EnerCage: A Smart Experimental Arena With Scalable Architecture for Behavioral Experiments
Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists during basic and preclinical studies with freely behaving animals. The EnerCage system is one such solution as it allows for uninterrupted elec...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 61; no. 1; pp. 139 - 148 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists during basic and preclinical studies with freely behaving animals. The EnerCage system is one such solution as it allows for uninterrupted electrophysiology experiments over extended periods of time and vast experimental arenas, while eliminating the need for bulky battery payloads or tethering. It has a scalable array of overlapping planar spiral coils (PSCs) and three-axis magnetic sensors for focused wireless power transmission to devices on freely moving subjects. In this paper, we present the first fully functional EnerCage system, in which the number of PSC drivers and magnetic sensors was reduced to one-third of the number used in our previous design via multicoil coupling. The power transfer efficiency (PTE) has been improved to 5.6% at a 120 mm coupling distance and a 48.5 mm lateral misalignment (worst case) between the transmitter (Tx) array and receiver (Rx) coils. The new EnerCage system is equipped with an Ethernet backbone, further supporting its modular/scalable architecture, which, in turn, allows experimental arenas with arbitrary shapes and dimensions. A set of experiments on a freely behaving rat were conducted by continuously delivering 20 mW to the electronics in the animal headstage for more than one hour in a powered 3538 cm 2 experimental area. |
---|---|
AbstractList | Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists during basic and preclinical studies with freely behaving animals. The EnerCage system is one such solution as it allows for uninterrupted electrophysiology experiments over extended periods of time and vast experimental arenas, while eliminating the need for bulky battery payloads or tethering. It has a scalable array of overlapping planar spiral coils (PSCs) and three-axis magnetic sensors for focused wireless power transmission to devices on freely moving subjects. In this paper, we present the first fully functional EnerCage system, in which the number of PSC drivers and magnetic sensors was reduced to one-third of the number used in our previous design via multicoil coupling. The power transfer efficiency (PTE) has been improved to 5.6% at a 120 mm coupling distance and a 48.5 mm lateral misalignment (worst case) between the transmitter (Tx) array and receiver (Rx) coils. The new EnerCage system is equipped with an Ethernet backbone, further supporting its modular/scalable architecture, which, in turn, allows experimental arenas with arbitrary shapes and dimensions. A set of experiments on a freely behaving rat were conducted by continuously delivering 20 mW to the electronics in the animal headstage for more than one hour in a powered 3538 cm 2 experimental area. Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists during basic and preclinical studies with freely behaving animals. The EnerCage system is one such solution as it allows for uninterrupted electrophysiology experiments over extended periods of time and vast experimental arenas, while eliminating the need for bulky battery payloads or tethering. It has a scalable array of overlapping planar spiral coils (PSCs) and three-axis magnetic sensors for focused wireless power transmission to devices on freely moving subjects. In this paper, we present the first fully functional EnerCage system, in which the number of PSC drivers and magnetic sensors was reduced to one-third of the number used in our previous design via multicoil coupling. The power transfer efficiency (PTE) has been improved to 5.6% at a 120 mm coupling distance and a 48.5 mm lateral misalignment (worst case) between the transmitter (Tx) array and receiver (Rx) coils. The new EnerCage system is equipped with an Ethernet backbone, further supporting its modular/scalable architecture, which, in turn, allows experimental arenas with arbitrary shapes and dimensions. A set of experiments on a freely behaving rat were conducted by continuously delivering 20 mW to the electronics in the animal headstage for more than one hour in a powered 3538 cm 2 experimental area. Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists during basic and preclinical studies with freely behaving animals. The EnerCage system is one such solution as it allows for uninterrupted electrophysiology experiments over extended periods of time and vast experimental arenas, while eliminating the need for bulky battery payloads or tethering. It has a scalable array of overlapping planar spiral coils (PSCs) and three-axis magnetic sensors for focused wireless power transmission to devices on freely moving subjects. In this paper, we present the first fully functional EnerCage system, in which the number of PSC drivers and magnetic sensors was reduced to one-third of the number used in our previous design via multicoil coupling. The power transfer efficiency (PTE) has been improved to 5.6% at a 120 mm coupling distance and a 48.5 mm lateral misalignment (worst case) between the transmitter (Tx) array and receiver (Rx) coils. The new EnerCage system is equipped with an Ethernet backbone, further supporting its modular/scalable architecture, which, in turn, allows experimental arenas with arbitrary shapes and dimensions. A set of experiments on a freely behaving rat were conducted by continuously delivering 20 mW to the electronics in the animal headstage for more than one hour in a powered 3538 cm(2) experimental area.Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists during basic and preclinical studies with freely behaving animals. The EnerCage system is one such solution as it allows for uninterrupted electrophysiology experiments over extended periods of time and vast experimental arenas, while eliminating the need for bulky battery payloads or tethering. It has a scalable array of overlapping planar spiral coils (PSCs) and three-axis magnetic sensors for focused wireless power transmission to devices on freely moving subjects. In this paper, we present the first fully functional EnerCage system, in which the number of PSC drivers and magnetic sensors was reduced to one-third of the number used in our previous design via multicoil coupling. The power transfer efficiency (PTE) has been improved to 5.6% at a 120 mm coupling distance and a 48.5 mm lateral misalignment (worst case) between the transmitter (Tx) array and receiver (Rx) coils. The new EnerCage system is equipped with an Ethernet backbone, further supporting its modular/scalable architecture, which, in turn, allows experimental arenas with arbitrary shapes and dimensions. A set of experiments on a freely behaving rat were conducted by continuously delivering 20 mW to the electronics in the animal headstage for more than one hour in a powered 3538 cm(2) experimental area. |
Author | Jow, Uei-Ming Kiani, Mehdi Ghovanloo, Maysam Manns, Joseph R. McMenamin, Peter |
AuthorAffiliation | J. R. Manns is with the Department of Psychology, Emory University, Atlanta, GA 30322 USA ( jmanns@emory.edu ) M. Ghovanloo is with the GT-Bionics Lab, School of Electrical and Com puter Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA P. McMenamin and M. Kiani are with the GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA ( pmcmena1@gmail.com ; m_kiani@gatech.edu ) |
AuthorAffiliation_xml | – name: J. R. Manns is with the Department of Psychology, Emory University, Atlanta, GA 30322 USA ( jmanns@emory.edu ) – name: P. McMenamin and M. Kiani are with the GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA ( pmcmena1@gmail.com ; m_kiani@gatech.edu ) – name: M. Ghovanloo is with the GT-Bionics Lab, School of Electrical and Com puter Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA |
Author_xml | – sequence: 1 givenname: Uei-Ming surname: Jow fullname: Jow, Uei-Ming organization: GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 2 givenname: Peter surname: McMenamin fullname: McMenamin, Peter email: pmcmena1@gmail.com organization: GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 3 givenname: Mehdi surname: Kiani fullname: Kiani, Mehdi email: m_kiani@gatech.edu organization: GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 4 givenname: Joseph R. surname: Manns fullname: Manns, Joseph R. email: jmanns@emory.edu organization: Department of Psychology, Emory University, Atlanta, GA, USA – sequence: 5 givenname: Maysam surname: Ghovanloo fullname: Ghovanloo, Maysam email: mgh@gatech.edu organization: GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23955695$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1uEzEUhS3UiqaFB0BIaJZsJvh_bBZIaRQoUhGLFiGxsTye68ZoMk7tSQVvj0dJW8qClWX7nPNd-5yioyEOgNArgueEYP3u-vzLak4xYXNKG0UUfoZmRAhVU8HIEZphTFStqeYn6DTnn2XLFZfP0QllWgipxQz9WA2QlvYG3leL6mpj01itfm0hhQ0Mo-2rRYLBVt_DuK6unO1t20M5c-swght3CSofU3UOa3sXYir6R3N-gY697TO8PKxn6NvH1fXyor78-unzcnFZO070WLdSM6I7LIn3SndOUsc86whoi71WLSW-US20jVVtx0B4KZm0tOXeM8kbws7Qh33udtduoHOFXSYx2zKGTb9NtME8vRnC2tzEO8M0FVzyEvD2EJDi7Q7yaDYhO-h7O0DcZUMEVpxIgSfWm79ZD5D7Dy2CZi9wKeacwBsXRjuGOKFDbwg2U3Vmqs5M1ZlDdcVJ_nHeh__P83rvCQDwoJei0bK86w-hnqVW |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1109_TBME_2017_2691720 crossref_primary_10_1109_TIE_2014_2308138 crossref_primary_10_1109_JSEN_2021_3049918 crossref_primary_10_1063_5_0115879 crossref_primary_10_1109_JESTPE_2015_2436391 crossref_primary_10_1109_TBCAS_2015_2502840 crossref_primary_10_1109_TBCAS_2021_3125618 crossref_primary_10_1049_iet_map_2017_0500 crossref_primary_10_1109_TBCAS_2016_2577705 crossref_primary_10_3390_electronics9121999 crossref_primary_10_1109_JERM_2023_3256705 crossref_primary_10_1109_TBCAS_2017_2663358 crossref_primary_10_1109_TBCAS_2023_3314913 crossref_primary_10_3390_electronics13193947 crossref_primary_10_1109_TBCAS_2024_3396191 crossref_primary_10_1109_TPEL_2019_2894182 crossref_primary_10_1109_MSSC_2023_3305589 crossref_primary_10_1109_TIE_2023_3308129 crossref_primary_10_1109_TBME_2016_2576469 crossref_primary_10_1109_TBCAS_2019_2900433 crossref_primary_10_3390_bioengineering9100530 crossref_primary_10_1007_s11517_015_1431_3 crossref_primary_10_1109_TBME_2019_2961297 crossref_primary_10_1038_s41598_018_24465_1 crossref_primary_10_1109_JPROC_2021_3130059 crossref_primary_10_1109_MCAS_2015_2419011 crossref_primary_10_1109_TBCAS_2016_2577042 crossref_primary_10_1109_TPEL_2019_2904875 crossref_primary_10_1109_JSEN_2015_2430859 crossref_primary_10_3390_en15228643 crossref_primary_10_1103_PhysRevApplied_4_024001 crossref_primary_10_1109_TBCAS_2019_2891303 crossref_primary_10_1109_TBCAS_2019_2949233 crossref_primary_10_1088_1741_2560_13_5_056008 crossref_primary_10_1109_TBCAS_2019_2915649 crossref_primary_10_1109_TBCAS_2015_2414276 crossref_primary_10_1186_s42490_019_0022_z crossref_primary_10_1109_TBCAS_2019_2904487 crossref_primary_10_1109_TBCAS_2022_3199455 crossref_primary_10_1109_JSEN_2015_2483747 crossref_primary_10_1049_iet_pel_2020_0562 |
Cites_doi | 10.1109/BIOCAS.2009.5372030 10.1109/TPEL.2005.846550 10.1016/j.brainresrev.2009.07.002 10.1038/nn.2730 10.1016/S0079-6123(02)38074-9 10.1016/j.tins.2008.12.004 10.1126/science.1232437 10.1109/10.503178 10.1109/TCSI.2011.2180446 10.1109/TBME.2009.2029704 10.1109/TBCAS.2012.2211872 10.2528/PIER10050609 10.1088/1741-2560/8/4/046021 10.1109/TBCAS.2012.2222881 10.1109/TBCAS.2007.913130 10.1109/BioCAS.2012.6418452 10.1109/JSSC.2009.2023159 10.1109/TBCAS.2009.2031628 10.1016/j.neuron.2008.10.037 10.1016/S0006-8993(02)04089-1 10.1109/TBCAS.2011.2141670 10.1016/0166-4328(95)00216-2 10.1109/RFID.2007.346165 10.1109/ISSCC.2010.5434028 10.1371/journal.pone.0022033 10.1101/lm.1484509 10.1038/386493a0 10.1109/TMAG.2012.2235181 10.1109/TBME.2013.2247603 10.1109/TBCAS.2010.2072782 10.1109/TCSII.2010.2043470 10.1038/35044558 10.1109/IEMBS.2007.4352793 10.1109/TBCAS.2011.2158431 |
ContentType | Journal Article |
Copyright | 2013 IEEE 2013 |
Copyright_xml | – notice: 2013 IEEE 2013 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1109/TBME.2013.2278180 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 148 |
ExternalDocumentID | PMC3925464 23955695 10_1109_TBME_2013_2278180 6579664 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: 1R21EB009437-01A1 – fundername: NIBIB NIH HHS grantid: R21 EB009437 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c419t-b69319d061ff89dc62c3f3d1e9a0f98b21f78beb7a8bd3e5f6636a2b4ff364713 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 14:10:44 EDT 2025 Thu Jul 10 17:42:30 EDT 2025 Mon Jul 21 06:04:04 EDT 2025 Thu Apr 24 22:56:30 EDT 2025 Tue Jul 01 02:15:50 EDT 2025 Wed Aug 27 02:53:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-b69319d061ff89dc62c3f3d1e9a0f98b21f78beb7a8bd3e5f6636a2b4ff364713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1109/TBME.2013.2278180 |
PMID | 23955695 |
PQID | 1508416501 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3925464 pubmed_primary_23955695 proquest_miscellaneous_1508416501 crossref_citationtrail_10_1109_TBME_2013_2278180 crossref_primary_10_1109_TBME_2013_2278180 ieee_primary_6579664 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref13 ref34 ref37 ref15 ref36 ref14 lee (ref17) 2013; 60 ref30 ref33 ref11 ref10 (ref12) 0 ref2 ref39 ref38 ref16 ref19 ref18 (ref1) 0 chang (ref45) 2009 (ref3) 0 (ref26) 0 (ref24) 0 ref46 ref47 ref20 ref42 kurs (ref40) 2007; 317 ref41 ref22 ref21 ref43 waffenschmidt (ref31) 2009 ref28 (ref32) 0 ref29 ref7 ref9 ref4 ref6 ref5 brauner (ref8) 2010; 37 kim (ref23) 2013; 340 (ref27) 0 (ref44) 0 (ref25) 0 23853285 - IEEE Trans Biomed Circuits Syst. 2009 Dec;3(6):379-87 19964478 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:563-6 19268375 - Trends Neurosci. 2009 Apr;32(4):233-9 18995827 - Neuron. 2008 Nov 6;60(3):511-21 9216142 - IEEE Trans Biomed Eng. 1996 Jul;43(7):708-14 23853229 - IEEE Trans Biomed Circuits Syst. 2012 Oct;6(5):424-36 12573520 - Brain Res. 2003 Feb 21;964(1):121-7 18002459 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:2331-5 9087407 - Nature. 1997 Apr 3;386(6624):493-5 24683368 - IEEE Trans Circuits Syst I Regul Pap. 2012 Sep;59(9):2065-2074 11257907 - Nat Rev Neurosci. 2000 Dec;1(3):191-8 17556549 - Science. 2007 Jul 6;317(5834):83-6 21240274 - Nat Neurosci. 2011 Feb;14(2):263-9 23580530 - Science. 2013 Apr 12;340(6129):211-6 23428612 - IEEE Trans Biomed Eng. 2013 Jul;60(7):1993-2004 23851199 - IEEE Trans Biomed Circuits Syst. 2011 Apr;5(2):112-9 23853228 - IEEE Trans Biomed Circuits Syst. 2012 Oct;6(5):414-23 24782576 - IEEE Trans Magn. 2012 Dec 21;49(6):2933-2945 23850978 - IEEE Trans Biomed Circuits Syst. 2011 Feb;5(1):48-63 19631687 - Brain Res Rev. 2009 Oct;61(2):221-39 12432766 - Prog Brain Res. 2002;138:109-33 8793038 - Behav Brain Res. 1996 Jun;78(1):57-65 21701058 - J Neural Eng. 2011 Aug;8(4):046021 21179391 - IEEE Trans Circuits Syst II Express Briefs. 2010 Apr 1;57(4):260-264 19709960 - IEEE Trans Biomed Eng. 2009 Nov;56(11 Pt 2):2697-700 23852413 - IEEE Trans Biomed Circuits Syst. 2007 Sep;1(3):193-202 23850753 - IEEE Trans Biomed Circuits Syst. 2010 Dec;4(6):360-71 21765934 - PLoS One. 2011;6(7):e22033 19794187 - Learn Mem. 2009 Oct;16(10):616-24 21922034 - IEEE Trans Biomed Circuits Syst. 2011 Jul 14;99:1 |
References_xml | – ident: ref29 doi: 10.1109/BIOCAS.2009.5372030 – ident: ref30 doi: 10.1109/TPEL.2005.846550 – ident: ref10 doi: 10.1016/j.brainresrev.2009.07.002 – ident: ref14 doi: 10.1038/nn.2730 – ident: ref9 doi: 10.1016/S0079-6123(02)38074-9 – ident: ref11 doi: 10.1016/j.tins.2008.12.004 – volume: 340 start-page: 211 year: 2013 ident: ref23 article-title: Injectable, cellular-scale optoelectronics with applications for wireless optogenetics publication-title: Science doi: 10.1126/science.1232437 – ident: ref43 doi: 10.1109/10.503178 – volume: 37 start-page: 185 year: 2010 ident: ref8 article-title: Impact of cage size and enrichment (tube and shelf) on heart rate variability in rats publication-title: Scand J Lab Animal Sci – ident: ref39 doi: 10.1109/TCSI.2011.2180446 – year: 0 ident: ref44 – year: 0 ident: ref12 – ident: ref21 doi: 10.1109/TBME.2009.2029704 – ident: ref33 doi: 10.1109/TBCAS.2012.2211872 – ident: ref47 doi: 10.2528/PIER10050609 – ident: ref18 doi: 10.1088/1741-2560/8/4/046021 – start-page: 563 year: 2009 ident: ref45 article-title: Towards a magnetic localization system for 3-D tracking of tongue movements in speech-language therapy publication-title: Proc IEEE Eng Med Biol Soc – year: 0 ident: ref32 – ident: ref22 doi: 10.1109/TBCAS.2012.2222881 – year: 0 ident: ref3 – year: 0 ident: ref1 – ident: ref42 doi: 10.1109/TBCAS.2007.913130 – ident: ref37 doi: 10.1109/BioCAS.2012.6418452 – ident: ref13 doi: 10.1109/JSSC.2009.2023159 – ident: ref20 doi: 10.1109/TBCAS.2009.2031628 – ident: ref2 doi: 10.1016/j.neuron.2008.10.037 – ident: ref7 doi: 10.1016/S0006-8993(02)04089-1 – ident: ref15 doi: 10.1109/TBCAS.2011.2141670 – ident: ref4 doi: 10.1016/0166-4328(95)00216-2 – ident: ref19 doi: 10.1109/RFID.2007.346165 – ident: ref34 doi: 10.1109/ISSCC.2010.5434028 – ident: ref16 doi: 10.1371/journal.pone.0022033 – volume: 317 start-page: 83 year: 2007 ident: ref40 article-title: Wireless power transfer via strongly coupled magnetic resonances publication-title: Sci Exp – ident: ref46 doi: 10.1101/lm.1484509 – ident: ref5 doi: 10.1038/386493a0 – year: 0 ident: ref25 – ident: ref35 doi: 10.1109/TMAG.2012.2235181 – volume: 60 start-page: 1993 year: 2013 ident: ref17 article-title: A wideband dual-antenna receiver for wireless recording from animals behaving in large arenas publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2013.2247603 – year: 0 ident: ref24 – year: 0 ident: ref26 – ident: ref41 doi: 10.1109/TBCAS.2010.2072782 – start-page: 1 year: 2009 ident: ref31 article-title: Limitation of inductive power transfer for consumer applications publication-title: Proc Eur Conf Power Electron Appl – ident: ref36 doi: 10.1109/TCSII.2010.2043470 – ident: ref6 doi: 10.1038/35044558 – ident: ref28 doi: 10.1109/IEMBS.2007.4352793 – ident: ref38 doi: 10.1109/TBCAS.2011.2158431 – year: 0 ident: ref27 – reference: 19709960 - IEEE Trans Biomed Eng. 2009 Nov;56(11 Pt 2):2697-700 – reference: 12573520 - Brain Res. 2003 Feb 21;964(1):121-7 – reference: 21922034 - IEEE Trans Biomed Circuits Syst. 2011 Jul 14;99:1 – reference: 11257907 - Nat Rev Neurosci. 2000 Dec;1(3):191-8 – reference: 23853228 - IEEE Trans Biomed Circuits Syst. 2012 Oct;6(5):414-23 – reference: 23852413 - IEEE Trans Biomed Circuits Syst. 2007 Sep;1(3):193-202 – reference: 24683368 - IEEE Trans Circuits Syst I Regul Pap. 2012 Sep;59(9):2065-2074 – reference: 21701058 - J Neural Eng. 2011 Aug;8(4):046021 – reference: 19794187 - Learn Mem. 2009 Oct;16(10):616-24 – reference: 23851199 - IEEE Trans Biomed Circuits Syst. 2011 Apr;5(2):112-9 – reference: 19964478 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:563-6 – reference: 23850978 - IEEE Trans Biomed Circuits Syst. 2011 Feb;5(1):48-63 – reference: 24782576 - IEEE Trans Magn. 2012 Dec 21;49(6):2933-2945 – reference: 19268375 - Trends Neurosci. 2009 Apr;32(4):233-9 – reference: 23428612 - IEEE Trans Biomed Eng. 2013 Jul;60(7):1993-2004 – reference: 23850753 - IEEE Trans Biomed Circuits Syst. 2010 Dec;4(6):360-71 – reference: 9087407 - Nature. 1997 Apr 3;386(6624):493-5 – reference: 21179391 - IEEE Trans Circuits Syst II Express Briefs. 2010 Apr 1;57(4):260-264 – reference: 17556549 - Science. 2007 Jul 6;317(5834):83-6 – reference: 18995827 - Neuron. 2008 Nov 6;60(3):511-21 – reference: 12432766 - Prog Brain Res. 2002;138:109-33 – reference: 21765934 - PLoS One. 2011;6(7):e22033 – reference: 8793038 - Behav Brain Res. 1996 Jun;78(1):57-65 – reference: 23580530 - Science. 2013 Apr 12;340(6129):211-6 – reference: 23853285 - IEEE Trans Biomed Circuits Syst. 2009 Dec;3(6):379-87 – reference: 21240274 - Nat Neurosci. 2011 Feb;14(2):263-9 – reference: 18002459 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:2331-5 – reference: 19631687 - Brain Res Rev. 2009 Oct;61(2):221-39 – reference: 23853229 - IEEE Trans Biomed Circuits Syst. 2012 Oct;6(5):424-36 – reference: 9216142 - IEEE Trans Biomed Eng. 1996 Jul;43(7):708-14 |
SSID | ssj0014846 |
Score | 2.3313475 |
Snippet | Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 139 |
SubjectTerms | Algorithms Animals Arrays Behavior, Animal - physiology behavioral neuroscience Biotelemetry Coils Couplings Electric Power Supplies environmental enrichment Equipment Design Magnetic sensors Male Miniaturization - instrumentation Mobile communication Neurosciences - instrumentation planar spiral coils (PSCs) Prostheses and Implants Rats Rats, Long-Evans Telemetry - instrumentation User-Computer Interface wireless power transmission Wireless Technology - instrumentation |
Title | EnerCage: A Smart Experimental Arena With Scalable Architecture for Behavioral Experiments |
URI | https://ieeexplore.ieee.org/document/6579664 https://www.ncbi.nlm.nih.gov/pubmed/23955695 https://www.proquest.com/docview/1508416501 https://pubmed.ncbi.nlm.nih.gov/PMC3925464 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bh6o9lBb6EVoqV-qpahY7cbx2bwtahCptL4CKeolsxxaINltB9tJf35kkGwWEKm5RYkeOZiZ-45l5A_CJW4vbkPbophbooBivU1TlIvVhagOPPnRJNIvv6uRcfrsoLjbgy1ALE0Jok8_ChC7bWH619Cs6KjtQVDip5CZsouPW1WoNEQOpu6IcLtCAMyP7CKbg5uDscDGnJK58QnWfQlP3tyw3RaGoq8RoO2r7qzwENe9nTI62oONtWKwX32WeXE9WjZv4v_d4HR_7dS_geY9F2axTnpewEeodeDZiKNyBJ4s-9r4LP-d1uDnC389XNmOnv1Hl2HzUHgBfE2rLflw1l-wUBU8lWWw2ClMwhMfscGAFGE2-fQXnx_Ozo5O078yQeilMkzpl0HQrxAIxalN5lfk85pUIxvJotMtEnGoX3NRqV-WhiIhrlM2cjJH46kX-GrbqZR3eAqtyJfC-0UoRV6Fw0QnhrFCaS-tNSICvBVT6nracumf8Klv3hZuSxFuSeMtevAl8Hqb86Tg7_jd4l0QxDOylkMDHtRaUaHAURbF1WK5uSyLQRxRbcJHAm04rhslrrUpgekdfhgFE5n33SX112ZJ6I04tpJJ7Dy_nHTzFRcvu7Oc9bDU3q7CPaKhxH1oz-AckwgSy |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RKrX00Ae0NH26Uk9Vs9iJ47V7W9CibUu4sKiol8h2bIGALILspb--4yQbBYSq3qLEjmLNTOazZ-YbgM9Ua3RD0uI2NcMNirIyRlXOYuvG2lFvXZtEkx-K2TH_cZKdrMHXvhbGOdckn7lRuGxi-eXCLsNR2Y4IhZOCP4CH6PezpK3W6mMGXLZlOZShCSeKdzFMRtXOfDefhjSudBQqP5kM_d-SVGWZCH0lBg6p6bByH9i8mzM5cEL7zyBffX6be3I-WtZmZP_cYXb83_U9h6cdGiWTVn1ewJqrNuHJgKNwEx7lXfR9C35PK3e9hz-gb2RCji5R6ch00CAAX-MqTX6d1afkCEUfirLIZBCoIAiQyW7PCzCYfPMSjven871Z3PVmiC1nqo6NUGi8JaIB76UqrUhs6tOSOaWpV9IkzI-lcWaspSlTl3lENkInhnsfGOtZ-grWq0XlXgMpU8HwvpJCBLZCZrxhzGgmJOXaKhcBXQmosB1xeeifcVE0GxiqiiDeIoi36MQbwZd-ylXL2vGvwVtBFP3ATgoRfFppQYEmF-IounKL5U0RKPQRx2aURbDdakU_eaVVEYxv6Us_INB5335SnZ02tN6IVDMu-Jv7P-cjPJ7N84Pi4Pvhz7ewgQvg7UnQO1ivr5fuPWKj2nxoTOIv4TAH_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EnerCage%3A+a+smart+experimental+arena+with+scalable+architecture+for+behavioral+experiments&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=McMenamin%2C+Peter&rft.au=Kiani%2C+Mehdi&rft.au=Manns%2C+Joseph+R&rft.au=Ghovanloo%2C+Maysam&rft.date=2014-01-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=61&rft.issue=1&rft.spage=139&rft_id=info:doi/10.1109%2FTBME.2013.2278180&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |