Albumin as a versatile platform for drug half-life extension
Albumin is the most abundant plasma protein, is highly soluble, very stable and has an extraordinarily long circulatory half-life as a direct result of its size and interaction with the FcRn mediated recycling pathway. In contrast, many therapeutic molecules are smaller than the renal filtration thr...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1830; no. 12; pp. 5526 - 5534 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Albumin is the most abundant plasma protein, is highly soluble, very stable and has an extraordinarily long circulatory half-life as a direct result of its size and interaction with the FcRn mediated recycling pathway. In contrast, many therapeutic molecules are smaller than the renal filtration threshold and are rapidly lost from the circulation thereby limiting their therapeutic potential. Albumin can be used in a variety of ways to increase the circulatory half-life of such molecules.
This article will review the mechanisms which underpin albumin's extraordinarily long circulatory half-life and how the understanding of these processes are currently being employed to extend the circulatory half-life of drugs which can be engineered to bind to albumin, or are conjugated to, or genetically fused to, albumin.
The recent and growing understanding of the pivotal role of FcRn in maintaining the extended circulatory half-life of albumin will necessitate a greater and more thorough investigation of suitable pre-clinical model systems for assessing the pharmacokinetic profiles of drugs associated, conjugated or fused to albumin.
Association, conjugation or fusion of therapeutic drugs to albumin is a well-accepted and established half-life extension technology. The manipulation of the albumin–FcRn interaction will facilitate the modulation of the circulatory half-life of albumin-enabled drugs, leading to superior pharmacokinetics tailored to the disease state and increased patient compliance. This article is part of a Special Issue entitled Serum Albumin.
•Albumin has an extraordinarily long circulatory half-life.•Albumin's half-life results from its size and interaction with an FcRn mediated recycling pathway.•Albumin is used to extend the circulatory half-life of drugs.•Drugs can be engineered to bind to albumin, are conjugated to or are genetically fused to albumin.•This review will focus on peptide and protein half-life extension through albumin interaction. |
---|---|
AbstractList | BACKGROUND: Albumin is the most abundant plasma protein, is highly soluble, very stable and has an extraordinarily long circulatory half-life as a direct result of its size and interaction with the FcRn mediated recycling pathway. In contrast, many therapeutic molecules are smaller than the renal filtration threshold and are rapidly lost from the circulation thereby limiting their therapeutic potential. Albumin can be used in a variety of ways to increase the circulatory half-life of such molecules. SCOPE OF REVIEW: This article will review the mechanisms which underpin albumin's extraordinarily long circulatory half-life and how the understanding of these processes are currently being employed to extend the circulatory half-life of drugs which can be engineered to bind to albumin, or are conjugated to, or genetically fused to, albumin. MAJOR CONCLUSIONS: The recent and growing understanding of the pivotal role of FcRn in maintaining the extended circulatory half-life of albumin will necessitate a greater and more thorough investigation of suitable pre-clinical model systems for assessing the pharmacokinetic profiles of drugs associated, conjugated or fused to albumin. GENERAL SIGNIFICANCE: Association, conjugation or fusion of therapeutic drugs to albumin is a well-accepted and established half-life extension technology. The manipulation of the albumin–FcRn interaction will facilitate the modulation of the circulatory half-life of albumin-enabled drugs, leading to superior pharmacokinetics tailored to the disease state and increased patient compliance. This article is part of a Special Issue entitled Serum Albumin. Albumin is the most abundant plasma protein, is highly soluble, very stable and has an extraordinarily long circulatory half-life as a direct result of its size and interaction with the FcRn mediated recycling pathway. In contrast, many therapeutic molecules are smaller than the renal filtration threshold and are rapidly lost from the circulation thereby limiting their therapeutic potential. Albumin can be used in a variety of ways to increase the circulatory half-life of such molecules.BACKGROUNDAlbumin is the most abundant plasma protein, is highly soluble, very stable and has an extraordinarily long circulatory half-life as a direct result of its size and interaction with the FcRn mediated recycling pathway. In contrast, many therapeutic molecules are smaller than the renal filtration threshold and are rapidly lost from the circulation thereby limiting their therapeutic potential. Albumin can be used in a variety of ways to increase the circulatory half-life of such molecules.This article will review the mechanisms which underpin albumin's extraordinarily long circulatory half-life and how the understanding of these processes are currently being employed to extend the circulatory half-life of drugs which can be engineered to bind to albumin, or are conjugated to, or genetically fused to, albumin.SCOPE OF REVIEWThis article will review the mechanisms which underpin albumin's extraordinarily long circulatory half-life and how the understanding of these processes are currently being employed to extend the circulatory half-life of drugs which can be engineered to bind to albumin, or are conjugated to, or genetically fused to, albumin.The recent and growing understanding of the pivotal role of FcRn in maintaining the extended circulatory half-life of albumin will necessitate a greater and more thorough investigation of suitable pre-clinical model systems for assessing the pharmacokinetic profiles of drugs associated, conjugated or fused to albumin.MAJOR CONCLUSIONSThe recent and growing understanding of the pivotal role of FcRn in maintaining the extended circulatory half-life of albumin will necessitate a greater and more thorough investigation of suitable pre-clinical model systems for assessing the pharmacokinetic profiles of drugs associated, conjugated or fused to albumin.Association, conjugation or fusion of therapeutic drugs to albumin is a well-accepted and established half-life extension technology. The manipulation of the albumin-FcRn interaction will facilitate the modulation of the circulatory half-life of albumin-enabled drugs, leading to superior pharmacokinetics tailored to the disease state and increased patient compliance. This article is part of a Special Issue entitled Serum Albumin.GENERAL SIGNIFICANCEAssociation, conjugation or fusion of therapeutic drugs to albumin is a well-accepted and established half-life extension technology. The manipulation of the albumin-FcRn interaction will facilitate the modulation of the circulatory half-life of albumin-enabled drugs, leading to superior pharmacokinetics tailored to the disease state and increased patient compliance. This article is part of a Special Issue entitled Serum Albumin. Albumin is the most abundant plasma protein, is highly soluble, very stable and has an extraordinarily long circulatory half-life as a direct result of its size and interaction with the FcRn mediated recycling pathway. In contrast, many therapeutic molecules are smaller than the renal filtration threshold and are rapidly lost from the circulation thereby limiting their therapeutic potential. Albumin can be used in a variety of ways to increase the circulatory half-life of such molecules. This article will review the mechanisms which underpin albumin's extraordinarily long circulatory half-life and how the understanding of these processes are currently being employed to extend the circulatory half-life of drugs which can be engineered to bind to albumin, or are conjugated to, or genetically fused to, albumin. The recent and growing understanding of the pivotal role of FcRn in maintaining the extended circulatory half-life of albumin will necessitate a greater and more thorough investigation of suitable pre-clinical model systems for assessing the pharmacokinetic profiles of drugs associated, conjugated or fused to albumin. Association, conjugation or fusion of therapeutic drugs to albumin is a well-accepted and established half-life extension technology. The manipulation of the albumin–FcRn interaction will facilitate the modulation of the circulatory half-life of albumin-enabled drugs, leading to superior pharmacokinetics tailored to the disease state and increased patient compliance. This article is part of a Special Issue entitled Serum Albumin. •Albumin has an extraordinarily long circulatory half-life.•Albumin's half-life results from its size and interaction with an FcRn mediated recycling pathway.•Albumin is used to extend the circulatory half-life of drugs.•Drugs can be engineered to bind to albumin, are conjugated to or are genetically fused to albumin.•This review will focus on peptide and protein half-life extension through albumin interaction. Albumin is the most abundant plasma protein, is highly soluble, very stable and has an extraordinarily long circulatory half-life as a direct result of its size and interaction with the FcRn mediated recycling pathway. In contrast, many therapeutic molecules are smaller than the renal filtration threshold and are rapidly lost from the circulation thereby limiting their therapeutic potential. Albumin can be used in a variety of ways to increase the circulatory half-life of such molecules.This article will review the mechanisms which underpin albumin's extraordinarily long circulatory half-life and how the understanding of these processes are currently being employed to extend the circulatory half-life of drugs which can be engineered to bind to albumin, or are conjugated to, or genetically fused to, albumin.The recent and growing understanding of the pivotal role of FcRn in maintaining the extended circulatory half-life of albumin will necessitate a greater and more thorough investigation of suitable pre-clinical model systems for assessing the pharmacokinetic profiles of drugs associated, conjugated or fused to albumin.Association, conjugation or fusion of therapeutic drugs to albumin is a well-accepted and established half-life extension technology. The manipulation of the albumin–FcRn interaction will facilitate the modulation of the circulatory half-life of albumin-enabled drugs, leading to superior pharmacokinetics tailored to the disease state and increased patient compliance. This article is part of a Special Issue entitled Serum Albumin. Albumin is the most abundant plasma protein, is highly soluble, very stable and has an extraordinarily long circulatory half-life as a direct result of its size and interaction with the FcRn mediated recycling pathway. In contrast, many therapeutic molecules are smaller than the renal filtration threshold and are rapidly lost from the circulation thereby limiting their therapeutic potential. Albumin can be used in a variety of ways to increase the circulatory half-life of such molecules. This article will review the mechanisms which underpin albumin's extraordinarily long circulatory half-life and how the understanding of these processes are currently being employed to extend the circulatory half-life of drugs which can be engineered to bind to albumin, or are conjugated to, or genetically fused to, albumin. The recent and growing understanding of the pivotal role of FcRn in maintaining the extended circulatory half-life of albumin will necessitate a greater and more thorough investigation of suitable pre-clinical model systems for assessing the pharmacokinetic profiles of drugs associated, conjugated or fused to albumin. Association, conjugation or fusion of therapeutic drugs to albumin is a well-accepted and established half-life extension technology. The manipulation of the albumin-FcRn interaction will facilitate the modulation of the circulatory half-life of albumin-enabled drugs, leading to superior pharmacokinetics tailored to the disease state and increased patient compliance. This article is part of a Special Issue entitled Serum Albumin. |
Author | Evans, Leslie R. Cameron, Jason Sleep, Darrell |
Author_xml | – sequence: 1 givenname: Darrell surname: Sleep fullname: Sleep, Darrell email: dsee@novozymes.com – sequence: 2 givenname: Jason surname: Cameron fullname: Cameron, Jason – sequence: 3 givenname: Leslie R. surname: Evans fullname: Evans, Leslie R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23639804$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1TAUhC3Uit4W_gGCLNkk-BXHRgipqnhJlbpou7Yc5_jiq8S-2EkF_x5HKSxY0LPw2Xxje2bO0UmIARB6RXBDMBHvDk3fmz2EhmLCGswbTNkztCOyo7XEWJygHWaY15yI9gyd53zAZVrVPkdnlAmmJOY79OFy7JfJh8rkylQPkLKZ_QjVcTSzi2mqylENadlX383o6tE7qODnDCH7GF6gU2fGDC8f9wW6__zp7uprfX3z5dvV5XVtOVFzbQasrAQiySAEV62zPZVYtUZx0WLbO0adEoLQTg2mbTlVTKhOdY6BGXrXsQv0drv3mOKPBfKsJ58tjKMJEJes6epMUqnkkyjhnHGCOaMFff2ILv0Egz4mP5n0S_8JpwB8A2yKOSdwfxGC9dqBPuitA712oDHXpYMie_-PzPq5pBrDnIwfnxK_2cTORG32yWd9f1sAsVqkQq2_-rgRUBJ_8JB0th6ChcEnsLMeov__E78B6yiquQ |
CitedBy_id | crossref_primary_10_3389_fmicb_2022_962124 crossref_primary_10_1039_D0DT01035A crossref_primary_10_1021_acs_bioconjchem_1c00062 crossref_primary_10_1021_acsmedchemlett_2c00161 crossref_primary_10_1007_s13318_020_00664_y crossref_primary_10_1021_acsomega_8b00416 crossref_primary_10_1074_jbc_M116_742916 crossref_primary_10_1002_bab_1762 crossref_primary_10_1042_BCJ20220054 crossref_primary_10_3109_07388551_2015_1048504 crossref_primary_10_1021_acs_analchem_5b03900 crossref_primary_10_1007_s00706_016_1659_0 crossref_primary_10_1016_j_jconrel_2017_04_009 crossref_primary_10_1371_journal_pntd_0004902 crossref_primary_10_1016_j_arr_2024_102379 crossref_primary_10_1039_C7TB02005H crossref_primary_10_1039_C9MD00516A crossref_primary_10_3109_10717544_2013_871600 crossref_primary_10_1016_j_hermed_2019_100322 crossref_primary_10_1080_19420862_2016_1178436 crossref_primary_10_1039_D2CP00220E crossref_primary_10_3390_pharmaceutics14040728 crossref_primary_10_1016_j_thromres_2018_11_007 crossref_primary_10_3390_ijms25074041 crossref_primary_10_1002_ange_201805208 crossref_primary_10_1093_database_baab083 crossref_primary_10_1016_j_ijbiomac_2023_127742 crossref_primary_10_1016_j_bmcl_2017_12_061 crossref_primary_10_1016_j_molstruc_2024_138409 crossref_primary_10_1038_s41467_017_01114_1 crossref_primary_10_1016_j_jbiotec_2024_06_002 crossref_primary_10_1016_j_biopha_2019_108750 crossref_primary_10_1016_j_tips_2016_10_005 crossref_primary_10_1016_j_jconrel_2019_04_006 crossref_primary_10_1016_j_msec_2016_03_112 crossref_primary_10_1038_s41598_024_84547_1 crossref_primary_10_1016_j_biomaterials_2023_122464 crossref_primary_10_1016_j_jconrel_2015_12_019 crossref_primary_10_2147_IJN_S267177 crossref_primary_10_3389_fendo_2023_1132172 crossref_primary_10_1021_acs_bioconjchem_2c00144 crossref_primary_10_3109_1354750X_2014_924998 crossref_primary_10_1016_j_jconrel_2015_04_004 crossref_primary_10_3390_cancers16152727 crossref_primary_10_1021_acs_bioconjchem_7b00795 crossref_primary_10_3390_ijms15033580 crossref_primary_10_1016_j_addr_2020_06_013 crossref_primary_10_1080_17425255_2020_1801633 crossref_primary_10_1186_s13036_024_00418_3 crossref_primary_10_1107_S2059798318017552 crossref_primary_10_3390_biomedicines8050096 crossref_primary_10_3390_molecules24234229 crossref_primary_10_1021_acs_biomac_7b01545 crossref_primary_10_1016_j_omtn_2017_10_004 crossref_primary_10_3390_cancers16020371 crossref_primary_10_1021_acs_bioconjchem_9b00170 crossref_primary_10_2174_0929867324666170817152554 crossref_primary_10_3390_pharmaceutics12090810 crossref_primary_10_1021_acs_molpharmaceut_6b00964 crossref_primary_10_1021_acs_biomac_6b00238 crossref_primary_10_1021_acs_molpharmaceut_7b00497 crossref_primary_10_1186_s12935_024_03259_8 crossref_primary_10_1002_bip_23386 crossref_primary_10_1038_clpt_2014_187 crossref_primary_10_1002_jps_24121 crossref_primary_10_1016_j_jconrel_2017_04_036 crossref_primary_10_1016_j_dyepig_2021_109195 crossref_primary_10_1016_j_ddtec_2016_08_001 crossref_primary_10_3390_biom13091283 crossref_primary_10_1016_j_jcis_2015_04_005 crossref_primary_10_1016_j_compbiolchem_2023_107861 crossref_primary_10_1021_acs_biochem_2c00368 crossref_primary_10_1016_j_isci_2021_103014 crossref_primary_10_1016_j_jhepr_2023_100785 crossref_primary_10_1517_17425247_2015_993313 crossref_primary_10_1039_C5CS00158G crossref_primary_10_3390_cancers15020395 crossref_primary_10_1002_adma_201600038 crossref_primary_10_1039_D0CS00354A crossref_primary_10_1002_biof_1337 crossref_primary_10_1021_acsmacrolett_6b00544 crossref_primary_10_1021_acs_molpharmaceut_7b00805 crossref_primary_10_1246_cl_140432 crossref_primary_10_1016_j_jconrel_2017_09_043 crossref_primary_10_1002_bit_25185 crossref_primary_10_1007_s00280_015_2703_1 crossref_primary_10_1089_hgtb_2017_057 crossref_primary_10_1080_1061186X_2018_1516221 crossref_primary_10_1002_smsc_202400153 crossref_primary_10_1371_journal_pone_0215831 crossref_primary_10_1016_j_addr_2022_114112 crossref_primary_10_3389_fbioe_2024_1360506 crossref_primary_10_1016_j_copbio_2023_102994 crossref_primary_10_1016_j_ejps_2019_105064 crossref_primary_10_1039_D0SC05128D crossref_primary_10_22603_ssrr_2023_0227 crossref_primary_10_3390_polym15193969 crossref_primary_10_1021_acsptsci_2c00043 crossref_primary_10_1371_journal_pone_0132096 crossref_primary_10_1080_07391102_2023_2237590 crossref_primary_10_1021_acs_bioconjchem_0c00456 crossref_primary_10_1016_j_jconrel_2025_01_019 crossref_primary_10_1002_cmdc_202100388 crossref_primary_10_1371_journal_pone_0102566 crossref_primary_10_1016_j_tibs_2022_09_005 crossref_primary_10_1096_fj_201903231R crossref_primary_10_1002_jcsm_13141 crossref_primary_10_1080_07391102_2024_2314254 crossref_primary_10_1080_07391102_2016_1216895 crossref_primary_10_1016_j_envres_2021_110796 crossref_primary_10_3389_fmolb_2024_1389548 crossref_primary_10_1016_j_bbcan_2021_188655 crossref_primary_10_1016_j_jconrel_2016_03_017 crossref_primary_10_1021_acs_molpharmaceut_8b01301 crossref_primary_10_1021_acsomega_4c00489 crossref_primary_10_1016_j_pharmthera_2016_03_007 crossref_primary_10_1016_j_ijbiomac_2020_10_152 crossref_primary_10_1080_19420862_2019_1626652 crossref_primary_10_1021_acsbiomaterials_3c01744 crossref_primary_10_1016_j_jconrel_2013_08_298 crossref_primary_10_1016_j_jare_2020_05_001 crossref_primary_10_1016_j_molliq_2018_12_127 crossref_primary_10_1002_cbic_201700049 crossref_primary_10_1016_j_jpba_2020_113242 crossref_primary_10_1002_anie_201404238 crossref_primary_10_1016_j_ijpharm_2023_122636 crossref_primary_10_1021_acsbiomaterials_4c01290 crossref_primary_10_1080_19420862_2016_1268307 crossref_primary_10_1186_s13036_019_0188_x crossref_primary_10_1016_j_imlet_2015_11_013 crossref_primary_10_1074_jbc_M113_463000 crossref_primary_10_1016_j_jconrel_2019_09_017 crossref_primary_10_1016_j_jconrel_2020_05_037 crossref_primary_10_1080_1061186X_2021_1879087 crossref_primary_10_1016_j_jconrel_2016_07_004 crossref_primary_10_1016_j_jddst_2020_101931 crossref_primary_10_1021_acsami_1c03065 crossref_primary_10_3390_ph15040424 crossref_primary_10_1002_psc_2582 crossref_primary_10_1039_D0RA09653A crossref_primary_10_1021_jacs_3c07577 crossref_primary_10_2147_IJN_S331210 crossref_primary_10_1016_j_ijbiomac_2022_02_002 crossref_primary_10_1039_D0NR07967G crossref_primary_10_1080_19420862_2016_1185581 crossref_primary_10_1016_j_biopha_2020_110113 crossref_primary_10_1016_j_cmpb_2019_105256 crossref_primary_10_1002_ange_201404238 crossref_primary_10_3389_fchem_2021_746646 crossref_primary_10_1038_nrd4363 crossref_primary_10_1002_jmr_3105 crossref_primary_10_1080_00387010_2016_1218898 crossref_primary_10_3390_molecules26216641 crossref_primary_10_1021_acs_bioconjchem_9b00258 crossref_primary_10_1517_14712598_2016_1165661 crossref_primary_10_3390_molecules25071709 crossref_primary_10_1016_j_poly_2021_115501 crossref_primary_10_1016_j_bbrc_2020_03_133 crossref_primary_10_1016_j_nantod_2020_100949 crossref_primary_10_1021_acs_bioconjchem_0c00662 crossref_primary_10_1080_17425255_2019_1640679 crossref_primary_10_1016_j_addr_2015_02_005 crossref_primary_10_1080_19420862_2015_1067353 crossref_primary_10_3389_fphar_2024_1461995 crossref_primary_10_1016_j_toxicon_2018_03_004 crossref_primary_10_1016_j_jconrel_2019_04_027 crossref_primary_10_1021_acsnano_1c01251 crossref_primary_10_1016_j_addr_2018_07_011 crossref_primary_10_1177_07482337211060133 crossref_primary_10_1124_dmd_115_063495 crossref_primary_10_1530_EJE_15_0554 crossref_primary_10_1002_mog2_67 crossref_primary_10_1016_j_ejphar_2021_174152 crossref_primary_10_1016_j_addr_2018_07_009 crossref_primary_10_3390_ijms21082999 crossref_primary_10_1016_j_jconrel_2020_01_034 crossref_primary_10_1016_j_mtbio_2022_100358 crossref_primary_10_1016_j_jconrel_2016_03_004 crossref_primary_10_1016_j_omto_2021_07_013 crossref_primary_10_1515_tjb_2017_0008 crossref_primary_10_1016_j_jciso_2023_100096 crossref_primary_10_1002_pros_23494 crossref_primary_10_1016_j_bmc_2015_09_043 crossref_primary_10_1080_00498254_2021_1929557 crossref_primary_10_1177_15330338211010117 crossref_primary_10_1002_cbic_202400962 crossref_primary_10_1021_acs_langmuir_4c04636 crossref_primary_10_3389_fbioe_2021_717326 crossref_primary_10_1002_adfm_202101633 crossref_primary_10_1016_j_pep_2017_07_006 crossref_primary_10_1016_j_apsb_2017_11_005 crossref_primary_10_1007_s12668_023_01297_6 crossref_primary_10_1016_j_chemphyslip_2017_05_011 crossref_primary_10_1021_acs_bioconjchem_3c00085 crossref_primary_10_1039_D0RA01010C crossref_primary_10_1016_j_omtm_2020_04_019 crossref_primary_10_1016_j_ijpharm_2015_12_069 crossref_primary_10_1080_10717544_2023_2219433 crossref_primary_10_1155_2015_605427 crossref_primary_10_1007_s40259_015_0133_6 crossref_primary_10_5936_csbj_201303009 crossref_primary_10_1016_j_jconrel_2019_02_016 crossref_primary_10_4155_fmc_14_125 crossref_primary_10_1002_btpr_1996 crossref_primary_10_1016_j_biomaterials_2018_01_027 crossref_primary_10_3389_fimmu_2014_00682 crossref_primary_10_1002_smll_201907256 crossref_primary_10_3390_toxins12050313 crossref_primary_10_3389_fchem_2023_1145974 crossref_primary_10_3390_cancers16152681 crossref_primary_10_3390_polym14071409 crossref_primary_10_3390_ijms25137098 crossref_primary_10_1002_btm2_10483 crossref_primary_10_1016_j_carbpol_2015_05_037 crossref_primary_10_3389_fbioe_2022_923059 crossref_primary_10_1016_j_ijpharm_2024_125049 crossref_primary_10_1021_acs_molpharmaceut_3c00581 crossref_primary_10_1080_07391102_2023_2199088 crossref_primary_10_1016_j_addr_2020_08_008 crossref_primary_10_1016_j_lfs_2020_117853 crossref_primary_10_1088_1748_605X_ac494c crossref_primary_10_1080_14712598_2022_2098674 crossref_primary_10_1016_j_nantod_2023_102002 crossref_primary_10_3390_ijms21207496 crossref_primary_10_1007_s12195_022_00718_y crossref_primary_10_1021_acs_molpharmaceut_1c00841 crossref_primary_10_1158_1535_7163_MCT_20_0061 crossref_primary_10_1002_cmdc_202000069 crossref_primary_10_1038_s42003_020_0817_4 crossref_primary_10_1002_anie_201805208 crossref_primary_10_1002_jssc_201600713 crossref_primary_10_1080_19420862_2016_1210747 crossref_primary_10_1089_cbr_2018_2656 crossref_primary_10_1021_acsami_6b04179 crossref_primary_10_1021_acs_bioconjchem_1c00561 crossref_primary_10_1039_D0RA00104J crossref_primary_10_1021_acs_molpharmaceut_2c00849 crossref_primary_10_1038_nchem_2629 crossref_primary_10_1016_j_jinorgbio_2019_01_006 crossref_primary_10_1021_acs_analchem_9b05878 crossref_primary_10_1016_j_peptides_2022_170760 crossref_primary_10_3390_pharmaceutics16111442 crossref_primary_10_1016_j_biomaterials_2020_120250 crossref_primary_10_1186_s12929_021_00760_4 crossref_primary_10_3389_fcimb_2022_949409 crossref_primary_10_1016_j_ijbiomac_2022_02_040 crossref_primary_10_1016_j_medidd_2020_100079 crossref_primary_10_1080_07391102_2018_1512899 crossref_primary_10_1002_cbdv_202401329 crossref_primary_10_3390_biology11101393 crossref_primary_10_1016_j_chembiol_2014_08_014 crossref_primary_10_1016_j_neumar_2025_100041 crossref_primary_10_1002_cmdc_202000157 crossref_primary_10_1007_s13346_018_0534_4 crossref_primary_10_1074_jbc_M114_549832 crossref_primary_10_1002_acn3_52227 crossref_primary_10_4155_tde_2017_0038 crossref_primary_10_1039_C7MD00102A crossref_primary_10_1186_s40580_021_00293_4 crossref_primary_10_3390_pharmaceutics12100999 crossref_primary_10_1021_acsomega_3c07163 crossref_primary_10_1039_C5OB01205H crossref_primary_10_1080_07391102_2021_1897678 crossref_primary_10_1021_acs_molpharmaceut_3c00561 crossref_primary_10_1039_D4NR00537F crossref_primary_10_20517_rdodj_2024_16 crossref_primary_10_1021_acs_molpharmaceut_5b00605 crossref_primary_10_1021_acs_jmedchem_1c02039 crossref_primary_10_1016_j_drudis_2015_09_004 crossref_primary_10_1016_j_trac_2017_05_014 crossref_primary_10_1111_dom_14827 crossref_primary_10_1016_j_biopha_2022_113998 crossref_primary_10_3390_ijms25010559 crossref_primary_10_1038_ncomms14837 crossref_primary_10_1016_j_jpba_2021_113995 crossref_primary_10_1116_6_0000027 crossref_primary_10_7717_peerj_8568 crossref_primary_10_1016_j_jconrel_2020_07_046 crossref_primary_10_1021_jacs_2c06532 crossref_primary_10_1038_s41573_022_00529_w crossref_primary_10_1021_acs_jmedchem_7b00787 crossref_primary_10_2116_analsci_17P614 crossref_primary_10_1021_jm501755d crossref_primary_10_2174_2210303112666220330115110 crossref_primary_10_1007_s12013_017_0785_6 crossref_primary_10_1016_j_biomaterials_2020_120073 crossref_primary_10_1039_C7TB00040E crossref_primary_10_1016_j_jconrel_2020_08_004 crossref_primary_10_1177_1753425919844310 crossref_primary_10_1002_cmdc_201600374 crossref_primary_10_2174_1389200219666180821095355 crossref_primary_10_1016_j_drudis_2023_103738 crossref_primary_10_1021_acs_jmedchem_7b00318 crossref_primary_10_1021_acs_biochem_7b00492 crossref_primary_10_3390_ijms221910318 crossref_primary_10_3389_fimmu_2022_892534 crossref_primary_10_1002_slct_202401823 crossref_primary_10_1016_j_jare_2023_09_001 crossref_primary_10_1080_17425247_2016_1193149 crossref_primary_10_1016_j_jconrel_2020_08_015 crossref_primary_10_1021_acsami_4c09565 crossref_primary_10_1021_acsomega_1c06119 crossref_primary_10_4155_bio_15_224 crossref_primary_10_1021_acs_bioconjchem_4c00126 crossref_primary_10_1021_acsmedchemlett_8b00226 crossref_primary_10_1016_j_ejps_2023_106591 crossref_primary_10_3390_magnetochemistry8020013 crossref_primary_10_1016_j_inoche_2024_112943 crossref_primary_10_1136_bmjdrc_2021_002301 crossref_primary_10_1016_j_jhep_2014_04_012 crossref_primary_10_1007_s00404_015_3941_5 crossref_primary_10_3390_diseases9020028 crossref_primary_10_1016_j_jconrel_2020_03_004 crossref_primary_10_1038_s41584_019_0188_8 crossref_primary_10_1007_s10989_021_10321_w crossref_primary_10_3390_ijms24032644 crossref_primary_10_1021_acs_molpharmaceut_9b00839 crossref_primary_10_1016_j_actbio_2021_05_019 crossref_primary_10_1016_j_addr_2023_114726 crossref_primary_10_1016_j_neuint_2021_105033 crossref_primary_10_1021_jp504280n crossref_primary_10_1021_jacs_7b02917 crossref_primary_10_1093_toxsci_kfae028 crossref_primary_10_1186_s40591_016_0048_8 crossref_primary_10_1016_j_jchromb_2021_123047 crossref_primary_10_1074_jbc_M114_587675 crossref_primary_10_1124_jpet_119_257063 crossref_primary_10_1021_acs_bioconjchem_6b00695 crossref_primary_10_3389_fimmu_2020_00810 crossref_primary_10_1007_s10967_020_07123_7 crossref_primary_10_1016_j_celrep_2015_05_035 crossref_primary_10_1021_acs_molpharmaceut_3c00409 crossref_primary_10_1016_j_cplett_2023_140899 crossref_primary_10_1002_bit_25307 crossref_primary_10_2147_IJN_S500997 crossref_primary_10_1038_s41467_021_23825_2 crossref_primary_10_3389_fimmu_2021_666594 crossref_primary_10_1021_acsnano_7b05876 crossref_primary_10_1074_jbc_M113_522565 crossref_primary_10_1016_j_jpba_2016_02_024 crossref_primary_10_1134_S2079086418020093 crossref_primary_10_3390_molecules28041695 crossref_primary_10_1517_17425247_2014_941803 crossref_primary_10_1016_j_jconrel_2016_06_031 crossref_primary_10_1021_acs_molpharmaceut_9b00271 crossref_primary_10_1039_C9OB00721K crossref_primary_10_1002_jmr_3075 crossref_primary_10_1021_jacs_2c08029 crossref_primary_10_3389_fimmu_2017_01442 crossref_primary_10_1021_acs_bioconjchem_3c00478 crossref_primary_10_1080_19420862_2015_1008345 |
Cites_doi | 10.1093/intimm/13.12.1551 10.1093/protein/gzl011 10.1038/nrd2782 10.1038/ki.2011.282 10.1038/nrneph.2010.174 10.1016/j.it.2006.05.004 10.1002/eji.1830260327 10.1016/j.bbapap.2007.09.001 10.1002/jps.23118 10.1038/337184a0 10.1083/jcb.71.2.666 10.1038/nri2155 10.1160/TH07-08-0525 10.1038/nbt0291-183 10.1007/s00418-001-0367-x 10.1016/j.jconrel.2011.09.069 10.1681/ASN.2008090976 10.1186/1472-6750-8-50 10.1093/protein/gzq054 10.1016/j.bbapap.2008.11.022 10.1074/jbc.M805536200 10.1016/j.bmcl.2004.06.066 10.1038/ncomms1607 10.1158/1535-7163.MCT-11-0820 10.1089/10799900360520423 10.1021/bi052628y 10.1093/protein/gzm067 10.1016/S0014-2999(02)02644-4 10.1038/nbt0797-637 10.1002/yea.679 10.1021/bi000749m 10.1016/j.bbagen.2003.08.001 10.1038/1869 10.1002/(SICI)1097-0061(19980130)14:2<161::AID-YEA208>3.0.CO;2-Y 10.1074/jbc.M205854200 10.1074/jbc.M700820200 10.2337/diabetes.54.1.251 10.1111/j.1463-1326.2011.01357.x 10.1002/jps.23049 10.1016/j.bbapap.2006.01.011 10.1016/j.copbio.2011.06.012 10.1038/ki.2012.429 10.1158/1535-7163.MCT-07-2384 10.1084/jem.20021829 10.1016/S0049-3848(00)00286-3 10.1177/0091270004269646 10.1023/B:PHAM.0000048203.30568.81 10.1016/j.jconrel.2008.05.010 10.1038/nbt.1601 10.2133/dmpk.24.318 10.1038/nbt1364 10.1182/blood-2012-05-429688 10.1016/S0065-2776(09)03004-1 10.1016/j.pep.2010.05.009 10.1021/bc9002772 10.1038/372379a0 10.1016/j.clim.2006.09.001 10.1016/j.jconrel.2011.05.013 10.1016/S0021-9258(18)35799-5 10.1074/jbc.M112.355131 10.1160/TH09-04-0255 10.1016/S0021-9258(18)53212-9 10.1200/jco.2012.30.15_suppl.9125 10.1038/372336a0 10.1023/A:1020917732218 10.1073/pnas.93.11.5512 10.1007/s00262-004-0624-7 10.1016/j.regpep.2012.01.005 10.1152/ajpgi.00286.2005 10.1093/protein/gzn028 10.1172/JCI114947 10.1093/protein/gzq097 10.1074/jbc.M110.120667 10.4049/jimmunol.176.1.346 10.1016/j.jconrel.2010.05.020 10.1016/j.nucmedbio.2007.10.010 10.1124/jpet.112.201814 10.1074/jbc.M109.081828 10.2337/diacare.27.10.2554 10.1073/pnas.89.2.638 10.1002/eji.200636556 10.1517/14656566.7.3.325 10.1152/physrev.00055.2006 10.2337/dc09-0366 10.1007/s00424-009-0685-8 10.1073/pnas.0810796106 10.1021/bc010003g 10.1073/pnas.0600548103 10.1146/annurev.physiol.67.031103.154845 10.1016/j.clinbiochem.2009.12.001 10.1111/j.1538-7836.2012.04826.x 10.4049/jimmunol.158.5.2211 10.1053/j.gastro.2008.01.017 10.1083/jcb.107.1.231 10.1021/bc050102k 10.1007/s00262-006-0180-4 10.1016/S0021-9258(17)37571-3 10.1016/j.pep.2009.07.003 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. Copyright © 2013 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: Copyright © 2013 Elsevier B.V. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2013.04.023 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 5534 |
ExternalDocumentID | 23639804 10_1016_j_bbagen_2013_04_023 US201600002694 S030441651300161X |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c419t-ad09c8e181d66495fcb28095a94650cbf32f9661279da55429369797f3eadbf73 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Thu Jul 10 16:54:54 EDT 2025 Fri Jul 11 15:13:27 EDT 2025 Mon Jul 21 06:04:15 EDT 2025 Tue Jul 01 00:22:01 EDT 2025 Thu Apr 24 23:07:35 EDT 2025 Wed Dec 27 19:01:01 EST 2023 Fri Feb 23 02:34:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Albumin FcRn Animal models Half-life Protein drug Pharmacokinetics |
Language | English |
License | Copyright © 2013 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-ad09c8e181d66495fcb28095a94650cbf32f9661279da55429369797f3eadbf73 |
Notes | http://dx.doi.org/10.1016/j.bbagen.2013.04.023 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 23639804 |
PQID | 1443410432 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000082898 proquest_miscellaneous_1443410432 pubmed_primary_23639804 crossref_primary_10_1016_j_bbagen_2013_04_023 crossref_citationtrail_10_1016_j_bbagen_2013_04_023 fao_agris_US201600002694 elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_04_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Duttaroy, Kanakaraj, Osborn, Schneider, Pickeral, Chen, Zhang, Kaithamana, Singh, Schulingkamp, Crossan, Bock, Kaufman, Reavey, Carey-Barber, Krishnan, Garcia, Murphy, Siskind, McLean, Cheng, Ruben, Birse, Blondel (bb0420) 2005; 54 Ward, Ober (bb0140) 2009; 103 Nolte, Nichols, Mueller-Cohrs, Merricks, Pragst, Zollner, Dickneite (bb0520) 2012; 10 Gastinel, Simister, Bjorkman (bb0110) 1992; 89 Ghetie, Hubbard, Kim, Tsen, Lee, Ward (bb0130) 1996; 26 Chaudhury, Brooks, Carter, Robinson, Anderson (bb0195) 2006; 45 Joung, Shin, Koo, Lim, Wang, Lee, Tan, Kim, Lim (bb0425) 2009; 68 Halpern, Riccobene, Agostini, Baker, Stolow, Gu, Hirsch, Mahoney, Carrell, Boyd, Grzegorzewski (bb0260) 2002; 19 Holt, Basran, Jones, Chorlton, Jespers, Brewis, Tomlinson (bb0310) 2008; 21 Léger, Thibaudeau, Robitaille, Quraishi, van Wyk, Bousquet-Gagnon, Carette, Castaigne, Bridon (bb0350) 2004; 14 Hinton, Xiong, Johlfs, Tang, Keller, Tsurushita (bb0180) 2006; 176 Furukawa, Tanaka, Chuang, Ishima, Taguchi, Watanabe, Maruyama, Otagiri (bb0455) 2011; 154 Peters (bb0010) 1996 Kim, Bronson, Hayton, Radmacher, Roopenian, Robinson, Anderson (bb0145) 2006; 290 Kim, Hayton, Robinson, Anderson (bb0020) 2007; 122 Andersen, Daba, Sandlie (bb0235) 2010; 43 Roopenian, Akilesh (bb0075) 2007; 7 Ober, Radu, Ghetie, Ward (bb0240) 2001; 13 Iwao, Hiraike, Kragh-Hansen, Mera, Noguchi, Anraku, Kawai, Maruyama, Otagiri (bb0220) 2007; 1774 Malik (bb0050) 2009; 2 Iwao, Anraku, Yamasaki, Kragh-Hansen, Kawai, Maruyama, Otagiri (bb0215) 2006; 1764 Cordes, Carpenter, Randolph (bb0505) 2012; 101 Haraldsson, Nystrom, Deen (bb0065) 2008; 88 Jonsson, Dogan, Herne, Abrahmsén, Nygren (bb0295) 2008; 21 Volovat, Gladkov, Bondarenko, Barash, Buchner, Avisar, Bias (bb0500) 2012; 30 Waldmann, Terry (bb0160) 1990; 86 Andersen, Dee Qian, Sandlie (bb0120) 2006; 36 Dennis, Zhang, Meng, Kadkhodayan, Kirchhofer, Combs, Damico (bb0300) 2002; 277 Ghetie, Popov, Borvak, Radu, Matesoi, Medesan, Ober, Ward (bb0185) 1997; 15 Sung, Nardelli, LaFleur, Blatter, Corcoran, Olsen, Birse, Pickeral, Zhang, Shah, Moody, Gentz, Beebe, Moore (bb0390) 2003; 23 Andersen, Daba, Berntzen, Michaelsen, Sandlie (bb0245) 2010; 285 Roovers, Laeremans, Huang, De Taeye, Verkleij, Revets, de Haard, van Bergen en Henegouwen (bb0320) 2007; 56 Baggio, Huang, Cao, Drucker (bb0355) 2008; 134 Thibaudeau, Léger, Huang, Robitaille, Quraishi, Soucy, Bousquet-Gagnon, van Wyk, Paradis, Castaigne, Bridon (bb0360) 2005; 16 Home, Kurtzhals (bb0280) 2006; 7 Sarav, Wang, Hack, Chang, Jensen, Bao, Quigg (bb0070) 2009; 20 Elsadek, Kratz (bb0285) 2012; 157 Sleep, Finnis, Turner, Evans (bb0475) 2001; 18 Iwao, Hiraike, Kragh-Hansen, Kawai, Suenaga, Maruyama, Otagiri (bb0230) 2009; 1794 Subramanian, Fiscella, Lamouse-Smith, Zeuzem, McHutchison (bb0265) 2007; 25 Bosse, Praus, Kiessling, Nyman, Andresen, Waters, Schindel (bb0345) 2005; 45 Simister, Mostov (bb0095) 1989; 337 Wang, Ou, Shi (bb0375) 2004; 21 Lipovšek (bb0325) 2011; 24 Horn, Steuber, Weimer, Wormsbächer, Liebing, Kuo, Metzner, Schulte (bb0515) 2010; 16 Ghinea, Fixman, Alexandru, Popov, Hasu, Ghitescu, Eskenasy, Simionescu, Simionescu (bb0025) 1988; 107 Junghans, Anderson (bb0135) 1996; 93 Stoddart, Nault, Galkina, Thibaudeau, Bakis, Bousquet-Gagnon, Robitaille, Bellomo, Paradis, Liscourt, Lobach, Rivard, Ptak, Mankowski, Bridon, Quraishi (bb0365) 2008; 283 Medesan, Matesoi, Radu, Ghetie, Ward (bb0175) 1997; 158 Christensen, Verroust, Nielson (bb0090) 2009; 458 Wani, Haynes, Kim, Bronson, Chaudhury, Mohanty, Waldmann, Robinson, Anderson (bb0155) 2006; 103 Makrides, Nygren, Andrews, Ford, Evans, Hayman, Adari, Uhlén, Toth (bb0270) 1996; 277 Nakajou, Watanabe, Kragh-Hansen, Maruyama, Otagiri (bb0210) 2003; 1623 McDonagh, Huhalov, Harms, Adams, Paragas, Oyama, Zhang, Luus, Overland, Nguyen, Gu, Kohli, Wallace, Feldhaus, Kudla, Schoeberl, Nielsen (bb0445) 2012; 11 Zalevsky, Chamberlain, Horton, Karki, Leung, Sproule, Lazar, Roopenian, Desjarlais (bb0190) 2010; 28 Madsbad, Kielgast, Asmar, Deacon, Torekov, Holst (bb0490) 2011; 13 Montoyo, Vaccaro, Hafner, Ober, Mueller, Ward (bb0150) 2009; 106 Tanaka, Watanabe, Kodama, Chuang, Ishima, Hamasaki, Tanaka, Mizushima, Otagiri, Maruyama (bb0465) 2013; 345 Smith, Popplewell, Athwal, Chapman, Heywood, West, Carrington, Nesbitt, Lawson, Antoniw, Eddelston, Suitters (bb0255) 2001; 12 J.B. Bock, A. C. Bell, J. Herpst, Recombinant human albumin-human granulocyte colony stimulating factor for the prevention of neutropenia, Patent application US 2010/0227818 A1. Kontermann (bb0005) 2011; 22 Anderson, Chadhury, Kim, Bronson, Wani, Mohanty (bb0015) 2006; 27 West, Bjorkman (bb0105) 2000; 39 Trüssel, Dumelin, Frey, Villa, Buller, Neri (bb0290) 2009; 20 Ikuta, Chuang, Ishima, Nakajou, Furukawa, Watanabe, Maruyama, Otagiri (bb0450) 2010; 147 Mezo, Sridhar, Badger, Sakorafas, Nienaber (bb0115) 2010; 285 Schnitzer, Bravo (bb0035) 1993; 268 Andersen, Sandlie (bb0250) 2009; 24 Baines, Brunskill (bb0085) 2011; 7 Santagostino, Negrier, Klamroth, Tiede, Pabinger-Fasching, Voigt, Jacobs, Morfini (bb0525) 2012; 120 Predescu, Palade (bb0055) 1993; 265 Burmeister, Huber, Bjorkman (bb0170) 1994; 372 de Bold, Sheffield, Martinuk, Bhakta, Eltringham-Smith, de Bold (bb0380) 2012; 175 Sleep, Belfield, Ballance, Steven, Jones, Evans, Moir, Goodey (bb0470) 1991; 9 Chaudhury, Mehnaz, Robinson, Hayton, Pearl, Roopenian, Anderson (bb0125) 2003; 197 Andersen, Dalhus, Cameron, Daba, Plumridge, Evans, Brennan, Gunnarsen, Bjørås, Sleep, Sandlie (bb0200) 2012; 3 Minshall, Tiruppathi, Vogel, Malik (bb0045) 2002; 117 Huang, Lundy, Lazaris, Huang, Baldassarre, Wang, Turcotte, Côté, Bellemare, Bilodeau, Brouillard, Touati, Herskovits, Bégin, Neveu, Brochu, Pierson, Hockley, Cerasoli, Lenz, Wilgus, Karatzas, Langermann (bb0405) 2008; 8 Kinugasa, Tojo, Sakai, Tsumura, Takahashi, Hirata, Fujita (bb0080) 2011; 80 Cordes, Platt, Carpenter, Randolph (bb0510) 2012; 101 Ahrén (bb0480) 2009; 8 Rodewald (bb0165) 1976; 71 Weimer, Wormsbächer, Kronthaler, Lang, Liebing, Schulte (bb0395) 2008; 99 Curry, Mandelkow, Brick, Franks (bb0275) 1998; 5 Yazaki, Kassa, Cheung, Crow, Sherman, Bading, Anderson, Colcher, Raubitschek (bb0435) 2008; 35 Kenanova, Olafsen, Salazar, Williams, Knowles, Wu (bb0205) 2010; 23 Schnitzer, Sung, Horvat, Bravo (bb0030) 1992; 267 Rosenstock, Reusch, Bush, Yang, Stewart (bb0370) 2009; 32 Evans, Hughes, Waters, Cameron, Dodsworth, Tooth, Greenfield, Sleep (bb0440) 2010; 73 Bloomgarden (bb0485) 2004; 27 Kodama, Watanabe, Tanaka, Tanaka, Chuang, Miyamoto, Wu, Endo, Hamasaki, Ishima, Fukagawa, Otagiri, Maruyama (bb0460) 2013; 83 Burmeister, Gastinel, Blum, Bjorkman (bb0100) 1994; 372 Kratz (bb0335) 2008; 132 Melder, Osborn, Riccobene, Kanakaraj, Wei, Chen, Stolow, Halpern, Migone, Wang, Grzegorzewski, Gallant (bb0385) 2005; 54 Kerry-Williams, Gilbert, Evans, Balance (bb0415) 1998; 14 Sheffield, Marques, Bhakta, Smith (bb0225) 2000; 99 Tijink, Laeremans, Budde, Stigter-van Walsum, Dreier, de Haard, Leemans, van Dongen (bb0315) 2008; 7 Giannoukakis (bb0340) 2003; 4 Osborn, Sekut, Corcoran, Poortman, Sturm, Chen, Mather, Lin, Parry (bb0410) 2002; 456 Metzner, Weimer, Kronthaler, Lang, Schulte (bb0400) 2009; 102 Schnitzer, Oh (bb0040) 1994; 269 Andersen, Foss, Kenanova, Olafsen, Leikfoss, Roopenian, Wu, Sandlie (bb0530) 2012; 287 Müller, Karle, Meissburger, Höfig, Stork, Kontermann (bb0430) 2007; 282 Herring, Schon (bb0330) 2012 Gekle (bb0060) 2005; 67 Nguyen, Reyes, Zhang, McDonald, Wong WL, Damico, Dennis (bb0305) 2006; 19 Minshall (10.1016/j.bbagen.2013.04.023_bb0045) 2002; 117 Halpern (10.1016/j.bbagen.2013.04.023_bb0260) 2002; 19 Sleep (10.1016/j.bbagen.2013.04.023_bb0475) 2001; 18 Home (10.1016/j.bbagen.2013.04.023_bb0280) 2006; 7 Bloomgarden (10.1016/j.bbagen.2013.04.023_bb0485) 2004; 27 Santagostino (10.1016/j.bbagen.2013.04.023_bb0525) 2012; 120 Kodama (10.1016/j.bbagen.2013.04.023_bb0460) 2013; 83 Nolte (10.1016/j.bbagen.2013.04.023_bb0520) 2012; 10 Ikuta (10.1016/j.bbagen.2013.04.023_bb0450) 2010; 147 Wani (10.1016/j.bbagen.2013.04.023_bb0155) 2006; 103 Sung (10.1016/j.bbagen.2013.04.023_bb0390) 2003; 23 Anderson (10.1016/j.bbagen.2013.04.023_bb0015) 2006; 27 Curry (10.1016/j.bbagen.2013.04.023_bb0275) 1998; 5 Iwao (10.1016/j.bbagen.2013.04.023_bb0215) 2006; 1764 Smith (10.1016/j.bbagen.2013.04.023_bb0255) 2001; 12 Kim (10.1016/j.bbagen.2013.04.023_bb0145) 2006; 290 Iwao (10.1016/j.bbagen.2013.04.023_bb0230) 2009; 1794 Kontermann (10.1016/j.bbagen.2013.04.023_bb0005) 2011; 22 Christensen (10.1016/j.bbagen.2013.04.023_bb0090) 2009; 458 Wang (10.1016/j.bbagen.2013.04.023_bb0375) 2004; 21 Hinton (10.1016/j.bbagen.2013.04.023_bb0180) 2006; 176 Kinugasa (10.1016/j.bbagen.2013.04.023_bb0080) 2011; 80 Nakajou (10.1016/j.bbagen.2013.04.023_bb0210) 2003; 1623 Ward (10.1016/j.bbagen.2013.04.023_bb0140) 2009; 103 Medesan (10.1016/j.bbagen.2013.04.023_bb0175) 1997; 158 Stoddart (10.1016/j.bbagen.2013.04.023_bb0365) 2008; 283 Cordes (10.1016/j.bbagen.2013.04.023_bb0505) 2012; 101 Andersen (10.1016/j.bbagen.2013.04.023_bb0530) 2012; 287 Andersen (10.1016/j.bbagen.2013.04.023_bb0120) 2006; 36 Zalevsky (10.1016/j.bbagen.2013.04.023_bb0190) 2010; 28 West (10.1016/j.bbagen.2013.04.023_bb0105) 2000; 39 Malik (10.1016/j.bbagen.2013.04.023_bb0050) 2009; 2 Montoyo (10.1016/j.bbagen.2013.04.023_bb0150) 2009; 106 Duttaroy (10.1016/j.bbagen.2013.04.023_bb0420) 2005; 54 Sleep (10.1016/j.bbagen.2013.04.023_bb0470) 1991; 9 Horn (10.1016/j.bbagen.2013.04.023_bb0515) 2010; 16 10.1016/j.bbagen.2013.04.023_bb0495 Roovers (10.1016/j.bbagen.2013.04.023_bb0320) 2007; 56 Volovat (10.1016/j.bbagen.2013.04.023_bb0500) 2012; 30 Peters (10.1016/j.bbagen.2013.04.023_bb0010) 1996 Iwao (10.1016/j.bbagen.2013.04.023_bb0220) 2007; 1774 Andersen (10.1016/j.bbagen.2013.04.023_bb0235) 2010; 43 Rosenstock (10.1016/j.bbagen.2013.04.023_bb0370) 2009; 32 Waldmann (10.1016/j.bbagen.2013.04.023_bb0160) 1990; 86 Makrides (10.1016/j.bbagen.2013.04.023_bb0270) 1996; 277 Jonsson (10.1016/j.bbagen.2013.04.023_bb0295) 2008; 21 Elsadek (10.1016/j.bbagen.2013.04.023_bb0285) 2012; 157 Simister (10.1016/j.bbagen.2013.04.023_bb0095) 1989; 337 Chaudhury (10.1016/j.bbagen.2013.04.023_bb0125) 2003; 197 Tanaka (10.1016/j.bbagen.2013.04.023_bb0465) 2013; 345 Gastinel (10.1016/j.bbagen.2013.04.023_bb0110) 1992; 89 Thibaudeau (10.1016/j.bbagen.2013.04.023_bb0360) 2005; 16 Weimer (10.1016/j.bbagen.2013.04.023_bb0395) 2008; 99 Furukawa (10.1016/j.bbagen.2013.04.023_bb0455) 2011; 154 Trüssel (10.1016/j.bbagen.2013.04.023_bb0290) 2009; 20 Burmeister (10.1016/j.bbagen.2013.04.023_bb0170) 1994; 372 Ghinea (10.1016/j.bbagen.2013.04.023_bb0025) 1988; 107 Predescu (10.1016/j.bbagen.2013.04.023_bb0055) 1993; 265 Sheffield (10.1016/j.bbagen.2013.04.023_bb0225) 2000; 99 Chaudhury (10.1016/j.bbagen.2013.04.023_bb0195) 2006; 45 Cordes (10.1016/j.bbagen.2013.04.023_bb0510) 2012; 101 Herring (10.1016/j.bbagen.2013.04.023_bb0330) 2012 Lipovšek (10.1016/j.bbagen.2013.04.023_bb0325) 2011; 24 Kenanova (10.1016/j.bbagen.2013.04.023_bb0205) 2010; 23 Madsbad (10.1016/j.bbagen.2013.04.023_bb0490) 2011; 13 Schnitzer (10.1016/j.bbagen.2013.04.023_bb0030) 1992; 267 de Bold (10.1016/j.bbagen.2013.04.023_bb0380) 2012; 175 Giannoukakis (10.1016/j.bbagen.2013.04.023_bb0340) 2003; 4 Burmeister (10.1016/j.bbagen.2013.04.023_bb0100) 1994; 372 Rodewald (10.1016/j.bbagen.2013.04.023_bb0165) 1976; 71 Roopenian (10.1016/j.bbagen.2013.04.023_bb0075) 2007; 7 Kim (10.1016/j.bbagen.2013.04.023_bb0020) 2007; 122 Mezo (10.1016/j.bbagen.2013.04.023_bb0115) 2010; 285 Joung (10.1016/j.bbagen.2013.04.023_bb0425) 2009; 68 Huang (10.1016/j.bbagen.2013.04.023_bb0405) 2008; 8 Melder (10.1016/j.bbagen.2013.04.023_bb0385) 2005; 54 Metzner (10.1016/j.bbagen.2013.04.023_bb0400) 2009; 102 Ghetie (10.1016/j.bbagen.2013.04.023_bb0185) 1997; 15 Ghetie (10.1016/j.bbagen.2013.04.023_bb0130) 1996; 26 Tijink (10.1016/j.bbagen.2013.04.023_bb0315) 2008; 7 Ober (10.1016/j.bbagen.2013.04.023_bb0240) 2001; 13 Evans (10.1016/j.bbagen.2013.04.023_bb0440) 2010; 73 Yazaki (10.1016/j.bbagen.2013.04.023_bb0435) 2008; 35 Gekle (10.1016/j.bbagen.2013.04.023_bb0060) 2005; 67 Sarav (10.1016/j.bbagen.2013.04.023_bb0070) 2009; 20 Osborn (10.1016/j.bbagen.2013.04.023_bb0410) 2002; 456 Müller (10.1016/j.bbagen.2013.04.023_bb0430) 2007; 282 Baines (10.1016/j.bbagen.2013.04.023_bb0085) 2011; 7 Andersen (10.1016/j.bbagen.2013.04.023_bb0245) 2010; 285 McDonagh (10.1016/j.bbagen.2013.04.023_bb0445) 2012; 11 Haraldsson (10.1016/j.bbagen.2013.04.023_bb0065) 2008; 88 Andersen (10.1016/j.bbagen.2013.04.023_bb0200) 2012; 3 Kerry-Williams (10.1016/j.bbagen.2013.04.023_bb0415) 1998; 14 Bosse (10.1016/j.bbagen.2013.04.023_bb0345) 2005; 45 Léger (10.1016/j.bbagen.2013.04.023_bb0350) 2004; 14 Kratz (10.1016/j.bbagen.2013.04.023_bb0335) 2008; 132 Subramanian (10.1016/j.bbagen.2013.04.023_bb0265) 2007; 25 Ahrén (10.1016/j.bbagen.2013.04.023_bb0480) 2009; 8 Junghans (10.1016/j.bbagen.2013.04.023_bb0135) 1996; 93 Dennis (10.1016/j.bbagen.2013.04.023_bb0300) 2002; 277 Schnitzer (10.1016/j.bbagen.2013.04.023_bb0035) 1993; 268 Andersen (10.1016/j.bbagen.2013.04.023_bb0250) 2009; 24 Nguyen (10.1016/j.bbagen.2013.04.023_bb0305) 2006; 19 Holt (10.1016/j.bbagen.2013.04.023_bb0310) 2008; 21 Schnitzer (10.1016/j.bbagen.2013.04.023_bb0040) 1994; 269 Baggio (10.1016/j.bbagen.2013.04.023_bb0355) 2008; 134 |
References_xml | – volume: 67 start-page: 573 year: 2005 end-page: 594 ident: bb0060 article-title: Renal tubules albumin transport publication-title: Annu. Rev. Physiol. – volume: 14 start-page: 4395 year: 2004 end-page: 4398 ident: bb0350 article-title: Identification of CJC-1131-albumin bioconjugate as a stable and bioactive GLP-1(7-36) analog publication-title: Bioorg. Med. Chem. Lett. – volume: 89 start-page: 638 year: 1992 end-page: 642 ident: bb0110 article-title: Expression and crystallization of a soluble and functional form of an Fc receptor related to class I histocompatibility molecules publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 7 start-page: 2288 year: 2008 end-page: 2297 ident: bb0315 article-title: Improved tumor targeting of anti-epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology publication-title: Mol. Cancer Ther. – start-page: 249 year: 2012 end-page: 268 ident: bb0330 article-title: AlbudAb™ technology platform: versatile albumin binding domains for the development of therapeutics with tunable half-lives publication-title: Therapeutic Proteins: Strategies to Modulate their Plasma Half-lives – volume: 26 start-page: 690 year: 1996 end-page: 696 ident: bb0130 article-title: Abnormally short serum half-lives of IgG in beta 2-microglobulin deficient mice publication-title: Eur. J. Immunol. – reference: J.B. Bock, A. C. Bell, J. Herpst, Recombinant human albumin-human granulocyte colony stimulating factor for the prevention of neutropenia, Patent application US 2010/0227818 A1. – volume: 22 start-page: 1 year: 2011 end-page: 9 ident: bb0005 article-title: Strategies for extended serum half-life of protein therapeutics publication-title: Curr. Opin. Biotechnol. – volume: 99 start-page: 613 year: 2000 end-page: 621 ident: bb0225 article-title: Modulation of clearance of recombinant serum albumin by either glycosylation or truncation publication-title: Thromb. Res. – volume: 107 start-page: 231 year: 1988 end-page: 239 ident: bb0025 article-title: Identification of albumin-binding proteins in capillary endothelial cells publication-title: J. Cell Biol. – volume: 20 start-page: 1941 year: 2009 end-page: 1952 ident: bb0070 article-title: Renal FcRn reclaims albumin but facilitates elimination of IgG publication-title: J. Am. Soc. Nephrol. – volume: 103 start-page: 77 year: 2009 end-page: 115 ident: bb0140 article-title: Chapter 4: Multitasking by exploitation of intracellular transport functions the many faces of FcRn publication-title: Adv. Immunol. – volume: 54 start-page: 535 year: 2005 end-page: 547 ident: bb0385 article-title: Pharmacokinetics and publication-title: Cancer Immunol. Immunother. – volume: 103 start-page: 5084 year: 2006 end-page: 5089 ident: bb0155 article-title: Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 277 start-page: 534 year: 1996 end-page: 542 ident: bb0270 article-title: Extended publication-title: J. Pharmacol. Exp. Ther. – volume: 13 start-page: 394 year: 2011 end-page: 407 ident: bb0490 article-title: An overview of once-weekly glucagon-like peptide-1 receptor agonists–available efficacy and safety data and perspectives for the future publication-title: Diabetes Obes. Metab. – volume: 101 start-page: 2009 year: 2012 end-page: 2016 ident: bb0505 article-title: Selective domain stabilization as a strategy to reduce human serum albumin-human granulocyte colony stimulating factor aggregation rate publication-title: J. Pharm. Sci. – volume: 106 start-page: 2788 year: 2009 end-page: 2793 ident: bb0150 article-title: Conditional deletion of the MHC class I-related receptor FcRn reveals the sites of IgG homeostasis in mice publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 7 start-page: 325 year: 2006 end-page: 343 ident: bb0280 article-title: Insulin detemir: from concept to clinical experience publication-title: Expert Opin. Pharmacother. – volume: 13 start-page: 1551 year: 2001 end-page: 1559 ident: bb0240 article-title: Differences in promiscuity for antibody–FcRn interactions across species: implications for therapeutic antibodies publication-title: Int. Immunol. – volume: 122 start-page: 146 year: 2007 end-page: 155 ident: bb0020 article-title: Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model publication-title: Clin. Immunol. – volume: 10 start-page: 1591 year: 2012 end-page: 1599 ident: bb0520 article-title: Improved kinetics of rIX-FP, a recombinant fusion protein linking factor IX with albumin, in cynomolgus monkeys and hemophilia B dogs publication-title: J. Thromb. Haemost. – volume: 39 start-page: 9698 year: 2000 end-page: 9708 ident: bb0105 article-title: Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor publication-title: Biochemistry – volume: 23 start-page: 25 year: 2003 end-page: 36 ident: bb0390 article-title: An IFN-beta-albumin fusion protein that displays improved pharmacokinetic and pharmacodynamic properties in nonhuman primates publication-title: J. Interferon Cytokine Res. – volume: 154 start-page: 189 year: 2011 end-page: 195 ident: bb0455 article-title: Human serum albumin–thioredoxin fusion protein with long blood retention property is effective in suppressing lung injury publication-title: J. Control. Release – volume: 458 start-page: 1039 year: 2009 end-page: 1048 ident: bb0090 article-title: Receptor-mediated endocytosis in renal proximal tubule publication-title: Pflugers Arch. – volume: 176 start-page: 346 year: 2006 end-page: 356 ident: bb0180 article-title: An engineered human IgG1 antibody with longer serum half-life publication-title: J. Immunol. – volume: 1623 start-page: 88 year: 2003 end-page: 97 ident: bb0210 article-title: The effect of glycation on the structure, function and biological fate of human serum albumin as revealed by recombinant mutants publication-title: Biochim. Biophys. Acta – volume: 1764 start-page: 743 year: 2006 end-page: 749 ident: bb0215 article-title: Oxidation of Arg-410 promotes the elimination of human serum albumin publication-title: Biochim. Biophys. Acta – volume: 117 start-page: 105 year: 2002 end-page: 112 ident: bb0045 article-title: Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function publication-title: Histochem. Cell Biol. – volume: 268 start-page: 7562 year: 1993 end-page: 7570 ident: bb0035 article-title: High affinity binding, endocytosis and degradation of conformationally modified albumins publication-title: J. Biol. Chem. – volume: 7 start-page: 177 year: 2011 end-page: 180 ident: bb0085 article-title: Tubular toxicity of proteinuria publication-title: Nat. Rev. Nephrol. – volume: 175 start-page: 7 year: 2012 end-page: 10 ident: bb0380 article-title: Characterization of a long-acting recombinant human serum albumin-atrial natriuretic factor (ANF) expressed in publication-title: Regul. Pept. – volume: 11 start-page: 582 year: 2012 end-page: 593 ident: bb0445 article-title: Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3 publication-title: Mol. Cancer Ther. – volume: 36 start-page: 3044 year: 2006 end-page: 3051 ident: bb0120 article-title: The conserved histidine 166 residue of the human neonatal Fc receptor heavy chain is critical for the pH-dependent binding to albumin publication-title: Eur. J. Immunol. – volume: 21 start-page: 515 year: 2008 end-page: 527 ident: bb0295 article-title: Engineering of a femtomolar affinity binding protein to human serum albumin publication-title: Protein Eng. Des. Sel. – volume: 9 start-page: 183 year: 1991 end-page: 187 ident: bb0470 article-title: strains that overexpress heterologous proteins publication-title: Biotechnology – volume: 23 start-page: 789 year: 2010 end-page: 798 ident: bb0205 article-title: Tuning the serum persistence of human serum albumin domain III:diabody fusion proteins publication-title: Protein Eng. Des. Sel. – volume: 265 start-page: H725 year: 1993 end-page: H733 ident: bb0055 article-title: Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium publication-title: Am. J. Physiol. – volume: 372 start-page: 336 year: 1994 end-page: 343 ident: bb0100 article-title: Crystal structure at 2.2 A resolution of the MHC-related neonatal Fc receptor publication-title: Nature – volume: 157 start-page: 4 year: 2012 end-page: 28 ident: bb0285 article-title: Impact of albumin on drug delivery — New applications on the horizon publication-title: J. Control. Release – volume: 71 start-page: 666 year: 1976 end-page: 669 ident: bb0165 article-title: pH-dependent binding of immunoglobulins to intestinal cells of the neonatal rat publication-title: J. Cell Biol. – volume: 337 start-page: 184 year: 1989 end-page: 187 ident: bb0095 article-title: An Fc receptor structurally related to MHC class I antigens publication-title: Nature – volume: 45 start-page: 57 year: 2005 end-page: 67 ident: bb0345 article-title: Phase I comparability of recombinant human albumin and human serum albumin publication-title: J. Clin. Pharmacol. – volume: 290 start-page: G352 year: 2006 end-page: G360 ident: bb0145 article-title: Albumin turnover: FcRn-mediated recycling saves as much albumin from degradation as the liver produces publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 283 start-page: 34045 year: 2008 end-page: 34052 ident: bb0365 article-title: Albumin-conjugated C34 peptide HIV-1 fusion inhibitor: equipotent to C34 and T-20 publication-title: J. Biol. Chem. – volume: 285 start-page: 4826 year: 2010 end-page: 4836 ident: bb0245 article-title: Cross-species binding analyses of mouse and human neonatal Fc receptor show dramatic differences in immunoglobulin G and albumin binding publication-title: J. Biol. Chem. – volume: 8 start-page: 369 year: 2009 end-page: 385 ident: bb0480 article-title: Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes publication-title: Nat. Rev. Drug Discov. – volume: 54 start-page: 251 year: 2005 end-page: 258 ident: bb0420 article-title: Development of a long-acting insulin analog using albumin fusion technology publication-title: Diabetes – volume: 285 start-page: 27694 year: 2010 end-page: 27701 ident: bb0115 article-title: X-ray crystal structures of monomeric and dimeric peptide inhibitors in complex with the human neonatal Fc receptor publication-title: FcRn J. Biol. Chem. – volume: 3 start-page: 610 year: 2012 ident: bb0200 article-title: Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor publication-title: Nat. Commun. – volume: 99 start-page: 659 year: 2008 end-page: 667 ident: bb0395 article-title: Prolonged in-vivo half-life of factor VIIa by fusion to albumin publication-title: Thromb. Haemost. – volume: 86 start-page: 2093 year: 1990 end-page: 2098 ident: bb0160 article-title: Familial hypercatabolic hypoproteinemia. A disorder of endogenous catabolism of albumin and immunoglobulin publication-title: J. Clin. Invest. – volume: 14 start-page: 161 year: 1998 end-page: 169 ident: bb0415 article-title: Disruption of the publication-title: Yeast – volume: 30 year: 2012 ident: bb0500 article-title: Efficacy and safety of balugrastim compared with pegfilgrastim in patients with breast cancer who are receiving chemotherapy publication-title: J. Clin. Oncol. – volume: 35 start-page: 151 year: 2008 end-page: 158 ident: bb0435 article-title: Biodistribution and tumor imaging of an anti-CEA single-chain antibody–albumin fusion protein publication-title: Nucl. Med. Biol. – volume: 1774 start-page: 1582 year: 2007 end-page: 1590 ident: bb0220 article-title: Changes of net charge and alpha-helical content affect the pharmacokinetic properties of human serum albumin publication-title: Biochim. Biophys. Acta – volume: 24 start-page: 318 year: 2009 end-page: 332 ident: bb0250 article-title: Extending half-life by indirect targeting of the Neonatal Fc Receptor (FcRn) using a minimal albumin binding domain publication-title: Drug Metab. Pharmacokinet. – volume: 120 start-page: 2405 year: 2012 end-page: 2411 ident: bb0525 article-title: Safety and pharmacokinetics of a novel recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in hemophilia B patients publication-title: Blood – volume: 134 start-page: 1137 year: 2008 end-page: 1147 ident: bb0355 article-title: An albumin-exendin-4 conjugate engages central and peripheral circuits regulating murine energy and glucose homeostasis publication-title: Gastroenterology – volume: 21 start-page: 2105 year: 2004 end-page: 2111 ident: bb0375 article-title: AlbuBNP, a recombinant B-type natriuretic peptide and human serum albumin fusion hormone, as a long-term therapy of congestive heart failure publication-title: Pharm. Res. – volume: 8 start-page: 50 year: 2008 ident: bb0405 article-title: Substantially improved pharmacokinetics of recombinant human butyrylcholinesterase by fusion to human serum albumin publication-title: BMC Biotechnol. – volume: 32 start-page: 1880 year: 2009 end-page: 1886 ident: bb0370 article-title: Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomized controlled trial exploring weekly, biweekly, and monthly dosing publication-title: Diabetes Care – volume: 56 start-page: 303 year: 2007 end-page: 317 ident: bb0320 article-title: Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR Nanobodies publication-title: Cancer Immunol. Immunother. – volume: 19 start-page: 291 year: 2006 end-page: 297 ident: bb0305 article-title: The pharmacokinetics of an albumin-binding Fab (AB.Fab) can be modulated as a function of affinity for albumin publication-title: Protein Eng. Des. Sel. – volume: 16 start-page: 37 year: 2010 ident: bb0515 article-title: Concept and structure model of factor VIIa albumin fusion proteins publication-title: Haemophilia – volume: 19 start-page: 1720 year: 2002 end-page: 1729 ident: bb0260 article-title: Albugranin™, a recombinant human granulocyte colony stimulating factor (G-CSF) genetically fused to recombinant human albumin induces prolonged myelopoietic effects in mice and monkeys publication-title: Pharm. Res. – volume: 372 start-page: 379 year: 1994 end-page: 383 ident: bb0170 article-title: Crystal structure of the complex of rat neonatal Fc receptor with Fc publication-title: Nature – volume: 1794 start-page: 634 year: 2009 end-page: 641 ident: bb0230 article-title: Altered chain-length and glycosylation modify the pharmacokinetics of human serum albumin publication-title: Biochim. Biophys. Acta – volume: 18 start-page: 403 year: 2001 end-page: 421 ident: bb0475 article-title: Yeast 2 micron plasmid copy number is elevated by a mutation in the nuclear gene UBC4 publication-title: Yeast – volume: 277 start-page: 35035 year: 2002 end-page: 35043 ident: bb0300 article-title: Albumin binding as a general strategy for improving the pharmacokinetics of proteins publication-title: J. Biol. Chem. – volume: 269 start-page: 6072 year: 1994 end-page: 6082 ident: bb0040 article-title: Albondin-mediated capillary permeability to albumin publication-title: J. Biol. Chem. – volume: 93 start-page: 5512 year: 1996 end-page: 5516 ident: bb0135 article-title: The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 28 start-page: 157 year: 2010 end-page: 159 ident: bb0190 article-title: Enhanced antibody half-life improves publication-title: Nat. Biotechnol. – volume: 456 start-page: 149 year: 2002 end-page: 158 ident: bb0410 article-title: Albutropin: a growth hormone–albumin fusion with improved pharmacokinetics and pharmacodynamics in rats and monkeys publication-title: Eur. J. Pharmacol. – volume: 267 start-page: 24544 year: 1992 end-page: 24553 ident: bb0030 article-title: Preferential interaction of albumin-binding proteins, gp30 and gp18, with conformationally modified albumins publication-title: J. Biol. Chem. – volume: 88 start-page: 451 year: 2008 end-page: 487 ident: bb0065 article-title: Properties of the glomerular barrier and mechanisms of proteinuria publication-title: Physiol. Rev. – volume: 282 start-page: 12650 year: 2007 end-page: 12660 ident: bb0430 article-title: Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin publication-title: J. Biol. Chem. – volume: 345 start-page: 271 year: 2013 end-page: 283 ident: bb0465 article-title: Long-acting human serum albumin–thioredoxin fusion protein suppresses bleomycin-induced pulmonary fibrosis progression publication-title: J. Pharmacol. Exp. Ther. – volume: 24 start-page: 3 year: 2011 end-page: 9 ident: bb0325 article-title: Adnectins: engineered target-binding protein therapeutics publication-title: Protein Eng. Des. Sel. – volume: 102 start-page: 634 year: 2009 end-page: 644 ident: bb0400 article-title: Genetic fusion to albumin improves the pharmacokinetic properties of factor IX publication-title: Thromb. Haemost. – volume: 2 start-page: 13 year: 2009 end-page: 17 ident: bb0050 article-title: Targeting endothelial cell surface receptors: novel mechanisms of microvascular endothelial barrier transport publication-title: J. Med. Sci. – volume: 27 start-page: 2554 year: 2004 end-page: 2559 ident: bb0485 article-title: Gut-derived incretin hormones and new therapeutic approaches publication-title: Diabetes Care – volume: 25 start-page: 1411 year: 2007 end-page: 1419 ident: bb0265 article-title: Albinterferon alpha-2b: a genetic fusion protein for the treatment of chronic hepatitis C publication-title: Nat. Biotechnol. – volume: 43 start-page: 367 year: 2010 end-page: 372 ident: bb0235 article-title: FcRn binding properties of an abnormal truncated analbuminemic albumin variant publication-title: Clin. Biochem. – volume: 83 start-page: 446 year: 2013 end-page: 454 ident: bb0460 article-title: A human serum albumin–thioredoxin fusion protein prevents experimental contrast-induced nephropathy publication-title: Kidney Int. – volume: 45 start-page: 4983 year: 2006 end-page: 4990 ident: bb0195 article-title: Albumin binding to FcRn: distinct from the FcRn–IgG interaction publication-title: Biochemistry – volume: 12 start-page: 750 year: 2001 end-page: 756 ident: bb0255 article-title: Prolonged publication-title: Bioconjug. Chem. – volume: 7 start-page: 715 year: 2007 end-page: 725 ident: bb0075 article-title: FcRn: the neonatal Fc receptor comes of age publication-title: Nat. Rev. Immunol. – volume: 197 start-page: 315 year: 2003 end-page: 322 ident: bb0125 article-title: The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan publication-title: J. Exp. Med. – volume: 15 start-page: 637 year: 1997 end-page: 640 ident: bb0185 article-title: Increasing the serum persistence of an IgG fragment by random mutagenesis publication-title: Nat. Biotechnol. – volume: 287 start-page: 22927 year: 2012 end-page: 22937 ident: bb0530 article-title: Anti-carcinoembryonic antigen single-chain variable fragment antibody variants bind mouse and human neonatal Fc receptor with different affinities that reveal distinct cross-species differences in serum half-life publication-title: J. Biol. Chem. – volume: 132 start-page: 171 year: 2008 end-page: 183 ident: bb0335 article-title: Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles publication-title: J. Control. Release – volume: 4 start-page: 1245 year: 2003 end-page: 1249 ident: bb0340 article-title: CJC-1131 ConjuChem publication-title: Curr. Opin. Investig. Drugs – volume: 158 start-page: 2211 year: 1997 end-page: 2217 ident: bb0175 article-title: Delineation of the amino acid residues involved in transcytosis and catabolism of mouse IgG1 publication-title: J. Immunol. – volume: 16 start-page: 1000 year: 2005 end-page: 1008 ident: bb0360 article-title: Synthesis and evaluation of insulin–human serum albumin conjugates publication-title: Bioconjug. Chem. – volume: 21 start-page: 283-188 year: 2008 ident: bb0310 article-title: Anti-serum albumin domain antibodies for extending the half-lives of short lived drugs publication-title: Protein Eng. Des. Sel. – volume: 27 start-page: 343 year: 2006 end-page: 348 ident: bb0015 article-title: Perspective – FcRn transports albumin: relevance to immunology and medicine publication-title: Trends Immunol. – volume: 80 start-page: 1328 year: 2011 end-page: 1338 ident: bb0080 article-title: Selective albuminuria via podocyte albumin transport in puromycin nephrotic rats is attenuated by an inhibitor of NADPH oxidase publication-title: Kidney Int. – volume: 20 start-page: 2286 year: 2009 end-page: 2292 ident: bb0290 article-title: New strategy for the extension of the serum half-life of antibody fragments publication-title: Bioconjug. Chem. – start-page: 223 year: 1996 end-page: 234 ident: bb0010 article-title: All About Albumin – volume: 101 start-page: 1400 year: 2012 end-page: 1409 ident: bb0510 article-title: Selective domain stabilization as a strategy to reduce fusion protein aggregation publication-title: J. Pharm. Sci. – volume: 68 start-page: 137 year: 2009 end-page: 145 ident: bb0425 article-title: Production and characterization of long-acting recombinant human albumin-EPO fusion protein expressed in CHO cell publication-title: Protein Expr. Purif. – volume: 73 start-page: 113 year: 2010 end-page: 124 ident: bb0440 article-title: The production, characterisation and enhanced pharmacokinetics of scFv–albumin fusions expressed in publication-title: Protein Expr. Purif. – volume: 5 start-page: 827 year: 1998 end-page: 835 ident: bb0275 article-title: Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites publication-title: Nat. Struct. Biol. – volume: 147 start-page: 17 year: 2010 end-page: 23 ident: bb0450 article-title: Albumin fusion of thioredoxin–the production and evaluation of its biological activity for potential therapeutic applications publication-title: J. Control. Release – start-page: 223 year: 1996 ident: 10.1016/j.bbagen.2013.04.023_bb0010 – volume: 13 start-page: 1551 year: 2001 ident: 10.1016/j.bbagen.2013.04.023_bb0240 article-title: Differences in promiscuity for antibody–FcRn interactions across species: implications for therapeutic antibodies publication-title: Int. Immunol. doi: 10.1093/intimm/13.12.1551 – volume: 19 start-page: 291 year: 2006 ident: 10.1016/j.bbagen.2013.04.023_bb0305 article-title: The pharmacokinetics of an albumin-binding Fab (AB.Fab) can be modulated as a function of affinity for albumin publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzl011 – volume: 8 start-page: 369 year: 2009 ident: 10.1016/j.bbagen.2013.04.023_bb0480 article-title: Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2782 – volume: 80 start-page: 1328 year: 2011 ident: 10.1016/j.bbagen.2013.04.023_bb0080 article-title: Selective albuminuria via podocyte albumin transport in puromycin nephrotic rats is attenuated by an inhibitor of NADPH oxidase publication-title: Kidney Int. doi: 10.1038/ki.2011.282 – volume: 7 start-page: 177 year: 2011 ident: 10.1016/j.bbagen.2013.04.023_bb0085 article-title: Tubular toxicity of proteinuria publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2010.174 – volume: 27 start-page: 343 year: 2006 ident: 10.1016/j.bbagen.2013.04.023_bb0015 article-title: Perspective – FcRn transports albumin: relevance to immunology and medicine publication-title: Trends Immunol. doi: 10.1016/j.it.2006.05.004 – volume: 26 start-page: 690 year: 1996 ident: 10.1016/j.bbagen.2013.04.023_bb0130 article-title: Abnormally short serum half-lives of IgG in beta 2-microglobulin deficient mice publication-title: Eur. J. Immunol. doi: 10.1002/eji.1830260327 – volume: 1774 start-page: 1582 year: 2007 ident: 10.1016/j.bbagen.2013.04.023_bb0220 article-title: Changes of net charge and alpha-helical content affect the pharmacokinetic properties of human serum albumin publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2007.09.001 – volume: 265 start-page: H725 year: 1993 ident: 10.1016/j.bbagen.2013.04.023_bb0055 article-title: Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium publication-title: Am. J. Physiol. – volume: 16 start-page: 37 issue: Suppl. 4 year: 2010 ident: 10.1016/j.bbagen.2013.04.023_bb0515 article-title: Concept and structure model of factor VIIa albumin fusion proteins publication-title: Haemophilia – volume: 101 start-page: 2009 year: 2012 ident: 10.1016/j.bbagen.2013.04.023_bb0505 article-title: Selective domain stabilization as a strategy to reduce human serum albumin-human granulocyte colony stimulating factor aggregation rate publication-title: J. Pharm. Sci. doi: 10.1002/jps.23118 – volume: 337 start-page: 184 year: 1989 ident: 10.1016/j.bbagen.2013.04.023_bb0095 article-title: An Fc receptor structurally related to MHC class I antigens publication-title: Nature doi: 10.1038/337184a0 – volume: 71 start-page: 666 year: 1976 ident: 10.1016/j.bbagen.2013.04.023_bb0165 article-title: pH-dependent binding of immunoglobulins to intestinal cells of the neonatal rat publication-title: J. Cell Biol. doi: 10.1083/jcb.71.2.666 – volume: 7 start-page: 715 year: 2007 ident: 10.1016/j.bbagen.2013.04.023_bb0075 article-title: FcRn: the neonatal Fc receptor comes of age publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2155 – start-page: 249 year: 2012 ident: 10.1016/j.bbagen.2013.04.023_bb0330 article-title: AlbudAb™ technology platform: versatile albumin binding domains for the development of therapeutics with tunable half-lives – volume: 99 start-page: 659 year: 2008 ident: 10.1016/j.bbagen.2013.04.023_bb0395 article-title: Prolonged in-vivo half-life of factor VIIa by fusion to albumin publication-title: Thromb. Haemost. doi: 10.1160/TH07-08-0525 – volume: 9 start-page: 183 year: 1991 ident: 10.1016/j.bbagen.2013.04.023_bb0470 article-title: Saccharomyces cerevisiae strains that overexpress heterologous proteins publication-title: Biotechnology doi: 10.1038/nbt0291-183 – volume: 117 start-page: 105 year: 2002 ident: 10.1016/j.bbagen.2013.04.023_bb0045 article-title: Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function publication-title: Histochem. Cell Biol. doi: 10.1007/s00418-001-0367-x – volume: 157 start-page: 4 year: 2012 ident: 10.1016/j.bbagen.2013.04.023_bb0285 article-title: Impact of albumin on drug delivery — New applications on the horizon publication-title: J. Control. Release doi: 10.1016/j.jconrel.2011.09.069 – volume: 20 start-page: 1941 year: 2009 ident: 10.1016/j.bbagen.2013.04.023_bb0070 article-title: Renal FcRn reclaims albumin but facilitates elimination of IgG publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2008090976 – volume: 8 start-page: 50 year: 2008 ident: 10.1016/j.bbagen.2013.04.023_bb0405 article-title: Substantially improved pharmacokinetics of recombinant human butyrylcholinesterase by fusion to human serum albumin publication-title: BMC Biotechnol. doi: 10.1186/1472-6750-8-50 – volume: 23 start-page: 789 year: 2010 ident: 10.1016/j.bbagen.2013.04.023_bb0205 article-title: Tuning the serum persistence of human serum albumin domain III:diabody fusion proteins publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzq054 – volume: 1794 start-page: 634 year: 2009 ident: 10.1016/j.bbagen.2013.04.023_bb0230 article-title: Altered chain-length and glycosylation modify the pharmacokinetics of human serum albumin publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2008.11.022 – volume: 283 start-page: 34045 year: 2008 ident: 10.1016/j.bbagen.2013.04.023_bb0365 article-title: Albumin-conjugated C34 peptide HIV-1 fusion inhibitor: equipotent to C34 and T-20 in vitro with sustained activity in SCID-hu Thy/Liv mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.M805536200 – volume: 14 start-page: 4395 year: 2004 ident: 10.1016/j.bbagen.2013.04.023_bb0350 article-title: Identification of CJC-1131-albumin bioconjugate as a stable and bioactive GLP-1(7-36) analog publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2004.06.066 – volume: 3 start-page: 610 year: 2012 ident: 10.1016/j.bbagen.2013.04.023_bb0200 article-title: Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor publication-title: Nat. Commun. doi: 10.1038/ncomms1607 – volume: 11 start-page: 582 year: 2012 ident: 10.1016/j.bbagen.2013.04.023_bb0445 article-title: Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-11-0820 – volume: 23 start-page: 25 year: 2003 ident: 10.1016/j.bbagen.2013.04.023_bb0390 article-title: An IFN-beta-albumin fusion protein that displays improved pharmacokinetic and pharmacodynamic properties in nonhuman primates publication-title: J. Interferon Cytokine Res. doi: 10.1089/10799900360520423 – volume: 2 start-page: 13 year: 2009 ident: 10.1016/j.bbagen.2013.04.023_bb0050 article-title: Targeting endothelial cell surface receptors: novel mechanisms of microvascular endothelial barrier transport publication-title: J. Med. Sci. – volume: 45 start-page: 4983 year: 2006 ident: 10.1016/j.bbagen.2013.04.023_bb0195 article-title: Albumin binding to FcRn: distinct from the FcRn–IgG interaction publication-title: Biochemistry doi: 10.1021/bi052628y – volume: 21 start-page: 283-188 year: 2008 ident: 10.1016/j.bbagen.2013.04.023_bb0310 article-title: Anti-serum albumin domain antibodies for extending the half-lives of short lived drugs publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzm067 – volume: 456 start-page: 149 year: 2002 ident: 10.1016/j.bbagen.2013.04.023_bb0410 article-title: Albutropin: a growth hormone–albumin fusion with improved pharmacokinetics and pharmacodynamics in rats and monkeys publication-title: Eur. J. Pharmacol. doi: 10.1016/S0014-2999(02)02644-4 – volume: 15 start-page: 637 year: 1997 ident: 10.1016/j.bbagen.2013.04.023_bb0185 article-title: Increasing the serum persistence of an IgG fragment by random mutagenesis publication-title: Nat. Biotechnol. doi: 10.1038/nbt0797-637 – volume: 18 start-page: 403 year: 2001 ident: 10.1016/j.bbagen.2013.04.023_bb0475 article-title: Yeast 2 micron plasmid copy number is elevated by a mutation in the nuclear gene UBC4 publication-title: Yeast doi: 10.1002/yea.679 – volume: 39 start-page: 9698 year: 2000 ident: 10.1016/j.bbagen.2013.04.023_bb0105 article-title: Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor publication-title: Biochemistry doi: 10.1021/bi000749m – volume: 1623 start-page: 88 year: 2003 ident: 10.1016/j.bbagen.2013.04.023_bb0210 article-title: The effect of glycation on the structure, function and biological fate of human serum albumin as revealed by recombinant mutants publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2003.08.001 – volume: 5 start-page: 827 year: 1998 ident: 10.1016/j.bbagen.2013.04.023_bb0275 article-title: Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites publication-title: Nat. Struct. Biol. doi: 10.1038/1869 – volume: 14 start-page: 161 year: 1998 ident: 10.1016/j.bbagen.2013.04.023_bb0415 article-title: Disruption of the Saccharomyces cerevisiae YAP3 gene reduces the proteolytic degradation of secreted recombinant human albumin publication-title: Yeast doi: 10.1002/(SICI)1097-0061(19980130)14:2<161::AID-YEA208>3.0.CO;2-Y – volume: 277 start-page: 35035 year: 2002 ident: 10.1016/j.bbagen.2013.04.023_bb0300 article-title: Albumin binding as a general strategy for improving the pharmacokinetics of proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M205854200 – volume: 282 start-page: 12650 year: 2007 ident: 10.1016/j.bbagen.2013.04.023_bb0430 article-title: Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M700820200 – volume: 54 start-page: 251 year: 2005 ident: 10.1016/j.bbagen.2013.04.023_bb0420 article-title: Development of a long-acting insulin analog using albumin fusion technology publication-title: Diabetes doi: 10.2337/diabetes.54.1.251 – volume: 13 start-page: 394 year: 2011 ident: 10.1016/j.bbagen.2013.04.023_bb0490 article-title: An overview of once-weekly glucagon-like peptide-1 receptor agonists–available efficacy and safety data and perspectives for the future publication-title: Diabetes Obes. Metab. doi: 10.1111/j.1463-1326.2011.01357.x – volume: 101 start-page: 1400 year: 2012 ident: 10.1016/j.bbagen.2013.04.023_bb0510 article-title: Selective domain stabilization as a strategy to reduce fusion protein aggregation publication-title: J. Pharm. Sci. doi: 10.1002/jps.23049 – volume: 1764 start-page: 743 year: 2006 ident: 10.1016/j.bbagen.2013.04.023_bb0215 article-title: Oxidation of Arg-410 promotes the elimination of human serum albumin publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2006.01.011 – volume: 22 start-page: 1 year: 2011 ident: 10.1016/j.bbagen.2013.04.023_bb0005 article-title: Strategies for extended serum half-life of protein therapeutics publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2011.06.012 – volume: 83 start-page: 446 year: 2013 ident: 10.1016/j.bbagen.2013.04.023_bb0460 article-title: A human serum albumin–thioredoxin fusion protein prevents experimental contrast-induced nephropathy publication-title: Kidney Int. doi: 10.1038/ki.2012.429 – volume: 7 start-page: 2288 year: 2008 ident: 10.1016/j.bbagen.2013.04.023_bb0315 article-title: Improved tumor targeting of anti-epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-07-2384 – volume: 197 start-page: 315 year: 2003 ident: 10.1016/j.bbagen.2013.04.023_bb0125 article-title: The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan publication-title: J. Exp. Med. doi: 10.1084/jem.20021829 – volume: 99 start-page: 613 year: 2000 ident: 10.1016/j.bbagen.2013.04.023_bb0225 article-title: Modulation of clearance of recombinant serum albumin by either glycosylation or truncation publication-title: Thromb. Res. doi: 10.1016/S0049-3848(00)00286-3 – volume: 45 start-page: 57 year: 2005 ident: 10.1016/j.bbagen.2013.04.023_bb0345 article-title: Phase I comparability of recombinant human albumin and human serum albumin publication-title: J. Clin. Pharmacol. doi: 10.1177/0091270004269646 – volume: 21 start-page: 2105 year: 2004 ident: 10.1016/j.bbagen.2013.04.023_bb0375 article-title: AlbuBNP, a recombinant B-type natriuretic peptide and human serum albumin fusion hormone, as a long-term therapy of congestive heart failure publication-title: Pharm. Res. doi: 10.1023/B:PHAM.0000048203.30568.81 – volume: 132 start-page: 171 year: 2008 ident: 10.1016/j.bbagen.2013.04.023_bb0335 article-title: Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles publication-title: J. Control. Release doi: 10.1016/j.jconrel.2008.05.010 – volume: 28 start-page: 157 year: 2010 ident: 10.1016/j.bbagen.2013.04.023_bb0190 article-title: Enhanced antibody half-life improves in vivo activity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1601 – volume: 24 start-page: 318 year: 2009 ident: 10.1016/j.bbagen.2013.04.023_bb0250 article-title: Extending half-life by indirect targeting of the Neonatal Fc Receptor (FcRn) using a minimal albumin binding domain publication-title: Drug Metab. Pharmacokinet. doi: 10.2133/dmpk.24.318 – volume: 25 start-page: 1411 year: 2007 ident: 10.1016/j.bbagen.2013.04.023_bb0265 article-title: Albinterferon alpha-2b: a genetic fusion protein for the treatment of chronic hepatitis C publication-title: Nat. Biotechnol. doi: 10.1038/nbt1364 – volume: 120 start-page: 2405 year: 2012 ident: 10.1016/j.bbagen.2013.04.023_bb0525 article-title: Safety and pharmacokinetics of a novel recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in hemophilia B patients publication-title: Blood doi: 10.1182/blood-2012-05-429688 – volume: 103 start-page: 77 year: 2009 ident: 10.1016/j.bbagen.2013.04.023_bb0140 article-title: Chapter 4: Multitasking by exploitation of intracellular transport functions the many faces of FcRn publication-title: Adv. Immunol. doi: 10.1016/S0065-2776(09)03004-1 – volume: 73 start-page: 113 year: 2010 ident: 10.1016/j.bbagen.2013.04.023_bb0440 article-title: The production, characterisation and enhanced pharmacokinetics of scFv–albumin fusions expressed in Saccharomyces cerevisiae publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2010.05.009 – volume: 20 start-page: 2286 year: 2009 ident: 10.1016/j.bbagen.2013.04.023_bb0290 article-title: New strategy for the extension of the serum half-life of antibody fragments publication-title: Bioconjug. Chem. doi: 10.1021/bc9002772 – volume: 372 start-page: 379 year: 1994 ident: 10.1016/j.bbagen.2013.04.023_bb0170 article-title: Crystal structure of the complex of rat neonatal Fc receptor with Fc publication-title: Nature doi: 10.1038/372379a0 – volume: 122 start-page: 146 year: 2007 ident: 10.1016/j.bbagen.2013.04.023_bb0020 article-title: Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model publication-title: Clin. Immunol. doi: 10.1016/j.clim.2006.09.001 – ident: 10.1016/j.bbagen.2013.04.023_bb0495 – volume: 154 start-page: 189 year: 2011 ident: 10.1016/j.bbagen.2013.04.023_bb0455 article-title: Human serum albumin–thioredoxin fusion protein with long blood retention property is effective in suppressing lung injury publication-title: J. Control. Release doi: 10.1016/j.jconrel.2011.05.013 – volume: 267 start-page: 24544 year: 1992 ident: 10.1016/j.bbagen.2013.04.023_bb0030 article-title: Preferential interaction of albumin-binding proteins, gp30 and gp18, with conformationally modified albumins publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)35799-5 – volume: 287 start-page: 22927 year: 2012 ident: 10.1016/j.bbagen.2013.04.023_bb0530 article-title: Anti-carcinoembryonic antigen single-chain variable fragment antibody variants bind mouse and human neonatal Fc receptor with different affinities that reveal distinct cross-species differences in serum half-life publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.355131 – volume: 102 start-page: 634 year: 2009 ident: 10.1016/j.bbagen.2013.04.023_bb0400 article-title: Genetic fusion to albumin improves the pharmacokinetic properties of factor IX publication-title: Thromb. Haemost. doi: 10.1160/TH09-04-0255 – volume: 268 start-page: 7562 year: 1993 ident: 10.1016/j.bbagen.2013.04.023_bb0035 article-title: High affinity binding, endocytosis and degradation of conformationally modified albumins publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)53212-9 – volume: 30 year: 2012 ident: 10.1016/j.bbagen.2013.04.023_bb0500 article-title: Efficacy and safety of balugrastim compared with pegfilgrastim in patients with breast cancer who are receiving chemotherapy publication-title: J. Clin. Oncol. doi: 10.1200/jco.2012.30.15_suppl.9125 – volume: 372 start-page: 336 year: 1994 ident: 10.1016/j.bbagen.2013.04.023_bb0100 article-title: Crystal structure at 2.2 A resolution of the MHC-related neonatal Fc receptor publication-title: Nature doi: 10.1038/372336a0 – volume: 19 start-page: 1720 year: 2002 ident: 10.1016/j.bbagen.2013.04.023_bb0260 article-title: Albugranin™, a recombinant human granulocyte colony stimulating factor (G-CSF) genetically fused to recombinant human albumin induces prolonged myelopoietic effects in mice and monkeys publication-title: Pharm. Res. doi: 10.1023/A:1020917732218 – volume: 93 start-page: 5512 year: 1996 ident: 10.1016/j.bbagen.2013.04.023_bb0135 article-title: The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.93.11.5512 – volume: 54 start-page: 535 year: 2005 ident: 10.1016/j.bbagen.2013.04.023_bb0385 article-title: Pharmacokinetics and in vitro and in vivo anti-tumor response of an interleukin-2-human serum albumin fusion protein in mice publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-004-0624-7 – volume: 175 start-page: 7 year: 2012 ident: 10.1016/j.bbagen.2013.04.023_bb0380 article-title: Characterization of a long-acting recombinant human serum albumin-atrial natriuretic factor (ANF) expressed in Pichia pastoris publication-title: Regul. Pept. doi: 10.1016/j.regpep.2012.01.005 – volume: 290 start-page: G352 year: 2006 ident: 10.1016/j.bbagen.2013.04.023_bb0145 article-title: Albumin turnover: FcRn-mediated recycling saves as much albumin from degradation as the liver produces publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00286.2005 – volume: 21 start-page: 515 year: 2008 ident: 10.1016/j.bbagen.2013.04.023_bb0295 article-title: Engineering of a femtomolar affinity binding protein to human serum albumin publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzn028 – volume: 86 start-page: 2093 year: 1990 ident: 10.1016/j.bbagen.2013.04.023_bb0160 article-title: Familial hypercatabolic hypoproteinemia. A disorder of endogenous catabolism of albumin and immunoglobulin publication-title: J. Clin. Invest. doi: 10.1172/JCI114947 – volume: 24 start-page: 3 year: 2011 ident: 10.1016/j.bbagen.2013.04.023_bb0325 article-title: Adnectins: engineered target-binding protein therapeutics publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzq097 – volume: 285 start-page: 27694 year: 2010 ident: 10.1016/j.bbagen.2013.04.023_bb0115 article-title: X-ray crystal structures of monomeric and dimeric peptide inhibitors in complex with the human neonatal Fc receptor publication-title: FcRn J. Biol. Chem. doi: 10.1074/jbc.M110.120667 – volume: 4 start-page: 1245 year: 2003 ident: 10.1016/j.bbagen.2013.04.023_bb0340 article-title: CJC-1131 ConjuChem publication-title: Curr. Opin. Investig. Drugs – volume: 176 start-page: 346 year: 2006 ident: 10.1016/j.bbagen.2013.04.023_bb0180 article-title: An engineered human IgG1 antibody with longer serum half-life publication-title: J. Immunol. doi: 10.4049/jimmunol.176.1.346 – volume: 147 start-page: 17 year: 2010 ident: 10.1016/j.bbagen.2013.04.023_bb0450 article-title: Albumin fusion of thioredoxin–the production and evaluation of its biological activity for potential therapeutic applications publication-title: J. Control. Release doi: 10.1016/j.jconrel.2010.05.020 – volume: 35 start-page: 151 year: 2008 ident: 10.1016/j.bbagen.2013.04.023_bb0435 article-title: Biodistribution and tumor imaging of an anti-CEA single-chain antibody–albumin fusion protein publication-title: Nucl. Med. Biol. doi: 10.1016/j.nucmedbio.2007.10.010 – volume: 345 start-page: 271 year: 2013 ident: 10.1016/j.bbagen.2013.04.023_bb0465 article-title: Long-acting human serum albumin–thioredoxin fusion protein suppresses bleomycin-induced pulmonary fibrosis progression publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.112.201814 – volume: 285 start-page: 4826 year: 2010 ident: 10.1016/j.bbagen.2013.04.023_bb0245 article-title: Cross-species binding analyses of mouse and human neonatal Fc receptor show dramatic differences in immunoglobulin G and albumin binding publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.081828 – volume: 27 start-page: 2554 year: 2004 ident: 10.1016/j.bbagen.2013.04.023_bb0485 article-title: Gut-derived incretin hormones and new therapeutic approaches publication-title: Diabetes Care doi: 10.2337/diacare.27.10.2554 – volume: 89 start-page: 638 year: 1992 ident: 10.1016/j.bbagen.2013.04.023_bb0110 article-title: Expression and crystallization of a soluble and functional form of an Fc receptor related to class I histocompatibility molecules publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.89.2.638 – volume: 36 start-page: 3044 year: 2006 ident: 10.1016/j.bbagen.2013.04.023_bb0120 article-title: The conserved histidine 166 residue of the human neonatal Fc receptor heavy chain is critical for the pH-dependent binding to albumin publication-title: Eur. J. Immunol. doi: 10.1002/eji.200636556 – volume: 7 start-page: 325 year: 2006 ident: 10.1016/j.bbagen.2013.04.023_bb0280 article-title: Insulin detemir: from concept to clinical experience publication-title: Expert Opin. Pharmacother. doi: 10.1517/14656566.7.3.325 – volume: 88 start-page: 451 year: 2008 ident: 10.1016/j.bbagen.2013.04.023_bb0065 article-title: Properties of the glomerular barrier and mechanisms of proteinuria publication-title: Physiol. Rev. doi: 10.1152/physrev.00055.2006 – volume: 32 start-page: 1880 year: 2009 ident: 10.1016/j.bbagen.2013.04.023_bb0370 article-title: Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomized controlled trial exploring weekly, biweekly, and monthly dosing publication-title: Diabetes Care doi: 10.2337/dc09-0366 – volume: 458 start-page: 1039 year: 2009 ident: 10.1016/j.bbagen.2013.04.023_bb0090 article-title: Receptor-mediated endocytosis in renal proximal tubule publication-title: Pflugers Arch. doi: 10.1007/s00424-009-0685-8 – volume: 106 start-page: 2788 year: 2009 ident: 10.1016/j.bbagen.2013.04.023_bb0150 article-title: Conditional deletion of the MHC class I-related receptor FcRn reveals the sites of IgG homeostasis in mice publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0810796106 – volume: 12 start-page: 750 year: 2001 ident: 10.1016/j.bbagen.2013.04.023_bb0255 article-title: Prolonged in vivo residence times of antibody fragments associated with albumin publication-title: Bioconjug. Chem. doi: 10.1021/bc010003g – volume: 103 start-page: 5084 year: 2006 ident: 10.1016/j.bbagen.2013.04.023_bb0155 article-title: Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0600548103 – volume: 277 start-page: 534 year: 1996 ident: 10.1016/j.bbagen.2013.04.023_bb0270 article-title: Extended in vivo half-life of human soluble complement receptor type 1 fused to a serum albumin-binding receptor publication-title: J. Pharmacol. Exp. Ther. – volume: 67 start-page: 573 year: 2005 ident: 10.1016/j.bbagen.2013.04.023_bb0060 article-title: Renal tubules albumin transport publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.67.031103.154845 – volume: 43 start-page: 367 year: 2010 ident: 10.1016/j.bbagen.2013.04.023_bb0235 article-title: FcRn binding properties of an abnormal truncated analbuminemic albumin variant publication-title: Clin. Biochem. doi: 10.1016/j.clinbiochem.2009.12.001 – volume: 10 start-page: 1591 year: 2012 ident: 10.1016/j.bbagen.2013.04.023_bb0520 article-title: Improved kinetics of rIX-FP, a recombinant fusion protein linking factor IX with albumin, in cynomolgus monkeys and hemophilia B dogs publication-title: J. Thromb. Haemost. doi: 10.1111/j.1538-7836.2012.04826.x – volume: 158 start-page: 2211 year: 1997 ident: 10.1016/j.bbagen.2013.04.023_bb0175 article-title: Delineation of the amino acid residues involved in transcytosis and catabolism of mouse IgG1 publication-title: J. Immunol. doi: 10.4049/jimmunol.158.5.2211 – volume: 134 start-page: 1137 year: 2008 ident: 10.1016/j.bbagen.2013.04.023_bb0355 article-title: An albumin-exendin-4 conjugate engages central and peripheral circuits regulating murine energy and glucose homeostasis publication-title: Gastroenterology doi: 10.1053/j.gastro.2008.01.017 – volume: 107 start-page: 231 year: 1988 ident: 10.1016/j.bbagen.2013.04.023_bb0025 article-title: Identification of albumin-binding proteins in capillary endothelial cells publication-title: J. Cell Biol. doi: 10.1083/jcb.107.1.231 – volume: 16 start-page: 1000 year: 2005 ident: 10.1016/j.bbagen.2013.04.023_bb0360 article-title: Synthesis and evaluation of insulin–human serum albumin conjugates publication-title: Bioconjug. Chem. doi: 10.1021/bc050102k – volume: 56 start-page: 303 year: 2007 ident: 10.1016/j.bbagen.2013.04.023_bb0320 article-title: Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR Nanobodies publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-006-0180-4 – volume: 269 start-page: 6072 year: 1994 ident: 10.1016/j.bbagen.2013.04.023_bb0040 article-title: Albondin-mediated capillary permeability to albumin publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)37571-3 – volume: 68 start-page: 137 year: 2009 ident: 10.1016/j.bbagen.2013.04.023_bb0425 article-title: Production and characterization of long-acting recombinant human albumin-EPO fusion protein expressed in CHO cell publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2009.07.003 |
SSID | ssj0000595 ssj0025309 |
Score | 2.5734262 |
SecondaryResourceType | review_article |
Snippet | Albumin is the most abundant plasma protein, is highly soluble, very stable and has an extraordinarily long circulatory half-life as a direct result of its... BACKGROUND: Albumin is the most abundant plasma protein, is highly soluble, very stable and has an extraordinarily long circulatory half-life as a direct... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5526 |
SubjectTerms | Albumin Animal models Animals drugs FcRn filtration Half-Life Humans Immunoglobulin G - metabolism patient compliance Pharmacokinetics Protein drug Receptors, Fc - metabolism serum albumin Serum Albumin - metabolism |
Title | Albumin as a versatile platform for drug half-life extension |
URI | https://dx.doi.org/10.1016/j.bbagen.2013.04.023 https://www.ncbi.nlm.nih.gov/pubmed/23639804 https://www.proquest.com/docview/1443410432 https://www.proquest.com/docview/2000082898 |
Volume | 1830 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIgQXVMqjAVoZiatJYnvttcSliqhSInqgRORmeb12G7TaRG1y4MJvZ2YfRRyiSr3sale2tDszHn_z8AzAxxhN8pnwXAQbucpHihcyWY7SYRKuTF168kN-u9DTufq6yBZ7MOnPwlBaZaf7W53eaOvuzbCj5nC9XA4vKaiHcCKjgAzilgWdYFeGpPzTn39pHggfsjaSoDiN7o_PNTleRYGLlqqgjmVT8FTIXdvTo-RXu0FosxmdHcDzDkWy0_ZDX8BerA_hSdtX8vchPJ30bdxewufGCb-smb9lnlESBvKiimxd-Q0BVoYXVt5sr9i1rxKvlimyxjNObrRXMD_78mMy5V3LBB7U2G64L0c25BG37VJrtH1SKESOKMpbhVAsFEmKhAbOWBhb-ox6VUltjTVJokQVycjXsF-v6ngErNA6lDrPItlcNkSblB_LYIKP0kejByB7SrnQ1ROnthaV6xPHfrmWvo7o60bKIX0HwO9mrdt6GveMNz0T3H9y4VDl3zPzCHnm_BUqSze_FFRKj_S_tmoAH3pGOuQGhUh8HVfbWzSEFG7rVKZw9xjR4Gw0VPMBvGml4O5XhETEhwL_9sGf_Q6e0VObMfMe9jc323iMuGdTnDSCfQKPT89n0wu6z77_nP0FtQ7-pA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB61RahcUCmPBlowEleTxPbaa4kLiqhSaHtpI-Vmeb12G7TaRG1y4MJvZ2YfRRyiSlz2sGtL3pnxzDfj8QzApxhN8pnwXAQbucpHihcyWY7SYRLuTF16ikNeXOrpTH2fZ_MdmPR3YSitstP9rU5vtHX3ZthRc7haLIZXdKiHcCKjAxnELfNdeKJw-1Ibg8-__-Z5IH7I2qMExWl4f3-uSfIqCty1VAZ1LJuKp0Jus0-7yS-3o9DGGp0ewPMORrKv7UpfwE6sD-Fp21jy1yHsT_o-bi_hSxOFX9TM3zPPKAsDmVFFtqr8mhArwwcr7zY37NZXiVeLFFkTGqc42iuYnX67nkx51zOBBzW2a-7LkQ15RLtdao3OTwqFyBFGeasQi4UiSZHQwxkLY0ufUbMqqa2xJkkUqSIZ-Rr26mUdj4AVWodS51kkp8uGaJPyYxlM8FH6aPQAZE8pF7qC4tTXonJ95thP19LXEX3dSDmk7wD4w6xVW1DjkfGmZ4L7RzAc6vxHZh4hz5y_QW3pZleCaumRAdBWDeBjz0iH3KAzEl_H5eYePSGFdp3qFG4fIxqgjZ5qPoA3rRQ8_IqQCPlQ4t_-97I_wP70-uLcnZ9d_ngHz-hLmz5zDHvru008QRC0Lt43Qv4Hh0X-jw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Albumin+as+a+versatile+platform+for+drug+half-life+extension&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Sleep%2C+Darrell&rft.au=Cameron%2C+Jason&rft.au=Evans%2C+Leslie+R&rft.date=2013-12-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1830&rft.issue=12&rft.spage=5526&rft.epage=5534&rft_id=info:doi/10.1016%2Fj.bbagen.2013.04.023&rft.externalDocID=US201600002694 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |