Antimicrobial peptide pleurocidin synergizes with antibiotics through hydroxyl radical formation and membrane damage, and exerts antibiofilm activity
Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin in combination with conventional antibiotics, and the antibiofilm effect of the peptide are poorly understood. The interaction between pleuroc...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1820; no. 12; pp. 1831 - 1838 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 0006-3002 1872-8006 |
DOI | 10.1016/j.bbagen.2012.08.012 |
Cover
Loading…
Abstract | Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin in combination with conventional antibiotics, and the antibiofilm effect of the peptide are poorly understood.
The interaction between pleurocidin and antibiotics was evaluated using checkerboard assay. To study the mechanism(s) involved in their synergism, we detected hydroxyl radical formation using 3′-(p-hydroxyphenyl) fluorescein, measured the NAD+/NADH ratio by NAD+ cycling assay, observed change in bacterial viability with the hydroxyl radical scavenger thiourea, and investigated cytoplasmic membrane damage using propidium iodide. Also, the antibiofilm effect of pleurocidin was examined with the tissue culture plate method.
All combinations of pleurocidin and antibiotics showed synergistic interaction against bacterial strains (fractional inhibitory concentration index (FICI)≤0.5) except for Enterococcus faecium treated with a combination of the peptide and ampicillin (FICI=0.75). We identified that pleurocidin alone and in combinations with antibiotics induced formation of hydroxyl radicals. The oxidative stress was caused by a transient NADH depletion and the addition of thiourea prevented bacterial death, especially in the case of the combined treatment of pleurocidin and ampicillin showing synergisms. The combination of pleurocidin and erythromycin increased permeability of bacterial cytoplasmic membrane. Additionally, pleurocidin exhibited a potent inhibitory effect on preformed biofilm of bacterial organisms. In conclusion, pleurocidin synergized with antibiotics through hydroxyl radical formation and membrane-active mechanism, and exerted antibiofilm activity.
The synergistic effect between pleurocidin and antibiotics suggests the AMP is a potential therapeutic agent and adjuvant for antimicrobial chemotherapy.
► We aimed to evaluate the combination effect of pleurocidin with antibiotics. ► Most combinations between pleurocidin and antibiotics showed synergistic effects. ► We investigated the mechanism(s) involved in the synergistic effects. ► The synergisms were induced by hydroxyl radical production and membrane damage. ► Additionally, we indentified that pleurocidin exerted antibiofilm effect. |
---|---|
AbstractList | BACKGROUND: Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin in combination with conventional antibiotics, and the antibiofilm effect of the peptide are poorly understood. METHODS: The interaction between pleurocidin and antibiotics was evaluated using checkerboard assay. To study the mechanism(s) involved in their synergism, we detected hydroxyl radical formation using 3′-(p-hydroxyphenyl) fluorescein, measured the NAD⁺/NADH ratio by NAD⁺ cycling assay, observed change in bacterial viability with the hydroxyl radical scavenger thiourea, and investigated cytoplasmic membrane damage using propidium iodide. Also, the antibiofilm effect of pleurocidin was examined with the tissue culture plate method. RESULTS: All combinations of pleurocidin and antibiotics showed synergistic interaction against bacterial strains (fractional inhibitory concentration index (FICI)≤0.5) except for Enterococcus faecium treated with a combination of the peptide and ampicillin (FICI=0.75). We identified that pleurocidin alone and in combinations with antibiotics induced formation of hydroxyl radicals. The oxidative stress was caused by a transient NADH depletion and the addition of thiourea prevented bacterial death, especially in the case of the combined treatment of pleurocidin and ampicillin showing synergisms. The combination of pleurocidin and erythromycin increased permeability of bacterial cytoplasmic membrane. Additionally, pleurocidin exhibited a potent inhibitory effect on preformed biofilm of bacterial organisms. In conclusion, pleurocidin synergized with antibiotics through hydroxyl radical formation and membrane-active mechanism, and exerted antibiofilm activity. GENERAL SIGNIFICANCE: The synergistic effect between pleurocidin and antibiotics suggests the AMP is a potential therapeutic agent and adjuvant for antimicrobial chemotherapy. Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin in combination with conventional antibiotics, and the antibiofilm effect of the peptide are poorly understood. The interaction between pleurocidin and antibiotics was evaluated using checkerboard assay. To study the mechanism(s) involved in their synergism, we detected hydroxyl radical formation using 3′-(p-hydroxyphenyl) fluorescein, measured the NAD+/NADH ratio by NAD+ cycling assay, observed change in bacterial viability with the hydroxyl radical scavenger thiourea, and investigated cytoplasmic membrane damage using propidium iodide. Also, the antibiofilm effect of pleurocidin was examined with the tissue culture plate method. All combinations of pleurocidin and antibiotics showed synergistic interaction against bacterial strains (fractional inhibitory concentration index (FICI)≤0.5) except for Enterococcus faecium treated with a combination of the peptide and ampicillin (FICI=0.75). We identified that pleurocidin alone and in combinations with antibiotics induced formation of hydroxyl radicals. The oxidative stress was caused by a transient NADH depletion and the addition of thiourea prevented bacterial death, especially in the case of the combined treatment of pleurocidin and ampicillin showing synergisms. The combination of pleurocidin and erythromycin increased permeability of bacterial cytoplasmic membrane. Additionally, pleurocidin exhibited a potent inhibitory effect on preformed biofilm of bacterial organisms. In conclusion, pleurocidin synergized with antibiotics through hydroxyl radical formation and membrane-active mechanism, and exerted antibiofilm activity. The synergistic effect between pleurocidin and antibiotics suggests the AMP is a potential therapeutic agent and adjuvant for antimicrobial chemotherapy. ► We aimed to evaluate the combination effect of pleurocidin with antibiotics. ► Most combinations between pleurocidin and antibiotics showed synergistic effects. ► We investigated the mechanism(s) involved in the synergistic effects. ► The synergisms were induced by hydroxyl radical production and membrane damage. ► Additionally, we indentified that pleurocidin exerted antibiofilm effect. Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin in combination with conventional antibiotics, and the antibiofilm effect of the peptide are poorly understood.BACKGROUNDPleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin in combination with conventional antibiotics, and the antibiofilm effect of the peptide are poorly understood.The interaction between pleurocidin and antibiotics was evaluated using checkerboard assay. To study the mechanism(s) involved in their synergism, we detected hydroxyl radical formation using 3'-(p-hydroxyphenyl) fluorescein, measured the NAD(+)/NADH ratio by NAD(+) cycling assay, observed change in bacterial viability with the hydroxyl radical scavenger thiourea, and investigated cytoplasmic membrane damage using propidium iodide. Also, the antibiofilm effect of pleurocidin was examined with the tissue culture plate method.METHODSThe interaction between pleurocidin and antibiotics was evaluated using checkerboard assay. To study the mechanism(s) involved in their synergism, we detected hydroxyl radical formation using 3'-(p-hydroxyphenyl) fluorescein, measured the NAD(+)/NADH ratio by NAD(+) cycling assay, observed change in bacterial viability with the hydroxyl radical scavenger thiourea, and investigated cytoplasmic membrane damage using propidium iodide. Also, the antibiofilm effect of pleurocidin was examined with the tissue culture plate method.All combinations of pleurocidin and antibiotics showed synergistic interaction against bacterial strains (fractional inhibitory concentration index (FICI)≤0.5) except for Enterococcus faecium treated with a combination of the peptide and ampicillin (FICI=0.75). We identified that pleurocidin alone and in combinations with antibiotics induced formation of hydroxyl radicals. The oxidative stress was caused by a transient NADH depletion and the addition of thiourea prevented bacterial death, especially in the case of the combined treatment of pleurocidin and ampicillin showing synergisms. The combination of pleurocidin and erythromycin increased permeability of bacterial cytoplasmic membrane. Additionally, pleurocidin exhibited a potent inhibitory effect on preformed biofilm of bacterial organisms. In conclusion, pleurocidin synergized with antibiotics through hydroxyl radical formation and membrane-active mechanism, and exerted antibiofilm activity.RESULTSAll combinations of pleurocidin and antibiotics showed synergistic interaction against bacterial strains (fractional inhibitory concentration index (FICI)≤0.5) except for Enterococcus faecium treated with a combination of the peptide and ampicillin (FICI=0.75). We identified that pleurocidin alone and in combinations with antibiotics induced formation of hydroxyl radicals. The oxidative stress was caused by a transient NADH depletion and the addition of thiourea prevented bacterial death, especially in the case of the combined treatment of pleurocidin and ampicillin showing synergisms. The combination of pleurocidin and erythromycin increased permeability of bacterial cytoplasmic membrane. Additionally, pleurocidin exhibited a potent inhibitory effect on preformed biofilm of bacterial organisms. In conclusion, pleurocidin synergized with antibiotics through hydroxyl radical formation and membrane-active mechanism, and exerted antibiofilm activity.The synergistic effect between pleurocidin and antibiotics suggests the AMP is a potential therapeutic agent and adjuvant for antimicrobial chemotherapy.GENERAL SIGNIFICANCEThe synergistic effect between pleurocidin and antibiotics suggests the AMP is a potential therapeutic agent and adjuvant for antimicrobial chemotherapy. Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin in combination with conventional antibiotics, and the antibiofilm effect of the peptide are poorly understood. The interaction between pleurocidin and antibiotics was evaluated using checkerboard assay. To study the mechanism(s) involved in their synergism, we detected hydroxyl radical formation using 3'-(p-hydroxyphenyl) fluorescein, measured the NAD(+)/NADH ratio by NAD(+) cycling assay, observed change in bacterial viability with the hydroxyl radical scavenger thiourea, and investigated cytoplasmic membrane damage using propidium iodide. Also, the antibiofilm effect of pleurocidin was examined with the tissue culture plate method. All combinations of pleurocidin and antibiotics showed synergistic interaction against bacterial strains (fractional inhibitory concentration index (FICI)≤0.5) except for Enterococcus faecium treated with a combination of the peptide and ampicillin (FICI=0.75). We identified that pleurocidin alone and in combinations with antibiotics induced formation of hydroxyl radicals. The oxidative stress was caused by a transient NADH depletion and the addition of thiourea prevented bacterial death, especially in the case of the combined treatment of pleurocidin and ampicillin showing synergisms. The combination of pleurocidin and erythromycin increased permeability of bacterial cytoplasmic membrane. Additionally, pleurocidin exhibited a potent inhibitory effect on preformed biofilm of bacterial organisms. In conclusion, pleurocidin synergized with antibiotics through hydroxyl radical formation and membrane-active mechanism, and exerted antibiofilm activity. The synergistic effect between pleurocidin and antibiotics suggests the AMP is a potential therapeutic agent and adjuvant for antimicrobial chemotherapy. |
Author | Choi, Hyemin Lee, Dong Gun |
Author_xml | – sequence: 1 givenname: Hyemin surname: Choi fullname: Choi, Hyemin – sequence: 2 givenname: Dong Gun surname: Lee fullname: Lee, Dong Gun email: dglee222@knu.ac.kr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22921812$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFN0DgJQtmsD2Ok7BAqir-pEosoGvLsW9m7iiJg-0pDe_B--KZdDYsqDdXsr5zfHzuBTkb_ACEvORsxRlX73arpjEbGFaCcbFi1SqPJ2TBq1IsK8bUGVmwNZNLyVVxTi5i3LF8irp4Rs6FqAWvuFiQP1dDwh5t8A2ajo4wJnRAxw72wVt0ONA4DRA2-Bsi_YVpS01WNOgT2kjTNvj9Zku3kwv-fupoMA5tNmp96E1CP2Tc0R76JpgBqDN9zvz2eAn3EFI82bXY9dTYhHeYpufkaWu6CC8e5iW5_fTxx_WX5c23z1-vr26WVvI6LY1VqnQ1Z1YAM4UpZMlKZ1RtS5B1JWQhnQDOW9usreUF49Dyet1Yo0RjDKwvyZvZdwz-5x5i0j1GC12Xs_p91OJQ2VoqyR5FOc_-quBCZvTVA7pvenB6DNibMOlT6xl4PwO59hgDtNpiOraVgsFOc6YPK9Y7Pa9YH1asWaXZUSz_EZ_8H5G9nmWt8dpsAkZ9-z0DKv9QSFYfYn-YCciN3yEEHS3CYMFhAJu08_j_J_4C4zjOwQ |
CitedBy_id | crossref_primary_10_3390_ph14070687 crossref_primary_10_1002_adma_202303432 crossref_primary_10_1038_s42003_020_01420_3 crossref_primary_10_1111_jam_14357 crossref_primary_10_1016_j_phymed_2021_153710 crossref_primary_10_1042_BCJ20170461 crossref_primary_10_1371_journal_pone_0117065 crossref_primary_10_3390_ph7030265 crossref_primary_10_1002_ppap_202400048 crossref_primary_10_3389_fmicb_2021_725916 crossref_primary_10_1016_j_actbio_2023_09_014 crossref_primary_10_1080_00914037_2022_2066668 crossref_primary_10_1002_jobm_202100133 crossref_primary_10_1080_08927014_2025_2460491 crossref_primary_10_1002_iub_1973 crossref_primary_10_1016_j_bbrc_2020_01_002 crossref_primary_10_1007_s10534_014_9768_x crossref_primary_10_1128_spectrum_02056_21 crossref_primary_10_1146_annurev_pharmtox_010814_124712 crossref_primary_10_1038_s41598_020_79976_7 crossref_primary_10_3390_antibiotics11060794 crossref_primary_10_1007_s00284_015_0937_0 crossref_primary_10_3390_antibiotics12101518 crossref_primary_10_1002_ppap_202200204 crossref_primary_10_1038_srep21385 crossref_primary_10_1002_advs_202300472 crossref_primary_10_1111_jfd_13540 crossref_primary_10_1002_adma_202407268 crossref_primary_10_1093_femspd_ftv018 crossref_primary_10_1002_jobm_201500617 crossref_primary_10_1016_j_ijfoodmicro_2018_06_021 crossref_primary_10_1038_srep19262 crossref_primary_10_1007_s12272_016_0769_x crossref_primary_10_3390_md11061836 crossref_primary_10_1073_pnas_1425007112 crossref_primary_10_1002_adma_201302952 crossref_primary_10_1128_AAC_02142_13 crossref_primary_10_1016_j_gene_2020_145289 crossref_primary_10_1007_s13205_019_1801_x crossref_primary_10_1038_s41598_017_03576_1 crossref_primary_10_1007_s00253_015_6553_x crossref_primary_10_1007_s00726_019_02804_4 crossref_primary_10_1016_j_ejps_2023_106648 crossref_primary_10_3389_fphar_2024_1340029 crossref_primary_10_1007_s10989_020_10068_w crossref_primary_10_1007_s00284_016_1092_y crossref_primary_10_3389_fmicb_2024_1390765 crossref_primary_10_1016_j_ejps_2017_11_008 crossref_primary_10_3390_biom10060893 crossref_primary_10_1016_j_foodcont_2020_107148 crossref_primary_10_1007_s00253_015_6375_x crossref_primary_10_1016_j_porgcoat_2014_02_002 crossref_primary_10_1128_IAI_01915_14 |
Cites_doi | 10.1093/jac/dkg301 10.1016/S0140-6736(01)05321-1 10.1590/S0074-02762011000100007 10.3390/ijms12095971 10.1016/S0966-842X(00)01913-2 10.1016/j.biomaterials.2011.11.057 10.1016/0304-4157(90)90006-X 10.1016/j.bbrc.2011.01.046 10.1128/CMR.00056-05 10.1016/j.bbamem.2007.02.024 10.1126/science.177.4046.314 10.1016/j.canlet.2007.03.002 10.1016/j.cell.2007.06.049 10.1111/j.1399-302X.2007.00366.x 10.1128/JCM.22.6.996-1006.1985 10.1128/AAC.01053-10 10.1034/j.1601-0825.9.s1.5.x 10.1126/science.3961484 10.1093/jac/dkn393 10.1016/j.ijantimicag.2004.09.005 10.1016/j.tim.2004.11.010 10.1016/S1473-3099(01)00092-5 10.1093/jac/dkl120 10.1016/j.tiv.2004.04.014 10.1074/jbc.272.18.12008 10.1002/psc.479 10.1038/417552a 10.1016/S0005-2736(02)00470-4 10.1038/35037627 10.1093/jac/48.2.203 10.1016/j.peptides.2008.07.016 10.1038/nrmicro2333 10.1038/415389a 10.1128/AAC.49.7.2959-2964.2005 10.1016/S0196-9781(00)00254-0 10.1128/IAI.00318-08 10.1016/j.peptides.2009.06.004 10.1016/j.biochi.2011.07.011 10.1177/002215549704500107 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. Copyright © 2012 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: Copyright © 2012 Elsevier B.V. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2012.08.012 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 1838 |
ExternalDocumentID | 22921812 10_1016_j_bbagen_2012_08_012 US201600024094 S0304416512002322 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c419t-ac667d910c2e0a5a54707da69c7e4982454d2e11fcb3cc1501ef193bca62baae3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Tue Aug 05 09:29:58 EDT 2025 Fri Jul 11 15:32:42 EDT 2025 Mon Jul 21 06:04:44 EDT 2025 Thu Apr 24 23:03:33 EDT 2025 Tue Jul 01 00:21:59 EDT 2025 Wed Dec 27 19:17:12 EST 2023 Fri Feb 23 02:34:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | CLSI PBS TCP BHI MIC CH3CN EPS FICI Pleuronectes americanus Pleurocidin MTT AMPs Antibiofilm effect LB Membrane damage PI Synergistic effect Hydroxyl radical NCCLS HPF PES |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-ac667d910c2e0a5a54707da69c7e4982454d2e11fcb3cc1501ef193bca62baae3 |
Notes | http://dx.doi.org/10.1016/j.bbagen.2012.08.012 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22921812 |
PQID | 1115065124 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000034640 proquest_miscellaneous_1115065124 pubmed_primary_22921812 crossref_citationtrail_10_1016_j_bbagen_2012_08_012 crossref_primary_10_1016_j_bbagen_2012_08_012 fao_agris_US201600024094 elsevier_sciencedirect_doi_10_1016_j_bbagen_2012_08_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-01 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2012 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dempsey (bb0155) 1990; 1031 Cho, Lee (bb0085) 2011; 93 Overhage, Campisano, Bains, Torfs, Rehm, Hancock (bb0050) 2008; 76 Kohanski, Dwyer, Collins (bb0150) 2010; 8 Sedlacek, Walker (bb0215) 2007; 22 Spindler, Hale, Giddings, Hancock, Gill (bb0195) 2011; 55 Zunino, Ducore, Storms (bb0165) 2007; 254 Hancock (bb0020) 2001; 1 Jung, Park, Sung, Suh, Lee, Hahm, Lee (bb0075) 2007; 1768 Zasloff (bb0005) 2002; 415 Stewart, Costerton (bb0035) 2001; 358 Eliopoulos, Moellering (bb0110) 1991 Cui, Zhao, Tian, Zhang, Lü, Jiang (bb0130) 2012; 33 Ulvatne, Karoliussen, Siberg, Rekdal, Svendsen (bb0205) 2001; 48 Pankey, Ashcraft (bb0115) 2005; 49 Park, Park, Hahm (bb0190) 2011; 12 Kemp, Brouwer (bb0170) 2004; 18 Maisetta, Mangoni, Esin, Pichierri, Capria, Brancatisano, Luca, Barnini, Barra, Campa, Batoni (bb0025) 2009; 30 Hancock (bb0060) 2001; 1 Cassone, Vogiatzi, La Montagna, De Olivier Inacio, Cudic, Wade, Otvos (bb0015) 2008; 29 Cirioni, Silvestri, Ghiselli, Orlando, Riva, Mocchegiani, Chiodi, Castelletti, Gabrielli, Saba, Scalise, Giacometti (bb0030) 2008; 62 Cho, Lee (bb0135) 2011; 405 Habermann (bb0160) 1972; 177 Merrifield (bb0090) 1986; 232 Christensen, Simpson, Younger, Baddour, Barrett, Melton, Beachey (bb0140) 1985; 22 Sheppard (bb0095) 2003; 9 CLSI (bb0100) 2005 Jenssen, Hamill, Hancock (bb0065) 2006; 19 Saint, Cadiou, Bessin, Molle (bb0080) 2002; 1564 Giacometti, Cirioni, Del Prete, Paggi, D'Errico, Scalise (bb0185) 2000; 21 Fux, Costerton, Stewart, Stoodley (bb0045) 2005; 13 Mah, O'Toole (bb0040) 2001; 9 CLSI (bb0105) 2003 Odds (bb0120) 2003; 52 Reddy, Yedery, Aranha (bb0055) 2004; 24 Cole, Weis, Diamond (bb0070) 1997; 272 Singh, Schaefer, Parsek, Moninger, Welsh, Greenberg (bb0210) 2000; 407 Kohanski, Dwyer, Hayete, Lawrence, Collins (bb0125) 2007; 130 Singh, Parsek, Greenberg, Welsh (bb0010) 2002; 417 Wei, Campagna, Bobek (bb0145) 2006; 57 Silva, Araújo, Santos, Nunes (bb0180) 2011; 106 Baehni, Takeuchi (bb0175) 2003; 9 Suzuki, Fujikura, Higashiyama, Takata (bb0200) 1997; 45 Maisetta (10.1016/j.bbagen.2012.08.012_bb0025) 2009; 30 Hancock (10.1016/j.bbagen.2012.08.012_bb0060) 2001; 1 Stewart (10.1016/j.bbagen.2012.08.012_bb0035) 2001; 358 Cole (10.1016/j.bbagen.2012.08.012_bb0070) 1997; 272 Silva (10.1016/j.bbagen.2012.08.012_bb0180) 2011; 106 Mah (10.1016/j.bbagen.2012.08.012_bb0040) 2001; 9 Cho (10.1016/j.bbagen.2012.08.012_bb0135) 2011; 405 Singh (10.1016/j.bbagen.2012.08.012_bb0010) 2002; 417 Cui (10.1016/j.bbagen.2012.08.012_bb0130) 2012; 33 Fux (10.1016/j.bbagen.2012.08.012_bb0045) 2005; 13 Cho (10.1016/j.bbagen.2012.08.012_bb0085) 2011; 93 Eliopoulos (10.1016/j.bbagen.2012.08.012_bb0110) 1991 Cassone (10.1016/j.bbagen.2012.08.012_bb0015) 2008; 29 Giacometti (10.1016/j.bbagen.2012.08.012_bb0185) 2000; 21 Jenssen (10.1016/j.bbagen.2012.08.012_bb0065) 2006; 19 Odds (10.1016/j.bbagen.2012.08.012_bb0120) 2003; 52 Kohanski (10.1016/j.bbagen.2012.08.012_bb0125) 2007; 130 Overhage (10.1016/j.bbagen.2012.08.012_bb0050) 2008; 76 Singh (10.1016/j.bbagen.2012.08.012_bb0210) 2000; 407 Christensen (10.1016/j.bbagen.2012.08.012_bb0140) 1985; 22 Reddy (10.1016/j.bbagen.2012.08.012_bb0055) 2004; 24 Sheppard (10.1016/j.bbagen.2012.08.012_bb0095) 2003; 9 Wei (10.1016/j.bbagen.2012.08.012_bb0145) 2006; 57 Dempsey (10.1016/j.bbagen.2012.08.012_bb0155) 1990; 1031 CLSI (10.1016/j.bbagen.2012.08.012_bb0100) 2005 CLSI (10.1016/j.bbagen.2012.08.012_bb0105) 2003 Saint (10.1016/j.bbagen.2012.08.012_bb0080) 2002; 1564 Baehni (10.1016/j.bbagen.2012.08.012_bb0175) 2003; 9 Zasloff (10.1016/j.bbagen.2012.08.012_bb0005) 2002; 415 Hancock (10.1016/j.bbagen.2012.08.012_bb0020) 2001; 1 Cirioni (10.1016/j.bbagen.2012.08.012_bb0030) 2008; 62 Spindler (10.1016/j.bbagen.2012.08.012_bb0195) 2011; 55 Suzuki (10.1016/j.bbagen.2012.08.012_bb0200) 1997; 45 Ulvatne (10.1016/j.bbagen.2012.08.012_bb0205) 2001; 48 Zunino (10.1016/j.bbagen.2012.08.012_bb0165) 2007; 254 Habermann (10.1016/j.bbagen.2012.08.012_bb0160) 1972; 177 Merrifield (10.1016/j.bbagen.2012.08.012_bb0090) 1986; 232 Kohanski (10.1016/j.bbagen.2012.08.012_bb0150) 2010; 8 Pankey (10.1016/j.bbagen.2012.08.012_bb0115) 2005; 49 Park (10.1016/j.bbagen.2012.08.012_bb0190) 2011; 12 Jung (10.1016/j.bbagen.2012.08.012_bb0075) 2007; 1768 Kemp (10.1016/j.bbagen.2012.08.012_bb0170) 2004; 18 Sedlacek (10.1016/j.bbagen.2012.08.012_bb0215) 2007; 22 |
References_xml | – volume: 93 start-page: 1873 year: 2011 end-page: 1879 ident: bb0085 article-title: Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in publication-title: Biochime – volume: 1564 start-page: 359 year: 2002 end-page: 364 ident: bb0080 article-title: Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers publication-title: Biochim. Biophys. Acta – volume: 24 start-page: 536 year: 2004 end-page: 547 ident: bb0055 article-title: Antimicrobial peptides: premises and promises publication-title: Int. J. Antimicrob. Agents – volume: 407 start-page: 762 year: 2000 end-page: 764 ident: bb0210 article-title: Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms publication-title: Nature – volume: 52 start-page: 1 year: 2003 ident: bb0120 article-title: Synergy, antagonism, and what the checkerboard puts between them publication-title: J. Antimicrob. Chemother. – volume: 57 start-page: 1100 year: 2006 end-page: 1109 ident: bb0145 article-title: Effect of MUC7 peptides on the growth of bacteria and on publication-title: J. Antimicrob. Chemother. – volume: 21 start-page: 1155 year: 2000 end-page: 1160 ident: bb0185 article-title: Combination studies between polycationic peptides and clinically used antibiotics against Gram-positive and Gram-negative bacteria publication-title: Peptides – volume: 29 start-page: 1878 year: 2008 end-page: 1886 ident: bb0015 article-title: Scope and limitations of the designer proline-rich antibacterial peptide dimer, A3-APO, alone or in synergy with conventional antibiotics publication-title: Peptides – volume: 13 start-page: 34 year: 2005 end-page: 40 ident: bb0045 article-title: Survival strategies of infectious biofilm publication-title: Trends Microbiol. – volume: 232 start-page: 341 year: 1986 end-page: 347 ident: bb0090 article-title: Solid phase synthesis publication-title: Science – volume: 30 start-page: 1622 year: 2009 end-page: 1626 ident: bb0025 article-title: In vitro bactericidal activity of the N-terminal fragment of the frog peptide esculentin-1b (Esc 1-18) in combination with conventional antibiotics against publication-title: Peptides – year: 2005 ident: bb0100 article-title: Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing – volume: 1031 start-page: 143 year: 1990 end-page: 161 ident: bb0155 article-title: The actions of melittin on membranes publication-title: Biochim. Biophys. Acta – volume: 106 start-page: 44 year: 2011 end-page: 50 ident: bb0180 article-title: Evaluation of the synergistic potential of vancomycin combined with other antimicrobial agents against methicillin-resistant publication-title: Mem. Inst. Oswaldo Cruz – volume: 12 start-page: 5971 year: 2011 end-page: 5992 ident: bb0190 article-title: The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation publication-title: Int. J. Mol. Sci. – volume: 33 start-page: 2327 year: 2012 end-page: 2333 ident: bb0130 article-title: The molecular mechanism of action of bactericidal gold nanoparticles on publication-title: Biomaterials – volume: 76 start-page: 4176 year: 2008 end-page: 4182 ident: bb0050 article-title: Human host defense peptide LL-37 prevents bacterial biofilm formation publication-title: Infect. Immun. – volume: 272 start-page: 12008 year: 1997 end-page: 12013 ident: bb0070 article-title: Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder publication-title: J. Biol. Chem. – volume: 18 start-page: 869 year: 2004 end-page: 877 ident: bb0170 article-title: Viability assessment in sandwich-cultured rat hepatocytes after xenobiotic exposure publication-title: Toxicol. Vitro – volume: 1768 start-page: 1400 year: 2007 end-page: 1405 ident: bb0075 article-title: Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance publication-title: Biochim. Biophys. Acta – volume: 62 start-page: 1332 year: 2008 end-page: 1338 ident: bb0030 article-title: Protective effects of the combination of α-helical antimicrobial peptides and rifampicin in three rat models of publication-title: J. Antimicrob. Chemother. – volume: 55 start-page: 1706 year: 2011 end-page: 1716 ident: bb0195 article-title: Deciphering the mode of action of the synthetic antimicrobial peptide Bac8c publication-title: Antimicrob. Agents Chemother. – volume: 9 start-page: 23 year: 2003 end-page: 29 ident: bb0175 article-title: Anti-plaque agents in the prevention of biofilm-associated oral diseases publication-title: Oral Dis. – volume: 48 start-page: 203 year: 2001 end-page: 208 ident: bb0205 article-title: Short antibacterial peptides and erythromycin act synergically against publication-title: J. Antimicrob. Chemother. – volume: 8 start-page: 423 year: 2010 end-page: 435 ident: bb0150 article-title: How antibiotics kill bacteria: from targets to networks publication-title: Nat. Rev. Microbiol. – volume: 19 start-page: 491 year: 2006 end-page: 511 ident: bb0065 article-title: Peptide antimicrobial agents publication-title: Clin. Microbiol. Rev. – volume: 1 start-page: 156 year: 2001 end-page: 164 ident: bb0060 article-title: Cationic peptides: effectors in innate immunity and novel antimicrobials publication-title: Lancet Infect. Dis. – volume: 254 start-page: 119 year: 2007 end-page: 127 ident: bb0165 article-title: Parthenolide induces significant apoptosis and production of reactive oxygen species in high-risk pre-B leukemia cells publication-title: Cancer Lett. – volume: 9 start-page: 545 year: 2003 end-page: 552 ident: bb0095 article-title: The fluorenylmethoxycarbonyl group in solid phase synthesis publication-title: J. Pept. Sci. – start-page: 432 year: 1991 end-page: 492 ident: bb0110 article-title: Antimicrobial combinations publication-title: Antibiotics in Laboratory Medicine – volume: 415 start-page: 389 year: 2002 end-page: 395 ident: bb0005 article-title: Antimicrobial peptides of multicellular organisms publication-title: Nature – volume: 417 start-page: 552 year: 2002 end-page: 555 ident: bb0010 article-title: A component of innate immunity prevents bacterial biofilm development publication-title: Nature – volume: 1 start-page: 156 year: 2001 end-page: 164 ident: bb0020 article-title: Cationic peptides: effectors in innate immunity and novel antimicrobials publication-title: Lancet Infect. Dis. – volume: 130 start-page: 797 year: 2007 end-page: 810 ident: bb0125 article-title: A common mechanism of cellular death induced by bactericidal antibiotics publication-title: Cell – volume: 177 start-page: 314 year: 1972 end-page: 322 ident: bb0160 article-title: Bee and wasp venoms publication-title: Science – volume: 9 start-page: 34 year: 2001 end-page: 39 ident: bb0040 article-title: Mechanisms of biofilm resistance to antimicrobial agents publication-title: Trends Microbiol. – volume: 49 start-page: 2959 year: 2005 end-page: 2964 ident: bb0115 article-title: In vitro synergy of ciprofloxacin and gatifloxacin against ciprofloxacin-resistant publication-title: Antimicrob. Agents Chemother. – volume: 358 start-page: 135 year: 2001 end-page: 138 ident: bb0035 article-title: Antibiotic resistance of bacteria in biofilms publication-title: Lancet – year: 2003 ident: bb0105 article-title: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically – volume: 405 start-page: 422 year: 2011 end-page: 427 ident: bb0135 article-title: The characteristic region of arenicin-1 involved with a bacterial membrane targeting mechanism publication-title: Biochem. Biophys. Res. Commun. – volume: 22 start-page: 996 year: 1985 end-page: 1006 ident: bb0140 article-title: Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices publication-title: J. Clin. Microbiol. – volume: 45 start-page: 49 year: 1997 end-page: 53 ident: bb0200 article-title: DNA staining for fluorescence and laser confocal microscopy publication-title: J. Histochem. Cytochem. – volume: 22 start-page: 333 year: 2007 end-page: 339 ident: bb0215 article-title: Antibiotic resistance in an in vitro subgingival biofilm model publication-title: Oral Microbiol. Immunol. – volume: 52 start-page: 1 year: 2003 ident: 10.1016/j.bbagen.2012.08.012_bb0120 article-title: Synergy, antagonism, and what the checkerboard puts between them publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkg301 – volume: 358 start-page: 135 year: 2001 ident: 10.1016/j.bbagen.2012.08.012_bb0035 article-title: Antibiotic resistance of bacteria in biofilms publication-title: Lancet doi: 10.1016/S0140-6736(01)05321-1 – volume: 106 start-page: 44 year: 2011 ident: 10.1016/j.bbagen.2012.08.012_bb0180 article-title: Evaluation of the synergistic potential of vancomycin combined with other antimicrobial agents against methicillin-resistant Staphylococcus aureus and coagulase-negative Staphylococcus spp. strains publication-title: Mem. Inst. Oswaldo Cruz doi: 10.1590/S0074-02762011000100007 – volume: 12 start-page: 5971 year: 2011 ident: 10.1016/j.bbagen.2012.08.012_bb0190 article-title: The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms12095971 – volume: 9 start-page: 34 year: 2001 ident: 10.1016/j.bbagen.2012.08.012_bb0040 article-title: Mechanisms of biofilm resistance to antimicrobial agents publication-title: Trends Microbiol. doi: 10.1016/S0966-842X(00)01913-2 – volume: 33 start-page: 2327 year: 2012 ident: 10.1016/j.bbagen.2012.08.012_bb0130 article-title: The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.11.057 – volume: 1031 start-page: 143 year: 1990 ident: 10.1016/j.bbagen.2012.08.012_bb0155 article-title: The actions of melittin on membranes publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4157(90)90006-X – volume: 405 start-page: 422 year: 2011 ident: 10.1016/j.bbagen.2012.08.012_bb0135 article-title: The characteristic region of arenicin-1 involved with a bacterial membrane targeting mechanism publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.01.046 – volume: 19 start-page: 491 year: 2006 ident: 10.1016/j.bbagen.2012.08.012_bb0065 article-title: Peptide antimicrobial agents publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.00056-05 – volume: 1768 start-page: 1400 year: 2007 ident: 10.1016/j.bbagen.2012.08.012_bb0075 article-title: Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2007.02.024 – volume: 177 start-page: 314 year: 1972 ident: 10.1016/j.bbagen.2012.08.012_bb0160 article-title: Bee and wasp venoms publication-title: Science doi: 10.1126/science.177.4046.314 – volume: 254 start-page: 119 year: 2007 ident: 10.1016/j.bbagen.2012.08.012_bb0165 article-title: Parthenolide induces significant apoptosis and production of reactive oxygen species in high-risk pre-B leukemia cells publication-title: Cancer Lett. doi: 10.1016/j.canlet.2007.03.002 – volume: 130 start-page: 797 year: 2007 ident: 10.1016/j.bbagen.2012.08.012_bb0125 article-title: A common mechanism of cellular death induced by bactericidal antibiotics publication-title: Cell doi: 10.1016/j.cell.2007.06.049 – volume: 22 start-page: 333 year: 2007 ident: 10.1016/j.bbagen.2012.08.012_bb0215 article-title: Antibiotic resistance in an in vitro subgingival biofilm model publication-title: Oral Microbiol. Immunol. doi: 10.1111/j.1399-302X.2007.00366.x – volume: 22 start-page: 996 year: 1985 ident: 10.1016/j.bbagen.2012.08.012_bb0140 article-title: Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.22.6.996-1006.1985 – volume: 55 start-page: 1706 year: 2011 ident: 10.1016/j.bbagen.2012.08.012_bb0195 article-title: Deciphering the mode of action of the synthetic antimicrobial peptide Bac8c publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01053-10 – volume: 9 start-page: 23 year: 2003 ident: 10.1016/j.bbagen.2012.08.012_bb0175 article-title: Anti-plaque agents in the prevention of biofilm-associated oral diseases publication-title: Oral Dis. doi: 10.1034/j.1601-0825.9.s1.5.x – year: 2003 ident: 10.1016/j.bbagen.2012.08.012_bb0105 – start-page: 432 year: 1991 ident: 10.1016/j.bbagen.2012.08.012_bb0110 article-title: Antimicrobial combinations – volume: 232 start-page: 341 year: 1986 ident: 10.1016/j.bbagen.2012.08.012_bb0090 article-title: Solid phase synthesis publication-title: Science doi: 10.1126/science.3961484 – volume: 62 start-page: 1332 year: 2008 ident: 10.1016/j.bbagen.2012.08.012_bb0030 article-title: Protective effects of the combination of α-helical antimicrobial peptides and rifampicin in three rat models of Pseudomonas aeruginosa infection publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkn393 – volume: 24 start-page: 536 year: 2004 ident: 10.1016/j.bbagen.2012.08.012_bb0055 article-title: Antimicrobial peptides: premises and promises publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2004.09.005 – volume: 13 start-page: 34 year: 2005 ident: 10.1016/j.bbagen.2012.08.012_bb0045 article-title: Survival strategies of infectious biofilm publication-title: Trends Microbiol. doi: 10.1016/j.tim.2004.11.010 – volume: 1 start-page: 156 year: 2001 ident: 10.1016/j.bbagen.2012.08.012_bb0060 article-title: Cationic peptides: effectors in innate immunity and novel antimicrobials publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(01)00092-5 – year: 2005 ident: 10.1016/j.bbagen.2012.08.012_bb0100 – volume: 57 start-page: 1100 year: 2006 ident: 10.1016/j.bbagen.2012.08.012_bb0145 article-title: Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkl120 – volume: 18 start-page: 869 year: 2004 ident: 10.1016/j.bbagen.2012.08.012_bb0170 article-title: Viability assessment in sandwich-cultured rat hepatocytes after xenobiotic exposure publication-title: Toxicol. Vitro doi: 10.1016/j.tiv.2004.04.014 – volume: 272 start-page: 12008 year: 1997 ident: 10.1016/j.bbagen.2012.08.012_bb0070 article-title: Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.18.12008 – volume: 9 start-page: 545 year: 2003 ident: 10.1016/j.bbagen.2012.08.012_bb0095 article-title: The fluorenylmethoxycarbonyl group in solid phase synthesis publication-title: J. Pept. Sci. doi: 10.1002/psc.479 – volume: 1 start-page: 156 year: 2001 ident: 10.1016/j.bbagen.2012.08.012_bb0020 article-title: Cationic peptides: effectors in innate immunity and novel antimicrobials publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(01)00092-5 – volume: 417 start-page: 552 year: 2002 ident: 10.1016/j.bbagen.2012.08.012_bb0010 article-title: A component of innate immunity prevents bacterial biofilm development publication-title: Nature doi: 10.1038/417552a – volume: 1564 start-page: 359 year: 2002 ident: 10.1016/j.bbagen.2012.08.012_bb0080 article-title: Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2736(02)00470-4 – volume: 407 start-page: 762 year: 2000 ident: 10.1016/j.bbagen.2012.08.012_bb0210 article-title: Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms publication-title: Nature doi: 10.1038/35037627 – volume: 48 start-page: 203 year: 2001 ident: 10.1016/j.bbagen.2012.08.012_bb0205 article-title: Short antibacterial peptides and erythromycin act synergically against Escherichia coli publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/48.2.203 – volume: 29 start-page: 1878 year: 2008 ident: 10.1016/j.bbagen.2012.08.012_bb0015 article-title: Scope and limitations of the designer proline-rich antibacterial peptide dimer, A3-APO, alone or in synergy with conventional antibiotics publication-title: Peptides doi: 10.1016/j.peptides.2008.07.016 – volume: 8 start-page: 423 year: 2010 ident: 10.1016/j.bbagen.2012.08.012_bb0150 article-title: How antibiotics kill bacteria: from targets to networks publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2333 – volume: 415 start-page: 389 year: 2002 ident: 10.1016/j.bbagen.2012.08.012_bb0005 article-title: Antimicrobial peptides of multicellular organisms publication-title: Nature doi: 10.1038/415389a – volume: 49 start-page: 2959 year: 2005 ident: 10.1016/j.bbagen.2012.08.012_bb0115 article-title: In vitro synergy of ciprofloxacin and gatifloxacin against ciprofloxacin-resistant Pseudomonas aeruginosa publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.49.7.2959-2964.2005 – volume: 21 start-page: 1155 year: 2000 ident: 10.1016/j.bbagen.2012.08.012_bb0185 article-title: Combination studies between polycationic peptides and clinically used antibiotics against Gram-positive and Gram-negative bacteria publication-title: Peptides doi: 10.1016/S0196-9781(00)00254-0 – volume: 76 start-page: 4176 year: 2008 ident: 10.1016/j.bbagen.2012.08.012_bb0050 article-title: Human host defense peptide LL-37 prevents bacterial biofilm formation publication-title: Infect. Immun. doi: 10.1128/IAI.00318-08 – volume: 30 start-page: 1622 year: 2009 ident: 10.1016/j.bbagen.2012.08.012_bb0025 article-title: In vitro bactericidal activity of the N-terminal fragment of the frog peptide esculentin-1b (Esc 1-18) in combination with conventional antibiotics against Stenotrophomonas maltophilia publication-title: Peptides doi: 10.1016/j.peptides.2009.06.004 – volume: 93 start-page: 1873 year: 2011 ident: 10.1016/j.bbagen.2012.08.012_bb0085 article-title: Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in Candida albicans publication-title: Biochime doi: 10.1016/j.biochi.2011.07.011 – volume: 45 start-page: 49 year: 1997 ident: 10.1016/j.bbagen.2012.08.012_bb0200 article-title: DNA staining for fluorescence and laser confocal microscopy publication-title: J. Histochem. Cytochem. doi: 10.1177/002215549704500107 |
SSID | ssj0000595 ssj0025309 |
Score | 2.2991893 |
Snippet | Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin... BACKGROUND: Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1831 |
SubjectTerms | ampicillin Anti-Bacterial Agents - pharmacology Anti-Infective Agents - pharmacology antibacterial properties Antibiofilm effect Antimicrobial Cationic Peptides - pharmacology antimicrobial peptides Bacteria - drug effects biofilm Biofilms - drug effects Cell Membrane - drug effects cell membranes death Drug Combinations Drug Synergism drug therapy Enterococcus faecium erythromycin Fish Proteins - pharmacology fluorescein Hydroxyl radical Hydroxyl Radical - metabolism hydroxyl radicals Membrane damage Microbial Sensitivity Tests Microbial Viability - drug effects NAD (coenzyme) NADP - metabolism oxidative stress permeability Pleurocidin Pleuronectes americanus propidium synergism Synergistic effect thiourea Thiourea - pharmacology tissue culture viability |
Title | Antimicrobial peptide pleurocidin synergizes with antibiotics through hydroxyl radical formation and membrane damage, and exerts antibiofilm activity |
URI | https://dx.doi.org/10.1016/j.bbagen.2012.08.012 https://www.ncbi.nlm.nih.gov/pubmed/22921812 https://www.proquest.com/docview/1115065124 https://www.proquest.com/docview/2000034640 |
Volume | 1820 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYILgvLo8qiMxJF0E9uJk-NqRbWwogfKit4sP0vQJrvqpoftof-C_8tMHos4lEqcolh2FHvGM9_Y8yDkvQncZblzkQPzIxIA36LccRMFKx1YHzJkAc87vpxms4X4fJ6e75HpEAuDbpW97O9keiut-5Zxv5rjdVmOz_BSD-AEaCxUPAzlsBASufz45o-bB8CHtLtJEBH2HsLnWh8vY2DTYhZUPBHMj-OE3aae7gW9uh2Etsro5Al53KNIOul-9CnZ8_UBedDVldwekIfToYzbM_JrUjdlVbb5lmDIGr1YnKfrJWblsCWoLrrZYgBgee03FI9lKSx2acoVJnCmfR0f-mPr0OFlSS91e7NDd1GP0N3RyldgdteeOl3BZD-0jVjOqdkMnwvlsqIYRoHVKp6TxcnHb9NZ1NdiiKxIiibSNsukA2xhmY91qlMhY-l0VljpRZEzkQrHfJIEa7i1gDITHwAbGqszZrT2_AXZr1e1PyQ01zLkseGcAxYTqdPCu1QGnbgid2koRoQPJFC2T1SO9TKWavBI-6k6wikknMIymgkbkWg3at0l6rijvxyoq_5iOAW65I6Rh8AMSl-AFFaLM4Y5-tpUcYUYkXcDhyggM969wNKvrjZoaKUx8uo_-mDUVMxFJuIRedmx124qjBUtGHv137_9mjzCt84V5w3Zby6v_FsAVI05anfMEbk_-TSfneJz_vX7_Ddr5CKL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RoIpeUEsfBGi7lXqsG3v9PkZRUSiQC0Tittpn6yp2ImIO6f_g_zLjR6oeKFKv9q5lz4xnvt2d-Qbgs3KhSTJjPIPLDy9C-OZlJlSe06nB1UfqEkf7HZezZDqPvt_ENzsw6WthKK2y8_2tT2-8dXdl1ElztCqK0RUd6iGcwIhFgYejH94ldqp4ALvjs_Pp7I9DjpvmKzTeowl9BV2T5qUU_rdEhEqbgtlXP-CPRahnTi4fx6FNPDp9CfsdkGTj9l1fwY6tDuB521pycwB7k76T22u4H1d1URYN5RJOWVEii7FstSBiDl1g9GLrDdUAFr_tmtHOLEN5F6pYEocz61r5sJ8bQzkvC3Yrm8Mdti18xOGGlbbElXdlmZElfuyX5iJ1dKrX_eNcsSgZVVJQw4o3MD_9dj2Zel07Bk9HQV57UidJahBeaG59GUuUtZ8ameQ6tVGecRS-4TYInFah1gg0A-sQHiotE66ktOFbGFTLyh4Cy2TqMl-FYYhwLIqNjKyJUycDk2cmdvkQwl4FQndc5dQyYyH6pLRfolWcIMUJ6qQZ8CF421mrlqvjifFpr13xl80JDCdPzDxEYxDyBzpiMb_iRNPXsMXl0RA-9RYiUM10_IKiX96taa0V-2Su_xhDhVN-GCWRP4R3rXltP4XzvMFjR__92h9hb3p9eSEuzmbnx_CC7rSZOScwqG_v7HvEV7X60P0_Dy9QI5k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antimicrobial+peptide+pleurocidin+synergizes+with+antibiotics+through+hydroxyl+radical+formation+and+membrane+damage%2C+and+exerts+antibiofilm+activity&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Choi%2C+Hyemin&rft.au=Lee%2C+Dong+Gun&rft.date=2012-12-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1820&rft.issue=12&rft.spage=1831&rft.epage=1838&rft_id=info:doi/10.1016%2Fj.bbagen.2012.08.012&rft.externalDocID=S0304416512002322 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |