Using Peripheral Blood Mononuclear Cells to Determine a Gene Expression Profile of Acute Ischemic Stroke A Pilot Investigation

Background— Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene expression profile could be demonstrated in patients with acute ischemic stroke. Methods and Results— Using oligonucleotide microar...

Full description

Saved in:
Bibliographic Details
Published inCirculation (New York, N.Y.) Vol. 111; no. 2; pp. 212 - 221
Main Authors Moore, David F., Li, Hong, Jeffries, Neal, Wright, Violet, Cooper, Ronald A., Elkahloun, Abdel, Gelderman, Monique P., Zudaire, Enrique, Blevins, Gregg, Yu, Hua, Goldin, Ehud, Baird, Alison E.
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Lippincott Williams & Wilkins 18.01.2005
Subjects
Online AccessGet full text
ISSN0009-7322
1524-4539
1524-4539
DOI10.1161/01.CIR.0000152105.79665.C6

Cover

Abstract Background— Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene expression profile could be demonstrated in patients with acute ischemic stroke. Methods and Results— Using oligonucleotide microarrays, we compared the gene expression profile of an index cohort of 20 patients with confirmed ischemic stroke on neuroimaging studies with that of 20 referent subjects. Validation studies used quantitative real-time polymerase chain reaction to measure the levels of 9 upregulated genes in the index cohort, and an independent cohort of 9 patients and 10 referent subjects was prospectively studied to determine the accuracy of the Prediction Analysis for Microarrays list to classify stroke. After correction for multiple comparisons with the Bonferroni technique, 190 genes were significantly different between the stroke and referent groups. Broad classes of genes included white blood cell activation and differentiation (≈60%), genes associated with hypoxia and vascular repair, and genes potentially associated with an altered cerebral microenvironment. Real-time polymerase chain reaction confirmed increased mRNA expression in 9 of 9 upregulated stroke-associated genes in the index cohort. A panel of 22 genes derived from the Prediction Analysis for Microarrays algorithm in the index cohort classified stroke in the validation cohort with a sensitivity of 78% and a specificity of 80%. Control for the Framingham stroke risk score revealed only a partial dependence of the stroke gene expression profile in PBMCs on vascular risk. Conclusions— This study demonstrated an altered gene expression profile in PBMCs during acute ischemic stroke. Some genes with altered expression were consistent with an adaptive response to central nervous system ischemia.
AbstractList Background— Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene expression profile could be demonstrated in patients with acute ischemic stroke. Methods and Results— Using oligonucleotide microarrays, we compared the gene expression profile of an index cohort of 20 patients with confirmed ischemic stroke on neuroimaging studies with that of 20 referent subjects. Validation studies used quantitative real-time polymerase chain reaction to measure the levels of 9 upregulated genes in the index cohort, and an independent cohort of 9 patients and 10 referent subjects was prospectively studied to determine the accuracy of the Prediction Analysis for Microarrays list to classify stroke. After correction for multiple comparisons with the Bonferroni technique, 190 genes were significantly different between the stroke and referent groups. Broad classes of genes included white blood cell activation and differentiation (≈60%), genes associated with hypoxia and vascular repair, and genes potentially associated with an altered cerebral microenvironment. Real-time polymerase chain reaction confirmed increased mRNA expression in 9 of 9 upregulated stroke-associated genes in the index cohort. A panel of 22 genes derived from the Prediction Analysis for Microarrays algorithm in the index cohort classified stroke in the validation cohort with a sensitivity of 78% and a specificity of 80%. Control for the Framingham stroke risk score revealed only a partial dependence of the stroke gene expression profile in PBMCs on vascular risk. Conclusions— This study demonstrated an altered gene expression profile in PBMCs during acute ischemic stroke. Some genes with altered expression were consistent with an adaptive response to central nervous system ischemia.
BACKGROUND: Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene expression profile could be demonstrated in patients with acute ischemic stroke. METHOD:S: and Results-Using oligonucleotide microarrays, we compared the gene expression profile of an index cohort of 20 patients with confirmed ischemic stroke on neuroimaging studies with that of 20 referent subjects. Validation studies used quantitative real-time polymerase chain reaction to measure the levels of 9 upregulated genes in the index cohort, and an independent cohort of 9 patients and 10 referent subjects was prospectively studied to determine the accuracy of the Prediction Analysis for Microarrays list to classify stroke. After correction for multiple comparisons with the Bonferroni technique, 190 genes were significantly different between the stroke and referent groups. Broad classes of genes included white blood cell activation and differentiation ( similar to 60%), genes associated with hypoxia and vascular repair, and genes potentially associated with an altered cerebral microenvironment. Real-time polymerase chain reaction confirmed increased mRNA expression in 9 of 9 upregulated stroke-associated genes in the index cohort. A panel of 22 genes derived from the Prediction Analysis for Microarrays algorithm in the index cohort classified stroke in the validation cohort with a sensitivity of 78% and a specificity of 80%. Control for the Framingham stroke risk score revealed only a partial dependence of the stroke gene expression profile in PBMCs on vascular risk. CONCLUSIONS: This study demonstrated an altered gene expression profile in PBMCs during acute ischemic stroke. Some genes with altered expression were consistent with an adaptive response to central nervous system ischemia.
Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene expression profile could be demonstrated in patients with acute ischemic stroke.BACKGROUNDDirect brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene expression profile could be demonstrated in patients with acute ischemic stroke.Using oligonucleotide microarrays, we compared the gene expression profile of an index cohort of 20 patients with confirmed ischemic stroke on neuroimaging studies with that of 20 referent subjects. Validation studies used quantitative real-time polymerase chain reaction to measure the levels of 9 upregulated genes in the index cohort, and an independent cohort of 9 patients and 10 referent subjects was prospectively studied to determine the accuracy of the Prediction Analysis for Microarrays list to classify stroke. After correction for multiple comparisons with the Bonferroni technique, 190 genes were significantly different between the stroke and referent groups. Broad classes of genes included white blood cell activation and differentiation (approximately 60%), genes associated with hypoxia and vascular repair, and genes potentially associated with an altered cerebral microenvironment. Real-time polymerase chain reaction confirmed increased mRNA expression in 9 of 9 upregulated stroke-associated genes in the index cohort. A panel of 22 genes derived from the Prediction Analysis for Microarrays algorithm in the index cohort classified stroke in the validation cohort with a sensitivity of 78% and a specificity of 80%. Control for the Framingham stroke risk score revealed only a partial dependence of the stroke gene expression profile in PBMCs on vascular risk.METHODS AND RESULTSUsing oligonucleotide microarrays, we compared the gene expression profile of an index cohort of 20 patients with confirmed ischemic stroke on neuroimaging studies with that of 20 referent subjects. Validation studies used quantitative real-time polymerase chain reaction to measure the levels of 9 upregulated genes in the index cohort, and an independent cohort of 9 patients and 10 referent subjects was prospectively studied to determine the accuracy of the Prediction Analysis for Microarrays list to classify stroke. After correction for multiple comparisons with the Bonferroni technique, 190 genes were significantly different between the stroke and referent groups. Broad classes of genes included white blood cell activation and differentiation (approximately 60%), genes associated with hypoxia and vascular repair, and genes potentially associated with an altered cerebral microenvironment. Real-time polymerase chain reaction confirmed increased mRNA expression in 9 of 9 upregulated stroke-associated genes in the index cohort. A panel of 22 genes derived from the Prediction Analysis for Microarrays algorithm in the index cohort classified stroke in the validation cohort with a sensitivity of 78% and a specificity of 80%. Control for the Framingham stroke risk score revealed only a partial dependence of the stroke gene expression profile in PBMCs on vascular risk.This study demonstrated an altered gene expression profile in PBMCs during acute ischemic stroke. Some genes with altered expression were consistent with an adaptive response to central nervous system ischemia.CONCLUSIONSThis study demonstrated an altered gene expression profile in PBMCs during acute ischemic stroke. Some genes with altered expression were consistent with an adaptive response to central nervous system ischemia.
Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene expression profile could be demonstrated in patients with acute ischemic stroke. Using oligonucleotide microarrays, we compared the gene expression profile of an index cohort of 20 patients with confirmed ischemic stroke on neuroimaging studies with that of 20 referent subjects. Validation studies used quantitative real-time polymerase chain reaction to measure the levels of 9 upregulated genes in the index cohort, and an independent cohort of 9 patients and 10 referent subjects was prospectively studied to determine the accuracy of the Prediction Analysis for Microarrays list to classify stroke. After correction for multiple comparisons with the Bonferroni technique, 190 genes were significantly different between the stroke and referent groups. Broad classes of genes included white blood cell activation and differentiation (approximately 60%), genes associated with hypoxia and vascular repair, and genes potentially associated with an altered cerebral microenvironment. Real-time polymerase chain reaction confirmed increased mRNA expression in 9 of 9 upregulated stroke-associated genes in the index cohort. A panel of 22 genes derived from the Prediction Analysis for Microarrays algorithm in the index cohort classified stroke in the validation cohort with a sensitivity of 78% and a specificity of 80%. Control for the Framingham stroke risk score revealed only a partial dependence of the stroke gene expression profile in PBMCs on vascular risk. This study demonstrated an altered gene expression profile in PBMCs during acute ischemic stroke. Some genes with altered expression were consistent with an adaptive response to central nervous system ischemia.
Author Zudaire, Enrique
Wright, Violet
Moore, David F.
Li, Hong
Gelderman, Monique P.
Yu, Hua
Cooper, Ronald A.
Goldin, Ehud
Baird, Alison E.
Jeffries, Neal
Blevins, Gregg
Elkahloun, Abdel
Author_xml – sequence: 1
  givenname: David F.
  surname: Moore
  fullname: Moore, David F.
  organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology
– sequence: 2
  givenname: Hong
  surname: Li
  fullname: Li, Hong
  organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology
– sequence: 3
  givenname: Neal
  surname: Jeffries
  fullname: Jeffries, Neal
  organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology
– sequence: 4
  givenname: Violet
  surname: Wright
  fullname: Wright, Violet
  organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology
– sequence: 5
  givenname: Ronald A.
  surname: Cooper
  fullname: Cooper, Ronald A.
  organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology
– sequence: 6
  givenname: Abdel
  surname: Elkahloun
  fullname: Elkahloun, Abdel
  organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology
– sequence: 7
  givenname: Monique P.
  surname: Gelderman
  fullname: Gelderman, Monique P.
  organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology
– sequence: 8
  givenname: Enrique
  surname: Zudaire
  fullname: Zudaire, Enrique
  organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology
– sequence: 9
  givenname: Gregg
  surname: Blevins
  fullname: Blevins, Gregg
  organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology
– sequence: 10
  givenname: Hua
  surname: Yu
  fullname: Yu, Hua
  organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology
– sequence: 11
  givenname: Ehud
  surname: Goldin
  fullname: Goldin, Ehud
  organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology
– sequence: 12
  givenname: Alison E.
  surname: Baird
  fullname: Baird, Alison E.
  organization: From the Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada (D.F.M.); Stroke Neuroscience Unit (H.L., V.W., H.Y., A.E.B.), Biostatistics Branch (N.J.), Micro-Array Core Facility (R.A.C., A.E.), Neuroimmunology Branch (G.B.), and Developmental and Metabolic Neurology Branch (E.G.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md; Laboratory of Cellular Hematology, CBER, FDA, Rockville, Md (M.P.G.); and Cell and Cancer Biology
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16603150$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15630028$$D View this record in MEDLINE/PubMed
BookMark eNqN0V2P1CAUBmBi1rizq3_BEBO9a-WjUOqVa13XSda40fWaUHpw0LaMQBP996I7ZhJvlJsTyHMgnPcMnSxhAYSeUFJTKulzQut--6EmZVHBKBF120kp6l7eQ5ty0lSN4N0J2hTQVS1n7BSdpfSlbCVvxQN0SoXkhDC1QbtPyS-f8Q1Ev99BNBN-NYUw4nehPLraCUzEPUxTwjng15Ahzn4BbPAVlHL5fR8hJR8WfBOD8xPg4PCFXTPgbbI7mL3FH3MMX-Ehuu_MlODRoZ6j2zeXt_3b6vr91ba_uK5sQ7tcDaNQ0DpGuRwUd6OkTQeOdgOjSoxOsZa3zo2GEKUGR6VlhgsJVjDlQA38HD27u3Yfw7cVUtazT7Z8wCwQ1qRlyxXthPonZER1jWzbAh8f4DrMMOp99LOJP_SfGRbw9ABMsmZy0SzWp6OTknAqSHEv7pyNIaUI7kiI_hWsJlSXYPUxWP07WN3L0vzyr2brs8ll8jkaP_3PFT8BNTSpcg
CODEN CIRCAZ
CitedBy_id crossref_primary_10_1007_s00439_024_02717_7
crossref_primary_10_1016_j_pmrj_2011_04_004
crossref_primary_10_1093_hmg_ddp397
crossref_primary_10_1038_sj_jcbfm_9600264
crossref_primary_10_1038_jcbfm_2012_24
crossref_primary_10_1007_s12035_018_1147_0
crossref_primary_10_1016_j_brainres_2023_148590
crossref_primary_10_1186_2043_9113_1_12
crossref_primary_10_1007_s00392_013_0607_9
crossref_primary_10_2174_0929867329666220921113403
crossref_primary_10_1515_dmdi_2011_102
crossref_primary_10_1039_C9NJ01598A
crossref_primary_10_1021_ac5007766
crossref_primary_10_1038_s41598_022_18719_2
crossref_primary_10_1177_0883073811408093
crossref_primary_10_1038_jcbfm_2009_189
crossref_primary_10_1371_journal_pone_0168773
crossref_primary_10_3390_brainsci12030302
crossref_primary_10_1515_CCLM_2007_261
crossref_primary_10_1038_s41598_017_04497_9
crossref_primary_10_1042_CS20180411
crossref_primary_10_2217_14622416_7_2_187
crossref_primary_10_1016_j_molmed_2007_08_003
crossref_primary_10_1016_j_urology_2009_06_021
crossref_primary_10_1016_j_jacc_2010_02_051
crossref_primary_10_1038_jcbfm_2011_45
crossref_primary_10_1186_s12944_017_0471_0
crossref_primary_10_3390_ijms20051149
crossref_primary_10_1017_S1092852900017193
crossref_primary_10_3892_etm_2021_10919
crossref_primary_10_1371_journal_pone_0016750
crossref_primary_10_1016_j_ejvs_2010_11_019
crossref_primary_10_2217_17410541_3_1_101
crossref_primary_10_1159_000354161
crossref_primary_10_3390_diagnostics3010126
crossref_primary_10_4236_ajmb_2011_12011
crossref_primary_10_1016_j_atherosclerosis_2011_09_026
crossref_primary_10_1093_bfgp_elac017
crossref_primary_10_1097_BRS_0b013e3181cf39ff
crossref_primary_10_1016_j_hoc_2013_03_002
crossref_primary_10_1177_1076029611432744
crossref_primary_10_1111_j_1365_2265_2008_03205_x
crossref_primary_10_1586_14737159_2015_1024660
crossref_primary_10_1007_s13311_011_0050_4
crossref_primary_10_1007_s12170_007_0013_9
crossref_primary_10_1016_j_ygeno_2007_09_003
crossref_primary_10_1080_14737159_2020_1777859
crossref_primary_10_1038_s42003_020_01336_y
crossref_primary_10_2217_fnl_16_5
crossref_primary_10_1177_0333102416628463
crossref_primary_10_1177_1099800410385671
crossref_primary_10_1186_1471_2164_11_542
crossref_primary_10_3109_07420528_2012_691145
crossref_primary_10_1111_j_1365_2796_2009_02202_x
crossref_primary_10_3389_fped_2020_00272
crossref_primary_10_1152_physiolgenomics_90364_2008
crossref_primary_10_1517_17530059_1_2_235
crossref_primary_10_1016_j_ejheart_2008_06_003
crossref_primary_10_1212_WNL_0b013e3181f2b37f
crossref_primary_10_1212_WNL_0b013e3181b05ef9
crossref_primary_10_1161_STROKEAHA_116_013869
crossref_primary_10_1007_s12975_015_0407_9
crossref_primary_10_1186_1471_2164_7_115
crossref_primary_10_1016_j_pharmthera_2021_107933
crossref_primary_10_1371_journal_pone_0206321
crossref_primary_10_1016_j_coph_2015_11_006
crossref_primary_10_1212_WNL_0b013e318236eee6
crossref_primary_10_1097_WNR_0000000000001394
crossref_primary_10_1177_1087057113489882
crossref_primary_10_1007_s12035_021_02401_1
crossref_primary_10_1097_TA_0000000000002918
crossref_primary_10_1007_s12975_011_0067_3
crossref_primary_10_1177_1099800414546492
crossref_primary_10_1002_jat_2861
crossref_primary_10_1007_s00415_008_0784_z
crossref_primary_10_1016_j_ijcard_2014_03_042
crossref_primary_10_1038_s41582_020_0350_6
crossref_primary_10_1111_j_1749_6632_2010_05731_x
crossref_primary_10_1002_ajmg_b_31140
crossref_primary_10_1097_00029330_200612020_00016
crossref_primary_10_3389_fnagi_2022_1041333
crossref_primary_10_3389_fneur_2019_00036
crossref_primary_10_1038_srep29693
crossref_primary_10_3390_diagnostics10050340
crossref_primary_10_1002_ana_22553
crossref_primary_10_1097_WCO_0000000000000786
crossref_primary_10_4155_bio_15_40
crossref_primary_10_1039_C4MB00157E
crossref_primary_10_2217_14622416_7_2_141
crossref_primary_10_1177_1177271917749216
crossref_primary_10_1002_ajmg_b_30550
crossref_primary_10_1016_j_sbspro_2012_08_056
crossref_primary_10_1042_BST0341313
crossref_primary_10_1186_s12944_016_0285_5
crossref_primary_10_1111_j_1651_2227_2008_00654_x
crossref_primary_10_32604_biocell_2022_017544
crossref_primary_10_1002_acn3_50861
crossref_primary_10_1016_j_annfar_2007_09_006
crossref_primary_10_1021_ac400729q
crossref_primary_10_1161_CIRCRESAHA_120_316659
crossref_primary_10_1016_j_bbadis_2014_04_010
crossref_primary_10_3389_fgene_2021_598296
crossref_primary_10_1002_ana_22049
crossref_primary_10_1080_00207454_2019_1634072
crossref_primary_10_1038_s41390_020_0764_2
crossref_primary_10_3389_fnagi_2014_00044
crossref_primary_10_1111_j_1651_2227_2006_tb02393_x
crossref_primary_10_3389_fneur_2021_619721
crossref_primary_10_3390_jcm11144243
crossref_primary_10_1186_s12967_022_03377_9
crossref_primary_10_1111_j_1747_4949_2012_00784_x
crossref_primary_10_2217_fnl_2016_0034
crossref_primary_10_1186_1471_2202_8_93
crossref_primary_10_1186_s12967_016_0806_z
crossref_primary_10_1089_dna_2017_3650
crossref_primary_10_1177_0271678X18769513
crossref_primary_10_1111_j_1528_1167_2006_00809_x
crossref_primary_10_1186_1741_7007_8_84
crossref_primary_10_2217_bmm_09_43
crossref_primary_10_1134_S0026893317040100
crossref_primary_10_1007_s13258_021_01060_9
crossref_primary_10_1179_1743132813Y_0000000212
crossref_primary_10_3109_00207454_2013_837462
crossref_primary_10_1371_journal_pone_0096063
crossref_primary_10_1016_j_ygeno_2014_08_004
crossref_primary_10_1586_14737159_7_1_45
crossref_primary_10_1016_j_tcm_2006_03_006
crossref_primary_10_1091_mbc_e11_10_0849
crossref_primary_10_1016_j_carpath_2007_04_004
crossref_primary_10_1016_j_ygeno_2006_02_003
crossref_primary_10_1080_00207454_2020_1732964
crossref_primary_10_4137_BMI_S938
crossref_primary_10_1016_S0049_3848_12_70014_2
crossref_primary_10_1007_s11883_009_0027_5
crossref_primary_10_1515_CCLM_2007_255
crossref_primary_10_1007_s11883_006_0003_2
crossref_primary_10_1038_npjgenmed_2016_38
crossref_primary_10_1038_s41598_017_01178_5
crossref_primary_10_1038_jcbfm_2008_22
crossref_primary_10_2217_bmm_12_104
crossref_primary_10_1007_s11033_021_06899_5
crossref_primary_10_1007_s12017_023_08761_2
crossref_primary_10_1016_j_neurol_2016_02_003
crossref_primary_10_1111_cen3_12104
crossref_primary_10_1161_STROKEAHA_114_005604
Cites_doi 10.1002/ana.10042
10.1016/S0197-0186(02)00194-8
10.1016/S0140-6736(03)14412-1
10.1016/S0140-6736(03)14023-8
10.1046/j.1460-9568.2002.02030.x
10.1093/hmg/9.17.2479
10.1161/01.str.0000105927.62344.4c
10.1016/S0049-3848(00)00218-8
10.1161/str.20.7.2749847
10.1126/science.270.5235.467
10.1128/IAI.71.10.5803-5813.2003
10.1097/01.WCB.0000062340.80057.06
10.1002/ana.20008
10.1161/str.23.9.1519296
10.1182/blood-2003-08-2760
10.1093/bioinformatics/btg382
10.1161/str.22.3.2003301
10.1093/hmg/ddg221
10.1016/S0969-9961(03)00107-4
10.1038/nature02319
10.1523/JNEUROSCI.18-06-02075.1998
10.1073/pnas.95.19.11423
10.1016/S0140-6736(04)15693-6
10.1073/pnas.95.25.14863
10.1214/aos/1013699998
10.1097/00005072-197407000-00007
10.1038/ng1201-365
10.1038/379349a0
10.1016/0378-1119(95)00061-A
10.1016/S0361-9230(03)00089-3
10.1038/35020115
10.1093/brain/awg147
10.1038/nbt1296-1675
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright_xml – notice: 2005 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
8FD
FR3
H94
P64
RC3
7X8
DOI 10.1161/01.CIR.0000152105.79665.C6
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Genetics Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
EndPage 221
ExternalDocumentID 15630028
16603150
10_1161_01_CIR_0000152105_79665_C6
Genre Validation Studies
Research Support, U.S. Gov't, P.H.S
Journal Article
GroupedDBID ---
.-D
.3C
.55
.GJ
.XZ
.Z2
01R
0R~
0ZK
18M
1J1
29B
2FS
2WC
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAEJM
AAFWJ
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AARTV
AASOK
AAUEB
AAWTL
AAXQO
AAYOK
AAYXX
ABBUW
ABDIG
ABJNI
ABOCM
ABPMR
ABPXF
ABQRW
ABXVJ
ABZAD
ACCJW
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACOAL
ACRKK
ACWDW
ACWRI
ACXNZ
ACZKN
ADBBV
ADCYY
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFCHL
AFDTB
AFEXH
AFFNX
AFNMH
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJJEV
AJNWD
AJNYG
AJZMW
ALKUP
ALMA_UNASSIGNED_HOLDINGS
AMJPA
AMNEI
ASPBG
AVWKF
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BYPQX
C1A
C45
CITATION
CS3
DIK
DIWNM
DU5
DUNZO
E.X
E3Z
EBS
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GX1
H0~
H13
HZ~
H~9
IKREB
IKYAY
IN~
J5H
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
M18
N4W
N9A
NEJ
N~7
N~B
O9-
OAG
OAH
OBH
OCB
OCUKA
ODMTH
OGEVE
OHH
OHT
OHYEH
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PQQKQ
RAH
RLZ
S4R
S4S
T8P
TEORI
TR2
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WHG
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YOC
YSK
YYM
YYP
YZZ
ZFV
ZY1
ZZMQN
~H1
1CY
41~
AAQKA
AASCR
AASXQ
ABASU
ABVCZ
ABXYN
ABZZY
ACLDA
ACXJB
ADFPA
AEBDS
AFBFQ
AFMBP
AFSOK
AHQVU
AKCTQ
AKULP
ALMTX
AMKUR
AOHHW
AOQMC
BS7
EEVPB
EJD
ERAAH
FEDTE
GNXGY
GQDEL
HLJTE
HVGLF
IPNFZ
IQODW
MVM
N~M
ODA
P-K
R58
RIG
TSPGW
YQJ
YXB
ZGI
ZXP
ACIJW
ACRZS
AWKKM
CGR
CUY
CVF
ECM
EIF
NPM
OJAPA
OLW
PKN
RHF
7T5
7TK
8FD
FR3
H94
P64
RC3
7X8
ADKSD
ID FETCH-LOGICAL-c419t-bd58e7f2136b83fd6149ef19b2185df82737ffda0088bf16c2a356ec528fe8b3
ISSN 0009-7322
1524-4539
IngestDate Mon Sep 08 17:55:48 EDT 2025
Tue Aug 05 10:27:04 EDT 2025
Wed Feb 19 01:40:10 EST 2025
Mon Jul 21 09:18:12 EDT 2025
Tue Jul 01 02:05:02 EDT 2025
Thu Apr 24 23:09:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Vascular disease
Cerebral infarction
Nervous system diseases
Stroke
Mononuclear cell
Ischemia
genes
Central nervous system disease
Cardiovascular disease
Gene expression
Cerebrovascular disease
Cerebral disorder
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c419t-bd58e7f2136b83fd6149ef19b2185df82737ffda0088bf16c2a356ec528fe8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 15630028
PQID 20894677
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_67381958
proquest_miscellaneous_20894677
pubmed_primary_15630028
pascalfrancis_primary_16603150
crossref_primary_10_1161_01_CIR_0000152105_79665_C6
crossref_citationtrail_10_1161_01_CIR_0000152105_79665_C6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-01-18
PublicationDateYYYYMMDD 2005-01-18
PublicationDate_xml – month: 01
  year: 2005
  text: 2005-01-18
  day: 18
PublicationDecade 2000
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Circulation (New York, N.Y.)
PublicationTitleAlternate Circulation
PublicationYear 2005
Publisher Lippincott Williams & Wilkins
Publisher_xml – name: Lippincott Williams & Wilkins
References (e_1_3_3_23_2) 2002; 90
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_13_2
  doi: 10.1002/ana.10042
– ident: e_1_3_3_32_2
  doi: 10.1016/S0197-0186(02)00194-8
– ident: e_1_3_3_8_2
  doi: 10.1016/S0140-6736(03)14412-1
– ident: e_1_3_3_5_2
  doi: 10.1016/S0140-6736(03)14023-8
– ident: e_1_3_3_7_2
  doi: 10.1046/j.1460-9568.2002.02030.x
– ident: e_1_3_3_30_2
  doi: 10.1093/hmg/9.17.2479
– ident: e_1_3_3_37_2
  doi: 10.1161/01.str.0000105927.62344.4c
– ident: e_1_3_3_20_2
– ident: e_1_3_3_10_2
  doi: 10.1016/S0049-3848(00)00218-8
– ident: e_1_3_3_17_2
  doi: 10.1161/str.20.7.2749847
– ident: e_1_3_3_1_2
  doi: 10.1126/science.270.5235.467
– ident: e_1_3_3_28_2
  doi: 10.1128/IAI.71.10.5803-5813.2003
– ident: e_1_3_3_6_2
  doi: 10.1097/01.WCB.0000062340.80057.06
– ident: e_1_3_3_27_2
  doi: 10.1002/ana.20008
– ident: e_1_3_3_9_2
  doi: 10.1161/str.23.9.1519296
– ident: e_1_3_3_26_2
  doi: 10.1182/blood-2003-08-2760
– ident: e_1_3_3_22_2
– ident: e_1_3_3_25_2
  doi: 10.1093/bioinformatics/btg382
– ident: e_1_3_3_18_2
  doi: 10.1161/str.22.3.2003301
– volume: 90
  start-page: 6567
  year: 2002
  ident: e_1_3_3_23_2
  publication-title: Proc Natl Acad Sci U S A
– ident: e_1_3_3_14_2
  doi: 10.1093/hmg/ddg221
– ident: e_1_3_3_33_2
  doi: 10.1016/S0969-9961(03)00107-4
– ident: e_1_3_3_31_2
  doi: 10.1038/nature02319
– ident: e_1_3_3_11_2
  doi: 10.1523/JNEUROSCI.18-06-02075.1998
– ident: e_1_3_3_34_2
  doi: 10.1073/pnas.95.19.11423
– ident: e_1_3_3_4_2
  doi: 10.1016/S0140-6736(04)15693-6
– ident: e_1_3_3_24_2
  doi: 10.1073/pnas.95.25.14863
– ident: e_1_3_3_21_2
  doi: 10.1214/aos/1013699998
– ident: e_1_3_3_12_2
  doi: 10.1097/00005072-197407000-00007
– ident: e_1_3_3_16_2
  doi: 10.1038/ng1201-365
– ident: e_1_3_3_29_2
  doi: 10.1038/379349a0
– ident: e_1_3_3_35_2
  doi: 10.1016/0378-1119(95)00061-A
– ident: e_1_3_3_36_2
  doi: 10.1016/S0361-9230(03)00089-3
– ident: e_1_3_3_3_2
  doi: 10.1038/35020115
– ident: e_1_3_3_15_2
  doi: 10.1093/brain/awg147
– ident: e_1_3_3_2_2
  doi: 10.1038/nbt1296-1675
– ident: e_1_3_3_19_2
SSID ssj0006375
Score 2.256101
Snippet Background— Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a...
Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a systemic gene...
BACKGROUND: Direct brain biopsy is rarely indicated during acute stroke. This study uses peripheral blood mononuclear cells (PBMCs) to determine whether a...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 212
SubjectTerms Acute Disease
Adaptation, Physiological - genetics
Aged
Aged, 80 and over
Biological and medical sciences
Blood and lymphatic vessels
Blood vessels and receptors
Brain Ischemia - blood
Brain Ischemia - genetics
Cardiology. Vascular system
Cohort Studies
Computer Systems
Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous
Female
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling
Gene Expression Regulation
Humans
Leukocytes, Mononuclear - metabolism
Male
Medical sciences
Middle Aged
Neurology
Oligonucleotide Array Sequence Analysis
Pilot Projects
Predictive Value of Tests
Prospective Studies
Reverse Transcriptase Polymerase Chain Reaction
Vascular diseases and vascular malformations of the nervous system
Vertebrates: cardiovascular system
Subtitle A Pilot Investigation
Title Using Peripheral Blood Mononuclear Cells to Determine a Gene Expression Profile of Acute Ischemic Stroke
URI https://www.ncbi.nlm.nih.gov/pubmed/15630028
https://www.proquest.com/docview/20894677
https://www.proquest.com/docview/67381958
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bj9JQED4ha2JMjNFdL3hZz4PxhRTp5Zy2vhEWF4y7JASTfWt62nMiCVIC5UFf_G3-M2emN1CIqy8NaWgPdL5OZ6bffMPYGzcN_IQ6eqQUlidiYSk_EJZQSqWh0RDBEtviWo4-ex9vxE2r9XOHtbTNVTf5frCv5H-sCvvArtgl-w-WrU8KO-Az2Be2YGHY3srGxft-1ComcYBFQUPvwPrZEnWK43UHC_Mk4pCWvBfdiXFsskZt_4IDSyQt1GciTkCCxIE55LzEmt_ka5TkpPb11XyR4UCBWpijtGilczBfJ-UssEMjfnZKDleTyXRYE-obbvFocn0J3rSmBE0-XYyJhTD8sk3rukF_PL0oWnNoeuJwr26BFEGrdLVUtzigP0F1i_kCyUF7Pju0fNfZ99mlh57v5M6VB3Z2HuZO0X7953NC2tT70B2MpyRhiWFMT3R9yP5Ed3BAnPu3h2ZNZbQlzunGqtEdx_eJKXB507CMpOuLapgf_olS9xbWf3d89b0Y6f4q3sDtaoo5K8cTIQqIZg_ZgzKT4f0Clo9YSy9P2Vl_GefZ12_8LSduMb20OWV3r0oKxxn7QaDlDWg5gZbvgJYTaHme8Rq0POYIWt6Alpeg5ZnhBFpegZYXoH3P-5wgy_cg-5jNPgxng5FVTgGxEs8Oc0ulItC-cWxXqsA1KcSToTZ2qCA4FakJIP72jUljCGYDZWyZOLErpE6EExgdKPcJO4Hfr58xbhKZIC-gp0Tq4cgZz4OE3E2M0MqkvttmYXXZo6RUyMdBLYuIMmVpRz07ApNFjckiMlk0kG3m1seuCp2YWx11vmfd5tASVW32ujJ3BH4fL3-81Nl2Ezm9IIQgxz_-DZzni1JSbfa0wElzdhQFhMTi-d-Wf8HuNbfuS3aSr7f6FQThuTonmP8CxU3X0A
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+peripheral+blood+mononuclear+cells+to+determine+a+gene+expression+profile+of+acute+ischemic+stroke%3A+A+pilot+investigation&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=MOORE%2C+David+F&rft.au=HONG+LI&rft.au=GOLDIN%2C+Ehud&rft.au=BAIRD%2C+Alison+E&rft.date=2005-01-18&rft.pub=Lippincott+Williams+%26+Wilkins&rft.issn=0009-7322&rft.volume=111&rft.issue=2&rft.spage=212&rft.epage=221&rft_id=info:doi/10.1161%2F01.CIR.0000152105.79665.C6&rft.externalDBID=n%2Fa&rft.externalDocID=16603150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon