Non-invasive diagnosis of non-alcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: A proof of concept study

Non-alcoholic fatty liver disease (NAFLD) affects 25–30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biop...

Full description

Saved in:
Bibliographic Details
Published inMetabolism, clinical and experimental Vol. 101; p. 154005
Main Authors Perakakis, Nikolaos, Polyzos, Stergios A., Yazdani, Alireza, Sala-Vila, Aleix, Kountouras, Jannis, Anastasilakis, Athanasios D., Mantzoros, Christos S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non-alcoholic fatty liver disease (NAFLD) affects 25–30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biopsy is the gold standard for the diagnosis of NASH and for staging liver fibrosis. This study aimed to train models for the non-invasive diagnosis of NASH and liver fibrosis based on measurements of lipids, glycans and biochemical parameters in peripheral blood and with the use of different machine learning methods. We performed a lipidomic, glycomic and free fatty acid analysis in serum samples of 49 healthy subjects and 31 patients with biopsy-proven NAFLD (15 with NAFL and 16 with NASH). The data from the above measurements combined with measurements of 4 hormonal parameters were analyzed with two different platforms and five different machine learning tools. 365 lipids, 61 glycans and 23 fatty acids were identified with mass-spectrometry and liquid chromatography. Robust differences in the concentrations of specific lipid species were observed between healthy, NAFL and NASH subjects. One-vs-Rest (OvR) support vector machine (SVM) models with recursive feature elimination (RFE) including 29 lipids or combining lipids with glycans and/or hormones (20 or 10 variables total) could differentiate with very high accuracy (up to 90%) between the three conditions. In an exploratory analysis, a model consisting of 10 lipid species could robustly discriminate between the presence of liver fibrosis or not (98% accuracy). We propose novel models utilizing lipids, hormones and glycans that can diagnose with high accuracy the presence of NASH, NAFL or healthy status. Additionally, we report a combination of lipids that can diagnose the presence of liver fibrosis. Both models should be further trained prospectively and validated in large independent cohorts. •A lipidomic, glycomic and hormonal analysis was performed in healthy, NAFL and NASH subjects•Results were analyzed with 5 different machine learning techniques in two different platforms•Diagnostic models with excellent accuracy for diagnosing healthy vs. NAFL vs. NASH sumulatneously were developed•A predictive model consisting of 10 lipids showed perfect accuracy for detecting the presence of liver fibrosis
AbstractList Non-alcoholic fatty liver disease (NAFLD) affects 25–30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biopsy is the gold standard for the diagnosis of NASH and for staging liver fibrosis. This study aimed to train models for the non-invasive diagnosis of NASH and liver fibrosis based on measurements of lipids, glycans and biochemical parameters in peripheral blood and with the use of different machine learning methods. We performed a lipidomic, glycomic and free fatty acid analysis in serum samples of 49 healthy subjects and 31 patients with biopsy-proven NAFLD (15 with NAFL and 16 with NASH). The data from the above measurements combined with measurements of 4 hormonal parameters were analyzed with two different platforms and five different machine learning tools. 365 lipids, 61 glycans and 23 fatty acids were identified with mass-spectrometry and liquid chromatography. Robust differences in the concentrations of specific lipid species were observed between healthy, NAFL and NASH subjects. One-vs-Rest (OvR) support vector machine (SVM) models with recursive feature elimination (RFE) including 29 lipids or combining lipids with glycans and/or hormones (20 or 10 variables total) could differentiate with very high accuracy (up to 90%) between the three conditions. In an exploratory analysis, a model consisting of 10 lipid species could robustly discriminate between the presence of liver fibrosis or not (98% accuracy). We propose novel models utilizing lipids, hormones and glycans that can diagnose with high accuracy the presence of NASH, NAFL or healthy status. Additionally, we report a combination of lipids that can diagnose the presence of liver fibrosis. Both models should be further trained prospectively and validated in large independent cohorts. •A lipidomic, glycomic and hormonal analysis was performed in healthy, NAFL and NASH subjects•Results were analyzed with 5 different machine learning techniques in two different platforms•Diagnostic models with excellent accuracy for diagnosing healthy vs. NAFL vs. NASH sumulatneously were developed•A predictive model consisting of 10 lipids showed perfect accuracy for detecting the presence of liver fibrosis
Non-alcoholic fatty liver disease (NAFLD) affects 25-30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biopsy is the gold standard for the diagnosis of NASH and for staging liver fibrosis. This study aimed to train models for the non-invasive diagnosis of NASH and liver fibrosis based on measurements of lipids, glycans and biochemical parameters in peripheral blood and with the use of different machine learning methods.BACKGROUNDNon-alcoholic fatty liver disease (NAFLD) affects 25-30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biopsy is the gold standard for the diagnosis of NASH and for staging liver fibrosis. This study aimed to train models for the non-invasive diagnosis of NASH and liver fibrosis based on measurements of lipids, glycans and biochemical parameters in peripheral blood and with the use of different machine learning methods.We performed a lipidomic, glycomic and free fatty acid analysis in serum samples of 49 healthy subjects and 31 patients with biopsy-proven NAFLD (15 with NAFL and 16 with NASH). The data from the above measurements combined with measurements of 4 hormonal parameters were analyzed with two different platforms and five different machine learning tools.METHODSWe performed a lipidomic, glycomic and free fatty acid analysis in serum samples of 49 healthy subjects and 31 patients with biopsy-proven NAFLD (15 with NAFL and 16 with NASH). The data from the above measurements combined with measurements of 4 hormonal parameters were analyzed with two different platforms and five different machine learning tools.365 lipids, 61 glycans and 23 fatty acids were identified with mass-spectrometry and liquid chromatography. Robust differences in the concentrations of specific lipid species were observed between healthy, NAFL and NASH subjects. One-vs-Rest (OvR) support vector machine (SVM) models with recursive feature elimination (RFE) including 29 lipids or combining lipids with glycans and/or hormones (20 or 10 variables total) could differentiate with very high accuracy (up to 90%) between the three conditions. In an exploratory analysis, a model consisting of 10 lipid species could robustly discriminate between the presence of liver fibrosis or not (98% accuracy).RESULTS365 lipids, 61 glycans and 23 fatty acids were identified with mass-spectrometry and liquid chromatography. Robust differences in the concentrations of specific lipid species were observed between healthy, NAFL and NASH subjects. One-vs-Rest (OvR) support vector machine (SVM) models with recursive feature elimination (RFE) including 29 lipids or combining lipids with glycans and/or hormones (20 or 10 variables total) could differentiate with very high accuracy (up to 90%) between the three conditions. In an exploratory analysis, a model consisting of 10 lipid species could robustly discriminate between the presence of liver fibrosis or not (98% accuracy).We propose novel models utilizing lipids, hormones and glycans that can diagnose with high accuracy the presence of NASH, NAFL or healthy status. Additionally, we report a combination of lipids that can diagnose the presence of liver fibrosis. Both models should be further trained prospectively and validated in large independent cohorts.CONCLUSIONWe propose novel models utilizing lipids, hormones and glycans that can diagnose with high accuracy the presence of NASH, NAFL or healthy status. Additionally, we report a combination of lipids that can diagnose the presence of liver fibrosis. Both models should be further trained prospectively and validated in large independent cohorts.
Non-alcoholic fatty liver disease (NAFLD) affects 25-30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biopsy is the gold standard for the diagnosis of NASH and for staging liver fibrosis. This study aimed to train models for the non-invasive diagnosis of NASH and liver fibrosis based on measurements of lipids, glycans and biochemical parameters in peripheral blood and with the use of different machine learning methods. We performed a lipidomic, glycomic and free fatty acid analysis in serum samples of 49 healthy subjects and 31 patients with biopsy-proven NAFLD (15 with NAFL and 16 with NASH). The data from the above measurements combined with measurements of 4 hormonal parameters were analyzed with two different platforms and five different machine learning tools. 365 lipids, 61 glycans and 23 fatty acids were identified with mass-spectrometry and liquid chromatography. Robust differences in the concentrations of specific lipid species were observed between healthy, NAFL and NASH subjects. One-vs-Rest (OvR) support vector machine (SVM) models with recursive feature elimination (RFE) including 29 lipids or combining lipids with glycans and/or hormones (20 or 10 variables total) could differentiate with very high accuracy (up to 90%) between the three conditions. In an exploratory analysis, a model consisting of 10 lipid species could robustly discriminate between the presence of liver fibrosis or not (98% accuracy). We propose novel models utilizing lipids, hormones and glycans that can diagnose with high accuracy the presence of NASH, NAFL or healthy status. Additionally, we report a combination of lipids that can diagnose the presence of liver fibrosis. Both models should be further trained prospectively and validated in large independent cohorts.
ArticleNumber 154005
Author Sala-Vila, Aleix
Kountouras, Jannis
Anastasilakis, Athanasios D.
Perakakis, Nikolaos
Mantzoros, Christos S.
Polyzos, Stergios A.
Yazdani, Alireza
Author_xml – sequence: 1
  givenname: Nikolaos
  surname: Perakakis
  fullname: Perakakis, Nikolaos
  email: nperakak@bidmc.harvard.edu
  organization: Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
– sequence: 2
  givenname: Stergios A.
  surname: Polyzos
  fullname: Polyzos, Stergios A.
  organization: First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 3
  givenname: Alireza
  surname: Yazdani
  fullname: Yazdani, Alireza
  organization: Division of Applied Mathematics, Brown University, Providence, RI 02906, USA
– sequence: 4
  givenname: Aleix
  surname: Sala-Vila
  fullname: Sala-Vila, Aleix
  organization: CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
– sequence: 5
  givenname: Jannis
  surname: Kountouras
  fullname: Kountouras, Jannis
  organization: Second Medical Clinic, Faculty of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
– sequence: 6
  givenname: Athanasios D.
  surname: Anastasilakis
  fullname: Anastasilakis, Athanasios D.
  organization: Department of Endocrinology, 424 General Military Hospital, Thessaloniki, Greece
– sequence: 7
  givenname: Christos S.
  surname: Mantzoros
  fullname: Mantzoros, Christos S.
  email: cmantzor@bidmc.harvard.edu
  organization: Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31711876$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKeFRwB5ySbDdf4DQlVV8SdVsIG15dg3nTs49hA7g-YdeGg8ZLrppiwsb77v2Drngp0575CxlwLWAkT9ZrseMare23UOoluLqgSonrCVqIo8a2uAM7YCyOsMyq46ZxchbAGgadr6GTsvRCNE29Qr9uerdxm5vQq0R25I3TkfKHA_8PRgpqz2G29J8xBRRb_BnYoUE6Cc4QP10z_6N8UNjxvkc8Cj6kfSCxLmHU57Cmi4RTU5cndv-TXfTf6IDVx7p3EXU_xsDs_Z00HZgC9O9yX78fHD95vP2e23T19urm8zXYouZn2nQZi-V6pqQFRG9XXRalO0qodcNWgak6dT5QPoosduaDDHElpdY9HkfVNcstdLbvrGrxlDlCMFjdYqh34OMi9ECXkBlUjoqxM69yMauZtoVNNB3jeYgHcLoFMVYcJBaoqpI-_ipMhKAfK4l9zK017yuJdc9kp29cC-f-Ax72rxMNW0J5xk0ISpSkMT6iiNp0cT3j9I0JYcaWV_4uE__L-yWcoY
CitedBy_id crossref_primary_10_1093_jamia_ocab003
crossref_primary_10_3350_cmh_2022_0426
crossref_primary_10_1136_gutjnl_2023_331740
crossref_primary_10_3390_jcm13133798
crossref_primary_10_1016_j_metabol_2019_154028
crossref_primary_10_3390_diagnostics11061083
crossref_primary_10_1016_j_metabol_2022_155333
crossref_primary_10_3748_wjg_v27_i40_6794
crossref_primary_10_1002_mp_16597
crossref_primary_10_1016_j_coph_2021_08_014
crossref_primary_10_1136_bmjhci_2021_100510
crossref_primary_10_1097_MCG_0000000000002079
crossref_primary_10_1007_s11154_021_09681_x
crossref_primary_10_1016_j_metabol_2024_155936
crossref_primary_10_3389_fgene_2022_1017340
crossref_primary_10_3390_ijms22126332
crossref_primary_10_1007_s42000_022_00369_8
crossref_primary_10_1016_j_metabol_2020_154318
crossref_primary_10_1016_j_metabol_2020_154439
crossref_primary_10_1007_s42000_023_00502_1
crossref_primary_10_3390_nu15081992
crossref_primary_10_1002_ird3_24
crossref_primary_10_14366_usg_22110
crossref_primary_10_1016_j_dld_2021_06_011
crossref_primary_10_1016_j_hbpd_2021_05_008
crossref_primary_10_1186_s12933_024_02264_5
crossref_primary_10_1016_j_metabol_2020_154392
crossref_primary_10_1016_j_jhepr_2024_101185
crossref_primary_10_1007_s12325_024_02781_5
crossref_primary_10_1002_oby_23250
crossref_primary_10_2337_dci21_0020
crossref_primary_10_1097_HEP_0000000000000341
crossref_primary_10_1016_j_physa_2023_128955
crossref_primary_10_1053_j_gastro_2021_04_074
crossref_primary_10_1128_mbio_02663_22
crossref_primary_10_35712_aig_v3_i2_46
crossref_primary_10_1002_jhbp_972
crossref_primary_10_1186_s12944_021_01526_5
crossref_primary_10_1055_s_0041_1731706
crossref_primary_10_1093_noajnl_vdae119
crossref_primary_10_3390_biom11030473
crossref_primary_10_3390_ijms25115965
crossref_primary_10_1016_j_jlr_2024_100651
crossref_primary_10_1016_S2468_1253_21_00261_2
crossref_primary_10_1016_j_metabol_2024_156044
crossref_primary_10_1016_j_hbpd_2023_03_009
crossref_primary_10_1002_edm2_177
crossref_primary_10_2139_ssrn_4173873
crossref_primary_10_1007_s42000_022_00391_w
crossref_primary_10_1016_j_jacc_2020_11_069
crossref_primary_10_3389_fmed_2021_683250
crossref_primary_10_1007_s12664_022_01263_2
crossref_primary_10_1111_liv_14888
crossref_primary_10_3390_diagnostics12020407
crossref_primary_10_2139_ssrn_3915431
crossref_primary_10_7759_cureus_78421
crossref_primary_10_1016_j_metabol_2020_154218
crossref_primary_10_1002_hep_31603
crossref_primary_10_1016_j_metabol_2020_154333
crossref_primary_10_1016_j_metabol_2020_154259
crossref_primary_10_1111_apt_17301
crossref_primary_10_3389_frai_2022_1050439
crossref_primary_10_1016_j_metabol_2019_154010
crossref_primary_10_1016_j_procs_2022_11_066
crossref_primary_10_1111_dom_16194
crossref_primary_10_3803_EnM_2020_35_1_71
crossref_primary_10_1371_journal_pmed_1003149
crossref_primary_10_1002_jgh3_12716
crossref_primary_10_1016_j_metabol_2021_154770
crossref_primary_10_1124_pharmrev_123_001087
crossref_primary_10_3350_cmh_2021_0127
crossref_primary_10_1002_mas_21785
crossref_primary_10_1093_jmcb_mjab051
crossref_primary_10_1186_s12889_024_19882_z
crossref_primary_10_3390_jcm10204673
crossref_primary_10_1139_apnm_2021_0448
crossref_primary_10_4093_jkd_2020_21_3_130
crossref_primary_10_1016_j_metabol_2023_155664
crossref_primary_10_1016_j_molmet_2020_101049
crossref_primary_10_1007_s40618_023_02235_9
crossref_primary_10_1016_j_cmpb_2023_107932
crossref_primary_10_3390_cancers12061644
crossref_primary_10_1016_j_hjc_2020_02_009
crossref_primary_10_1016_j_metabol_2021_154822
crossref_primary_10_1016_j_metabol_2020_154203
crossref_primary_10_1111_obr_13612
crossref_primary_10_3390_metabo12050458
crossref_primary_10_1016_j_metabol_2020_154320
crossref_primary_10_1016_j_metabol_2020_154441
crossref_primary_10_1016_j_metabol_2021_154781
Cites_doi 10.1016/j.jhep.2017.11.013
10.1016/j.jhep.2009.03.019
10.1093/bioinformatics/bty528
10.3748/wjg.v20.i2.475
10.1111/liv.13362
10.1016/j.dld.2011.10.015
10.1016/j.jchromb.2004.07.002
10.1097/MEG.0b013e32835609b0
10.1016/j.metabol.2017.04.011
10.3310/hta19090
10.1053/j.gastro.2018.12.036
10.1186/1471-2105-12-253
10.1155/2016/5921589
10.3803/EnM.2018.33.1.33
10.1016/j.metabol.2015.12.012
10.1016/j.metabol.2018.08.002
10.1136/gutjnl-2018-317584
10.1002/hep.21855
10.1007/s11695-008-9506-y
10.1023/A:1012487302797
10.1002/hep.23229
10.1016/j.metabol.2016.09.003
10.1007/s11886-017-0940-0
10.3390/ijms17060803
10.2337/diacare.25.8.1331
10.1016/j.metabol.2019.05.001
10.1111/apt.12569
10.1016/j.metabol.2013.09.013
10.1016/j.metabol.2016.07.009
10.1002/hep.21763
10.1016/j.jhep.2008.12.010
10.1002/hep4.1188
10.1016/0009-8981(96)06369-3
10.1186/1471-230X-6-34
10.1016/j.jprot.2018.02.003
10.1186/1471-2164-7-142
10.1021/acs.biochem.8b01096
10.1371/journal.pone.0151828
10.1111/dom.13572
10.1002/cem.2657
10.3748/wjg.v25.i24.3009
10.1002/hep.29367
10.1016/j.metabol.2010.09.003
10.1038/nm1006
10.3109/07853890.2010.518623
10.1111/jgh.12726
10.1002/hep.28431
10.1074/mcp.M800470-MCP200
10.1016/j.metabol.2018.05.003
10.1053/j.gastro.2018.06.031
10.1021/acs.jproteome.9b00232
10.1016/j.jhep.2013.07.042
10.1159/000435839
10.1016/j.metabol.2018.11.014
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.metabol.2019.154005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1532-8600
ExternalDocumentID 31711876
10_1016_j_metabol_2019_154005
S0026049519302203
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYJJ
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACIEU
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AEVXI
AFFNX
AFJKZ
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
LZ1
M29
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OB0
OHT
ON-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UAP
UHS
WUQ
X7M
Z5R
ZGI
~G-
~KM
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
G8K
LCYCR
RIG
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c419t-b9c01dbbaa57015dab638cd38ab02a7ed7d2d7d52f0c3be9f7e2e408c6e372b73
IEDL.DBID .~1
ISSN 0026-0495
1532-8600
IngestDate Tue Aug 05 10:44:07 EDT 2025
Wed Feb 19 02:31:30 EST 2025
Tue Jul 01 00:56:46 EDT 2025
Thu Apr 24 23:11:17 EDT 2025
Fri Feb 23 02:49:04 EST 2024
Tue Aug 26 16:33:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Che
Metabolomics
NAFLD
DG
Glycomics
t-SNE
SVM
Liver fibrosis
Co
AUC
C20:4n6
HDL
LDL
RBF
Ck-18f
C16:0
SM
Non-alcoholic steatohepatitis
NAFL
BMI
AcCa
sPLS-DA
C18:1n9
C18:3n6
Non-invasive
C16:1n7cis
C18:2n6
ROC
HCC
IR
Lipidomics
OvR
kNN
NASH
MCCV
PCA
PA
REF
TG
PC
PE
PG
Machine learning
Non-alcoholic fatty liver disease
SAM
LPC
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-b9c01dbbaa57015dab638cd38ab02a7ed7d2d7d52f0c3be9f7e2e408c6e372b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31711876
PQID 2314023051
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2314023051
pubmed_primary_31711876
crossref_citationtrail_10_1016_j_metabol_2019_154005
crossref_primary_10_1016_j_metabol_2019_154005
elsevier_sciencedirect_doi_10_1016_j_metabol_2019_154005
elsevier_clinicalkey_doi_10_1016_j_metabol_2019_154005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Metabolism, clinical and experimental
PublicationTitleAlternate Metabolism
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bishop (bb0150) 2006
Polyzos, Kountouras, Anastasilakis, Triantafyllou, Mantzoros (bb0100) 2016; 65
Yamasaki Y, Nouso K, Miyahara K, Wada N, Dohi C, Morimoto Y, et al. Use of non-invasive serum glycan markers to distinguish non-alcoholic steatohepatitis from simple steatosis. Journal of gastroenterology and hepatology. 2015;30(3):528–34. Epub 2014/08/30.
Sriharan M, Reichelt AJ, Opperman ML, Duncan BB, Mengue SS, Crook MA, et al. Total sialic acid and associated elements of the metabolic syndrome in women with and without previous gestational diabetes. Diabetes care. 2002;25(8):1331–5. Epub 2002/07/30.
Chong, Xia (bb0155) 2018; 34
Machado, Coutinho, Carepa, Costa, Proenca, Cortez-Pinto (bb0245) 2012; 24
Younossi, Koenig, Abdelatif, Fazel, Henry, Wymer (bb0005) 2016; 64
He, Mao, Zhang, Jin (bb0270) 2015; 67
Caussy C, Ajmera VH, Puri P, Hsu CL, Bassirian S, Mgdsyan M, et al. Serum metabolites detect the presence of advanced fibrosis in derivation and validation cohorts of patients with non-alcoholic fatty liver disease. Gut. 2018. [Epub 2018/12/21].
Clarke, Novak, Lake, Hardwick, Cherrington (bb0205) 2017; 37
Younossi ZM, Jarrar M, Nugent C, Randhawa M, Afendy M, Stepanova M, et al. A novel diagnostic biomarker panel for obesity-related nonalcoholic steatohepatitis (NASH). Obesity surgery. 2008;18(11):1430–7. Epub 2008/05/27.
Pabst, Futatsugi, Li, Ahn (bb0235) 2018; 57
Bondia-Pons, Castellote, Lopez-Sabater (bb0120) 2004; 809
Polyzos, Kountouras, Mantzoros (bb0010) 2018; 92
Buzzetti, Pinzani, Tsochatzis (bb0195) 2016; 65
Poynard T, Ratziu V, Charlotte F, Messous D, Munteanu M, Imbert-Bismut F, et al. Diagnostic value of biochemical markers (NashTest) for the prediction of non alcoholo steato hepatitis in patients with non-alcoholic fatty liver disease. BMC gastroenterology. 2006;6:34. Epub 2006/11/14.
Polyzos, Toulis, Goulis, Zavos, Kountouras (bb0110) 2011; 60
Perakakis N. Data sets - NAFLD. figshare. Dataset 2019
Shimizu K, Katoh H, Yamashita F, Tanaka M, Tanikawa K, Taketa K, et al. Comparison of carbohydrate structures of serum alpha-fetoprotein by sequential glycosidase digestion and lectin affinity electrophoresis. Clinica chimica acta; international journal of clinical chemistry. 1996;254(1):23–40. Epub 1996/10/15.
Liu XE, Desmyter L, Gao CF, Laroy W, Dewaele S, Vanhooren V, et al. N-glycomic changes in hepatocellular carcinoma patients with liver cirrhosis induced by hepatitis B virus. Hepatology. 2007;46(5):1426–35. Epub 2007/08/09.
Sumida, Nakajima, Itoh (bb0025) 2014; 20
Perakakis N, Kokkinos A, Peradze N, Tentolouris N, Ghaly W, Tsilingiris D, et al. Follistatins in glucose regulation in healthy and obese individuals. Diabetes, obesity & metabolism. 2019;21(3):683–90. Epub 2018/11/06.
Pedregosa FaV, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duche. Scikit-learn: machine learning in python. Journal of Machine Learning Research 2011;12:2825–30.
Blomme, Van Steenkiste, Callewaert, Van Vlierberghe (bb0060) 2009; 50
.
Liu X, Perakakis N, Gong H, Chamberland JP, Brinkoetter MT, Hamnvik OR, et al. Adiponectin administration prevents weight gain and glycemic profile changes in diet-induced obese immune deficient Rag1−/− mice lacking mature lymphocytes. Metabolism: clinical and experimental. 2016;65(12):1720–30. Epub 2016/11/12.
Yazdani A. Python code - NAFLD. 2019
Kwok R, Tse YK, Wong GL, Ha Y, Lee AU, Ngu MC, et al. Systematic review with meta-analysis: non-invasive assessment of non-alcoholic fatty liver disease--the role of transient elastography and plasma cytokeratin-18 fragments. Alimentary pharmacology & therapeutics. 2014;39(3):254–69. Epub 2013/12/07.
Perakakis N. R command history in MetaboanalystR - NAFLD. figshare. Dataset 2019
Vitali, Khetarpal, Rader (bb0240) 2017; 19
Perakakis N, Upadhyay J, Ghaly W, Chen J, Chrysafi P, Anastasilakis AD, et al. Regulation of the activins-follistatins-inhibins axis by energy status: Impact on reproductive function. Metabolism: clinical and experimental. 2018;85:240–9. Epub 2018/05/13.
Lê Cao, Boitard, Besse (bb0135) 2011; 1
Crossan C, Tsochatzis EA, Longworth L, Gurusamy K, Davidson B, Rodriguez-Peralvarez M, et al. Cost-effectiveness of non-invasive methods for assessment and monitoring of liver fibrosis and cirrhosis in patients with chronic liver disease: systematic review and economic evaluation. Health Technol Assess. 2015;19(9):1–409, v-vi. Epub 2015/01/31.
Mayo R, Crespo J, Martinez-Arranz I, Banales JM, Arias M, Minchole I, et al. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts. Hepatology communications. 2018;2(7):807–20. Epub 2018/07/22.
Vilar-Gomez, Chalasani (bb0055) 2018; 68
Vanderschaeghe D, Laroy W, Sablon E, Halfon P, Van Hecke A, Delanghe J, et al. GlycoFibroTest is a highly performant liver fibrosis biomarker derived from DNA sequencer-based serum protein glycomics. Molecular & cellular proteomics : MCP. 2009;8(5):986–94. Epub 2009/02/03.
Polyzos, Kountouras, Anastasilakis, Geladari, Mantzoros (bb0115) 2014; 63
Tawara S, Tatsumi T, Iio S, Kobayashi I, Shigekawa M, Hikita H, et al. Evaluation of Fucosylated Haptoglobin and Mac-2 Binding Protein as Serum Biomarkers to Estimate Liver Fibrosis in Patients with Chronic Hepatitis C. PloS one. 2016;11(3):e0151828. Epub 2016/03/24.
Perakakis, Yazdani, Karniadakis, Mantzoros (bb0035) 2018; 87
Puri P, Wiest MM, Cheung O, Mirshahi F, Sargeant C, Min HK, et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology. 2009;50(6):1827–38. Epub 2009/11/26.
Kalivodová, Hron, Filzmoser, Najdekr, Janečková, Adam (bb0125) 2015; 1
Lu, Ma, Xu, Shao, Cen, Li (bb0275) 2016; 2016
Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46(4):1081–90. Epub 2007/07/27.
Kobayashi T, Ogawa K, Furukawa JI, Hanamatsu H, Hato M, Yoshinaga T, et al. Quantifying Protein-Specific N-Glycome Profiles by Focused Protein and Immunoprecipitation Glycomics. Journal of proteome research. 2019;18(8):3133–41. Epub 2019/07/04.
Argo, Northup, Al-Osaimi, Caldwell (bb0015) 2009; 51
Guyon, Weston, Barnhill, Vapnik (bb0145) 2002; 1-3
van den Berg, Hoefsloot, Westerhuis, Smilde, van der Werf (bb0130) 2006; 1
Ma, Sanda, Wei, Zhang, Goldman (bb0280) 2018; 189
Reccia I, Kumar J, Akladios C, Virdis F, Pai M, Habib N, et al. Non-alcoholic fatty liver disease: a sign of systemic disease. Metabolism: clinical and experimental. 2017;72:94–108. Epub 2017/06/24.
Musso, Cassader, Paschetta, Gambino (bb0040) 2018; 155
Polyzos, Perakakis, Mantzoros (bb0105) 2019; 96
Cusi K, Chang Z, Harrison S, Lomonaco R, Bril F, Orsak B, et al. Limited value of plasma cytokeratin-18 as a biomarker for NASH and fibrosis in patients with non-alcoholic fatty liver disease. Journal of hepatology. 2014;60(1):167–74. Epub 2013/08/27.
Callewaert, Van Vlierberghe, Van Hecke, Laroy, Delanghe, Contreras (bb0065) 2004; 10
Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–57. Epub 2017/07/18.
Musso, Gambino, Cassader, Pagano (bb0185) 2011; 43
Adinolfi LE, Rinaldi L, Guerrera B, Restivo L, Marrone A, Giordano M, et al. NAFLD and NASH in HCV Infection: Prevalence and Significance in Hepatic and Extrahepatic Manifestations. International journal of molecular sciences. 2016;17(6). Epub 2016/05/28.
Boutari, Perakakis, Mantzoros (bb0090) 2018; 33
Mato, Alonso, Noureddin, Lu (bb0225) 2019; 25
Castera, Friedrich-Rust, Loomba (bb0030) 2019; 156
Blomme B, Francque S, Trepo E, Libbrecht L, Vanderschaeghe D, Verrijken A, et al. N-glycan based biomarker distinguishing non-alcoholic steatohepatitis from steatosis independently of fibrosis. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2012;44(4):315–22. Epub 2011/11/29.
Machado (10.1016/j.metabol.2019.154005_bb0245) 2012; 24
Chong (10.1016/j.metabol.2019.154005_bb0155) 2018; 34
10.1016/j.metabol.2019.154005_bb0180
Lu (10.1016/j.metabol.2019.154005_bb0275) 2016; 2016
10.1016/j.metabol.2019.154005_bb0095
10.1016/j.metabol.2019.154005_bb0250
10.1016/j.metabol.2019.154005_bb0170
10.1016/j.metabol.2019.154005_bb0050
Clarke (10.1016/j.metabol.2019.154005_bb0205) 2017; 37
10.1016/j.metabol.2019.154005_bb0210
10.1016/j.metabol.2019.154005_bb0295
10.1016/j.metabol.2019.154005_bb0175
Kalivodová (10.1016/j.metabol.2019.154005_bb0125) 2015; 1
10.1016/j.metabol.2019.154005_bb0255
Guyon (10.1016/j.metabol.2019.154005_bb0145) 2002; 1-3
Lê Cao (10.1016/j.metabol.2019.154005_bb0135) 2011; 1
10.1016/j.metabol.2019.154005_bb0215
Blomme (10.1016/j.metabol.2019.154005_bb0060) 2009; 50
Bishop (10.1016/j.metabol.2019.154005_bb0150) 2006
Musso (10.1016/j.metabol.2019.154005_bb0185) 2011; 43
10.1016/j.metabol.2019.154005_bb0290
Castera (10.1016/j.metabol.2019.154005_bb0030) 2019; 156
He (10.1016/j.metabol.2019.154005_bb0270) 2015; 67
10.1016/j.metabol.2019.154005_bb0085
Vilar-Gomez (10.1016/j.metabol.2019.154005_bb0055) 2018; 68
10.1016/j.metabol.2019.154005_bb0160
10.1016/j.metabol.2019.154005_bb0165
10.1016/j.metabol.2019.154005_bb0045
10.1016/j.metabol.2019.154005_bb0285
10.1016/j.metabol.2019.154005_bb0200
Younossi (10.1016/j.metabol.2019.154005_bb0005) 2016; 64
Polyzos (10.1016/j.metabol.2019.154005_bb0010) 2018; 92
Boutari (10.1016/j.metabol.2019.154005_bb0090) 2018; 33
Polyzos (10.1016/j.metabol.2019.154005_bb0100) 2016; 65
Buzzetti (10.1016/j.metabol.2019.154005_bb0195) 2016; 65
10.1016/j.metabol.2019.154005_bb0080
Musso (10.1016/j.metabol.2019.154005_bb0040) 2018; 155
Mato (10.1016/j.metabol.2019.154005_bb0225) 2019; 25
10.1016/j.metabol.2019.154005_bb0075
10.1016/j.metabol.2019.154005_bb0230
Polyzos (10.1016/j.metabol.2019.154005_bb0115) 2014; 63
Vitali (10.1016/j.metabol.2019.154005_bb0240) 2017; 19
Sumida (10.1016/j.metabol.2019.154005_bb0025) 2014; 20
10.1016/j.metabol.2019.154005_bb0190
10.1016/j.metabol.2019.154005_bb0070
Pabst (10.1016/j.metabol.2019.154005_bb0235) 2018; 57
Bondia-Pons (10.1016/j.metabol.2019.154005_bb0120) 2004; 809
van den Berg (10.1016/j.metabol.2019.154005_bb0130) 2006; 1
10.1016/j.metabol.2019.154005_bb0260
Ma (10.1016/j.metabol.2019.154005_bb0280) 2018; 189
Callewaert (10.1016/j.metabol.2019.154005_bb0065) 2004; 10
Polyzos (10.1016/j.metabol.2019.154005_bb0110) 2011; 60
10.1016/j.metabol.2019.154005_bb0140
Perakakis (10.1016/j.metabol.2019.154005_bb0035) 2018; 87
10.1016/j.metabol.2019.154005_bb0220
10.1016/j.metabol.2019.154005_bb0265
10.1016/j.metabol.2019.154005_bb0020
Argo (10.1016/j.metabol.2019.154005_bb0015) 2009; 51
Polyzos (10.1016/j.metabol.2019.154005_bb0105) 2019; 96
References_xml – reference: Crossan C, Tsochatzis EA, Longworth L, Gurusamy K, Davidson B, Rodriguez-Peralvarez M, et al. Cost-effectiveness of non-invasive methods for assessment and monitoring of liver fibrosis and cirrhosis in patients with chronic liver disease: systematic review and economic evaluation. Health Technol Assess. 2015;19(9):1–409, v-vi. Epub 2015/01/31.
– volume: 57
  start-page: 6997
  year: 2018
  end-page: 7010
  ident: bb0235
  article-title: Mechanistic characterization of long residence time inhibitors of Diacylglycerol Acyltransferase 2 (DGAT2)
  publication-title: Biochemistry.
– volume: 96
  start-page: 66
  year: 2019
  end-page: 82
  ident: bb0105
  article-title: Fatty liver in lipodystrophy: a review with a focus on therapeutic perspectives of adiponectin and/or leptin replacement
  publication-title: Metabolism: clinical and experimental.
– volume: 19
  start-page: 132
  year: 2017
  ident: bb0240
  article-title: HDL cholesterol metabolism and the risk of CHD: new insights from human genetics
  publication-title: Curr Cardiol Rep
– volume: 67
  start-page: 69
  year: 2015
  end-page: 75
  ident: bb0270
  article-title: Association between serum Sialic acid levels and nonalcoholic fatty liver disease: a cross-sectional study
  publication-title: Ann Nutr Metab
– volume: 64
  start-page: 73
  year: 2016
  end-page: 84
  ident: bb0005
  article-title: Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes
  publication-title: Hepatology.
– reference: Poynard T, Ratziu V, Charlotte F, Messous D, Munteanu M, Imbert-Bismut F, et al. Diagnostic value of biochemical markers (NashTest) for the prediction of non alcoholo steato hepatitis in patients with non-alcoholic fatty liver disease. BMC gastroenterology. 2006;6:34. Epub 2006/11/14.
– reference: Perakakis N, Upadhyay J, Ghaly W, Chen J, Chrysafi P, Anastasilakis AD, et al. Regulation of the activins-follistatins-inhibins axis by energy status: Impact on reproductive function. Metabolism: clinical and experimental. 2018;85:240–9. Epub 2018/05/13.
– reference: Tawara S, Tatsumi T, Iio S, Kobayashi I, Shigekawa M, Hikita H, et al. Evaluation of Fucosylated Haptoglobin and Mac-2 Binding Protein as Serum Biomarkers to Estimate Liver Fibrosis in Patients with Chronic Hepatitis C. PloS one. 2016;11(3):e0151828. Epub 2016/03/24.
– reference: Liu XE, Desmyter L, Gao CF, Laroy W, Dewaele S, Vanhooren V, et al. N-glycomic changes in hepatocellular carcinoma patients with liver cirrhosis induced by hepatitis B virus. Hepatology. 2007;46(5):1426–35. Epub 2007/08/09.
– reference: Perakakis N, Kokkinos A, Peradze N, Tentolouris N, Ghaly W, Tsilingiris D, et al. Follistatins in glucose regulation in healthy and obese individuals. Diabetes, obesity & metabolism. 2019;21(3):683–90. Epub 2018/11/06.
– reference: Blomme B, Francque S, Trepo E, Libbrecht L, Vanderschaeghe D, Verrijken A, et al. N-glycan based biomarker distinguishing non-alcoholic steatohepatitis from steatosis independently of fibrosis. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2012;44(4):315–22. Epub 2011/11/29.
– reference: Cusi K, Chang Z, Harrison S, Lomonaco R, Bril F, Orsak B, et al. Limited value of plasma cytokeratin-18 as a biomarker for NASH and fibrosis in patients with non-alcoholic fatty liver disease. Journal of hepatology. 2014;60(1):167–74. Epub 2013/08/27.
– volume: 65
  start-page: 1550
  year: 2016
  end-page: 1558
  ident: bb0100
  article-title: Activin A and follistatin in patients with nonalcoholic fatty liver disease
  publication-title: Metabolism: clinical and experimental.
– volume: 24
  start-page: 1166
  year: 2012
  end-page: 1172
  ident: bb0245
  article-title: How adiponectin, leptin, and ghrelin orchestrate together and correlate with the severity of nonalcoholic fatty liver disease
  publication-title: Eur J Gastroenterol Hepatol
– reference: Shimizu K, Katoh H, Yamashita F, Tanaka M, Tanikawa K, Taketa K, et al. Comparison of carbohydrate structures of serum alpha-fetoprotein by sequential glycosidase digestion and lectin affinity electrophoresis. Clinica chimica acta; international journal of clinical chemistry. 1996;254(1):23–40. Epub 1996/10/15.
– reference: Reccia I, Kumar J, Akladios C, Virdis F, Pai M, Habib N, et al. Non-alcoholic fatty liver disease: a sign of systemic disease. Metabolism: clinical and experimental. 2017;72:94–108. Epub 2017/06/24.
– volume: 156
  start-page: 1264
  year: 2019
  end-page: 1281
  ident: bb0030
  article-title: Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease
  publication-title: Gastroenterology.
– volume: 25
  start-page: 3009
  year: 2019
  end-page: 3020
  ident: bb0225
  article-title: Biomarkers and subtypes of deranged lipid metabolism in non-alcoholic fatty liver disease
  publication-title: World J Gastroenterol
– reference: Puri P, Wiest MM, Cheung O, Mirshahi F, Sargeant C, Min HK, et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology. 2009;50(6):1827–38. Epub 2009/11/26.
– reference: Perakakis N. Data sets - NAFLD. figshare. Dataset 2019;
– volume: 51
  start-page: 371
  year: 2009
  end-page: 379
  ident: bb0015
  article-title: Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis
  publication-title: J Hepatol
– volume: 20
  start-page: 475
  year: 2014
  end-page: 485
  ident: bb0025
  article-title: Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis
  publication-title: World J Gastroenterol
– reference: Pedregosa FaV, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duche. Scikit-learn: machine learning in python. Journal of Machine Learning Research 2011;12:2825–30.
– volume: 1
  start-page: 21
  year: 2015
  end-page: 28
  ident: bb0125
  article-title: PLS-DA for compositional data with application to metabolomics
  publication-title: J Chemometr
– reference: Caussy C, Ajmera VH, Puri P, Hsu CL, Bassirian S, Mgdsyan M, et al. Serum metabolites detect the presence of advanced fibrosis in derivation and validation cohorts of patients with non-alcoholic fatty liver disease. Gut. 2018. [Epub 2018/12/21].
– volume: 43
  start-page: 617
  year: 2011
  end-page: 649
  ident: bb0185
  article-title: Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity
  publication-title: Ann Med
– volume: 10
  start-page: 429
  year: 2004
  end-page: 434
  ident: bb0065
  article-title: Noninvasive diagnosis of liver cirrhosis using DNA sequencer-based total serum protein glycomics
  publication-title: Nat Med
– reference: Mayo R, Crespo J, Martinez-Arranz I, Banales JM, Arias M, Minchole I, et al. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts. Hepatology communications. 2018;2(7):807–20. Epub 2018/07/22.
– reference: Sriharan M, Reichelt AJ, Opperman ML, Duncan BB, Mengue SS, Crook MA, et al. Total sialic acid and associated elements of the metabolic syndrome in women with and without previous gestational diabetes. Diabetes care. 2002;25(8):1331–5. Epub 2002/07/30.
– volume: 809
  start-page: 339
  year: 2004
  end-page: 344
  ident: bb0120
  article-title: Comparison of conventional and fast gas chromatography in human plasma fatty acid determination
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
– year: 2006
  ident: bb0150
  article-title: Pattern Recognition and Machine Learning
– reference: Perakakis N. R command history in MetaboanalystR - NAFLD. figshare. Dataset 2019;
– reference: Kobayashi T, Ogawa K, Furukawa JI, Hanamatsu H, Hato M, Yoshinaga T, et al. Quantifying Protein-Specific N-Glycome Profiles by Focused Protein and Immunoprecipitation Glycomics. Journal of proteome research. 2019;18(8):3133–41. Epub 2019/07/04.
– volume: 87
  start-page: A1
  year: 2018
  end-page: A9
  ident: bb0035
  article-title: Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics
  publication-title: Metabolism: clinical and experimental.
– volume: 1
  start-page: 142
  year: 2006
  ident: bb0130
  article-title: Centering, scaling, and transformations: improving the biological information content of metabolomics data
  publication-title: BMC Genomics
– reference: Yamasaki Y, Nouso K, Miyahara K, Wada N, Dohi C, Morimoto Y, et al. Use of non-invasive serum glycan markers to distinguish non-alcoholic steatohepatitis from simple steatosis. Journal of gastroenterology and hepatology. 2015;30(3):528–34. Epub 2014/08/30.
– volume: 1-3
  start-page: 389
  year: 2002
  end-page: 422
  ident: bb0145
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Machine learning
– volume: 189
  start-page: 67
  year: 2018
  end-page: 74
  ident: bb0280
  article-title: Quantitative analysis of core fucosylation of serum proteins in liver diseases by LC-MS-MRM
  publication-title: J Proteomics
– volume: 2016
  start-page: 5921589
  year: 2016
  ident: bb0275
  article-title: Serum Sialic acid level is significantly associated with nonalcoholic fatty liver disease in a nonobese Chinese population: a cross-sectional study
  publication-title: Biomed Res Int
– volume: 63
  start-page: 207
  year: 2014
  end-page: 217
  ident: bb0115
  article-title: Irisin in patients with nonalcoholic fatty liver disease
  publication-title: Metabolism: clinical and experimental.
– volume: 34
  start-page: 4313
  year: 2018
  end-page: 4314
  ident: bb0155
  article-title: MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data
  publication-title: Bioinformatics.
– reference: Adinolfi LE, Rinaldi L, Guerrera B, Restivo L, Marrone A, Giordano M, et al. NAFLD and NASH in HCV Infection: Prevalence and Significance in Hepatic and Extrahepatic Manifestations. International journal of molecular sciences. 2016;17(6). Epub 2016/05/28.
– volume: 155
  start-page: 282
  year: 2018
  end-page: 302
  ident: bb0040
  article-title: Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic Steatohepatitis
  publication-title: Gastroenterology.
– volume: 37
  start-page: 1074
  year: 2017
  end-page: 1081
  ident: bb0205
  article-title: Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease
  publication-title: Liver international : official journal of the International Association for the Study of the Liver
– reference: Vanderschaeghe D, Laroy W, Sablon E, Halfon P, Van Hecke A, Delanghe J, et al. GlycoFibroTest is a highly performant liver fibrosis biomarker derived from DNA sequencer-based serum protein glycomics. Molecular & cellular proteomics : MCP. 2009;8(5):986–94. Epub 2009/02/03.
– volume: 68
  start-page: 305
  year: 2018
  end-page: 315
  ident: bb0055
  article-title: Non-invasive assessment of non-alcoholic fatty liver disease: clinical prediction rules and blood-based biomarkers
  publication-title: J Hepatol
– volume: 60
  start-page: 313
  year: 2011
  end-page: 326
  ident: bb0110
  article-title: Serum total adiponectin in nonalcoholic fatty liver disease: a systematic review and meta-analysis
  publication-title: Metabolism: clinical and experimental
– reference: Yazdani A. Python code - NAFLD. 2019;
– reference: Kwok R, Tse YK, Wong GL, Ha Y, Lee AU, Ngu MC, et al. Systematic review with meta-analysis: non-invasive assessment of non-alcoholic fatty liver disease--the role of transient elastography and plasma cytokeratin-18 fragments. Alimentary pharmacology & therapeutics. 2014;39(3):254–69. Epub 2013/12/07.
– reference: Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–57. Epub 2017/07/18.
– reference: .
– reference: Liu X, Perakakis N, Gong H, Chamberland JP, Brinkoetter MT, Hamnvik OR, et al. Adiponectin administration prevents weight gain and glycemic profile changes in diet-induced obese immune deficient Rag1−/− mice lacking mature lymphocytes. Metabolism: clinical and experimental. 2016;65(12):1720–30. Epub 2016/11/12.
– volume: 92
  start-page: 82
  year: 2018
  end-page: 97
  ident: bb0010
  article-title: Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics
  publication-title: Metabolism: clinical and experimental.
– volume: 1
  start-page: 253
  year: 2011
  ident: bb0135
  article-title: Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems
  publication-title: BMC bioinformatics
– volume: 50
  start-page: 592
  year: 2009
  end-page: 603
  ident: bb0060
  article-title: Alteration of protein glycosylation in liver diseases
  publication-title: J Hepatol
– volume: 33
  start-page: 33
  year: 2018
  end-page: 43
  ident: bb0090
  article-title: Association of Adipokines with development and progression of nonalcoholic fatty liver disease
  publication-title: Endocrinol Metab (Seoul)
– reference: Younossi ZM, Jarrar M, Nugent C, Randhawa M, Afendy M, Stepanova M, et al. A novel diagnostic biomarker panel for obesity-related nonalcoholic steatohepatitis (NASH). Obesity surgery. 2008;18(11):1430–7. Epub 2008/05/27.
– volume: 65
  start-page: 1038
  year: 2016
  end-page: 1048
  ident: bb0195
  article-title: The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)
  publication-title: Metabolism: clinical and experimental.
– reference: Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46(4):1081–90. Epub 2007/07/27.
– volume: 68
  start-page: 305
  issue: 2
  year: 2018
  ident: 10.1016/j.metabol.2019.154005_bb0055
  article-title: Non-invasive assessment of non-alcoholic fatty liver disease: clinical prediction rules and blood-based biomarkers
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2017.11.013
– volume: 51
  start-page: 371
  issue: 2
  year: 2009
  ident: 10.1016/j.metabol.2019.154005_bb0015
  article-title: Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2009.03.019
– volume: 34
  start-page: 4313
  issue: 24
  year: 2018
  ident: 10.1016/j.metabol.2019.154005_bb0155
  article-title: MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bty528
– volume: 20
  start-page: 475
  issue: 2
  year: 2014
  ident: 10.1016/j.metabol.2019.154005_bb0025
  article-title: Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v20.i2.475
– volume: 37
  start-page: 1074
  issue: 7
  year: 2017
  ident: 10.1016/j.metabol.2019.154005_bb0205
  article-title: Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease
  publication-title: Liver international : official journal of the International Association for the Study of the Liver
  doi: 10.1111/liv.13362
– ident: 10.1016/j.metabol.2019.154005_bb0250
  doi: 10.1016/j.dld.2011.10.015
– volume: 809
  start-page: 339
  issue: 2
  year: 2004
  ident: 10.1016/j.metabol.2019.154005_bb0120
  article-title: Comparison of conventional and fast gas chromatography in human plasma fatty acid determination
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
  doi: 10.1016/j.jchromb.2004.07.002
– ident: 10.1016/j.metabol.2019.154005_bb0140
– volume: 24
  start-page: 1166
  issue: 10
  year: 2012
  ident: 10.1016/j.metabol.2019.154005_bb0245
  article-title: How adiponectin, leptin, and ghrelin orchestrate together and correlate with the severity of nonalcoholic fatty liver disease
  publication-title: Eur J Gastroenterol Hepatol
  doi: 10.1097/MEG.0b013e32835609b0
– ident: 10.1016/j.metabol.2019.154005_bb0200
  doi: 10.1016/j.metabol.2017.04.011
– ident: 10.1016/j.metabol.2019.154005_bb0220
  doi: 10.3310/hta19090
– volume: 156
  start-page: 1264
  issue: 5
  year: 2019
  ident: 10.1016/j.metabol.2019.154005_bb0030
  article-title: Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease
  publication-title: Gastroenterology.
  doi: 10.1053/j.gastro.2018.12.036
– volume: 1
  start-page: 253
  issue: 12
  year: 2011
  ident: 10.1016/j.metabol.2019.154005_bb0135
  article-title: Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-12-253
– volume: 2016
  start-page: 5921589
  year: 2016
  ident: 10.1016/j.metabol.2019.154005_bb0275
  article-title: Serum Sialic acid level is significantly associated with nonalcoholic fatty liver disease in a nonobese Chinese population: a cross-sectional study
  publication-title: Biomed Res Int
  doi: 10.1155/2016/5921589
– volume: 33
  start-page: 33
  issue: 1
  year: 2018
  ident: 10.1016/j.metabol.2019.154005_bb0090
  article-title: Association of Adipokines with development and progression of nonalcoholic fatty liver disease
  publication-title: Endocrinol Metab (Seoul)
  doi: 10.3803/EnM.2018.33.1.33
– volume: 65
  start-page: 1038
  issue: 8
  year: 2016
  ident: 10.1016/j.metabol.2019.154005_bb0195
  article-title: The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)
  publication-title: Metabolism: clinical and experimental.
  doi: 10.1016/j.metabol.2015.12.012
– volume: 87
  start-page: A1
  year: 2018
  ident: 10.1016/j.metabol.2019.154005_bb0035
  article-title: Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics
  publication-title: Metabolism: clinical and experimental.
  doi: 10.1016/j.metabol.2018.08.002
– ident: 10.1016/j.metabol.2019.154005_bb0175
  doi: 10.1136/gutjnl-2018-317584
– ident: 10.1016/j.metabol.2019.154005_bb0075
  doi: 10.1002/hep.21855
– ident: 10.1016/j.metabol.2019.154005_bb0215
  doi: 10.1007/s11695-008-9506-y
– volume: 1-3
  start-page: 389
  issue: 46
  year: 2002
  ident: 10.1016/j.metabol.2019.154005_bb0145
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Machine learning
  doi: 10.1023/A:1012487302797
– ident: 10.1016/j.metabol.2019.154005_bb0050
  doi: 10.1002/hep.23229
– ident: 10.1016/j.metabol.2019.154005_bb0080
  doi: 10.1016/j.metabol.2016.09.003
– volume: 19
  start-page: 132
  issue: 12
  year: 2017
  ident: 10.1016/j.metabol.2019.154005_bb0240
  article-title: HDL cholesterol metabolism and the risk of CHD: new insights from human genetics
  publication-title: Curr Cardiol Rep
  doi: 10.1007/s11886-017-0940-0
– ident: 10.1016/j.metabol.2019.154005_bb0295
  doi: 10.3390/ijms17060803
– ident: 10.1016/j.metabol.2019.154005_bb0265
  doi: 10.2337/diacare.25.8.1331
– volume: 96
  start-page: 66
  year: 2019
  ident: 10.1016/j.metabol.2019.154005_bb0105
  article-title: Fatty liver in lipodystrophy: a review with a focus on therapeutic perspectives of adiponectin and/or leptin replacement
  publication-title: Metabolism: clinical and experimental.
  doi: 10.1016/j.metabol.2019.05.001
– year: 2006
  ident: 10.1016/j.metabol.2019.154005_bb0150
– ident: 10.1016/j.metabol.2019.154005_bb0160
– ident: 10.1016/j.metabol.2019.154005_bb0180
  doi: 10.1111/apt.12569
– volume: 63
  start-page: 207
  issue: 2
  year: 2014
  ident: 10.1016/j.metabol.2019.154005_bb0115
  article-title: Irisin in patients with nonalcoholic fatty liver disease
  publication-title: Metabolism: clinical and experimental.
  doi: 10.1016/j.metabol.2013.09.013
– volume: 65
  start-page: 1550
  issue: 10
  year: 2016
  ident: 10.1016/j.metabol.2019.154005_bb0100
  article-title: Activin A and follistatin in patients with nonalcoholic fatty liver disease
  publication-title: Metabolism: clinical and experimental.
  doi: 10.1016/j.metabol.2016.07.009
– ident: 10.1016/j.metabol.2019.154005_bb0045
  doi: 10.1002/hep.21763
– volume: 50
  start-page: 592
  issue: 3
  year: 2009
  ident: 10.1016/j.metabol.2019.154005_bb0060
  article-title: Alteration of protein glycosylation in liver diseases
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2008.12.010
– ident: 10.1016/j.metabol.2019.154005_bb0230
  doi: 10.1002/hep4.1188
– ident: 10.1016/j.metabol.2019.154005_bb0285
  doi: 10.1016/0009-8981(96)06369-3
– ident: 10.1016/j.metabol.2019.154005_bb0170
– ident: 10.1016/j.metabol.2019.154005_bb0210
  doi: 10.1186/1471-230X-6-34
– volume: 189
  start-page: 67
  year: 2018
  ident: 10.1016/j.metabol.2019.154005_bb0280
  article-title: Quantitative analysis of core fucosylation of serum proteins in liver diseases by LC-MS-MRM
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2018.02.003
– volume: 1
  start-page: 142
  issue: 7
  year: 2006
  ident: 10.1016/j.metabol.2019.154005_bb0130
  article-title: Centering, scaling, and transformations: improving the biological information content of metabolomics data
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-7-142
– volume: 57
  start-page: 6997
  issue: 51
  year: 2018
  ident: 10.1016/j.metabol.2019.154005_bb0235
  article-title: Mechanistic characterization of long residence time inhibitors of Diacylglycerol Acyltransferase 2 (DGAT2)
  publication-title: Biochemistry.
  doi: 10.1021/acs.biochem.8b01096
– ident: 10.1016/j.metabol.2019.154005_bb0290
  doi: 10.1371/journal.pone.0151828
– ident: 10.1016/j.metabol.2019.154005_bb0085
  doi: 10.1111/dom.13572
– volume: 1
  start-page: 21
  issue: 29
  year: 2015
  ident: 10.1016/j.metabol.2019.154005_bb0125
  article-title: PLS-DA for compositional data with application to metabolomics
  publication-title: J Chemometr
  doi: 10.1002/cem.2657
– ident: 10.1016/j.metabol.2019.154005_bb0165
– volume: 25
  start-page: 3009
  issue: 24
  year: 2019
  ident: 10.1016/j.metabol.2019.154005_bb0225
  article-title: Biomarkers and subtypes of deranged lipid metabolism in non-alcoholic fatty liver disease
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v25.i24.3009
– ident: 10.1016/j.metabol.2019.154005_bb0020
  doi: 10.1002/hep.29367
– volume: 60
  start-page: 313
  issue: 3
  year: 2011
  ident: 10.1016/j.metabol.2019.154005_bb0110
  article-title: Serum total adiponectin in nonalcoholic fatty liver disease: a systematic review and meta-analysis
  publication-title: Metabolism: clinical and experimental
  doi: 10.1016/j.metabol.2010.09.003
– volume: 10
  start-page: 429
  issue: 4
  year: 2004
  ident: 10.1016/j.metabol.2019.154005_bb0065
  article-title: Noninvasive diagnosis of liver cirrhosis using DNA sequencer-based total serum protein glycomics
  publication-title: Nat Med
  doi: 10.1038/nm1006
– volume: 43
  start-page: 617
  issue: 8
  year: 2011
  ident: 10.1016/j.metabol.2019.154005_bb0185
  article-title: Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity
  publication-title: Ann Med
  doi: 10.3109/07853890.2010.518623
– ident: 10.1016/j.metabol.2019.154005_bb0260
  doi: 10.1111/jgh.12726
– volume: 64
  start-page: 73
  issue: 1
  year: 2016
  ident: 10.1016/j.metabol.2019.154005_bb0005
  article-title: Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes
  publication-title: Hepatology.
  doi: 10.1002/hep.28431
– ident: 10.1016/j.metabol.2019.154005_bb0070
  doi: 10.1074/mcp.M800470-MCP200
– ident: 10.1016/j.metabol.2019.154005_bb0095
  doi: 10.1016/j.metabol.2018.05.003
– volume: 155
  start-page: 282
  issue: 2
  year: 2018
  ident: 10.1016/j.metabol.2019.154005_bb0040
  article-title: Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic Steatohepatitis
  publication-title: Gastroenterology.
  doi: 10.1053/j.gastro.2018.06.031
– ident: 10.1016/j.metabol.2019.154005_bb0255
  doi: 10.1021/acs.jproteome.9b00232
– ident: 10.1016/j.metabol.2019.154005_bb0190
  doi: 10.1016/j.jhep.2013.07.042
– volume: 67
  start-page: 69
  issue: 2
  year: 2015
  ident: 10.1016/j.metabol.2019.154005_bb0270
  article-title: Association between serum Sialic acid levels and nonalcoholic fatty liver disease: a cross-sectional study
  publication-title: Ann Nutr Metab
  doi: 10.1159/000435839
– volume: 92
  start-page: 82
  year: 2018
  ident: 10.1016/j.metabol.2019.154005_bb0010
  article-title: Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics
  publication-title: Metabolism: clinical and experimental.
  doi: 10.1016/j.metabol.2018.11.014
SSID ssj0007786
Score 2.577945
Snippet Non-alcoholic fatty liver disease (NAFLD) affects 25–30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL)...
Non-alcoholic fatty liver disease (NAFLD) affects 25-30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 154005
SubjectTerms Case-Control Studies
Fatty Acids - analysis
Fatty Liver - diagnosis
Female
Glycomics
Humans
Lipidomics
Lipids - analysis
Liver Cirrhosis - diagnosis
Liver fibrosis
Machine learning
Male
Metabolomics
Metabolomics - methods
Metabolomics - trends
Middle Aged
Non-alcoholic fatty liver disease
Non-alcoholic Fatty Liver Disease - diagnosis
Non-alcoholic Fatty Liver Disease - pathology
Non-alcoholic steatohepatitis
Non-invasive
Polysaccharides - analysis
Proof of Concept Study
Supervised Machine Learning
Title Non-invasive diagnosis of non-alcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: A proof of concept study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0026049519302203
https://dx.doi.org/10.1016/j.metabol.2019.154005
https://www.ncbi.nlm.nih.gov/pubmed/31711876
https://www.proquest.com/docview/2314023051
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSAuCMpreVRG4prdPJzY4baqqBZQ90Sl3iy_AqlKdkWySFz4BfxoZmJnKyRQEYc9ZDWTxB575nPmBfDakW9HuzrxuHcStNc60Z7KazdCk2dQ8DFd7Gxdrc75-4vy4gBOplwYCquMuj_o9FFbx38WcTYX27alHF_E4ojvEYJQuihV_ORc0Cqf_7gO86D6aCHMA0_OSH2dxbO4nH_xA041eSCymr6xpNTF7s_26W_4c7RDp_fhXgSQbBne8QEc-O4IboeWkt-P4M5ZdJY_hJ_rTZe03TdNEerMhZi6tmebhuGZP9GhOW5rGQl62Hz2FFw9IIHuHGvwGD1S04dahiiR7XpPrJTFHEj63ZYUTe8di70nPr1hS4YjILKG2ZARycYKto_g_PTtx5NVEpsvJJZn9ZCY2qaZM0brUiBkcNrgTrWukNqkuRbeCZfjr8yb1BbG143wueeptJUvRG5E8RgOcTD-KTCpyfeaFbKSOS9lLZ1pjPWlRAON95Qz4NOUKxsrk1ODjCs1haBdqigpRZJSQVIzmO_ZtqE0x00M1SRPNeWdoqZUaDxuYpR7xt8W57-wvpoWjsKNS94Y3fnNrlcIrDkdAMtsBk_CitoPA0EdtYGvnv3_g5_DXboKkTcv4HD4uvMvET8N5njcIMdwa_nuw2r9C-ZsHCs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrXhcUCkUFii4Etd0847DbVVRbWl3T63Um-VX2lSQXZEsEv-BH81M7CxComrVQy6JJ4k99sxnzwvgkyHbjjRlYHHtBKivZSAtpdeuCkmWwSLtw8Xmi3x2kX69zC634GiIhSG3Si_7nUzvpbW_M_GjOVnVNcX4IhZHfI8QhMJFk0ewTdmpshFsT09OZ4uNQKYUac7TAzfPSPA3kGdyc_jddjjaZISISjpmCamQ3f9V1G0QtFdFxzvw3GNINnW_-QK2bLMLj11VyV-78GTu7eUv4fdi2QR181OSkzozzq2ubtmyYrjtD6Srj1trRrzulteW_Ks7bCAbwyrcSfet6ayWIVBk69YSKQUyuybtekWyprWG-fITV5_ZlGEPqFnFtAuKZH0S21dwcfzl_GgW-PoLgU6jsgtUqcPIKCVlViBqMFLhYtUm4VKFsSysKUyMVxZXoU6ULavCxjYNuc5tUsSqSPZghJ2xb4BxSebXKOE5j9OMl9yoSmmbcdTR-E4-hnQYcqF9cnKqkfFNDF5oN8JzShCnhOPUGA43ZCuXneMugnzgpxhCT1FYCtQfdxHyDeE_8_M-pAfDxBG4dskgIxu7XLcCsXVKe8AsGsNrN6M23UBcR5Xg87cP__BHeDo7n5-Js5PF6Tt4Rk-cI857GHU_1nYf4VSnPvjl8geMBB7c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-invasive+diagnosis+of+non-alcoholic+steatohepatitis+and+fibrosis+with+the+use+of+omics+and+supervised+learning%3A+A+proof+of+concept+study&rft.jtitle=Metabolism%2C+clinical+and+experimental&rft.au=Perakakis%2C+Nikolaos&rft.au=Polyzos%2C+Stergios+A&rft.au=Yazdani%2C+Alireza&rft.au=Sala-Vila%2C+Aleix&rft.date=2019-12-01&rft.issn=1532-8600&rft.eissn=1532-8600&rft.volume=101&rft.spage=154005&rft_id=info:doi/10.1016%2Fj.metabol.2019.154005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-0495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-0495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-0495&client=summon