Using Peripheral Blood Mononuclear Cells to Determine a Gene Expression Profile of Acute Ischemic Stroke A Pilot Investigation
Background— Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene expression profile could be demonstrated in patients with acute ischemic stroke. Methods and Results— Using oligonucleotide microar...
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 111; no. 2; pp. 212 - 221 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
Lippincott Williams & Wilkins
18.01.2005
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-7322 1524-4539 1524-4539 |
DOI | 10.1161/01.CIR.0000152105.79665.C6 |
Cover
Abstract | Background—
Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene expression profile could be demonstrated in patients with acute ischemic stroke.
Methods and Results—
Using oligonucleotide microarrays, we compared the gene expression profile of an index cohort of 20 patients with confirmed ischemic stroke on neuroimaging studies with that of 20 referent subjects. Validation studies used quantitative real-time polymerase chain reaction to measure the levels of 9 upregulated genes in the index cohort, and an independent cohort of 9 patients and 10 referent subjects was prospectively studied to determine the accuracy of the Prediction Analysis for Microarrays list to classify stroke. After correction for multiple comparisons with the Bonferroni technique, 190 genes were significantly different between the stroke and referent groups. Broad classes of genes included white blood cell activation and differentiation (≈60%), genes associated with hypoxia and vascular repair, and genes potentially associated with an altered cerebral microenvironment. Real-time polymerase chain reaction confirmed increased mRNA expression in 9 of 9 upregulated stroke-associated genes in the index cohort. A panel of 22 genes derived from the Prediction Analysis for Microarrays algorithm in the index cohort classified stroke in the validation cohort with a sensitivity of 78% and a specificity of 80%. Control for the Framingham stroke risk score revealed only a partial dependence of the stroke gene expression profile in PBMCs on vascular risk.
Conclusions—
This study demonstrated an altered gene expression profile in PBMCs during acute ischemic stroke. Some genes with altered expression were consistent with an adaptive response to central nervous system ischemia. |
---|---|
AbstractList | Background—
Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene expression profile could be demonstrated in patients with acute ischemic stroke.
Methods and Results—
Using oligonucleotide microarrays, we compared the gene expression profile of an index cohort of 20 patients with confirmed ischemic stroke on neuroimaging studies with that of 20 referent subjects. Validation studies used quantitative real-time polymerase chain reaction to measure the levels of 9 upregulated genes in the index cohort, and an independent cohort of 9 patients and 10 referent subjects was prospectively studied to determine the accuracy of the Prediction Analysis for Microarrays list to classify stroke. After correction for multiple comparisons with the Bonferroni technique, 190 genes were significantly different between the stroke and referent groups. Broad classes of genes included white blood cell activation and differentiation (≈60%), genes associated with hypoxia and vascular repair, and genes potentially associated with an altered cerebral microenvironment. Real-time polymerase chain reaction confirmed increased mRNA expression in 9 of 9 upregulated stroke-associated genes in the index cohort. A panel of 22 genes derived from the Prediction Analysis for Microarrays algorithm in the index cohort classified stroke in the validation cohort with a sensitivity of 78% and a specificity of 80%. Control for the Framingham stroke risk score revealed only a partial dependence of the stroke gene expression profile in PBMCs on vascular risk.
Conclusions—
This study demonstrated an altered gene expression profile in PBMCs during acute ischemic stroke. Some genes with altered expression were consistent with an adaptive response to central nervous system ischemia. BACKGROUND: Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene expression profile could be demonstrated in patients with acute ischemic stroke. METHOD:S: and Results-Using oligonucleotide microarrays, we compared the gene expression profile of an index cohort of 20 patients with confirmed ischemic stroke on neuroimaging studies with that of 20 referent subjects. Validation studies used quantitative real-time polymerase chain reaction to measure the levels of 9 upregulated genes in the index cohort, and an independent cohort of 9 patients and 10 referent subjects was prospectively studied to determine the accuracy of the Prediction Analysis for Microarrays list to classify stroke. After correction for multiple comparisons with the Bonferroni technique, 190 genes were significantly different between the stroke and referent groups. Broad classes of genes included white blood cell activation and differentiation ( similar to 60%), genes associated with hypoxia and vascular repair, and genes potentially associated with an altered cerebral microenvironment. Real-time polymerase chain reaction confirmed increased mRNA expression in 9 of 9 upregulated stroke-associated genes in the index cohort. A panel of 22 genes derived from the Prediction Analysis for Microarrays algorithm in the index cohort classified stroke in the validation cohort with a sensitivity of 78% and a specificity of 80%. Control for the Framingham stroke risk score revealed only a partial dependence of the stroke gene expression profile in PBMCs on vascular risk. CONCLUSIONS: This study demonstrated an altered gene expression profile in PBMCs during acute ischemic stroke. Some genes with altered expression were consistent with an adaptive response to central nervous system ischemia. Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene expression profile could be demonstrated in patients with acute ischemic stroke.BACKGROUNDDirect brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene expression profile could be demonstrated in patients with acute ischemic stroke.Using oligonucleotide microarrays, we compared the gene expression profile of an index cohort of 20 patients with confirmed ischemic stroke on neuroimaging studies with that of 20 referent subjects. Validation studies used quantitative real-time polymerase chain reaction to measure the levels of 9 upregulated genes in the index cohort, and an independent cohort of 9 patients and 10 referent subjects was prospectively studied to determine the accuracy of the Prediction Analysis for Microarrays list to classify stroke. After correction for multiple comparisons with the Bonferroni technique, 190 genes were significantly different between the stroke and referent groups. Broad classes of genes included white blood cell activation and differentiation (approximately 60%), genes associated with hypoxia and vascular repair, and genes potentially associated with an altered cerebral microenvironment. Real-time polymerase chain reaction confirmed increased mRNA expression in 9 of 9 upregulated stroke-associated genes in the index cohort. A panel of 22 genes derived from the Prediction Analysis for Microarrays algorithm in the index cohort classified stroke in the validation cohort with a sensitivity of 78% and a specificity of 80%. Control for the Framingham stroke risk score revealed only a partial dependence of the stroke gene expression profile in PBMCs on vascular risk.METHODS AND RESULTSUsing oligonucleotide microarrays, we compared the gene expression profile of an index cohort of 20 patients with confirmed ischemic stroke on neuroimaging studies with that of 20 referent subjects. Validation studies used quantitative real-time polymerase chain reaction to measure the levels of 9 upregulated genes in the index cohort, and an independent cohort of 9 patients and 10 referent subjects was prospectively studied to determine the accuracy of the Prediction Analysis for Microarrays list to classify stroke. After correction for multiple comparisons with the Bonferroni technique, 190 genes were significantly different between the stroke and referent groups. Broad classes of genes included white blood cell activation and differentiation (approximately 60%), genes associated with hypoxia and vascular repair, and genes potentially associated with an altered cerebral microenvironment. Real-time polymerase chain reaction confirmed increased mRNA expression in 9 of 9 upregulated stroke-associated genes in the index cohort. A panel of 22 genes derived from the Prediction Analysis for Microarrays algorithm in the index cohort classified stroke in the validation cohort with a sensitivity of 78% and a specificity of 80%. Control for the Framingham stroke risk score revealed only a partial dependence of the stroke gene expression profile in PBMCs on vascular risk.This study demonstrated an altered gene expression profile in PBMCs during acute ischemic stroke. Some genes with altered expression were consistent with an adaptive response to central nervous system ischemia.CONCLUSIONSThis study demonstrated an altered gene expression profile in PBMCs during acute ischemic stroke. Some genes with altered expression were consistent with an adaptive response to central nervous system ischemia. Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene expression profile could be demonstrated in patients with acute ischemic stroke. Using oligonucleotide microarrays, we compared the gene expression profile of an index cohort of 20 patients with confirmed ischemic stroke on neuroimaging studies with that of 20 referent subjects. Validation studies used quantitative real-time polymerase chain reaction to measure the levels of 9 upregulated genes in the index cohort, and an independent cohort of 9 patients and 10 referent subjects was prospectively studied to determine the accuracy of the Prediction Analysis for Microarrays list to classify stroke. After correction for multiple comparisons with the Bonferroni technique, 190 genes were significantly different between the stroke and referent groups. Broad classes of genes included white blood cell activation and differentiation (approximately 60%), genes associated with hypoxia and vascular repair, and genes potentially associated with an altered cerebral microenvironment. Real-time polymerase chain reaction confirmed increased mRNA expression in 9 of 9 upregulated stroke-associated genes in the index cohort. A panel of 22 genes derived from the Prediction Analysis for Microarrays algorithm in the index cohort classified stroke in the validation cohort with a sensitivity of 78% and a specificity of 80%. Control for the Framingham stroke risk score revealed only a partial dependence of the stroke gene expression profile in PBMCs on vascular risk. This study demonstrated an altered gene expression profile in PBMCs during acute ischemic stroke. Some genes with altered expression were consistent with an adaptive response to central nervous system ischemia. |
Author | Zudaire, Enrique Wright, Violet Moore, David F. Li, Hong Gelderman, Monique P. Yu, Hua Cooper, Ronald A. Goldin, Ehud Baird, Alison E. Jeffries, Neal Blevins, Gregg Elkahloun, Abdel |
Author_xml | – sequence: 1 givenname: David F. surname: Moore fullname: Moore, David F. organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology – sequence: 2 givenname: Hong surname: Li fullname: Li, Hong organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology – sequence: 3 givenname: Neal surname: Jeffries fullname: Jeffries, Neal organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology – sequence: 4 givenname: Violet surname: Wright fullname: Wright, Violet organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology – sequence: 5 givenname: Ronald A. surname: Cooper fullname: Cooper, Ronald A. organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology – sequence: 6 givenname: Abdel surname: Elkahloun fullname: Elkahloun, Abdel organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology – sequence: 7 givenname: Monique P. surname: Gelderman fullname: Gelderman, Monique P. organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology – sequence: 8 givenname: Enrique surname: Zudaire fullname: Zudaire, Enrique organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology – sequence: 9 givenname: Gregg surname: Blevins fullname: Blevins, Gregg organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology – sequence: 10 givenname: Hua surname: Yu fullname: Yu, Hua organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology – sequence: 11 givenname: Ehud surname: Goldin fullname: Goldin, Ehud organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology – sequence: 12 givenname: Alison E. surname: Baird fullname: Baird, Alison E. organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16603150$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15630028$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0V2P1CAUBmBi1rizq3_BEBO9a-WjUOqVa13XSda40fWaUHpw0LaMQBP996I7ZhJvlJsTyHMgnPcMnSxhAYSeUFJTKulzQut--6EmZVHBKBF120kp6l7eQ5ty0lSN4N0J2hTQVS1n7BSdpfSlbCVvxQN0SoXkhDC1QbtPyS-f8Q1Ev99BNBN-NYUw4nehPLraCUzEPUxTwjng15Ahzn4BbPAVlHL5fR8hJR8WfBOD8xPg4PCFXTPgbbI7mL3FH3MMX-Ehuu_MlODRoZ6j2zeXt_3b6vr91ba_uK5sQ7tcDaNQ0DpGuRwUd6OkTQeOdgOjSoxOsZa3zo2GEKUGR6VlhgsJVjDlQA38HD27u3Yfw7cVUtazT7Z8wCwQ1qRlyxXthPonZER1jWzbAh8f4DrMMOp99LOJP_SfGRbw9ABMsmZy0SzWp6OTknAqSHEv7pyNIaUI7kiI_hWsJlSXYPUxWP07WN3L0vzyr2brs8ll8jkaP_3PFT8BNTSpcg |
CODEN | CIRCAZ |
CitedBy_id | crossref_primary_10_1007_s00439_024_02717_7 crossref_primary_10_1016_j_pmrj_2011_04_004 crossref_primary_10_1093_hmg_ddp397 crossref_primary_10_1038_sj_jcbfm_9600264 crossref_primary_10_1038_jcbfm_2012_24 crossref_primary_10_1007_s12035_018_1147_0 crossref_primary_10_1016_j_brainres_2023_148590 crossref_primary_10_1186_2043_9113_1_12 crossref_primary_10_1007_s00392_013_0607_9 crossref_primary_10_2174_0929867329666220921113403 crossref_primary_10_1515_dmdi_2011_102 crossref_primary_10_1039_C9NJ01598A crossref_primary_10_1021_ac5007766 crossref_primary_10_1038_s41598_022_18719_2 crossref_primary_10_1177_0883073811408093 crossref_primary_10_1038_jcbfm_2009_189 crossref_primary_10_1371_journal_pone_0168773 crossref_primary_10_3390_brainsci12030302 crossref_primary_10_1515_CCLM_2007_261 crossref_primary_10_1038_s41598_017_04497_9 crossref_primary_10_1042_CS20180411 crossref_primary_10_2217_14622416_7_2_187 crossref_primary_10_1016_j_molmed_2007_08_003 crossref_primary_10_1016_j_urology_2009_06_021 crossref_primary_10_1016_j_jacc_2010_02_051 crossref_primary_10_1038_jcbfm_2011_45 crossref_primary_10_1186_s12944_017_0471_0 crossref_primary_10_3390_ijms20051149 crossref_primary_10_1017_S1092852900017193 crossref_primary_10_3892_etm_2021_10919 crossref_primary_10_1371_journal_pone_0016750 crossref_primary_10_1016_j_ejvs_2010_11_019 crossref_primary_10_2217_17410541_3_1_101 crossref_primary_10_1159_000354161 crossref_primary_10_3390_diagnostics3010126 crossref_primary_10_4236_ajmb_2011_12011 crossref_primary_10_1016_j_atherosclerosis_2011_09_026 crossref_primary_10_1093_bfgp_elac017 crossref_primary_10_1097_BRS_0b013e3181cf39ff crossref_primary_10_1016_j_hoc_2013_03_002 crossref_primary_10_1177_1076029611432744 crossref_primary_10_1111_j_1365_2265_2008_03205_x crossref_primary_10_1586_14737159_2015_1024660 crossref_primary_10_1007_s13311_011_0050_4 crossref_primary_10_1007_s12170_007_0013_9 crossref_primary_10_1016_j_ygeno_2007_09_003 crossref_primary_10_1080_14737159_2020_1777859 crossref_primary_10_1038_s42003_020_01336_y crossref_primary_10_2217_fnl_16_5 crossref_primary_10_1177_0333102416628463 crossref_primary_10_1177_1099800410385671 crossref_primary_10_1186_1471_2164_11_542 crossref_primary_10_3109_07420528_2012_691145 crossref_primary_10_1111_j_1365_2796_2009_02202_x crossref_primary_10_3389_fped_2020_00272 crossref_primary_10_1152_physiolgenomics_90364_2008 crossref_primary_10_1517_17530059_1_2_235 crossref_primary_10_1016_j_ejheart_2008_06_003 crossref_primary_10_1212_WNL_0b013e3181f2b37f crossref_primary_10_1212_WNL_0b013e3181b05ef9 crossref_primary_10_1161_STROKEAHA_116_013869 crossref_primary_10_1007_s12975_015_0407_9 crossref_primary_10_1186_1471_2164_7_115 crossref_primary_10_1016_j_pharmthera_2021_107933 crossref_primary_10_1371_journal_pone_0206321 crossref_primary_10_1016_j_coph_2015_11_006 crossref_primary_10_1212_WNL_0b013e318236eee6 crossref_primary_10_1097_WNR_0000000000001394 crossref_primary_10_1177_1087057113489882 crossref_primary_10_1007_s12035_021_02401_1 crossref_primary_10_1097_TA_0000000000002918 crossref_primary_10_1007_s12975_011_0067_3 crossref_primary_10_1177_1099800414546492 crossref_primary_10_1002_jat_2861 crossref_primary_10_1007_s00415_008_0784_z crossref_primary_10_1016_j_ijcard_2014_03_042 crossref_primary_10_1038_s41582_020_0350_6 crossref_primary_10_1111_j_1749_6632_2010_05731_x crossref_primary_10_1002_ajmg_b_31140 crossref_primary_10_1097_00029330_200612020_00016 crossref_primary_10_3389_fnagi_2022_1041333 crossref_primary_10_3389_fneur_2019_00036 crossref_primary_10_1038_srep29693 crossref_primary_10_3390_diagnostics10050340 crossref_primary_10_1002_ana_22553 crossref_primary_10_1097_WCO_0000000000000786 crossref_primary_10_4155_bio_15_40 crossref_primary_10_1039_C4MB00157E crossref_primary_10_2217_14622416_7_2_141 crossref_primary_10_1177_1177271917749216 crossref_primary_10_1002_ajmg_b_30550 crossref_primary_10_1016_j_sbspro_2012_08_056 crossref_primary_10_1042_BST0341313 crossref_primary_10_1186_s12944_016_0285_5 crossref_primary_10_1111_j_1651_2227_2008_00654_x crossref_primary_10_32604_biocell_2022_017544 crossref_primary_10_1002_acn3_50861 crossref_primary_10_1016_j_annfar_2007_09_006 crossref_primary_10_1021_ac400729q crossref_primary_10_1161_CIRCRESAHA_120_316659 crossref_primary_10_1016_j_bbadis_2014_04_010 crossref_primary_10_3389_fgene_2021_598296 crossref_primary_10_1002_ana_22049 crossref_primary_10_1080_00207454_2019_1634072 crossref_primary_10_1038_s41390_020_0764_2 crossref_primary_10_3389_fnagi_2014_00044 crossref_primary_10_1111_j_1651_2227_2006_tb02393_x crossref_primary_10_3389_fneur_2021_619721 crossref_primary_10_3390_jcm11144243 crossref_primary_10_1186_s12967_022_03377_9 crossref_primary_10_1111_j_1747_4949_2012_00784_x crossref_primary_10_2217_fnl_2016_0034 crossref_primary_10_1186_1471_2202_8_93 crossref_primary_10_1186_s12967_016_0806_z crossref_primary_10_1089_dna_2017_3650 crossref_primary_10_1177_0271678X18769513 crossref_primary_10_1111_j_1528_1167_2006_00809_x crossref_primary_10_1186_1741_7007_8_84 crossref_primary_10_2217_bmm_09_43 crossref_primary_10_1134_S0026893317040100 crossref_primary_10_1007_s13258_021_01060_9 crossref_primary_10_1179_1743132813Y_0000000212 crossref_primary_10_3109_00207454_2013_837462 crossref_primary_10_1371_journal_pone_0096063 crossref_primary_10_1016_j_ygeno_2014_08_004 crossref_primary_10_1586_14737159_7_1_45 crossref_primary_10_1016_j_tcm_2006_03_006 crossref_primary_10_1091_mbc_e11_10_0849 crossref_primary_10_1016_j_carpath_2007_04_004 crossref_primary_10_1016_j_ygeno_2006_02_003 crossref_primary_10_1080_00207454_2020_1732964 crossref_primary_10_4137_BMI_S938 crossref_primary_10_1016_S0049_3848_12_70014_2 crossref_primary_10_1007_s11883_009_0027_5 crossref_primary_10_1515_CCLM_2007_255 crossref_primary_10_1007_s11883_006_0003_2 crossref_primary_10_1038_npjgenmed_2016_38 crossref_primary_10_1038_s41598_017_01178_5 crossref_primary_10_1038_jcbfm_2008_22 crossref_primary_10_2217_bmm_12_104 crossref_primary_10_1007_s11033_021_06899_5 crossref_primary_10_1007_s12017_023_08761_2 crossref_primary_10_1016_j_neurol_2016_02_003 crossref_primary_10_1111_cen3_12104 crossref_primary_10_1161_STROKEAHA_114_005604 |
Cites_doi | 10.1002/ana.10042 10.1016/S0197-0186(02)00194-8 10.1016/S0140-6736(03)14412-1 10.1016/S0140-6736(03)14023-8 10.1046/j.1460-9568.2002.02030.x 10.1093/hmg/9.17.2479 10.1161/01.str.0000105927.62344.4c 10.1016/S0049-3848(00)00218-8 10.1161/str.20.7.2749847 10.1126/science.270.5235.467 10.1128/IAI.71.10.5803-5813.2003 10.1097/01.WCB.0000062340.80057.06 10.1002/ana.20008 10.1161/str.23.9.1519296 10.1182/blood-2003-08-2760 10.1093/bioinformatics/btg382 10.1161/str.22.3.2003301 10.1093/hmg/ddg221 10.1016/S0969-9961(03)00107-4 10.1038/nature02319 10.1523/JNEUROSCI.18-06-02075.1998 10.1073/pnas.95.19.11423 10.1016/S0140-6736(04)15693-6 10.1073/pnas.95.25.14863 10.1214/aos/1013699998 10.1097/00005072-197407000-00007 10.1038/ng1201-365 10.1038/379349a0 10.1016/0378-1119(95)00061-A 10.1016/S0361-9230(03)00089-3 10.1038/35020115 10.1093/brain/awg147 10.1038/nbt1296-1675 |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS |
Copyright_xml | – notice: 2005 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7T5 7TK 8FD FR3 H94 P64 RC3 7X8 |
DOI | 10.1161/01.CIR.0000152105.79665.C6 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1524-4539 |
EndPage | 221 |
ExternalDocumentID | 15630028 16603150 10_1161_01_CIR_0000152105_79665_C6 |
Genre | Validation Studies Research Support, U.S. Gov't, P.H.S Journal Article |
GroupedDBID | --- .-D .3C .55 .GJ .XZ .Z2 01R 0R~ 0ZK 18M 1J1 29B 2FS 2WC 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAEJM AAFWJ AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AARTV AASOK AAUEB AAWTL AAXQO AAYOK AAYXX ABBUW ABDIG ABJNI ABOCM ABPMR ABPXF ABQRW ABXVJ ABZAD ACCJW ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACOAL ACRKK ACWDW ACWRI ACXNZ ACZKN ADBBV ADCYY ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFCHL AFDTB AFEXH AFFNX AFNMH AFUWQ AGINI AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJJEV AJNWD AJNYG AJZMW ALKUP ALMA_UNASSIGNED_HOLDINGS AMJPA AMNEI ASPBG AVWKF AYCSE AZFZN BAWUL BOYCO BQLVK BYPQX C1A C45 CITATION CS3 DIK DIWNM DU5 DUNZO E.X E3Z EBS EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GX1 H0~ H13 HZ~ H~9 IKREB IKYAY IN~ J5H JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI KQ8 L-C L7B M18 N4W N9A NEJ N~7 N~B O9- OAG OAH OBH OCB OCUKA ODMTH OGEVE OHH OHT OHYEH OK1 OL1 OLB OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PQQKQ RAH RLZ S4R S4S T8P TEORI TR2 UPT V2I VVN W2D W3M W8F WH7 WHG WOQ WOW X3V X3W X7M XXN XYM YFH YOC YSK YYM YYP YZZ ZFV ZY1 ZZMQN ~H1 1CY 41~ AAQKA AASCR AASXQ ABASU ABVCZ ABXYN ABZZY ACLDA ACXJB ADFPA AEBDS AFBFQ AFMBP AFSOK AHQVU AKCTQ AKULP ALMTX AMKUR AOHHW AOQMC BS7 EEVPB EJD ERAAH FEDTE GNXGY GQDEL HLJTE HVGLF IPNFZ IQODW MVM N~M ODA P-K R58 RIG TSPGW YQJ YXB ZGI ZXP ACIJW ACRZS AWKKM CGR CUY CVF ECM EIF NPM OJAPA OLW PKN RHF 7T5 7TK 8FD FR3 H94 P64 RC3 7X8 ADKSD |
ID | FETCH-LOGICAL-c419t-bd58e7f2136b83fd6149ef19b2185df82737ffda0088bf16c2a356ec528fe8b3 |
ISSN | 0009-7322 1524-4539 |
IngestDate | Mon Sep 08 17:55:48 EDT 2025 Tue Aug 05 10:27:04 EDT 2025 Wed Feb 19 01:40:10 EST 2025 Mon Jul 21 09:18:12 EDT 2025 Tue Jul 01 02:05:02 EDT 2025 Thu Apr 24 23:09:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Vascular disease Cerebral infarction Nervous system diseases Stroke Mononuclear cell Ischemia genes Central nervous system disease Cardiovascular disease Gene expression Cerebrovascular disease Cerebral disorder |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c419t-bd58e7f2136b83fd6149ef19b2185df82737ffda0088bf16c2a356ec528fe8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
PMID | 15630028 |
PQID | 20894677 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_67381958 proquest_miscellaneous_20894677 pubmed_primary_15630028 pascalfrancis_primary_16603150 crossref_primary_10_1161_01_CIR_0000152105_79665_C6 crossref_citationtrail_10_1161_01_CIR_0000152105_79665_C6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-01-18 |
PublicationDateYYYYMMDD | 2005-01-18 |
PublicationDate_xml | – month: 01 year: 2005 text: 2005-01-18 day: 18 |
PublicationDecade | 2000 |
PublicationPlace | Hagerstown, MD |
PublicationPlace_xml | – name: Hagerstown, MD – name: United States |
PublicationTitle | Circulation (New York, N.Y.) |
PublicationTitleAlternate | Circulation |
PublicationYear | 2005 |
Publisher | Lippincott Williams & Wilkins |
Publisher_xml | – name: Lippincott Williams & Wilkins |
References | (e_1_3_3_23_2) 2002; 90 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_13_2 doi: 10.1002/ana.10042 – ident: e_1_3_3_32_2 doi: 10.1016/S0197-0186(02)00194-8 – ident: e_1_3_3_8_2 doi: 10.1016/S0140-6736(03)14412-1 – ident: e_1_3_3_5_2 doi: 10.1016/S0140-6736(03)14023-8 – ident: e_1_3_3_7_2 doi: 10.1046/j.1460-9568.2002.02030.x – ident: e_1_3_3_30_2 doi: 10.1093/hmg/9.17.2479 – ident: e_1_3_3_37_2 doi: 10.1161/01.str.0000105927.62344.4c – ident: e_1_3_3_20_2 – ident: e_1_3_3_10_2 doi: 10.1016/S0049-3848(00)00218-8 – ident: e_1_3_3_17_2 doi: 10.1161/str.20.7.2749847 – ident: e_1_3_3_1_2 doi: 10.1126/science.270.5235.467 – ident: e_1_3_3_28_2 doi: 10.1128/IAI.71.10.5803-5813.2003 – ident: e_1_3_3_6_2 doi: 10.1097/01.WCB.0000062340.80057.06 – ident: e_1_3_3_27_2 doi: 10.1002/ana.20008 – ident: e_1_3_3_9_2 doi: 10.1161/str.23.9.1519296 – ident: e_1_3_3_26_2 doi: 10.1182/blood-2003-08-2760 – ident: e_1_3_3_22_2 – ident: e_1_3_3_25_2 doi: 10.1093/bioinformatics/btg382 – ident: e_1_3_3_18_2 doi: 10.1161/str.22.3.2003301 – volume: 90 start-page: 6567 year: 2002 ident: e_1_3_3_23_2 publication-title: Proc Natl Acad Sci U S A – ident: e_1_3_3_14_2 doi: 10.1093/hmg/ddg221 – ident: e_1_3_3_33_2 doi: 10.1016/S0969-9961(03)00107-4 – ident: e_1_3_3_31_2 doi: 10.1038/nature02319 – ident: e_1_3_3_11_2 doi: 10.1523/JNEUROSCI.18-06-02075.1998 – ident: e_1_3_3_34_2 doi: 10.1073/pnas.95.19.11423 – ident: e_1_3_3_4_2 doi: 10.1016/S0140-6736(04)15693-6 – ident: e_1_3_3_24_2 doi: 10.1073/pnas.95.25.14863 – ident: e_1_3_3_21_2 doi: 10.1214/aos/1013699998 – ident: e_1_3_3_12_2 doi: 10.1097/00005072-197407000-00007 – ident: e_1_3_3_16_2 doi: 10.1038/ng1201-365 – ident: e_1_3_3_29_2 doi: 10.1038/379349a0 – ident: e_1_3_3_35_2 doi: 10.1016/0378-1119(95)00061-A – ident: e_1_3_3_36_2 doi: 10.1016/S0361-9230(03)00089-3 – ident: e_1_3_3_3_2 doi: 10.1038/35020115 – ident: e_1_3_3_15_2 doi: 10.1093/brain/awg147 – ident: e_1_3_3_2_2 doi: 10.1038/nbt1296-1675 – ident: e_1_3_3_19_2 |
SSID | ssj0006375 |
Score | 2.256101 |
Snippet | Background—
Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a... Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene... BACKGROUND: Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 212 |
SubjectTerms | Acute Disease Adaptation, Physiological - genetics Aged Aged, 80 and over Biological and medical sciences Blood and lymphatic vessels Blood vessels and receptors Brain Ischemia - blood Brain Ischemia - genetics Cardiology. Vascular system Cohort Studies Computer Systems Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous Female Fundamental and applied biological sciences. Psychology Gene Expression Profiling Gene Expression Regulation Humans Leukocytes, Mononuclear - metabolism Male Medical sciences Middle Aged Neurology Oligonucleotide Array Sequence Analysis Pilot Projects Predictive Value of Tests Prospective Studies Reverse Transcriptase Polymerase Chain Reaction Vascular diseases and vascular malformations of the nervous system Vertebrates: cardiovascular system |
Subtitle | A Pilot Investigation |
Title | Using Peripheral Blood Mononuclear Cells to Determine a Gene Expression Profile of Acute Ischemic Stroke |
URI | https://www.ncbi.nlm.nih.gov/pubmed/15630028 https://www.proquest.com/docview/20894677 https://www.proquest.com/docview/67381958 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bj9JQED4ha2JMjNFdL3hZz4PxhRTp5Zy2vhEWF4y7JASTfWt62nMiCVIC5UFf_G3-M2emN1CIqy8NaWgPdL5OZ6bffMPYGzcN_IQ6eqQUlidiYSk_EJZQSqWh0RDBEtviWo4-ex9vxE2r9XOHtbTNVTf5frCv5H-sCvvArtgl-w-WrU8KO-Az2Be2YGHY3srGxft-1ComcYBFQUPvwPrZEnWK43UHC_Mk4pCWvBfdiXFsskZt_4IDSyQt1GciTkCCxIE55LzEmt_ka5TkpPb11XyR4UCBWpijtGilczBfJ-UssEMjfnZKDleTyXRYE-obbvFocn0J3rSmBE0-XYyJhTD8sk3rukF_PL0oWnNoeuJwr26BFEGrdLVUtzigP0F1i_kCyUF7Pju0fNfZ99mlh57v5M6VB3Z2HuZO0X7953NC2tT70B2MpyRhiWFMT3R9yP5Ed3BAnPu3h2ZNZbQlzunGqtEdx_eJKXB507CMpOuLapgf_olS9xbWf3d89b0Y6f4q3sDtaoo5K8cTIQqIZg_ZgzKT4f0Clo9YSy9P2Vl_GefZ12_8LSduMb20OWV3r0oKxxn7QaDlDWg5gZbvgJYTaHme8Rq0POYIWt6Alpeg5ZnhBFpegZYXoH3P-5wgy_cg-5jNPgxng5FVTgGxEs8Oc0ulItC-cWxXqsA1KcSToTZ2qCA4FakJIP72jUljCGYDZWyZOLErpE6EExgdKPcJO4Hfr58xbhKZIC-gp0Tq4cgZz4OE3E2M0MqkvttmYXXZo6RUyMdBLYuIMmVpRz07ApNFjckiMlk0kG3m1seuCp2YWx11vmfd5tASVW32ujJ3BH4fL3-81Nl2Ezm9IIQgxz_-DZzni1JSbfa0wElzdhQFhMTi-d-Wf8HuNbfuS3aSr7f6FQThuTonmP8CxU3X0A |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+peripheral+blood+mononuclear+cells+to+determine+a+gene+expression+profile+of+acute+ischemic+stroke%3A+A+pilot+investigation&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=MOORE%2C+David+F&rft.au=HONG+LI&rft.au=GOLDIN%2C+Ehud&rft.au=BAIRD%2C+Alison+E&rft.date=2005-01-18&rft.pub=Lippincott+Williams+%26+Wilkins&rft.issn=0009-7322&rft.volume=111&rft.issue=2&rft.spage=212&rft.epage=221&rft_id=info:doi/10.1161%2F01.CIR.0000152105.79665.C6&rft.externalDBID=n%2Fa&rft.externalDocID=16603150 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon |