On smoothness and uniqueness of multi-solitons of the non-linear Schrödinger equations
In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in with general non-linearities. Multi-solitons have already been constructed in in papers by Merle (1990), Martel and Merle (2006), and Côte, Martel and Merle (2011). We show here that multi-solitons...
Saved in:
Published in | Communications in partial differential equations Vol. 46; no. 12; pp. 2325 - 2385 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
02.12.2021
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0360-5302 1532-4133 |
DOI | 10.1080/03605302.2021.1941107 |
Cover
Loading…
Abstract | In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in
with general non-linearities. Multi-solitons have already been constructed in
in papers by Merle (1990), Martel and Merle (2006), and Côte, Martel and Merle (2011). We show here that multi-solitons are smooth, depending on the regularity of the non-linearity. We obtain also a result of uniqueness in some class, either when the ground states are all stable, or in the mass-critical case. |
---|---|
AbstractList | In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in
with general non-linearities. Multi-solitons have already been constructed in
in papers by Merle (1990), Martel and Merle (2006), and Côte, Martel and Merle (2011). We show here that multi-solitons are smooth, depending on the regularity of the non-linearity. We obtain also a result of uniqueness in some class, either when the ground states are all stable, or in the mass-critical case. In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in with general non-linearities. Multi-solitons have already been constructed in in papers by Merle (1990), Martel and Merle (2006), and Côte, Martel and Merle (2011). We show here that multi-solitons are smooth, depending on the regularity of the non-linearity. We obtain also a result of uniqueness in some class, either when the ground states are all stable, or in the mass-critical case. In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in R^d with general non-linearities. Multi-solitons have already been constructed in H^1, successively by Merle, by Martel and Merle, and by Côte, Martel and Merle. We show here that multi-solitons are smooth, depending on the regularity of the non-linearity. We obtain also a result of uniqueness in some class, either when the ground states are all stable, or in the mass-critical case. |
Author | Friederich, Xavier Côte, Raphaël |
Author_xml | – sequence: 1 givenname: Raphaël surname: Côte fullname: Côte, Raphaël organization: Institut de Recherche Mathématique Avancée UMR 7501, Université de Strasbourg – sequence: 2 givenname: Xavier surname: Friederich fullname: Friederich, Xavier organization: Institut de Recherche Mathématique Avancée UMR 7501, Université de Strasbourg |
BackLink | https://hal.science/hal-02873307$$DView record in HAL |
BookMark | eNqFkMFKAzEURYNUsFY_QRhw5WJq3mTSTHCjiFqh4ELFZUhmMjZlmmiSUfpj_oA_5kxbXbjQ1eNdzr28d_fRwDqrEToCPAZc4FNMJpgSnI0znMEYeA6A2Q4aAiVZmgMhAzTsmbSH9tB-CAuMoch4PkRPdzYJS-fi3OoQEmmrpLXmtdXr1dXJsm2iSYNrTHR2rcS5TroL0sZYLX1yX87950dl7LP2iX5tZTQdeIB2a9kEfbidI_R4ffVwOU1ndze3lxeztMyBx7RkOWcAlaxKnmOuJpRAxYAqTOlEgia8VlqVsqoJ6zSudF4rJRUlhcqKSUFG6GSTO5eNePFmKf1KOGnE9GImeg1nBSMEszfSsccb9sW77sMQxcK13nbniYwynjNKoafohiq9C8Hr-icWsOj7Ft99i75vse2785398pUmrsuIXprmX_f5xm1s7fxSvjvfVCLKVeN87aUtTRDk74gvziGbXQ |
CitedBy_id | crossref_primary_10_1007_s00220_023_04904_5 crossref_primary_10_1063_5_0102156 crossref_primary_10_1007_s10013_023_00640_4 crossref_primary_10_1112_jlms_12974 crossref_primary_10_1007_s10013_023_00631_5 crossref_primary_10_1007_s00440_023_01201_z crossref_primary_10_1090_tran_9025 crossref_primary_10_1007_s00208_022_02484_8 crossref_primary_10_1007_s00209_022_03137_x |
Cites_doi | 10.1215/S0012-7094-06-13331-8 10.1007/BF01221125 10.1016/j.anihpc.2006.01.001 10.1080/03605302.2010.503770 10.1103/RevModPhys.72.545 10.1017/fms.2014.13 10.1016/j.anihpc.2020.09.002 10.1007/s00205-017-1109-0 10.1112/plms/pds038 10.1512/iumj.2000.49.1893 10.1007/BF01403504 10.1016/j.matpur.2011.03.004 10.4171/RMI/592 10.1016/j.na.2010.05.045 10.1002/cpa.3160390103 10.1016/j.jde.2013.06.005 10.1353/ajm.2005.0033 10.1137/140960220 10.1016/S0021-7824(02)01274-6 10.1137/0516034 10.1007/BF02096981 10.1007/BF00275874 10.1017/S030821051500030X 10.1007/BF00251502 10.1088/0951-7715/27/11/2689 10.1007/BF00250555 10.1016/0022-1236(79)90076-4 10.1007/BF02787794 10.1016/j.cnsns.2014.06.028 10.1002/cpa.20292 10.4171/RMI/636 10.1016/0022-1236(90)90016-E 10.1090/tran/7303 |
ContentType | Journal Article |
Copyright | 2021 Taylor & Francis Group, LLC 2021 2021 Taylor & Francis Group, LLC Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 Taylor & Francis Group, LLC 2021 – notice: 2021 Taylor & Francis Group, LLC – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D 1XC VOOES |
DOI | 10.1080/03605302.2021.1941107 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-4133 |
EndPage | 2385 |
ExternalDocumentID | oai_HAL_hal_02873307v3 10_1080_03605302_2021_1941107 1941107 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z N9A NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 8FD H8D JQ2 L7M L~C L~D TASJS 07G 1TA 1XC AAIKQ AAKBW ABEFU ACAGQ ACGEE AEUMN AGCQS AGLEN AGROQ AHMOU AI. ALCKM AMEWO AMXXU BCCOT BPLKW C06 CAG COF CRFIH DMQIW DWIFK EJD IVXBP NUSFT QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q VH1 VOOES ZY4 |
ID | FETCH-LOGICAL-c419t-c749711dadc9409b6531d715b0556a1e39fbebcadf37b059be4fbbab538b28683 |
ISSN | 0360-5302 |
IngestDate | Wed Jun 04 07:11:58 EDT 2025 Wed Aug 13 11:12:47 EDT 2025 Tue Jul 01 03:00:53 EDT 2025 Thu Apr 24 23:02:47 EDT 2025 Wed Dec 25 09:06:30 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | non-linear Schrödinger equations smoothness multi-solitons uniqueness |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c419t-c749711dadc9409b6531d715b0556a1e39fbebcadf37b059be4fbbab538b28683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://hal.science/hal-02873307 |
PQID | 2579475513 |
PQPubID | 186205 |
PageCount | 61 |
ParticipantIDs | hal_primary_oai_HAL_hal_02873307v3 crossref_primary_10_1080_03605302_2021_1941107 informaworld_taylorfrancis_310_1080_03605302_2021_1941107 proquest_journals_2579475513 crossref_citationtrail_10_1080_03605302_2021_1941107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-02 |
PublicationDateYYYYMMDD | 2021-12-02 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in partial differential equations |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 Combet V. (CIT0039) 2014; 34 Pitaevskii L. P. (CIT0002) 2003 Pohozaev S. I. (CIT0009) 1965; 5 CIT0014 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0017 CIT0019 CIT0040 CIT0021 CIT0020 CIT0023 CIT0022 Duyckaerts T. (CIT0036) 2008; 2008 Zakharov V. E. (CIT0010) 1972; 34 CIT0003 CIT0025 Malomed B. (CIT0001) 2005 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0008 |
References_xml | – ident: CIT0038 doi: 10.1215/S0012-7094-06-13331-8 – ident: CIT0024 doi: 10.1007/BF01221125 – ident: CIT0013 doi: 10.1016/j.anihpc.2006.01.001 – ident: CIT0022 doi: 10.1080/03605302.2010.503770 – ident: CIT0003 doi: 10.1103/RevModPhys.72.545 – ident: CIT0017 doi: 10.1017/fms.2014.13 – volume-title: Encyclopedia of Nonlinear Science year: 2005 ident: CIT0001 – ident: CIT0023 doi: 10.1016/j.anihpc.2020.09.002 – ident: CIT0030 doi: 10.1007/s00205-017-1109-0 – volume: 2008 start-page: rpn002 issue: 4 year: 2008 ident: CIT0036 publication-title: Int. Math. Res. Pap – ident: CIT0025 doi: 10.1112/plms/pds038 – ident: CIT0028 doi: 10.1512/iumj.2000.49.1893 – ident: CIT0035 doi: 10.1007/BF01403504 – volume-title: Bose-Einstein condensation year: 2003 ident: CIT0002 – volume: 5 start-page: 1408 year: 1965 ident: CIT0009 publication-title: Sov. Math. J – ident: CIT0020 doi: 10.1016/j.matpur.2011.03.004 – ident: CIT0037 doi: 10.4171/RMI/592 – ident: CIT0029 doi: 10.1016/j.na.2010.05.045 – ident: CIT0033 doi: 10.1002/cpa.3160390103 – ident: CIT0040 doi: 10.1016/j.jde.2013.06.005 – ident: CIT0012 doi: 10.1353/ajm.2005.0033 – ident: CIT0019 doi: 10.1137/140960220 – ident: CIT0034 doi: 10.1016/S0021-7824(02)01274-6 – ident: CIT0032 doi: 10.1137/0516034 – ident: CIT0011 doi: 10.1007/BF02096981 – ident: CIT0027 doi: 10.1007/BF00275874 – ident: CIT0016 doi: 10.1017/S030821051500030X – ident: CIT0026 doi: 10.1007/BF00251502 – ident: CIT0015 doi: 10.1088/0951-7715/27/11/2689 – ident: CIT0008 doi: 10.1007/BF00250555 – ident: CIT0006 doi: 10.1016/0022-1236(79)90076-4 – ident: CIT0007 doi: 10.1007/BF02787794 – ident: CIT0004 doi: 10.1016/j.cnsns.2014.06.028 – ident: CIT0018 doi: 10.1002/cpa.20292 – ident: CIT0005 – volume: 34 start-page: 1961 issue: 5 year: 2014 ident: CIT0039 publication-title: Am. Inst. Math. Sci – volume: 34 start-page: 62 year: 1972 ident: CIT0010 publication-title: Sov. Phys. JETP – ident: CIT0014 doi: 10.4171/RMI/636 – ident: CIT0031 doi: 10.1016/0022-1236(90)90016-E – ident: CIT0021 doi: 10.1090/tran/7303 |
SSID | ssj0018294 |
Score | 2.3997588 |
Snippet | In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in
with general non-linearities. Multi-solitons have already... In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in with general non-linearities. Multi-solitons have already... In this paper, we study some properties of multi-solitons for the non-linear Schrödinger equations in R^d with general non-linearities. Multi-solitons have... |
SourceID | hal proquest crossref informaworld |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2325 |
SubjectTerms | 35B40 (primary) Analysis of PDEs Mathematical analysis Mathematics Multi-solitons non-linear Schrödinger equations Nonlinearity Schrodinger equation Smoothness Solitary waves Uniqueness |
Title | On smoothness and uniqueness of multi-solitons of the non-linear Schrödinger equations |
URI | https://www.tandfonline.com/doi/abs/10.1080/03605302.2021.1941107 https://www.proquest.com/docview/2579475513 https://hal.science/hal-02873307 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa63QscEL-isKAIcUOp4sRN4mMXtqpQdyuhVltxsezE1h6W7rJNOXDmmXgBXowZ2_mptmKBS9S4dex6Jp4Zz8w3hLzNIyMjE_OwYJqBgZLIkBvKQgOyM-cgkXOJicKnZ-l0yT6uRqte70cnamlbqWHxfW9eyf9QFdqArpgl-w-UbR4KDfAZ6AtXoDBc_4rG8_W7zZcrWGu7X-ER-NbisdpbdJxjtGC4wRA3H-6GaiYY_CEql_IGMTitq_w4LR0gof667Rzh1QgG3SQSF3eOk7HuHVdexd7s9kW_hn00cwX4PsnrC2nd8sdNUMcE7PQSPUb2bGclUUZ3jyFiakM6WqN1casiSCcsyWVnRSFWKHJyp95s4xCEaNLdjf2BpOe6uLu3Ji5F2stp0DVGe2WAD5qEAXG8IU52SDmjvrzuLub22VxMlrOZWJysFgfkMAZjI-qTw_H0w-fzxhuVx9zDkLn_UGeCIUb7vmF2dJyDCxth28XBvSX3rTKzeEgeeCskGDuWekR6ev2Y3D9tIHw3T8j5fB20zBUAcwUtcwVXJthlLmyB3kHLXAEy16-fjrGChjmekuXkZPF-GvoqHPD6Ul6FRcZ4Rmkpy4KziKsUdu0yoyOFMEyS6oQbhRF1pUkyaONKM6OUVCBJVZynefKM9GFs_ZwEcAMaapqZmBYskWlepEZrAzbBSJeR5gPC6nUThYeox0opl4LWSLZ-uQUut_DLPSDDptu1w2i5q8MbIErzW0RYn45nAttA3c4SmOW3ZEB4l2aishxuHHOL5I4BjmoCC79fbAQIR84yLKj04s9fvyT32jfsiPSrm61-BapvpV57zvwNMYWozQ |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-x8bDxAAyGVijMQrymxLGbxI8ToirQlgc2bW9W7NiqtNGOJuWBD8YX4Itx5yRVYZr2sMc4Of-78_nOOf8O4F0e-yL2iYqsdBIdFFFEynMZedw7c4U7cl7QReHpLB2fyc8Xw4utuzAUVkk-tG-AIoKupsVNh9FdSNx71LoxZbtB9y7hA3TDyYnZgYdDlWaUvkHEs82fhDxRLYRUHBFNd4vntmr-2Z925iE6chvD9IbODhvR6AnYbghN_MnlYF2bgf31H7rj_cb4FB63dio7aQTrAB64xTN4NN2AvFbP4fzrglXfl8hqUpcMm2LrAAcbHpeehWDFqKIIO5RtKkFqtlguIupQsWLf7Hz153cZThaZ-9GgjleHcDb6ePphHLV5GpDBXNWRzaTKOC-L0ip0F02K67rM-NAQUE_BnVDeUMxV6UWGZco46Y0pDOpak-RpLl7ALrbtjoDhA9owaeYTbqUo0tym3jmPVuPQlbFTPZAdd7RtQcwpl8aV5h3WaTtvmuZNt_PWg8GG7LpB8biL4C2yfvMtYXCPTyaaytAgywT28qfogdqWDF2HMxbfJETR4o4G-p0Y6VZrVBrVp5IZpdx5eY-qj2FvfDqd6Mmn2ZdXsE-vQvxN0ofderV2r9GKqs2bsEz-AkerDGg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4VKiE40PKnbrttrarXLHHsTeLjCrratrBUKghuVpzYWqntLmyyPfBgvAAv1hknWUER4sAxTvw_Hs84n78B-JyGLgtdpIJcWokOisgC5bgMHO6dqcIdOc3oovDxOB6dyW8X_RZNWDawSvKhXU0U4XU1Le7LwrWIuH1UuiEFu0HvLuI99MLJh1mBlzGaJyTYIhwvfySkkWoYpMKA8rSXeB4r5t72tDLx4Mi7FKYPVLbfh4avwLQ9qOEnv3qLyvTy6__IHZ_Vxdew2VipbFCL1Ra8sNNt2DheUryWO3B-MmXlnxlONClLhjWxhSeD9Y8zxzxUMSgJX4eSTSmYm01n04Dak83Zz3wyv70p_Lkis1c153i5C2fDL6cHo6CJ0oDTy1UV5IlUCedFVuQKnUUT46ouEt43RNOTcSuUM4S4KpxIME0ZK50xmUFNa6I0TsUerGLd9g0wfEALJk5cxHMpsjjNY2etQ5uxb4vQqg7IdnJ03lCYUySN35q3TKfNuGkaN92MWwd6y2yXNYfHUxk-4cwvvyUG7tHgSFMammOJwFb-FR1QdwVDV_6ExdXhULR4ooJuK0W60RmlRuWpZEIBd94-o-iPsPbjcKiPvo6_v4N1euPBN1EXVqv5wr5HE6oyH_wi-Qf_aQsV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+smoothness+and+uniqueness+of+multi-solitons+of+the+non-linear+Schr%C3%B6dinger+equations&rft.jtitle=Communications+in+partial+differential+equations&rft.au=C%C3%B4te%2C+Rapha%C3%ABl&rft.au=Friederich%2C+Xavier&rft.date=2021-12-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=46&rft.issue=12&rft.spage=2325&rft.epage=2385&rft_id=info:doi/10.1080%2F03605302.2021.1941107&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon |