Non-invasive diagnosis of non-alcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: A proof of concept study
Non-alcoholic fatty liver disease (NAFLD) affects 25–30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biop...
Saved in:
Published in | Metabolism, clinical and experimental Vol. 101; p. 154005 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-alcoholic fatty liver disease (NAFLD) affects 25–30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biopsy is the gold standard for the diagnosis of NASH and for staging liver fibrosis. This study aimed to train models for the non-invasive diagnosis of NASH and liver fibrosis based on measurements of lipids, glycans and biochemical parameters in peripheral blood and with the use of different machine learning methods.
We performed a lipidomic, glycomic and free fatty acid analysis in serum samples of 49 healthy subjects and 31 patients with biopsy-proven NAFLD (15 with NAFL and 16 with NASH). The data from the above measurements combined with measurements of 4 hormonal parameters were analyzed with two different platforms and five different machine learning tools.
365 lipids, 61 glycans and 23 fatty acids were identified with mass-spectrometry and liquid chromatography. Robust differences in the concentrations of specific lipid species were observed between healthy, NAFL and NASH subjects. One-vs-Rest (OvR) support vector machine (SVM) models with recursive feature elimination (RFE) including 29 lipids or combining lipids with glycans and/or hormones (20 or 10 variables total) could differentiate with very high accuracy (up to 90%) between the three conditions. In an exploratory analysis, a model consisting of 10 lipid species could robustly discriminate between the presence of liver fibrosis or not (98% accuracy).
We propose novel models utilizing lipids, hormones and glycans that can diagnose with high accuracy the presence of NASH, NAFL or healthy status. Additionally, we report a combination of lipids that can diagnose the presence of liver fibrosis. Both models should be further trained prospectively and validated in large independent cohorts.
•A lipidomic, glycomic and hormonal analysis was performed in healthy, NAFL and NASH subjects•Results were analyzed with 5 different machine learning techniques in two different platforms•Diagnostic models with excellent accuracy for diagnosing healthy vs. NAFL vs. NASH sumulatneously were developed•A predictive model consisting of 10 lipids showed perfect accuracy for detecting the presence of liver fibrosis |
---|---|
AbstractList | Non-alcoholic fatty liver disease (NAFLD) affects 25–30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biopsy is the gold standard for the diagnosis of NASH and for staging liver fibrosis. This study aimed to train models for the non-invasive diagnosis of NASH and liver fibrosis based on measurements of lipids, glycans and biochemical parameters in peripheral blood and with the use of different machine learning methods.
We performed a lipidomic, glycomic and free fatty acid analysis in serum samples of 49 healthy subjects and 31 patients with biopsy-proven NAFLD (15 with NAFL and 16 with NASH). The data from the above measurements combined with measurements of 4 hormonal parameters were analyzed with two different platforms and five different machine learning tools.
365 lipids, 61 glycans and 23 fatty acids were identified with mass-spectrometry and liquid chromatography. Robust differences in the concentrations of specific lipid species were observed between healthy, NAFL and NASH subjects. One-vs-Rest (OvR) support vector machine (SVM) models with recursive feature elimination (RFE) including 29 lipids or combining lipids with glycans and/or hormones (20 or 10 variables total) could differentiate with very high accuracy (up to 90%) between the three conditions. In an exploratory analysis, a model consisting of 10 lipid species could robustly discriminate between the presence of liver fibrosis or not (98% accuracy).
We propose novel models utilizing lipids, hormones and glycans that can diagnose with high accuracy the presence of NASH, NAFL or healthy status. Additionally, we report a combination of lipids that can diagnose the presence of liver fibrosis. Both models should be further trained prospectively and validated in large independent cohorts.
•A lipidomic, glycomic and hormonal analysis was performed in healthy, NAFL and NASH subjects•Results were analyzed with 5 different machine learning techniques in two different platforms•Diagnostic models with excellent accuracy for diagnosing healthy vs. NAFL vs. NASH sumulatneously were developed•A predictive model consisting of 10 lipids showed perfect accuracy for detecting the presence of liver fibrosis Non-alcoholic fatty liver disease (NAFLD) affects 25-30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biopsy is the gold standard for the diagnosis of NASH and for staging liver fibrosis. This study aimed to train models for the non-invasive diagnosis of NASH and liver fibrosis based on measurements of lipids, glycans and biochemical parameters in peripheral blood and with the use of different machine learning methods.BACKGROUNDNon-alcoholic fatty liver disease (NAFLD) affects 25-30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biopsy is the gold standard for the diagnosis of NASH and for staging liver fibrosis. This study aimed to train models for the non-invasive diagnosis of NASH and liver fibrosis based on measurements of lipids, glycans and biochemical parameters in peripheral blood and with the use of different machine learning methods.We performed a lipidomic, glycomic and free fatty acid analysis in serum samples of 49 healthy subjects and 31 patients with biopsy-proven NAFLD (15 with NAFL and 16 with NASH). The data from the above measurements combined with measurements of 4 hormonal parameters were analyzed with two different platforms and five different machine learning tools.METHODSWe performed a lipidomic, glycomic and free fatty acid analysis in serum samples of 49 healthy subjects and 31 patients with biopsy-proven NAFLD (15 with NAFL and 16 with NASH). The data from the above measurements combined with measurements of 4 hormonal parameters were analyzed with two different platforms and five different machine learning tools.365 lipids, 61 glycans and 23 fatty acids were identified with mass-spectrometry and liquid chromatography. Robust differences in the concentrations of specific lipid species were observed between healthy, NAFL and NASH subjects. One-vs-Rest (OvR) support vector machine (SVM) models with recursive feature elimination (RFE) including 29 lipids or combining lipids with glycans and/or hormones (20 or 10 variables total) could differentiate with very high accuracy (up to 90%) between the three conditions. In an exploratory analysis, a model consisting of 10 lipid species could robustly discriminate between the presence of liver fibrosis or not (98% accuracy).RESULTS365 lipids, 61 glycans and 23 fatty acids were identified with mass-spectrometry and liquid chromatography. Robust differences in the concentrations of specific lipid species were observed between healthy, NAFL and NASH subjects. One-vs-Rest (OvR) support vector machine (SVM) models with recursive feature elimination (RFE) including 29 lipids or combining lipids with glycans and/or hormones (20 or 10 variables total) could differentiate with very high accuracy (up to 90%) between the three conditions. In an exploratory analysis, a model consisting of 10 lipid species could robustly discriminate between the presence of liver fibrosis or not (98% accuracy).We propose novel models utilizing lipids, hormones and glycans that can diagnose with high accuracy the presence of NASH, NAFL or healthy status. Additionally, we report a combination of lipids that can diagnose the presence of liver fibrosis. Both models should be further trained prospectively and validated in large independent cohorts.CONCLUSIONWe propose novel models utilizing lipids, hormones and glycans that can diagnose with high accuracy the presence of NASH, NAFL or healthy status. Additionally, we report a combination of lipids that can diagnose the presence of liver fibrosis. Both models should be further trained prospectively and validated in large independent cohorts. Non-alcoholic fatty liver disease (NAFLD) affects 25-30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biopsy is the gold standard for the diagnosis of NASH and for staging liver fibrosis. This study aimed to train models for the non-invasive diagnosis of NASH and liver fibrosis based on measurements of lipids, glycans and biochemical parameters in peripheral blood and with the use of different machine learning methods. We performed a lipidomic, glycomic and free fatty acid analysis in serum samples of 49 healthy subjects and 31 patients with biopsy-proven NAFLD (15 with NAFL and 16 with NASH). The data from the above measurements combined with measurements of 4 hormonal parameters were analyzed with two different platforms and five different machine learning tools. 365 lipids, 61 glycans and 23 fatty acids were identified with mass-spectrometry and liquid chromatography. Robust differences in the concentrations of specific lipid species were observed between healthy, NAFL and NASH subjects. One-vs-Rest (OvR) support vector machine (SVM) models with recursive feature elimination (RFE) including 29 lipids or combining lipids with glycans and/or hormones (20 or 10 variables total) could differentiate with very high accuracy (up to 90%) between the three conditions. In an exploratory analysis, a model consisting of 10 lipid species could robustly discriminate between the presence of liver fibrosis or not (98% accuracy). We propose novel models utilizing lipids, hormones and glycans that can diagnose with high accuracy the presence of NASH, NAFL or healthy status. Additionally, we report a combination of lipids that can diagnose the presence of liver fibrosis. Both models should be further trained prospectively and validated in large independent cohorts. |
ArticleNumber | 154005 |
Author | Sala-Vila, Aleix Kountouras, Jannis Anastasilakis, Athanasios D. Perakakis, Nikolaos Mantzoros, Christos S. Polyzos, Stergios A. Yazdani, Alireza |
Author_xml | – sequence: 1 givenname: Nikolaos surname: Perakakis fullname: Perakakis, Nikolaos email: nperakak@bidmc.harvard.edu organization: Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA – sequence: 2 givenname: Stergios A. surname: Polyzos fullname: Polyzos, Stergios A. organization: First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 3 givenname: Alireza surname: Yazdani fullname: Yazdani, Alireza organization: Division of Applied Mathematics, Brown University, Providence, RI 02906, USA – sequence: 4 givenname: Aleix surname: Sala-Vila fullname: Sala-Vila, Aleix organization: CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain – sequence: 5 givenname: Jannis surname: Kountouras fullname: Kountouras, Jannis organization: Second Medical Clinic, Faculty of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece – sequence: 6 givenname: Athanasios D. surname: Anastasilakis fullname: Anastasilakis, Athanasios D. organization: Department of Endocrinology, 424 General Military Hospital, Thessaloniki, Greece – sequence: 7 givenname: Christos S. surname: Mantzoros fullname: Mantzoros, Christos S. email: cmantzor@bidmc.harvard.edu organization: Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31711876$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS1URKeFRwB5ySbDdf4DQlVV8SdVsIG15dg3nTs49hA7g-YdeGg8ZLrppiwsb77v2Drngp0575CxlwLWAkT9ZrseMare23UOoluLqgSonrCVqIo8a2uAM7YCyOsMyq46ZxchbAGgadr6GTsvRCNE29Qr9uerdxm5vQq0R25I3TkfKHA_8PRgpqz2G29J8xBRRb_BnYoUE6Cc4QP10z_6N8UNjxvkc8Cj6kfSCxLmHU57Cmi4RTU5cndv-TXfTf6IDVx7p3EXU_xsDs_Z00HZgC9O9yX78fHD95vP2e23T19urm8zXYouZn2nQZi-V6pqQFRG9XXRalO0qodcNWgak6dT5QPoosduaDDHElpdY9HkfVNcstdLbvrGrxlDlCMFjdYqh34OMi9ECXkBlUjoqxM69yMauZtoVNNB3jeYgHcLoFMVYcJBaoqpI-_ipMhKAfK4l9zK017yuJdc9kp29cC-f-Ax72rxMNW0J5xk0ISpSkMT6iiNp0cT3j9I0JYcaWV_4uE__L-yWcoY |
CitedBy_id | crossref_primary_10_1093_jamia_ocab003 crossref_primary_10_3350_cmh_2022_0426 crossref_primary_10_1136_gutjnl_2023_331740 crossref_primary_10_3390_jcm13133798 crossref_primary_10_1016_j_metabol_2019_154028 crossref_primary_10_3390_diagnostics11061083 crossref_primary_10_1016_j_metabol_2022_155333 crossref_primary_10_3748_wjg_v27_i40_6794 crossref_primary_10_1002_mp_16597 crossref_primary_10_1016_j_coph_2021_08_014 crossref_primary_10_1136_bmjhci_2021_100510 crossref_primary_10_1097_MCG_0000000000002079 crossref_primary_10_1007_s11154_021_09681_x crossref_primary_10_1016_j_metabol_2024_155936 crossref_primary_10_3389_fgene_2022_1017340 crossref_primary_10_3390_ijms22126332 crossref_primary_10_1007_s42000_022_00369_8 crossref_primary_10_1016_j_metabol_2020_154318 crossref_primary_10_1016_j_metabol_2020_154439 crossref_primary_10_1007_s42000_023_00502_1 crossref_primary_10_3390_nu15081992 crossref_primary_10_1002_ird3_24 crossref_primary_10_14366_usg_22110 crossref_primary_10_1016_j_dld_2021_06_011 crossref_primary_10_1016_j_hbpd_2021_05_008 crossref_primary_10_1186_s12933_024_02264_5 crossref_primary_10_1016_j_metabol_2020_154392 crossref_primary_10_1016_j_jhepr_2024_101185 crossref_primary_10_1007_s12325_024_02781_5 crossref_primary_10_1002_oby_23250 crossref_primary_10_2337_dci21_0020 crossref_primary_10_1097_HEP_0000000000000341 crossref_primary_10_1016_j_physa_2023_128955 crossref_primary_10_1053_j_gastro_2021_04_074 crossref_primary_10_1128_mbio_02663_22 crossref_primary_10_35712_aig_v3_i2_46 crossref_primary_10_1002_jhbp_972 crossref_primary_10_1186_s12944_021_01526_5 crossref_primary_10_1055_s_0041_1731706 crossref_primary_10_1093_noajnl_vdae119 crossref_primary_10_3390_biom11030473 crossref_primary_10_3390_ijms25115965 crossref_primary_10_1016_j_jlr_2024_100651 crossref_primary_10_1016_S2468_1253_21_00261_2 crossref_primary_10_1016_j_metabol_2024_156044 crossref_primary_10_1016_j_hbpd_2023_03_009 crossref_primary_10_1002_edm2_177 crossref_primary_10_2139_ssrn_4173873 crossref_primary_10_1007_s42000_022_00391_w crossref_primary_10_1016_j_jacc_2020_11_069 crossref_primary_10_3389_fmed_2021_683250 crossref_primary_10_1007_s12664_022_01263_2 crossref_primary_10_1111_liv_14888 crossref_primary_10_3390_diagnostics12020407 crossref_primary_10_2139_ssrn_3915431 crossref_primary_10_7759_cureus_78421 crossref_primary_10_1016_j_metabol_2020_154218 crossref_primary_10_1002_hep_31603 crossref_primary_10_1016_j_metabol_2020_154333 crossref_primary_10_1016_j_metabol_2020_154259 crossref_primary_10_1111_apt_17301 crossref_primary_10_3389_frai_2022_1050439 crossref_primary_10_1016_j_metabol_2019_154010 crossref_primary_10_1016_j_procs_2022_11_066 crossref_primary_10_1111_dom_16194 crossref_primary_10_3803_EnM_2020_35_1_71 crossref_primary_10_1371_journal_pmed_1003149 crossref_primary_10_1002_jgh3_12716 crossref_primary_10_1016_j_metabol_2021_154770 crossref_primary_10_1124_pharmrev_123_001087 crossref_primary_10_3350_cmh_2021_0127 crossref_primary_10_1002_mas_21785 crossref_primary_10_1093_jmcb_mjab051 crossref_primary_10_1186_s12889_024_19882_z crossref_primary_10_3390_jcm10204673 crossref_primary_10_1139_apnm_2021_0448 crossref_primary_10_4093_jkd_2020_21_3_130 crossref_primary_10_1016_j_metabol_2023_155664 crossref_primary_10_1016_j_molmet_2020_101049 crossref_primary_10_1007_s40618_023_02235_9 crossref_primary_10_1016_j_cmpb_2023_107932 crossref_primary_10_3390_cancers12061644 crossref_primary_10_1016_j_hjc_2020_02_009 crossref_primary_10_1016_j_metabol_2021_154822 crossref_primary_10_1016_j_metabol_2020_154203 crossref_primary_10_1111_obr_13612 crossref_primary_10_3390_metabo12050458 crossref_primary_10_1016_j_metabol_2020_154320 crossref_primary_10_1016_j_metabol_2020_154441 crossref_primary_10_1016_j_metabol_2021_154781 |
Cites_doi | 10.1016/j.jhep.2017.11.013 10.1016/j.jhep.2009.03.019 10.1093/bioinformatics/bty528 10.3748/wjg.v20.i2.475 10.1111/liv.13362 10.1016/j.dld.2011.10.015 10.1016/j.jchromb.2004.07.002 10.1097/MEG.0b013e32835609b0 10.1016/j.metabol.2017.04.011 10.3310/hta19090 10.1053/j.gastro.2018.12.036 10.1186/1471-2105-12-253 10.1155/2016/5921589 10.3803/EnM.2018.33.1.33 10.1016/j.metabol.2015.12.012 10.1016/j.metabol.2018.08.002 10.1136/gutjnl-2018-317584 10.1002/hep.21855 10.1007/s11695-008-9506-y 10.1023/A:1012487302797 10.1002/hep.23229 10.1016/j.metabol.2016.09.003 10.1007/s11886-017-0940-0 10.3390/ijms17060803 10.2337/diacare.25.8.1331 10.1016/j.metabol.2019.05.001 10.1111/apt.12569 10.1016/j.metabol.2013.09.013 10.1016/j.metabol.2016.07.009 10.1002/hep.21763 10.1016/j.jhep.2008.12.010 10.1002/hep4.1188 10.1016/0009-8981(96)06369-3 10.1186/1471-230X-6-34 10.1016/j.jprot.2018.02.003 10.1186/1471-2164-7-142 10.1021/acs.biochem.8b01096 10.1371/journal.pone.0151828 10.1111/dom.13572 10.1002/cem.2657 10.3748/wjg.v25.i24.3009 10.1002/hep.29367 10.1016/j.metabol.2010.09.003 10.1038/nm1006 10.3109/07853890.2010.518623 10.1111/jgh.12726 10.1002/hep.28431 10.1074/mcp.M800470-MCP200 10.1016/j.metabol.2018.05.003 10.1053/j.gastro.2018.06.031 10.1021/acs.jproteome.9b00232 10.1016/j.jhep.2013.07.042 10.1159/000435839 10.1016/j.metabol.2018.11.014 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.metabol.2019.154005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1532-8600 |
ExternalDocumentID | 31711876 10_1016_j_metabol_2019_154005 S0026049519302203 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYJJ AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACIEU ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AEVXI AFFNX AFJKZ AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HMK HMO HVGLF HX~ HZ~ IHE J1W J5H K-O KOM L7B LZ1 M29 M41 MO0 MVM N9A O-L O9- OAUVE OB0 OHT ON- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSU SSZ T5K UAP UHS WUQ X7M Z5R ZGI ~G- ~KM AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW DOVZS EFLBG G8K LCYCR RIG ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 |
ID | FETCH-LOGICAL-c419t-b9c01dbbaa57015dab638cd38ab02a7ed7d2d7d52f0c3be9f7e2e408c6e372b73 |
IEDL.DBID | .~1 |
ISSN | 0026-0495 1532-8600 |
IngestDate | Tue Aug 05 10:44:07 EDT 2025 Wed Feb 19 02:31:30 EST 2025 Tue Jul 01 00:56:46 EDT 2025 Thu Apr 24 23:11:17 EDT 2025 Fri Feb 23 02:49:04 EST 2024 Tue Aug 26 16:33:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Che Metabolomics NAFLD DG Glycomics t-SNE SVM Liver fibrosis Co AUC C20:4n6 HDL LDL RBF Ck-18f C16:0 SM Non-alcoholic steatohepatitis NAFL BMI AcCa sPLS-DA C18:1n9 C18:3n6 Non-invasive C16:1n7cis C18:2n6 ROC HCC IR Lipidomics OvR kNN NASH MCCV PCA PA REF TG PC PE PG Machine learning Non-alcoholic fatty liver disease SAM LPC |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-b9c01dbbaa57015dab638cd38ab02a7ed7d2d7d52f0c3be9f7e2e408c6e372b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31711876 |
PQID | 2314023051 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2314023051 pubmed_primary_31711876 crossref_citationtrail_10_1016_j_metabol_2019_154005 crossref_primary_10_1016_j_metabol_2019_154005 elsevier_sciencedirect_doi_10_1016_j_metabol_2019_154005 elsevier_clinicalkey_doi_10_1016_j_metabol_2019_154005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Metabolism, clinical and experimental |
PublicationTitleAlternate | Metabolism |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Bishop (bb0150) 2006 Polyzos, Kountouras, Anastasilakis, Triantafyllou, Mantzoros (bb0100) 2016; 65 Yamasaki Y, Nouso K, Miyahara K, Wada N, Dohi C, Morimoto Y, et al. Use of non-invasive serum glycan markers to distinguish non-alcoholic steatohepatitis from simple steatosis. Journal of gastroenterology and hepatology. 2015;30(3):528–34. Epub 2014/08/30. Sriharan M, Reichelt AJ, Opperman ML, Duncan BB, Mengue SS, Crook MA, et al. Total sialic acid and associated elements of the metabolic syndrome in women with and without previous gestational diabetes. Diabetes care. 2002;25(8):1331–5. Epub 2002/07/30. Chong, Xia (bb0155) 2018; 34 Machado, Coutinho, Carepa, Costa, Proenca, Cortez-Pinto (bb0245) 2012; 24 Younossi, Koenig, Abdelatif, Fazel, Henry, Wymer (bb0005) 2016; 64 He, Mao, Zhang, Jin (bb0270) 2015; 67 Caussy C, Ajmera VH, Puri P, Hsu CL, Bassirian S, Mgdsyan M, et al. Serum metabolites detect the presence of advanced fibrosis in derivation and validation cohorts of patients with non-alcoholic fatty liver disease. Gut. 2018. [Epub 2018/12/21]. Clarke, Novak, Lake, Hardwick, Cherrington (bb0205) 2017; 37 Younossi ZM, Jarrar M, Nugent C, Randhawa M, Afendy M, Stepanova M, et al. A novel diagnostic biomarker panel for obesity-related nonalcoholic steatohepatitis (NASH). Obesity surgery. 2008;18(11):1430–7. Epub 2008/05/27. Pabst, Futatsugi, Li, Ahn (bb0235) 2018; 57 Bondia-Pons, Castellote, Lopez-Sabater (bb0120) 2004; 809 Polyzos, Kountouras, Mantzoros (bb0010) 2018; 92 Buzzetti, Pinzani, Tsochatzis (bb0195) 2016; 65 Poynard T, Ratziu V, Charlotte F, Messous D, Munteanu M, Imbert-Bismut F, et al. Diagnostic value of biochemical markers (NashTest) for the prediction of non alcoholo steato hepatitis in patients with non-alcoholic fatty liver disease. BMC gastroenterology. 2006;6:34. Epub 2006/11/14. Polyzos, Toulis, Goulis, Zavos, Kountouras (bb0110) 2011; 60 Perakakis N. Data sets - NAFLD. figshare. Dataset 2019 Shimizu K, Katoh H, Yamashita F, Tanaka M, Tanikawa K, Taketa K, et al. Comparison of carbohydrate structures of serum alpha-fetoprotein by sequential glycosidase digestion and lectin affinity electrophoresis. Clinica chimica acta; international journal of clinical chemistry. 1996;254(1):23–40. Epub 1996/10/15. Liu XE, Desmyter L, Gao CF, Laroy W, Dewaele S, Vanhooren V, et al. N-glycomic changes in hepatocellular carcinoma patients with liver cirrhosis induced by hepatitis B virus. Hepatology. 2007;46(5):1426–35. Epub 2007/08/09. Sumida, Nakajima, Itoh (bb0025) 2014; 20 Perakakis N, Kokkinos A, Peradze N, Tentolouris N, Ghaly W, Tsilingiris D, et al. Follistatins in glucose regulation in healthy and obese individuals. Diabetes, obesity & metabolism. 2019;21(3):683–90. Epub 2018/11/06. Pedregosa FaV, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duche. Scikit-learn: machine learning in python. Journal of Machine Learning Research 2011;12:2825–30. Blomme, Van Steenkiste, Callewaert, Van Vlierberghe (bb0060) 2009; 50 . Liu X, Perakakis N, Gong H, Chamberland JP, Brinkoetter MT, Hamnvik OR, et al. Adiponectin administration prevents weight gain and glycemic profile changes in diet-induced obese immune deficient Rag1−/− mice lacking mature lymphocytes. Metabolism: clinical and experimental. 2016;65(12):1720–30. Epub 2016/11/12. Yazdani A. Python code - NAFLD. 2019 Kwok R, Tse YK, Wong GL, Ha Y, Lee AU, Ngu MC, et al. Systematic review with meta-analysis: non-invasive assessment of non-alcoholic fatty liver disease--the role of transient elastography and plasma cytokeratin-18 fragments. Alimentary pharmacology & therapeutics. 2014;39(3):254–69. Epub 2013/12/07. Perakakis N. R command history in MetaboanalystR - NAFLD. figshare. Dataset 2019 Vitali, Khetarpal, Rader (bb0240) 2017; 19 Perakakis N, Upadhyay J, Ghaly W, Chen J, Chrysafi P, Anastasilakis AD, et al. Regulation of the activins-follistatins-inhibins axis by energy status: Impact on reproductive function. Metabolism: clinical and experimental. 2018;85:240–9. Epub 2018/05/13. Lê Cao, Boitard, Besse (bb0135) 2011; 1 Crossan C, Tsochatzis EA, Longworth L, Gurusamy K, Davidson B, Rodriguez-Peralvarez M, et al. Cost-effectiveness of non-invasive methods for assessment and monitoring of liver fibrosis and cirrhosis in patients with chronic liver disease: systematic review and economic evaluation. Health Technol Assess. 2015;19(9):1–409, v-vi. Epub 2015/01/31. Mayo R, Crespo J, Martinez-Arranz I, Banales JM, Arias M, Minchole I, et al. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts. Hepatology communications. 2018;2(7):807–20. Epub 2018/07/22. Vilar-Gomez, Chalasani (bb0055) 2018; 68 Vanderschaeghe D, Laroy W, Sablon E, Halfon P, Van Hecke A, Delanghe J, et al. GlycoFibroTest is a highly performant liver fibrosis biomarker derived from DNA sequencer-based serum protein glycomics. Molecular & cellular proteomics : MCP. 2009;8(5):986–94. Epub 2009/02/03. Polyzos, Kountouras, Anastasilakis, Geladari, Mantzoros (bb0115) 2014; 63 Tawara S, Tatsumi T, Iio S, Kobayashi I, Shigekawa M, Hikita H, et al. Evaluation of Fucosylated Haptoglobin and Mac-2 Binding Protein as Serum Biomarkers to Estimate Liver Fibrosis in Patients with Chronic Hepatitis C. PloS one. 2016;11(3):e0151828. Epub 2016/03/24. Perakakis, Yazdani, Karniadakis, Mantzoros (bb0035) 2018; 87 Puri P, Wiest MM, Cheung O, Mirshahi F, Sargeant C, Min HK, et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology. 2009;50(6):1827–38. Epub 2009/11/26. Kalivodová, Hron, Filzmoser, Najdekr, Janečková, Adam (bb0125) 2015; 1 Lu, Ma, Xu, Shao, Cen, Li (bb0275) 2016; 2016 Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46(4):1081–90. Epub 2007/07/27. Kobayashi T, Ogawa K, Furukawa JI, Hanamatsu H, Hato M, Yoshinaga T, et al. Quantifying Protein-Specific N-Glycome Profiles by Focused Protein and Immunoprecipitation Glycomics. Journal of proteome research. 2019;18(8):3133–41. Epub 2019/07/04. Argo, Northup, Al-Osaimi, Caldwell (bb0015) 2009; 51 Guyon, Weston, Barnhill, Vapnik (bb0145) 2002; 1-3 van den Berg, Hoefsloot, Westerhuis, Smilde, van der Werf (bb0130) 2006; 1 Ma, Sanda, Wei, Zhang, Goldman (bb0280) 2018; 189 Reccia I, Kumar J, Akladios C, Virdis F, Pai M, Habib N, et al. Non-alcoholic fatty liver disease: a sign of systemic disease. Metabolism: clinical and experimental. 2017;72:94–108. Epub 2017/06/24. Musso, Cassader, Paschetta, Gambino (bb0040) 2018; 155 Polyzos, Perakakis, Mantzoros (bb0105) 2019; 96 Cusi K, Chang Z, Harrison S, Lomonaco R, Bril F, Orsak B, et al. Limited value of plasma cytokeratin-18 as a biomarker for NASH and fibrosis in patients with non-alcoholic fatty liver disease. Journal of hepatology. 2014;60(1):167–74. Epub 2013/08/27. Callewaert, Van Vlierberghe, Van Hecke, Laroy, Delanghe, Contreras (bb0065) 2004; 10 Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–57. Epub 2017/07/18. Musso, Gambino, Cassader, Pagano (bb0185) 2011; 43 Adinolfi LE, Rinaldi L, Guerrera B, Restivo L, Marrone A, Giordano M, et al. NAFLD and NASH in HCV Infection: Prevalence and Significance in Hepatic and Extrahepatic Manifestations. International journal of molecular sciences. 2016;17(6). Epub 2016/05/28. Boutari, Perakakis, Mantzoros (bb0090) 2018; 33 Mato, Alonso, Noureddin, Lu (bb0225) 2019; 25 Castera, Friedrich-Rust, Loomba (bb0030) 2019; 156 Blomme B, Francque S, Trepo E, Libbrecht L, Vanderschaeghe D, Verrijken A, et al. N-glycan based biomarker distinguishing non-alcoholic steatohepatitis from steatosis independently of fibrosis. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2012;44(4):315–22. Epub 2011/11/29. Machado (10.1016/j.metabol.2019.154005_bb0245) 2012; 24 Chong (10.1016/j.metabol.2019.154005_bb0155) 2018; 34 10.1016/j.metabol.2019.154005_bb0180 Lu (10.1016/j.metabol.2019.154005_bb0275) 2016; 2016 10.1016/j.metabol.2019.154005_bb0095 10.1016/j.metabol.2019.154005_bb0250 10.1016/j.metabol.2019.154005_bb0170 10.1016/j.metabol.2019.154005_bb0050 Clarke (10.1016/j.metabol.2019.154005_bb0205) 2017; 37 10.1016/j.metabol.2019.154005_bb0210 10.1016/j.metabol.2019.154005_bb0295 10.1016/j.metabol.2019.154005_bb0175 Kalivodová (10.1016/j.metabol.2019.154005_bb0125) 2015; 1 10.1016/j.metabol.2019.154005_bb0255 Guyon (10.1016/j.metabol.2019.154005_bb0145) 2002; 1-3 Lê Cao (10.1016/j.metabol.2019.154005_bb0135) 2011; 1 10.1016/j.metabol.2019.154005_bb0215 Blomme (10.1016/j.metabol.2019.154005_bb0060) 2009; 50 Bishop (10.1016/j.metabol.2019.154005_bb0150) 2006 Musso (10.1016/j.metabol.2019.154005_bb0185) 2011; 43 10.1016/j.metabol.2019.154005_bb0290 Castera (10.1016/j.metabol.2019.154005_bb0030) 2019; 156 He (10.1016/j.metabol.2019.154005_bb0270) 2015; 67 10.1016/j.metabol.2019.154005_bb0085 Vilar-Gomez (10.1016/j.metabol.2019.154005_bb0055) 2018; 68 10.1016/j.metabol.2019.154005_bb0160 10.1016/j.metabol.2019.154005_bb0165 10.1016/j.metabol.2019.154005_bb0045 10.1016/j.metabol.2019.154005_bb0285 10.1016/j.metabol.2019.154005_bb0200 Younossi (10.1016/j.metabol.2019.154005_bb0005) 2016; 64 Polyzos (10.1016/j.metabol.2019.154005_bb0010) 2018; 92 Boutari (10.1016/j.metabol.2019.154005_bb0090) 2018; 33 Polyzos (10.1016/j.metabol.2019.154005_bb0100) 2016; 65 Buzzetti (10.1016/j.metabol.2019.154005_bb0195) 2016; 65 10.1016/j.metabol.2019.154005_bb0080 Musso (10.1016/j.metabol.2019.154005_bb0040) 2018; 155 Mato (10.1016/j.metabol.2019.154005_bb0225) 2019; 25 10.1016/j.metabol.2019.154005_bb0075 10.1016/j.metabol.2019.154005_bb0230 Polyzos (10.1016/j.metabol.2019.154005_bb0115) 2014; 63 Vitali (10.1016/j.metabol.2019.154005_bb0240) 2017; 19 Sumida (10.1016/j.metabol.2019.154005_bb0025) 2014; 20 10.1016/j.metabol.2019.154005_bb0190 10.1016/j.metabol.2019.154005_bb0070 Pabst (10.1016/j.metabol.2019.154005_bb0235) 2018; 57 Bondia-Pons (10.1016/j.metabol.2019.154005_bb0120) 2004; 809 van den Berg (10.1016/j.metabol.2019.154005_bb0130) 2006; 1 10.1016/j.metabol.2019.154005_bb0260 Ma (10.1016/j.metabol.2019.154005_bb0280) 2018; 189 Callewaert (10.1016/j.metabol.2019.154005_bb0065) 2004; 10 Polyzos (10.1016/j.metabol.2019.154005_bb0110) 2011; 60 10.1016/j.metabol.2019.154005_bb0140 Perakakis (10.1016/j.metabol.2019.154005_bb0035) 2018; 87 10.1016/j.metabol.2019.154005_bb0220 10.1016/j.metabol.2019.154005_bb0265 10.1016/j.metabol.2019.154005_bb0020 Argo (10.1016/j.metabol.2019.154005_bb0015) 2009; 51 Polyzos (10.1016/j.metabol.2019.154005_bb0105) 2019; 96 |
References_xml | – reference: Crossan C, Tsochatzis EA, Longworth L, Gurusamy K, Davidson B, Rodriguez-Peralvarez M, et al. Cost-effectiveness of non-invasive methods for assessment and monitoring of liver fibrosis and cirrhosis in patients with chronic liver disease: systematic review and economic evaluation. Health Technol Assess. 2015;19(9):1–409, v-vi. Epub 2015/01/31. – volume: 57 start-page: 6997 year: 2018 end-page: 7010 ident: bb0235 article-title: Mechanistic characterization of long residence time inhibitors of Diacylglycerol Acyltransferase 2 (DGAT2) publication-title: Biochemistry. – volume: 96 start-page: 66 year: 2019 end-page: 82 ident: bb0105 article-title: Fatty liver in lipodystrophy: a review with a focus on therapeutic perspectives of adiponectin and/or leptin replacement publication-title: Metabolism: clinical and experimental. – volume: 19 start-page: 132 year: 2017 ident: bb0240 article-title: HDL cholesterol metabolism and the risk of CHD: new insights from human genetics publication-title: Curr Cardiol Rep – volume: 67 start-page: 69 year: 2015 end-page: 75 ident: bb0270 article-title: Association between serum Sialic acid levels and nonalcoholic fatty liver disease: a cross-sectional study publication-title: Ann Nutr Metab – volume: 64 start-page: 73 year: 2016 end-page: 84 ident: bb0005 article-title: Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes publication-title: Hepatology. – reference: Poynard T, Ratziu V, Charlotte F, Messous D, Munteanu M, Imbert-Bismut F, et al. Diagnostic value of biochemical markers (NashTest) for the prediction of non alcoholo steato hepatitis in patients with non-alcoholic fatty liver disease. BMC gastroenterology. 2006;6:34. Epub 2006/11/14. – reference: Perakakis N, Upadhyay J, Ghaly W, Chen J, Chrysafi P, Anastasilakis AD, et al. Regulation of the activins-follistatins-inhibins axis by energy status: Impact on reproductive function. Metabolism: clinical and experimental. 2018;85:240–9. Epub 2018/05/13. – reference: Tawara S, Tatsumi T, Iio S, Kobayashi I, Shigekawa M, Hikita H, et al. Evaluation of Fucosylated Haptoglobin and Mac-2 Binding Protein as Serum Biomarkers to Estimate Liver Fibrosis in Patients with Chronic Hepatitis C. PloS one. 2016;11(3):e0151828. Epub 2016/03/24. – reference: Liu XE, Desmyter L, Gao CF, Laroy W, Dewaele S, Vanhooren V, et al. N-glycomic changes in hepatocellular carcinoma patients with liver cirrhosis induced by hepatitis B virus. Hepatology. 2007;46(5):1426–35. Epub 2007/08/09. – reference: Perakakis N, Kokkinos A, Peradze N, Tentolouris N, Ghaly W, Tsilingiris D, et al. Follistatins in glucose regulation in healthy and obese individuals. Diabetes, obesity & metabolism. 2019;21(3):683–90. Epub 2018/11/06. – reference: Blomme B, Francque S, Trepo E, Libbrecht L, Vanderschaeghe D, Verrijken A, et al. N-glycan based biomarker distinguishing non-alcoholic steatohepatitis from steatosis independently of fibrosis. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2012;44(4):315–22. Epub 2011/11/29. – reference: Cusi K, Chang Z, Harrison S, Lomonaco R, Bril F, Orsak B, et al. Limited value of plasma cytokeratin-18 as a biomarker for NASH and fibrosis in patients with non-alcoholic fatty liver disease. Journal of hepatology. 2014;60(1):167–74. Epub 2013/08/27. – volume: 65 start-page: 1550 year: 2016 end-page: 1558 ident: bb0100 article-title: Activin A and follistatin in patients with nonalcoholic fatty liver disease publication-title: Metabolism: clinical and experimental. – volume: 24 start-page: 1166 year: 2012 end-page: 1172 ident: bb0245 article-title: How adiponectin, leptin, and ghrelin orchestrate together and correlate with the severity of nonalcoholic fatty liver disease publication-title: Eur J Gastroenterol Hepatol – reference: Shimizu K, Katoh H, Yamashita F, Tanaka M, Tanikawa K, Taketa K, et al. Comparison of carbohydrate structures of serum alpha-fetoprotein by sequential glycosidase digestion and lectin affinity electrophoresis. Clinica chimica acta; international journal of clinical chemistry. 1996;254(1):23–40. Epub 1996/10/15. – reference: Reccia I, Kumar J, Akladios C, Virdis F, Pai M, Habib N, et al. Non-alcoholic fatty liver disease: a sign of systemic disease. Metabolism: clinical and experimental. 2017;72:94–108. Epub 2017/06/24. – volume: 156 start-page: 1264 year: 2019 end-page: 1281 ident: bb0030 article-title: Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease publication-title: Gastroenterology. – volume: 25 start-page: 3009 year: 2019 end-page: 3020 ident: bb0225 article-title: Biomarkers and subtypes of deranged lipid metabolism in non-alcoholic fatty liver disease publication-title: World J Gastroenterol – reference: Puri P, Wiest MM, Cheung O, Mirshahi F, Sargeant C, Min HK, et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology. 2009;50(6):1827–38. Epub 2009/11/26. – reference: Perakakis N. Data sets - NAFLD. figshare. Dataset 2019; – volume: 51 start-page: 371 year: 2009 end-page: 379 ident: bb0015 article-title: Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis publication-title: J Hepatol – volume: 20 start-page: 475 year: 2014 end-page: 485 ident: bb0025 article-title: Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis publication-title: World J Gastroenterol – reference: Pedregosa FaV, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duche. Scikit-learn: machine learning in python. Journal of Machine Learning Research 2011;12:2825–30. – volume: 1 start-page: 21 year: 2015 end-page: 28 ident: bb0125 article-title: PLS-DA for compositional data with application to metabolomics publication-title: J Chemometr – reference: Caussy C, Ajmera VH, Puri P, Hsu CL, Bassirian S, Mgdsyan M, et al. Serum metabolites detect the presence of advanced fibrosis in derivation and validation cohorts of patients with non-alcoholic fatty liver disease. Gut. 2018. [Epub 2018/12/21]. – volume: 43 start-page: 617 year: 2011 end-page: 649 ident: bb0185 article-title: Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity publication-title: Ann Med – volume: 10 start-page: 429 year: 2004 end-page: 434 ident: bb0065 article-title: Noninvasive diagnosis of liver cirrhosis using DNA sequencer-based total serum protein glycomics publication-title: Nat Med – reference: Mayo R, Crespo J, Martinez-Arranz I, Banales JM, Arias M, Minchole I, et al. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts. Hepatology communications. 2018;2(7):807–20. Epub 2018/07/22. – reference: Sriharan M, Reichelt AJ, Opperman ML, Duncan BB, Mengue SS, Crook MA, et al. Total sialic acid and associated elements of the metabolic syndrome in women with and without previous gestational diabetes. Diabetes care. 2002;25(8):1331–5. Epub 2002/07/30. – volume: 809 start-page: 339 year: 2004 end-page: 344 ident: bb0120 article-title: Comparison of conventional and fast gas chromatography in human plasma fatty acid determination publication-title: J Chromatogr B Analyt Technol Biomed Life Sci – year: 2006 ident: bb0150 article-title: Pattern Recognition and Machine Learning – reference: Perakakis N. R command history in MetaboanalystR - NAFLD. figshare. Dataset 2019; – reference: Kobayashi T, Ogawa K, Furukawa JI, Hanamatsu H, Hato M, Yoshinaga T, et al. Quantifying Protein-Specific N-Glycome Profiles by Focused Protein and Immunoprecipitation Glycomics. Journal of proteome research. 2019;18(8):3133–41. Epub 2019/07/04. – volume: 87 start-page: A1 year: 2018 end-page: A9 ident: bb0035 article-title: Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics publication-title: Metabolism: clinical and experimental. – volume: 1 start-page: 142 year: 2006 ident: bb0130 article-title: Centering, scaling, and transformations: improving the biological information content of metabolomics data publication-title: BMC Genomics – reference: Yamasaki Y, Nouso K, Miyahara K, Wada N, Dohi C, Morimoto Y, et al. Use of non-invasive serum glycan markers to distinguish non-alcoholic steatohepatitis from simple steatosis. Journal of gastroenterology and hepatology. 2015;30(3):528–34. Epub 2014/08/30. – volume: 1-3 start-page: 389 year: 2002 end-page: 422 ident: bb0145 article-title: Gene selection for cancer classification using support vector machines publication-title: Machine learning – volume: 189 start-page: 67 year: 2018 end-page: 74 ident: bb0280 article-title: Quantitative analysis of core fucosylation of serum proteins in liver diseases by LC-MS-MRM publication-title: J Proteomics – volume: 2016 start-page: 5921589 year: 2016 ident: bb0275 article-title: Serum Sialic acid level is significantly associated with nonalcoholic fatty liver disease in a nonobese Chinese population: a cross-sectional study publication-title: Biomed Res Int – volume: 63 start-page: 207 year: 2014 end-page: 217 ident: bb0115 article-title: Irisin in patients with nonalcoholic fatty liver disease publication-title: Metabolism: clinical and experimental. – volume: 34 start-page: 4313 year: 2018 end-page: 4314 ident: bb0155 article-title: MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data publication-title: Bioinformatics. – reference: Adinolfi LE, Rinaldi L, Guerrera B, Restivo L, Marrone A, Giordano M, et al. NAFLD and NASH in HCV Infection: Prevalence and Significance in Hepatic and Extrahepatic Manifestations. International journal of molecular sciences. 2016;17(6). Epub 2016/05/28. – volume: 155 start-page: 282 year: 2018 end-page: 302 ident: bb0040 article-title: Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic Steatohepatitis publication-title: Gastroenterology. – volume: 37 start-page: 1074 year: 2017 end-page: 1081 ident: bb0205 article-title: Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease publication-title: Liver international : official journal of the International Association for the Study of the Liver – reference: Vanderschaeghe D, Laroy W, Sablon E, Halfon P, Van Hecke A, Delanghe J, et al. GlycoFibroTest is a highly performant liver fibrosis biomarker derived from DNA sequencer-based serum protein glycomics. Molecular & cellular proteomics : MCP. 2009;8(5):986–94. Epub 2009/02/03. – volume: 68 start-page: 305 year: 2018 end-page: 315 ident: bb0055 article-title: Non-invasive assessment of non-alcoholic fatty liver disease: clinical prediction rules and blood-based biomarkers publication-title: J Hepatol – volume: 60 start-page: 313 year: 2011 end-page: 326 ident: bb0110 article-title: Serum total adiponectin in nonalcoholic fatty liver disease: a systematic review and meta-analysis publication-title: Metabolism: clinical and experimental – reference: Yazdani A. Python code - NAFLD. 2019; – reference: Kwok R, Tse YK, Wong GL, Ha Y, Lee AU, Ngu MC, et al. Systematic review with meta-analysis: non-invasive assessment of non-alcoholic fatty liver disease--the role of transient elastography and plasma cytokeratin-18 fragments. Alimentary pharmacology & therapeutics. 2014;39(3):254–69. Epub 2013/12/07. – reference: Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–57. Epub 2017/07/18. – reference: . – reference: Liu X, Perakakis N, Gong H, Chamberland JP, Brinkoetter MT, Hamnvik OR, et al. Adiponectin administration prevents weight gain and glycemic profile changes in diet-induced obese immune deficient Rag1−/− mice lacking mature lymphocytes. Metabolism: clinical and experimental. 2016;65(12):1720–30. Epub 2016/11/12. – volume: 92 start-page: 82 year: 2018 end-page: 97 ident: bb0010 article-title: Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics publication-title: Metabolism: clinical and experimental. – volume: 1 start-page: 253 year: 2011 ident: bb0135 article-title: Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems publication-title: BMC bioinformatics – volume: 50 start-page: 592 year: 2009 end-page: 603 ident: bb0060 article-title: Alteration of protein glycosylation in liver diseases publication-title: J Hepatol – volume: 33 start-page: 33 year: 2018 end-page: 43 ident: bb0090 article-title: Association of Adipokines with development and progression of nonalcoholic fatty liver disease publication-title: Endocrinol Metab (Seoul) – reference: Younossi ZM, Jarrar M, Nugent C, Randhawa M, Afendy M, Stepanova M, et al. A novel diagnostic biomarker panel for obesity-related nonalcoholic steatohepatitis (NASH). Obesity surgery. 2008;18(11):1430–7. Epub 2008/05/27. – volume: 65 start-page: 1038 year: 2016 end-page: 1048 ident: bb0195 article-title: The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) publication-title: Metabolism: clinical and experimental. – reference: Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46(4):1081–90. Epub 2007/07/27. – volume: 68 start-page: 305 issue: 2 year: 2018 ident: 10.1016/j.metabol.2019.154005_bb0055 article-title: Non-invasive assessment of non-alcoholic fatty liver disease: clinical prediction rules and blood-based biomarkers publication-title: J Hepatol doi: 10.1016/j.jhep.2017.11.013 – volume: 51 start-page: 371 issue: 2 year: 2009 ident: 10.1016/j.metabol.2019.154005_bb0015 article-title: Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis publication-title: J Hepatol doi: 10.1016/j.jhep.2009.03.019 – volume: 34 start-page: 4313 issue: 24 year: 2018 ident: 10.1016/j.metabol.2019.154005_bb0155 article-title: MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bty528 – volume: 20 start-page: 475 issue: 2 year: 2014 ident: 10.1016/j.metabol.2019.154005_bb0025 article-title: Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis publication-title: World J Gastroenterol doi: 10.3748/wjg.v20.i2.475 – volume: 37 start-page: 1074 issue: 7 year: 2017 ident: 10.1016/j.metabol.2019.154005_bb0205 article-title: Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease publication-title: Liver international : official journal of the International Association for the Study of the Liver doi: 10.1111/liv.13362 – ident: 10.1016/j.metabol.2019.154005_bb0250 doi: 10.1016/j.dld.2011.10.015 – volume: 809 start-page: 339 issue: 2 year: 2004 ident: 10.1016/j.metabol.2019.154005_bb0120 article-title: Comparison of conventional and fast gas chromatography in human plasma fatty acid determination publication-title: J Chromatogr B Analyt Technol Biomed Life Sci doi: 10.1016/j.jchromb.2004.07.002 – ident: 10.1016/j.metabol.2019.154005_bb0140 – volume: 24 start-page: 1166 issue: 10 year: 2012 ident: 10.1016/j.metabol.2019.154005_bb0245 article-title: How adiponectin, leptin, and ghrelin orchestrate together and correlate with the severity of nonalcoholic fatty liver disease publication-title: Eur J Gastroenterol Hepatol doi: 10.1097/MEG.0b013e32835609b0 – ident: 10.1016/j.metabol.2019.154005_bb0200 doi: 10.1016/j.metabol.2017.04.011 – ident: 10.1016/j.metabol.2019.154005_bb0220 doi: 10.3310/hta19090 – volume: 156 start-page: 1264 issue: 5 year: 2019 ident: 10.1016/j.metabol.2019.154005_bb0030 article-title: Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease publication-title: Gastroenterology. doi: 10.1053/j.gastro.2018.12.036 – volume: 1 start-page: 253 issue: 12 year: 2011 ident: 10.1016/j.metabol.2019.154005_bb0135 article-title: Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems publication-title: BMC bioinformatics doi: 10.1186/1471-2105-12-253 – volume: 2016 start-page: 5921589 year: 2016 ident: 10.1016/j.metabol.2019.154005_bb0275 article-title: Serum Sialic acid level is significantly associated with nonalcoholic fatty liver disease in a nonobese Chinese population: a cross-sectional study publication-title: Biomed Res Int doi: 10.1155/2016/5921589 – volume: 33 start-page: 33 issue: 1 year: 2018 ident: 10.1016/j.metabol.2019.154005_bb0090 article-title: Association of Adipokines with development and progression of nonalcoholic fatty liver disease publication-title: Endocrinol Metab (Seoul) doi: 10.3803/EnM.2018.33.1.33 – volume: 65 start-page: 1038 issue: 8 year: 2016 ident: 10.1016/j.metabol.2019.154005_bb0195 article-title: The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) publication-title: Metabolism: clinical and experimental. doi: 10.1016/j.metabol.2015.12.012 – volume: 87 start-page: A1 year: 2018 ident: 10.1016/j.metabol.2019.154005_bb0035 article-title: Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics publication-title: Metabolism: clinical and experimental. doi: 10.1016/j.metabol.2018.08.002 – ident: 10.1016/j.metabol.2019.154005_bb0175 doi: 10.1136/gutjnl-2018-317584 – ident: 10.1016/j.metabol.2019.154005_bb0075 doi: 10.1002/hep.21855 – ident: 10.1016/j.metabol.2019.154005_bb0215 doi: 10.1007/s11695-008-9506-y – volume: 1-3 start-page: 389 issue: 46 year: 2002 ident: 10.1016/j.metabol.2019.154005_bb0145 article-title: Gene selection for cancer classification using support vector machines publication-title: Machine learning doi: 10.1023/A:1012487302797 – ident: 10.1016/j.metabol.2019.154005_bb0050 doi: 10.1002/hep.23229 – ident: 10.1016/j.metabol.2019.154005_bb0080 doi: 10.1016/j.metabol.2016.09.003 – volume: 19 start-page: 132 issue: 12 year: 2017 ident: 10.1016/j.metabol.2019.154005_bb0240 article-title: HDL cholesterol metabolism and the risk of CHD: new insights from human genetics publication-title: Curr Cardiol Rep doi: 10.1007/s11886-017-0940-0 – ident: 10.1016/j.metabol.2019.154005_bb0295 doi: 10.3390/ijms17060803 – ident: 10.1016/j.metabol.2019.154005_bb0265 doi: 10.2337/diacare.25.8.1331 – volume: 96 start-page: 66 year: 2019 ident: 10.1016/j.metabol.2019.154005_bb0105 article-title: Fatty liver in lipodystrophy: a review with a focus on therapeutic perspectives of adiponectin and/or leptin replacement publication-title: Metabolism: clinical and experimental. doi: 10.1016/j.metabol.2019.05.001 – year: 2006 ident: 10.1016/j.metabol.2019.154005_bb0150 – ident: 10.1016/j.metabol.2019.154005_bb0160 – ident: 10.1016/j.metabol.2019.154005_bb0180 doi: 10.1111/apt.12569 – volume: 63 start-page: 207 issue: 2 year: 2014 ident: 10.1016/j.metabol.2019.154005_bb0115 article-title: Irisin in patients with nonalcoholic fatty liver disease publication-title: Metabolism: clinical and experimental. doi: 10.1016/j.metabol.2013.09.013 – volume: 65 start-page: 1550 issue: 10 year: 2016 ident: 10.1016/j.metabol.2019.154005_bb0100 article-title: Activin A and follistatin in patients with nonalcoholic fatty liver disease publication-title: Metabolism: clinical and experimental. doi: 10.1016/j.metabol.2016.07.009 – ident: 10.1016/j.metabol.2019.154005_bb0045 doi: 10.1002/hep.21763 – volume: 50 start-page: 592 issue: 3 year: 2009 ident: 10.1016/j.metabol.2019.154005_bb0060 article-title: Alteration of protein glycosylation in liver diseases publication-title: J Hepatol doi: 10.1016/j.jhep.2008.12.010 – ident: 10.1016/j.metabol.2019.154005_bb0230 doi: 10.1002/hep4.1188 – ident: 10.1016/j.metabol.2019.154005_bb0285 doi: 10.1016/0009-8981(96)06369-3 – ident: 10.1016/j.metabol.2019.154005_bb0170 – ident: 10.1016/j.metabol.2019.154005_bb0210 doi: 10.1186/1471-230X-6-34 – volume: 189 start-page: 67 year: 2018 ident: 10.1016/j.metabol.2019.154005_bb0280 article-title: Quantitative analysis of core fucosylation of serum proteins in liver diseases by LC-MS-MRM publication-title: J Proteomics doi: 10.1016/j.jprot.2018.02.003 – volume: 1 start-page: 142 issue: 7 year: 2006 ident: 10.1016/j.metabol.2019.154005_bb0130 article-title: Centering, scaling, and transformations: improving the biological information content of metabolomics data publication-title: BMC Genomics doi: 10.1186/1471-2164-7-142 – volume: 57 start-page: 6997 issue: 51 year: 2018 ident: 10.1016/j.metabol.2019.154005_bb0235 article-title: Mechanistic characterization of long residence time inhibitors of Diacylglycerol Acyltransferase 2 (DGAT2) publication-title: Biochemistry. doi: 10.1021/acs.biochem.8b01096 – ident: 10.1016/j.metabol.2019.154005_bb0290 doi: 10.1371/journal.pone.0151828 – ident: 10.1016/j.metabol.2019.154005_bb0085 doi: 10.1111/dom.13572 – volume: 1 start-page: 21 issue: 29 year: 2015 ident: 10.1016/j.metabol.2019.154005_bb0125 article-title: PLS-DA for compositional data with application to metabolomics publication-title: J Chemometr doi: 10.1002/cem.2657 – ident: 10.1016/j.metabol.2019.154005_bb0165 – volume: 25 start-page: 3009 issue: 24 year: 2019 ident: 10.1016/j.metabol.2019.154005_bb0225 article-title: Biomarkers and subtypes of deranged lipid metabolism in non-alcoholic fatty liver disease publication-title: World J Gastroenterol doi: 10.3748/wjg.v25.i24.3009 – ident: 10.1016/j.metabol.2019.154005_bb0020 doi: 10.1002/hep.29367 – volume: 60 start-page: 313 issue: 3 year: 2011 ident: 10.1016/j.metabol.2019.154005_bb0110 article-title: Serum total adiponectin in nonalcoholic fatty liver disease: a systematic review and meta-analysis publication-title: Metabolism: clinical and experimental doi: 10.1016/j.metabol.2010.09.003 – volume: 10 start-page: 429 issue: 4 year: 2004 ident: 10.1016/j.metabol.2019.154005_bb0065 article-title: Noninvasive diagnosis of liver cirrhosis using DNA sequencer-based total serum protein glycomics publication-title: Nat Med doi: 10.1038/nm1006 – volume: 43 start-page: 617 issue: 8 year: 2011 ident: 10.1016/j.metabol.2019.154005_bb0185 article-title: Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity publication-title: Ann Med doi: 10.3109/07853890.2010.518623 – ident: 10.1016/j.metabol.2019.154005_bb0260 doi: 10.1111/jgh.12726 – volume: 64 start-page: 73 issue: 1 year: 2016 ident: 10.1016/j.metabol.2019.154005_bb0005 article-title: Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes publication-title: Hepatology. doi: 10.1002/hep.28431 – ident: 10.1016/j.metabol.2019.154005_bb0070 doi: 10.1074/mcp.M800470-MCP200 – ident: 10.1016/j.metabol.2019.154005_bb0095 doi: 10.1016/j.metabol.2018.05.003 – volume: 155 start-page: 282 issue: 2 year: 2018 ident: 10.1016/j.metabol.2019.154005_bb0040 article-title: Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic Steatohepatitis publication-title: Gastroenterology. doi: 10.1053/j.gastro.2018.06.031 – ident: 10.1016/j.metabol.2019.154005_bb0255 doi: 10.1021/acs.jproteome.9b00232 – ident: 10.1016/j.metabol.2019.154005_bb0190 doi: 10.1016/j.jhep.2013.07.042 – volume: 67 start-page: 69 issue: 2 year: 2015 ident: 10.1016/j.metabol.2019.154005_bb0270 article-title: Association between serum Sialic acid levels and nonalcoholic fatty liver disease: a cross-sectional study publication-title: Ann Nutr Metab doi: 10.1159/000435839 – volume: 92 start-page: 82 year: 2018 ident: 10.1016/j.metabol.2019.154005_bb0010 article-title: Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics publication-title: Metabolism: clinical and experimental. doi: 10.1016/j.metabol.2018.11.014 |
SSID | ssj0007786 |
Score | 2.577945 |
Snippet | Non-alcoholic fatty liver disease (NAFLD) affects 25–30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL)... Non-alcoholic fatty liver disease (NAFLD) affects 25-30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL)... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 154005 |
SubjectTerms | Case-Control Studies Fatty Acids - analysis Fatty Liver - diagnosis Female Glycomics Humans Lipidomics Lipids - analysis Liver Cirrhosis - diagnosis Liver fibrosis Machine learning Male Metabolomics Metabolomics - methods Metabolomics - trends Middle Aged Non-alcoholic fatty liver disease Non-alcoholic Fatty Liver Disease - diagnosis Non-alcoholic Fatty Liver Disease - pathology Non-alcoholic steatohepatitis Non-invasive Polysaccharides - analysis Proof of Concept Study Supervised Machine Learning |
Title | Non-invasive diagnosis of non-alcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: A proof of concept study |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0026049519302203 https://dx.doi.org/10.1016/j.metabol.2019.154005 https://www.ncbi.nlm.nih.gov/pubmed/31711876 https://www.proquest.com/docview/2314023051 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSAuCMpreVRG4prdPJzY4baqqBZQ90Sl3iy_AqlKdkWySFz4BfxoZmJnKyRQEYc9ZDWTxB575nPmBfDakW9HuzrxuHcStNc60Z7KazdCk2dQ8DFd7Gxdrc75-4vy4gBOplwYCquMuj_o9FFbx38WcTYX27alHF_E4ojvEYJQuihV_ORc0Cqf_7gO86D6aCHMA0_OSH2dxbO4nH_xA041eSCymr6xpNTF7s_26W_4c7RDp_fhXgSQbBne8QEc-O4IboeWkt-P4M5ZdJY_hJ_rTZe03TdNEerMhZi6tmebhuGZP9GhOW5rGQl62Hz2FFw9IIHuHGvwGD1S04dahiiR7XpPrJTFHEj63ZYUTe8di70nPr1hS4YjILKG2ZARycYKto_g_PTtx5NVEpsvJJZn9ZCY2qaZM0brUiBkcNrgTrWukNqkuRbeCZfjr8yb1BbG143wueeptJUvRG5E8RgOcTD-KTCpyfeaFbKSOS9lLZ1pjPWlRAON95Qz4NOUKxsrk1ODjCs1haBdqigpRZJSQVIzmO_ZtqE0x00M1SRPNeWdoqZUaDxuYpR7xt8W57-wvpoWjsKNS94Y3fnNrlcIrDkdAMtsBk_CitoPA0EdtYGvnv3_g5_DXboKkTcv4HD4uvMvET8N5njcIMdwa_nuw2r9C-ZsHCs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrXhcUCkUFii4Etd0847DbVVRbWl3T63Um-VX2lSQXZEsEv-BH81M7CxComrVQy6JJ4k99sxnzwvgkyHbjjRlYHHtBKivZSAtpdeuCkmWwSLtw8Xmi3x2kX69zC634GiIhSG3Si_7nUzvpbW_M_GjOVnVNcX4IhZHfI8QhMJFk0ewTdmpshFsT09OZ4uNQKYUac7TAzfPSPA3kGdyc_jddjjaZISISjpmCamQ3f9V1G0QtFdFxzvw3GNINnW_-QK2bLMLj11VyV-78GTu7eUv4fdi2QR181OSkzozzq2ubtmyYrjtD6Srj1trRrzulteW_Ks7bCAbwyrcSfet6ayWIVBk69YSKQUyuybtekWyprWG-fITV5_ZlGEPqFnFtAuKZH0S21dwcfzl_GgW-PoLgU6jsgtUqcPIKCVlViBqMFLhYtUm4VKFsSysKUyMVxZXoU6ULavCxjYNuc5tUsSqSPZghJ2xb4BxSebXKOE5j9OMl9yoSmmbcdTR-E4-hnQYcqF9cnKqkfFNDF5oN8JzShCnhOPUGA43ZCuXneMugnzgpxhCT1FYCtQfdxHyDeE_8_M-pAfDxBG4dskgIxu7XLcCsXVKe8AsGsNrN6M23UBcR5Xg87cP__BHeDo7n5-Js5PF6Tt4Rk-cI857GHU_1nYf4VSnPvjl8geMBB7c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-invasive+diagnosis+of+non-alcoholic+steatohepatitis+and+fibrosis+with+the+use+of+omics+and+supervised+learning%3A+A+proof+of+concept+study&rft.jtitle=Metabolism%2C+clinical+and+experimental&rft.au=Perakakis%2C+Nikolaos&rft.au=Polyzos%2C+Stergios+A&rft.au=Yazdani%2C+Alireza&rft.au=Sala-Vila%2C+Aleix&rft.date=2019-12-01&rft.issn=1532-8600&rft.eissn=1532-8600&rft.volume=101&rft.spage=154005&rft_id=info:doi/10.1016%2Fj.metabol.2019.154005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-0495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-0495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-0495&client=summon |