof667Rzh1QgG3SQSF3eOk7HuHVdexd7s9kW_hn00cwX4PsnrC2nd8sdNUMcE7PQSPUb2bGclUUZ3jyFiakM6WqN1casiSCcsyWVnRSFWKHJyp95s4xCEaNLdjf2BpOe6uLu3Ji5F2stp0DVGe2WAD5qEAXG8IU52SDmjvrzuLub22VxMlrOZWJysFgfkMAZjI-qTw_H0w-fzxhuVx9zDkLn_UGeCIUb7vmF2dJyDCxth28XBvSX3rTKzeEgeeCskGDuWekR6ev2Y3D9tIHw3T8j5fB20zBUAcwUtcwVXJthlLmyB3kHLXAEy16-fjrGChjmekuXkZPF-GvoqHPD6Ul6FRcZ4Rmkpy4KziKsUdu0yoyOFMEyS6oQbhRF1pUkyaONKM6OUVCBJVZynefKM9GFs_ZwEcAMaapqZmBYskWlepEZrAzbBSJeR5gPC6nUThYeox0opl4LWSLZ-uQUut_DLPSDDptu1w2i5q8MbIErzW0RYn45nAttA3c4SmOW3ZEB4l2aishxuHHOL5I4BjmoCC79fbAQIR84yLKj04s9fvyT32jfsiPSrm61-BapvpV57zvwNMYWozQ
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-x8bDxAAyGVijMQrymxLGbxI8ToirQlgc2bW9W7NiqtNGOJuWBD8YX4Itx5yRVYZr2sMc4Of-78_nOOf8O4F0e-yL2iYqsdBIdFFFEynMZedw7c4U7cl7QReHpLB2fyc8Xw4utuzAUVkk-tG-AIoKupsVNh9FdSNx71LoxZbtB9y7hA3TDyYnZgYdDlWaUvkHEs82fhDxRLYRUHBFNd4vntmr-2Z925iE6chvD9IbODhvR6AnYbghN_MnlYF2bgf31H7rj_cb4FB63dio7aQTrAB64xTN4NN2AvFbP4fzrglXfl8hqUpcMm2LrAAcbHpeehWDFqKIIO5RtKkFqtlguIupQsWLf7Hz153cZThaZ-9GgjleHcDb6ePphHLV5GpDBXNWRzaTKOC-L0ip0F02K67rM-NAQUE_BnVDeUMxV6UWGZco46Y0pDOpak-RpLl7ALrbtjoDhA9owaeYTbqUo0tym3jmPVuPQlbFTPZAdd7RtQcwpl8aV5h3WaTtvmuZNt_PWg8GG7LpB8biL4C2yfvMtYXCPTyaaytAgywT28qfogdqWDF2HMxbfJETR4o4G-p0Y6VZrVBrVp5IZpdx5eY-qj2FvfDqd6Mmn2ZdXsE-vQvxN0ofderV2r9GKqs2bsEz-AkerDGg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4VKiE40PKnbrttrarXLHHsTeLjCrratrBUKghuVpzYWqntLmyyPfBgvAAv1hknWUER4sAxTvw_Hs84n78B-JyGLgtdpIJcWokOisgC5bgMHO6dqcIdOc3oovDxOB6dyW8X_RZNWDawSvKhXU0U4XU1Le7LwrWIuH1UuiEFu0HvLuI99MLJh1mBlzGaJyTYIhwvfySkkWoYpMKA8rSXeB4r5t72tDLx4Mi7FKYPVLbfh4avwLQ9qOEnv3qLyvTy6__IHZ_Vxdew2VipbFCL1Ra8sNNt2DheUryWO3B-MmXlnxlONClLhjWxhSeD9Y8zxzxUMSgJX4eSTSmYm01n04Dak83Zz3wyv70p_Lkis1c153i5C2fDL6cHo6CJ0oDTy1UV5IlUCedFVuQKnUUT46ouEt43RNOTcSuUM4S4KpxIME0ZK50xmUFNa6I0TsUerGLd9g0wfEALJk5cxHMpsjjNY2etQ5uxb4vQqg7IdnJ03lCYUySN35q3TKfNuGkaN92MWwd6y2yXNYfHUxk-4cwvvyUG7tHgSFMammOJwFb-FR1QdwVDV_6ExdXhULR4ooJuK0W60RmlRuWpZEIBd94-o-iPsPbjcKiPvo6_v4N1euPBN1EXVqv5wr5HE6oyH_wi-Qf_aQsV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+smoothness+and+uniqueness+of+multi-solitons+of+the+non-linear+Schr%C3%B6dinger+equations&rft.jtitle=Communications+in+partial+differential+equations&rft.au=C%C3%B4te%2C+Rapha%C3%ABl&rft.au=Friederich%2C+Xavier&rft.date=2021-12-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=46&rft.issue=12&rft.spage=2325&rft.epage=2385&rft_id=info:doi/10.1080%2F03605302.2021.1941107&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon