EnerCage: A Smart Experimental Arena With Scalable Architecture for Behavioral Experiments

Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists during basic and preclinical studies with freely behaving animals. The EnerCage system is one such solution as it allows for uninterrupted elec...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 61; no. 1; pp. 139 - 148
Main Authors Jow, Uei-Ming, McMenamin, Peter, Kiani, Mehdi, Manns, Joseph R., Ghovanloo, Maysam
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists during basic and preclinical studies with freely behaving animals. The EnerCage system is one such solution as it allows for uninterrupted electrophysiology experiments over extended periods of time and vast experimental arenas, while eliminating the need for bulky battery payloads or tethering. It has a scalable array of overlapping planar spiral coils (PSCs) and three-axis magnetic sensors for focused wireless power transmission to devices on freely moving subjects. In this paper, we present the first fully functional EnerCage system, in which the number of PSC drivers and magnetic sensors was reduced to one-third of the number used in our previous design via multicoil coupling. The power transfer efficiency (PTE) has been improved to 5.6% at a 120 mm coupling distance and a 48.5 mm lateral misalignment (worst case) between the transmitter (Tx) array and receiver (Rx) coils. The new EnerCage system is equipped with an Ethernet backbone, further supporting its modular/scalable architecture, which, in turn, allows experimental arenas with arbitrary shapes and dimensions. A set of experiments on a freely behaving rat were conducted by continuously delivering 20 mW to the electronics in the animal headstage for more than one hour in a powered 3538 cm 2 experimental area.
AbstractList Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists during basic and preclinical studies with freely behaving animals. The EnerCage system is one such solution as it allows for uninterrupted electrophysiology experiments over extended periods of time and vast experimental arenas, while eliminating the need for bulky battery payloads or tethering. It has a scalable array of overlapping planar spiral coils (PSCs) and three-axis magnetic sensors for focused wireless power transmission to devices on freely moving subjects. In this paper, we present the first fully functional EnerCage system, in which the number of PSC drivers and magnetic sensors was reduced to one-third of the number used in our previous design via multicoil coupling. The power transfer efficiency (PTE) has been improved to 5.6% at a 120 mm coupling distance and a 48.5 mm lateral misalignment (worst case) between the transmitter (Tx) array and receiver (Rx) coils. The new EnerCage system is equipped with an Ethernet backbone, further supporting its modular/scalable architecture, which, in turn, allows experimental arenas with arbitrary shapes and dimensions. A set of experiments on a freely behaving rat were conducted by continuously delivering 20 mW to the electronics in the animal headstage for more than one hour in a powered 3538 cm 2 experimental area.
Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists during basic and preclinical studies with freely behaving animals. The EnerCage system is one such solution as it allows for uninterrupted electrophysiology experiments over extended periods of time and vast experimental arenas, while eliminating the need for bulky battery payloads or tethering. It has a scalable array of overlapping planar spiral coils (PSCs) and three-axis magnetic sensors for focused wireless power transmission to devices on freely moving subjects. In this paper, we present the first fully functional EnerCage system, in which the number of PSC drivers and magnetic sensors was reduced to one-third of the number used in our previous design via multicoil coupling. The power transfer efficiency (PTE) has been improved to 5.6% at a 120 mm coupling distance and a 48.5 mm lateral misalignment (worst case) between the transmitter (Tx) array and receiver (Rx) coils. The new EnerCage system is equipped with an Ethernet backbone, further supporting its modular/scalable architecture, which, in turn, allows experimental arenas with arbitrary shapes and dimensions. A set of experiments on a freely behaving rat were conducted by continuously delivering 20 mW to the electronics in the animal headstage for more than one hour in a powered 3538 cm 2 experimental area.
Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists during basic and preclinical studies with freely behaving animals. The EnerCage system is one such solution as it allows for uninterrupted electrophysiology experiments over extended periods of time and vast experimental arenas, while eliminating the need for bulky battery payloads or tethering. It has a scalable array of overlapping planar spiral coils (PSCs) and three-axis magnetic sensors for focused wireless power transmission to devices on freely moving subjects. In this paper, we present the first fully functional EnerCage system, in which the number of PSC drivers and magnetic sensors was reduced to one-third of the number used in our previous design via multicoil coupling. The power transfer efficiency (PTE) has been improved to 5.6% at a 120 mm coupling distance and a 48.5 mm lateral misalignment (worst case) between the transmitter (Tx) array and receiver (Rx) coils. The new EnerCage system is equipped with an Ethernet backbone, further supporting its modular/scalable architecture, which, in turn, allows experimental arenas with arbitrary shapes and dimensions. A set of experiments on a freely behaving rat were conducted by continuously delivering 20 mW to the electronics in the animal headstage for more than one hour in a powered 3538 cm(2) experimental area.Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists during basic and preclinical studies with freely behaving animals. The EnerCage system is one such solution as it allows for uninterrupted electrophysiology experiments over extended periods of time and vast experimental arenas, while eliminating the need for bulky battery payloads or tethering. It has a scalable array of overlapping planar spiral coils (PSCs) and three-axis magnetic sensors for focused wireless power transmission to devices on freely moving subjects. In this paper, we present the first fully functional EnerCage system, in which the number of PSC drivers and magnetic sensors was reduced to one-third of the number used in our previous design via multicoil coupling. The power transfer efficiency (PTE) has been improved to 5.6% at a 120 mm coupling distance and a 48.5 mm lateral misalignment (worst case) between the transmitter (Tx) array and receiver (Rx) coils. The new EnerCage system is equipped with an Ethernet backbone, further supporting its modular/scalable architecture, which, in turn, allows experimental arenas with arbitrary shapes and dimensions. A set of experiments on a freely behaving rat were conducted by continuously delivering 20 mW to the electronics in the animal headstage for more than one hour in a powered 3538 cm(2) experimental area.
Author Jow, Uei-Ming
Kiani, Mehdi
Ghovanloo, Maysam
Manns, Joseph R.
McMenamin, Peter
AuthorAffiliation J. R. Manns is with the Department of Psychology, Emory University, Atlanta, GA 30322 USA ( jmanns@emory.edu )
M. Ghovanloo is with the GT-Bionics Lab, School of Electrical and Com puter Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA
P. McMenamin and M. Kiani are with the GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA ( pmcmena1@gmail.com ; m_kiani@gatech.edu )
AuthorAffiliation_xml – name: J. R. Manns is with the Department of Psychology, Emory University, Atlanta, GA 30322 USA ( jmanns@emory.edu )
– name: P. McMenamin and M. Kiani are with the GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA ( pmcmena1@gmail.com ; m_kiani@gatech.edu )
– name: M. Ghovanloo is with the GT-Bionics Lab, School of Electrical and Com puter Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA
Author_xml – sequence: 1
  givenname: Uei-Ming
  surname: Jow
  fullname: Jow, Uei-Ming
  organization: GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 2
  givenname: Peter
  surname: McMenamin
  fullname: McMenamin, Peter
  email: pmcmena1@gmail.com
  organization: GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 3
  givenname: Mehdi
  surname: Kiani
  fullname: Kiani, Mehdi
  email: m_kiani@gatech.edu
  organization: GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 4
  givenname: Joseph R.
  surname: Manns
  fullname: Manns, Joseph R.
  email: jmanns@emory.edu
  organization: Department of Psychology, Emory University, Atlanta, GA, USA
– sequence: 5
  givenname: Maysam
  surname: Ghovanloo
  fullname: Ghovanloo, Maysam
  email: mgh@gatech.edu
  organization: GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23955695$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS3UiqaFB0BIaJZsJvh_bBZIaRQoUhGLFiGxsTye68ZoMk7tSQVvj0dJW8qClWX7nPNd-5yioyEOgNArgueEYP3u-vzLak4xYXNKG0UUfoZmRAhVU8HIEZphTFStqeYn6DTnn2XLFZfP0QllWgipxQz9WA2QlvYG3leL6mpj01itfm0hhQ0Mo-2rRYLBVt_DuK6unO1t20M5c-swght3CSofU3UOa3sXYir6R3N-gY697TO8PKxn6NvH1fXyor78-unzcnFZO070WLdSM6I7LIn3SndOUsc86whoi71WLSW-US20jVVtx0B4KZm0tOXeM8kbws7Qh33udtduoHOFXSYx2zKGTb9NtME8vRnC2tzEO8M0FVzyEvD2EJDi7Q7yaDYhO-h7O0DcZUMEVpxIgSfWm79ZD5D7Dy2CZi9wKeacwBsXRjuGOKFDbwg2U3Vmqs5M1ZlDdcVJ_nHeh__P83rvCQDwoJei0bK86w-hnqVW
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_TBME_2017_2691720
crossref_primary_10_1109_TIE_2014_2308138
crossref_primary_10_1109_JSEN_2021_3049918
crossref_primary_10_1063_5_0115879
crossref_primary_10_1109_JESTPE_2015_2436391
crossref_primary_10_1109_TBCAS_2015_2502840
crossref_primary_10_1109_TBCAS_2021_3125618
crossref_primary_10_1049_iet_map_2017_0500
crossref_primary_10_1109_TBCAS_2016_2577705
crossref_primary_10_3390_electronics9121999
crossref_primary_10_1109_JERM_2023_3256705
crossref_primary_10_1109_TBCAS_2017_2663358
crossref_primary_10_1109_TBCAS_2023_3314913
crossref_primary_10_3390_electronics13193947
crossref_primary_10_1109_TBCAS_2024_3396191
crossref_primary_10_1109_TPEL_2019_2894182
crossref_primary_10_1109_MSSC_2023_3305589
crossref_primary_10_1109_TIE_2023_3308129
crossref_primary_10_1109_TBME_2016_2576469
crossref_primary_10_1109_TBCAS_2019_2900433
crossref_primary_10_3390_bioengineering9100530
crossref_primary_10_1007_s11517_015_1431_3
crossref_primary_10_1109_TBME_2019_2961297
crossref_primary_10_1038_s41598_018_24465_1
crossref_primary_10_1109_JPROC_2021_3130059
crossref_primary_10_1109_MCAS_2015_2419011
crossref_primary_10_1109_TBCAS_2016_2577042
crossref_primary_10_1109_TPEL_2019_2904875
crossref_primary_10_1109_JSEN_2015_2430859
crossref_primary_10_3390_en15228643
crossref_primary_10_1103_PhysRevApplied_4_024001
crossref_primary_10_1109_TBCAS_2019_2891303
crossref_primary_10_1109_TBCAS_2019_2949233
crossref_primary_10_1088_1741_2560_13_5_056008
crossref_primary_10_1109_TBCAS_2019_2915649
crossref_primary_10_1109_TBCAS_2015_2414276
crossref_primary_10_1186_s42490_019_0022_z
crossref_primary_10_1109_TBCAS_2019_2904487
crossref_primary_10_1109_TBCAS_2022_3199455
crossref_primary_10_1109_JSEN_2015_2483747
crossref_primary_10_1049_iet_pel_2020_0562
Cites_doi 10.1109/BIOCAS.2009.5372030
10.1109/TPEL.2005.846550
10.1016/j.brainresrev.2009.07.002
10.1038/nn.2730
10.1016/S0079-6123(02)38074-9
10.1016/j.tins.2008.12.004
10.1126/science.1232437
10.1109/10.503178
10.1109/TCSI.2011.2180446
10.1109/TBME.2009.2029704
10.1109/TBCAS.2012.2211872
10.2528/PIER10050609
10.1088/1741-2560/8/4/046021
10.1109/TBCAS.2012.2222881
10.1109/TBCAS.2007.913130
10.1109/BioCAS.2012.6418452
10.1109/JSSC.2009.2023159
10.1109/TBCAS.2009.2031628
10.1016/j.neuron.2008.10.037
10.1016/S0006-8993(02)04089-1
10.1109/TBCAS.2011.2141670
10.1016/0166-4328(95)00216-2
10.1109/RFID.2007.346165
10.1109/ISSCC.2010.5434028
10.1371/journal.pone.0022033
10.1101/lm.1484509
10.1038/386493a0
10.1109/TMAG.2012.2235181
10.1109/TBME.2013.2247603
10.1109/TBCAS.2010.2072782
10.1109/TCSII.2010.2043470
10.1038/35044558
10.1109/IEMBS.2007.4352793
10.1109/TBCAS.2011.2158431
ContentType Journal Article
Copyright 2013 IEEE 2013
Copyright_xml – notice: 2013 IEEE 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1109/TBME.2013.2278180
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 148
ExternalDocumentID PMC3925464
23955695
10_1109_TBME_2013_2278180
6579664
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: 1R21EB009437-01A1
– fundername: NIBIB NIH HHS
  grantid: R21 EB009437
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c419t-b69319d061ff89dc62c3f3d1e9a0f98b21f78beb7a8bd3e5f6636a2b4ff364713
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 14:10:44 EDT 2025
Thu Jul 10 17:42:30 EDT 2025
Mon Jul 21 06:04:04 EDT 2025
Thu Apr 24 22:56:30 EDT 2025
Tue Jul 01 02:15:50 EDT 2025
Wed Aug 27 02:53:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-b69319d061ff89dc62c3f3d1e9a0f98b21f78beb7a8bd3e5f6636a2b4ff364713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1109/TBME.2013.2278180
PMID 23955695
PQID 1508416501
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3925464
pubmed_primary_23955695
proquest_miscellaneous_1508416501
crossref_citationtrail_10_1109_TBME_2013_2278180
crossref_primary_10_1109_TBME_2013_2278180
ieee_primary_6579664
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref37
ref15
ref36
ref14
lee (ref17) 2013; 60
ref30
ref33
ref11
ref10
(ref12) 0
ref2
ref39
ref38
ref16
ref19
ref18
(ref1) 0
chang (ref45) 2009
(ref3) 0
(ref26) 0
(ref24) 0
ref46
ref47
ref20
ref42
kurs (ref40) 2007; 317
ref41
ref22
ref21
ref43
waffenschmidt (ref31) 2009
ref28
(ref32) 0
ref29
ref7
ref9
ref4
ref6
ref5
brauner (ref8) 2010; 37
kim (ref23) 2013; 340
(ref27) 0
(ref44) 0
(ref25) 0
23853285 - IEEE Trans Biomed Circuits Syst. 2009 Dec;3(6):379-87
19964478 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:563-6
19268375 - Trends Neurosci. 2009 Apr;32(4):233-9
18995827 - Neuron. 2008 Nov 6;60(3):511-21
9216142 - IEEE Trans Biomed Eng. 1996 Jul;43(7):708-14
23853229 - IEEE Trans Biomed Circuits Syst. 2012 Oct;6(5):424-36
12573520 - Brain Res. 2003 Feb 21;964(1):121-7
18002459 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:2331-5
9087407 - Nature. 1997 Apr 3;386(6624):493-5
24683368 - IEEE Trans Circuits Syst I Regul Pap. 2012 Sep;59(9):2065-2074
11257907 - Nat Rev Neurosci. 2000 Dec;1(3):191-8
17556549 - Science. 2007 Jul 6;317(5834):83-6
21240274 - Nat Neurosci. 2011 Feb;14(2):263-9
23580530 - Science. 2013 Apr 12;340(6129):211-6
23428612 - IEEE Trans Biomed Eng. 2013 Jul;60(7):1993-2004
23851199 - IEEE Trans Biomed Circuits Syst. 2011 Apr;5(2):112-9
23853228 - IEEE Trans Biomed Circuits Syst. 2012 Oct;6(5):414-23
24782576 - IEEE Trans Magn. 2012 Dec 21;49(6):2933-2945
23850978 - IEEE Trans Biomed Circuits Syst. 2011 Feb;5(1):48-63
19631687 - Brain Res Rev. 2009 Oct;61(2):221-39
12432766 - Prog Brain Res. 2002;138:109-33
8793038 - Behav Brain Res. 1996 Jun;78(1):57-65
21701058 - J Neural Eng. 2011 Aug;8(4):046021
21179391 - IEEE Trans Circuits Syst II Express Briefs. 2010 Apr 1;57(4):260-264
19709960 - IEEE Trans Biomed Eng. 2009 Nov;56(11 Pt 2):2697-700
23852413 - IEEE Trans Biomed Circuits Syst. 2007 Sep;1(3):193-202
23850753 - IEEE Trans Biomed Circuits Syst. 2010 Dec;4(6):360-71
21765934 - PLoS One. 2011;6(7):e22033
19794187 - Learn Mem. 2009 Oct;16(10):616-24
21922034 - IEEE Trans Biomed Circuits Syst. 2011 Jul 14;99:1
References_xml – ident: ref29
  doi: 10.1109/BIOCAS.2009.5372030
– ident: ref30
  doi: 10.1109/TPEL.2005.846550
– ident: ref10
  doi: 10.1016/j.brainresrev.2009.07.002
– ident: ref14
  doi: 10.1038/nn.2730
– ident: ref9
  doi: 10.1016/S0079-6123(02)38074-9
– ident: ref11
  doi: 10.1016/j.tins.2008.12.004
– volume: 340
  start-page: 211
  year: 2013
  ident: ref23
  article-title: Injectable, cellular-scale optoelectronics with applications for wireless optogenetics
  publication-title: Science
  doi: 10.1126/science.1232437
– ident: ref43
  doi: 10.1109/10.503178
– volume: 37
  start-page: 185
  year: 2010
  ident: ref8
  article-title: Impact of cage size and enrichment (tube and shelf) on heart rate variability in rats
  publication-title: Scand J Lab Animal Sci
– ident: ref39
  doi: 10.1109/TCSI.2011.2180446
– year: 0
  ident: ref44
– year: 0
  ident: ref12
– ident: ref21
  doi: 10.1109/TBME.2009.2029704
– ident: ref33
  doi: 10.1109/TBCAS.2012.2211872
– ident: ref47
  doi: 10.2528/PIER10050609
– ident: ref18
  doi: 10.1088/1741-2560/8/4/046021
– start-page: 563
  year: 2009
  ident: ref45
  article-title: Towards a magnetic localization system for 3-D tracking of tongue movements in speech-language therapy
  publication-title: Proc IEEE Eng Med Biol Soc
– year: 0
  ident: ref32
– ident: ref22
  doi: 10.1109/TBCAS.2012.2222881
– year: 0
  ident: ref3
– year: 0
  ident: ref1
– ident: ref42
  doi: 10.1109/TBCAS.2007.913130
– ident: ref37
  doi: 10.1109/BioCAS.2012.6418452
– ident: ref13
  doi: 10.1109/JSSC.2009.2023159
– ident: ref20
  doi: 10.1109/TBCAS.2009.2031628
– ident: ref2
  doi: 10.1016/j.neuron.2008.10.037
– ident: ref7
  doi: 10.1016/S0006-8993(02)04089-1
– ident: ref15
  doi: 10.1109/TBCAS.2011.2141670
– ident: ref4
  doi: 10.1016/0166-4328(95)00216-2
– ident: ref19
  doi: 10.1109/RFID.2007.346165
– ident: ref34
  doi: 10.1109/ISSCC.2010.5434028
– ident: ref16
  doi: 10.1371/journal.pone.0022033
– volume: 317
  start-page: 83
  year: 2007
  ident: ref40
  article-title: Wireless power transfer via strongly coupled magnetic resonances
  publication-title: Sci Exp
– ident: ref46
  doi: 10.1101/lm.1484509
– ident: ref5
  doi: 10.1038/386493a0
– year: 0
  ident: ref25
– ident: ref35
  doi: 10.1109/TMAG.2012.2235181
– volume: 60
  start-page: 1993
  year: 2013
  ident: ref17
  article-title: A wideband dual-antenna receiver for wireless recording from animals behaving in large arenas
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2247603
– year: 0
  ident: ref24
– year: 0
  ident: ref26
– ident: ref41
  doi: 10.1109/TBCAS.2010.2072782
– start-page: 1
  year: 2009
  ident: ref31
  article-title: Limitation of inductive power transfer for consumer applications
  publication-title: Proc Eur Conf Power Electron Appl
– ident: ref36
  doi: 10.1109/TCSII.2010.2043470
– ident: ref6
  doi: 10.1038/35044558
– ident: ref28
  doi: 10.1109/IEMBS.2007.4352793
– ident: ref38
  doi: 10.1109/TBCAS.2011.2158431
– year: 0
  ident: ref27
– reference: 19709960 - IEEE Trans Biomed Eng. 2009 Nov;56(11 Pt 2):2697-700
– reference: 12573520 - Brain Res. 2003 Feb 21;964(1):121-7
– reference: 21922034 - IEEE Trans Biomed Circuits Syst. 2011 Jul 14;99:1
– reference: 11257907 - Nat Rev Neurosci. 2000 Dec;1(3):191-8
– reference: 23853228 - IEEE Trans Biomed Circuits Syst. 2012 Oct;6(5):414-23
– reference: 23852413 - IEEE Trans Biomed Circuits Syst. 2007 Sep;1(3):193-202
– reference: 24683368 - IEEE Trans Circuits Syst I Regul Pap. 2012 Sep;59(9):2065-2074
– reference: 21701058 - J Neural Eng. 2011 Aug;8(4):046021
– reference: 19794187 - Learn Mem. 2009 Oct;16(10):616-24
– reference: 23851199 - IEEE Trans Biomed Circuits Syst. 2011 Apr;5(2):112-9
– reference: 19964478 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:563-6
– reference: 23850978 - IEEE Trans Biomed Circuits Syst. 2011 Feb;5(1):48-63
– reference: 24782576 - IEEE Trans Magn. 2012 Dec 21;49(6):2933-2945
– reference: 19268375 - Trends Neurosci. 2009 Apr;32(4):233-9
– reference: 23428612 - IEEE Trans Biomed Eng. 2013 Jul;60(7):1993-2004
– reference: 23850753 - IEEE Trans Biomed Circuits Syst. 2010 Dec;4(6):360-71
– reference: 9087407 - Nature. 1997 Apr 3;386(6624):493-5
– reference: 21179391 - IEEE Trans Circuits Syst II Express Briefs. 2010 Apr 1;57(4):260-264
– reference: 17556549 - Science. 2007 Jul 6;317(5834):83-6
– reference: 18995827 - Neuron. 2008 Nov 6;60(3):511-21
– reference: 12432766 - Prog Brain Res. 2002;138:109-33
– reference: 21765934 - PLoS One. 2011;6(7):e22033
– reference: 8793038 - Behav Brain Res. 1996 Jun;78(1):57-65
– reference: 23580530 - Science. 2013 Apr 12;340(6129):211-6
– reference: 23853285 - IEEE Trans Biomed Circuits Syst. 2009 Dec;3(6):379-87
– reference: 21240274 - Nat Neurosci. 2011 Feb;14(2):263-9
– reference: 18002459 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:2331-5
– reference: 19631687 - Brain Res Rev. 2009 Oct;61(2):221-39
– reference: 23853229 - IEEE Trans Biomed Circuits Syst. 2012 Oct;6(5):424-36
– reference: 9216142 - IEEE Trans Biomed Eng. 1996 Jul;43(7):708-14
SSID ssj0014846
Score 2.3313475
Snippet Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 139
SubjectTerms Algorithms
Animals
Arrays
Behavior, Animal - physiology
behavioral neuroscience
Biotelemetry
Coils
Couplings
Electric Power Supplies
environmental enrichment
Equipment Design
Magnetic sensors
Male
Miniaturization - instrumentation
Mobile communication
Neurosciences - instrumentation
planar spiral coils (PSCs)
Prostheses and Implants
Rats
Rats, Long-Evans
Telemetry - instrumentation
User-Computer Interface
wireless power transmission
Wireless Technology - instrumentation
Title EnerCage: A Smart Experimental Arena With Scalable Architecture for Behavioral Experiments
URI https://ieeexplore.ieee.org/document/6579664
https://www.ncbi.nlm.nih.gov/pubmed/23955695
https://www.proquest.com/docview/1508416501
https://pubmed.ncbi.nlm.nih.gov/PMC3925464
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bh6o9lBb6EVoqV-qpahY7cbx2bwtahCptL4CKeolsxxaINltB9tJf35kkGwWEKm5RYkeOZiZ-45l5A_CJW4vbkPbophbooBivU1TlIvVhagOPPnRJNIvv6uRcfrsoLjbgy1ALE0Jok8_ChC7bWH619Cs6KjtQVDip5CZsouPW1WoNEQOpu6IcLtCAMyP7CKbg5uDscDGnJK58QnWfQlP3tyw3RaGoq8RoO2r7qzwENe9nTI62oONtWKwX32WeXE9WjZv4v_d4HR_7dS_geY9F2axTnpewEeodeDZiKNyBJ4s-9r4LP-d1uDnC389XNmOnv1Hl2HzUHgBfE2rLflw1l-wUBU8lWWw2ClMwhMfscGAFGE2-fQXnx_Ozo5O078yQeilMkzpl0HQrxAIxalN5lfk85pUIxvJotMtEnGoX3NRqV-WhiIhrlM2cjJH46kX-GrbqZR3eAqtyJfC-0UoRV6Fw0QnhrFCaS-tNSICvBVT6nracumf8Klv3hZuSxFuSeMtevAl8Hqb86Tg7_jd4l0QxDOylkMDHtRaUaHAURbF1WK5uSyLQRxRbcJHAm04rhslrrUpgekdfhgFE5n33SX112ZJ6I04tpJJ7Dy_nHTzFRcvu7Oc9bDU3q7CPaKhxH1oz-AckwgSy
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RKrX00Ae0NH26Uk9Vs9iJ47V7W9CibUu4sKiol8h2bIGALILspb--4yQbBYSq3qLEjmLNTOazZ-YbgM9Ua3RD0uI2NcMNirIyRlXOYuvG2lFvXZtEkx-K2TH_cZKdrMHXvhbGOdckn7lRuGxi-eXCLsNR2Y4IhZOCP4CH6PezpK3W6mMGXLZlOZShCSeKdzFMRtXOfDefhjSudBQqP5kM_d-SVGWZCH0lBg6p6bByH9i8mzM5cEL7zyBffX6be3I-WtZmZP_cYXb83_U9h6cdGiWTVn1ewJqrNuHJgKNwEx7lXfR9C35PK3e9hz-gb2RCji5R6ch00CAAX-MqTX6d1afkCEUfirLIZBCoIAiQyW7PCzCYfPMSjven871Z3PVmiC1nqo6NUGi8JaIB76UqrUhs6tOSOaWpV9IkzI-lcWaspSlTl3lENkInhnsfGOtZ-grWq0XlXgMpU8HwvpJCBLZCZrxhzGgmJOXaKhcBXQmosB1xeeifcVE0GxiqiiDeIoi36MQbwZd-ylXL2vGvwVtBFP3ATgoRfFppQYEmF-IounKL5U0RKPQRx2aURbDdakU_eaVVEYxv6Us_INB5335SnZ02tN6IVDMu-Jv7P-cjPJ7N84Pi4Pvhz7ewgQvg7UnQO1ivr5fuPWKj2nxoTOIv4TAH_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EnerCage%3A+a+smart+experimental+arena+with+scalable+architecture+for+behavioral+experiments&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=McMenamin%2C+Peter&rft.au=Kiani%2C+Mehdi&rft.au=Manns%2C+Joseph+R&rft.au=Ghovanloo%2C+Maysam&rft.date=2014-01-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=61&rft.issue=1&rft.spage=139&rft_id=info:doi/10.1109%2FTBME.2013.2278180&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon