Antimicrobial peptide pleurocidin synergizes with antibiotics through hydroxyl radical formation and membrane damage, and exerts antibiofilm activity

Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin in combination with conventional antibiotics, and the antibiofilm effect of the peptide are poorly understood. The interaction between pleuroc...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1820; no. 12; pp. 1831 - 1838
Main Authors Choi, Hyemin, Lee, Dong Gun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2012
Subjects
Online AccessGet full text
ISSN0304-4165
0006-3002
1872-8006
DOI10.1016/j.bbagen.2012.08.012

Cover

Loading…
Abstract Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin in combination with conventional antibiotics, and the antibiofilm effect of the peptide are poorly understood. The interaction between pleurocidin and antibiotics was evaluated using checkerboard assay. To study the mechanism(s) involved in their synergism, we detected hydroxyl radical formation using 3′-(p-hydroxyphenyl) fluorescein, measured the NAD+/NADH ratio by NAD+ cycling assay, observed change in bacterial viability with the hydroxyl radical scavenger thiourea, and investigated cytoplasmic membrane damage using propidium iodide. Also, the antibiofilm effect of pleurocidin was examined with the tissue culture plate method. All combinations of pleurocidin and antibiotics showed synergistic interaction against bacterial strains (fractional inhibitory concentration index (FICI)≤0.5) except for Enterococcus faecium treated with a combination of the peptide and ampicillin (FICI=0.75). We identified that pleurocidin alone and in combinations with antibiotics induced formation of hydroxyl radicals. The oxidative stress was caused by a transient NADH depletion and the addition of thiourea prevented bacterial death, especially in the case of the combined treatment of pleurocidin and ampicillin showing synergisms. The combination of pleurocidin and erythromycin increased permeability of bacterial cytoplasmic membrane. Additionally, pleurocidin exhibited a potent inhibitory effect on preformed biofilm of bacterial organisms. In conclusion, pleurocidin synergized with antibiotics through hydroxyl radical formation and membrane-active mechanism, and exerted antibiofilm activity. The synergistic effect between pleurocidin and antibiotics suggests the AMP is a potential therapeutic agent and adjuvant for antimicrobial chemotherapy. ► We aimed to evaluate the combination effect of pleurocidin with antibiotics. ► Most combinations between pleurocidin and antibiotics showed synergistic effects. ► We investigated the mechanism(s) involved in the synergistic effects. ► The synergisms were induced by hydroxyl radical production and membrane damage. ► Additionally, we indentified that pleurocidin exerted antibiofilm effect.
AbstractList BACKGROUND: Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin in combination with conventional antibiotics, and the antibiofilm effect of the peptide are poorly understood. METHODS: The interaction between pleurocidin and antibiotics was evaluated using checkerboard assay. To study the mechanism(s) involved in their synergism, we detected hydroxyl radical formation using 3′-(p-hydroxyphenyl) fluorescein, measured the NAD⁺/NADH ratio by NAD⁺ cycling assay, observed change in bacterial viability with the hydroxyl radical scavenger thiourea, and investigated cytoplasmic membrane damage using propidium iodide. Also, the antibiofilm effect of pleurocidin was examined with the tissue culture plate method. RESULTS: All combinations of pleurocidin and antibiotics showed synergistic interaction against bacterial strains (fractional inhibitory concentration index (FICI)≤0.5) except for Enterococcus faecium treated with a combination of the peptide and ampicillin (FICI=0.75). We identified that pleurocidin alone and in combinations with antibiotics induced formation of hydroxyl radicals. The oxidative stress was caused by a transient NADH depletion and the addition of thiourea prevented bacterial death, especially in the case of the combined treatment of pleurocidin and ampicillin showing synergisms. The combination of pleurocidin and erythromycin increased permeability of bacterial cytoplasmic membrane. Additionally, pleurocidin exhibited a potent inhibitory effect on preformed biofilm of bacterial organisms. In conclusion, pleurocidin synergized with antibiotics through hydroxyl radical formation and membrane-active mechanism, and exerted antibiofilm activity. GENERAL SIGNIFICANCE: The synergistic effect between pleurocidin and antibiotics suggests the AMP is a potential therapeutic agent and adjuvant for antimicrobial chemotherapy.
Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin in combination with conventional antibiotics, and the antibiofilm effect of the peptide are poorly understood. The interaction between pleurocidin and antibiotics was evaluated using checkerboard assay. To study the mechanism(s) involved in their synergism, we detected hydroxyl radical formation using 3′-(p-hydroxyphenyl) fluorescein, measured the NAD+/NADH ratio by NAD+ cycling assay, observed change in bacterial viability with the hydroxyl radical scavenger thiourea, and investigated cytoplasmic membrane damage using propidium iodide. Also, the antibiofilm effect of pleurocidin was examined with the tissue culture plate method. All combinations of pleurocidin and antibiotics showed synergistic interaction against bacterial strains (fractional inhibitory concentration index (FICI)≤0.5) except for Enterococcus faecium treated with a combination of the peptide and ampicillin (FICI=0.75). We identified that pleurocidin alone and in combinations with antibiotics induced formation of hydroxyl radicals. The oxidative stress was caused by a transient NADH depletion and the addition of thiourea prevented bacterial death, especially in the case of the combined treatment of pleurocidin and ampicillin showing synergisms. The combination of pleurocidin and erythromycin increased permeability of bacterial cytoplasmic membrane. Additionally, pleurocidin exhibited a potent inhibitory effect on preformed biofilm of bacterial organisms. In conclusion, pleurocidin synergized with antibiotics through hydroxyl radical formation and membrane-active mechanism, and exerted antibiofilm activity. The synergistic effect between pleurocidin and antibiotics suggests the AMP is a potential therapeutic agent and adjuvant for antimicrobial chemotherapy. ► We aimed to evaluate the combination effect of pleurocidin with antibiotics. ► Most combinations between pleurocidin and antibiotics showed synergistic effects. ► We investigated the mechanism(s) involved in the synergistic effects. ► The synergisms were induced by hydroxyl radical production and membrane damage. ► Additionally, we indentified that pleurocidin exerted antibiofilm effect.
Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin in combination with conventional antibiotics, and the antibiofilm effect of the peptide are poorly understood.BACKGROUNDPleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin in combination with conventional antibiotics, and the antibiofilm effect of the peptide are poorly understood.The interaction between pleurocidin and antibiotics was evaluated using checkerboard assay. To study the mechanism(s) involved in their synergism, we detected hydroxyl radical formation using 3'-(p-hydroxyphenyl) fluorescein, measured the NAD(+)/NADH ratio by NAD(+) cycling assay, observed change in bacterial viability with the hydroxyl radical scavenger thiourea, and investigated cytoplasmic membrane damage using propidium iodide. Also, the antibiofilm effect of pleurocidin was examined with the tissue culture plate method.METHODSThe interaction between pleurocidin and antibiotics was evaluated using checkerboard assay. To study the mechanism(s) involved in their synergism, we detected hydroxyl radical formation using 3'-(p-hydroxyphenyl) fluorescein, measured the NAD(+)/NADH ratio by NAD(+) cycling assay, observed change in bacterial viability with the hydroxyl radical scavenger thiourea, and investigated cytoplasmic membrane damage using propidium iodide. Also, the antibiofilm effect of pleurocidin was examined with the tissue culture plate method.All combinations of pleurocidin and antibiotics showed synergistic interaction against bacterial strains (fractional inhibitory concentration index (FICI)≤0.5) except for Enterococcus faecium treated with a combination of the peptide and ampicillin (FICI=0.75). We identified that pleurocidin alone and in combinations with antibiotics induced formation of hydroxyl radicals. The oxidative stress was caused by a transient NADH depletion and the addition of thiourea prevented bacterial death, especially in the case of the combined treatment of pleurocidin and ampicillin showing synergisms. The combination of pleurocidin and erythromycin increased permeability of bacterial cytoplasmic membrane. Additionally, pleurocidin exhibited a potent inhibitory effect on preformed biofilm of bacterial organisms. In conclusion, pleurocidin synergized with antibiotics through hydroxyl radical formation and membrane-active mechanism, and exerted antibiofilm activity.RESULTSAll combinations of pleurocidin and antibiotics showed synergistic interaction against bacterial strains (fractional inhibitory concentration index (FICI)≤0.5) except for Enterococcus faecium treated with a combination of the peptide and ampicillin (FICI=0.75). We identified that pleurocidin alone and in combinations with antibiotics induced formation of hydroxyl radicals. The oxidative stress was caused by a transient NADH depletion and the addition of thiourea prevented bacterial death, especially in the case of the combined treatment of pleurocidin and ampicillin showing synergisms. The combination of pleurocidin and erythromycin increased permeability of bacterial cytoplasmic membrane. Additionally, pleurocidin exhibited a potent inhibitory effect on preformed biofilm of bacterial organisms. In conclusion, pleurocidin synergized with antibiotics through hydroxyl radical formation and membrane-active mechanism, and exerted antibiofilm activity.The synergistic effect between pleurocidin and antibiotics suggests the AMP is a potential therapeutic agent and adjuvant for antimicrobial chemotherapy.GENERAL SIGNIFICANCEThe synergistic effect between pleurocidin and antibiotics suggests the AMP is a potential therapeutic agent and adjuvant for antimicrobial chemotherapy.
Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin in combination with conventional antibiotics, and the antibiofilm effect of the peptide are poorly understood. The interaction between pleurocidin and antibiotics was evaluated using checkerboard assay. To study the mechanism(s) involved in their synergism, we detected hydroxyl radical formation using 3'-(p-hydroxyphenyl) fluorescein, measured the NAD(+)/NADH ratio by NAD(+) cycling assay, observed change in bacterial viability with the hydroxyl radical scavenger thiourea, and investigated cytoplasmic membrane damage using propidium iodide. Also, the antibiofilm effect of pleurocidin was examined with the tissue culture plate method. All combinations of pleurocidin and antibiotics showed synergistic interaction against bacterial strains (fractional inhibitory concentration index (FICI)≤0.5) except for Enterococcus faecium treated with a combination of the peptide and ampicillin (FICI=0.75). We identified that pleurocidin alone and in combinations with antibiotics induced formation of hydroxyl radicals. The oxidative stress was caused by a transient NADH depletion and the addition of thiourea prevented bacterial death, especially in the case of the combined treatment of pleurocidin and ampicillin showing synergisms. The combination of pleurocidin and erythromycin increased permeability of bacterial cytoplasmic membrane. Additionally, pleurocidin exhibited a potent inhibitory effect on preformed biofilm of bacterial organisms. In conclusion, pleurocidin synergized with antibiotics through hydroxyl radical formation and membrane-active mechanism, and exerted antibiofilm activity. The synergistic effect between pleurocidin and antibiotics suggests the AMP is a potential therapeutic agent and adjuvant for antimicrobial chemotherapy.
Author Choi, Hyemin
Lee, Dong Gun
Author_xml – sequence: 1
  givenname: Hyemin
  surname: Choi
  fullname: Choi, Hyemin
– sequence: 2
  givenname: Dong Gun
  surname: Lee
  fullname: Lee, Dong Gun
  email: dglee222@knu.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22921812$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFN0DgJQtmsD2Ok7BAqir-pEosoGvLsW9m7iiJg-0pDe_B--KZdDYsqDdXsr5zfHzuBTkb_ACEvORsxRlX73arpjEbGFaCcbFi1SqPJ2TBq1IsK8bUGVmwNZNLyVVxTi5i3LF8irp4Rs6FqAWvuFiQP1dDwh5t8A2ajo4wJnRAxw72wVt0ONA4DRA2-Bsi_YVpS01WNOgT2kjTNvj9Zku3kwv-fupoMA5tNmp96E1CP2Tc0R76JpgBqDN9zvz2eAn3EFI82bXY9dTYhHeYpufkaWu6CC8e5iW5_fTxx_WX5c23z1-vr26WVvI6LY1VqnQ1Z1YAM4UpZMlKZ1RtS5B1JWQhnQDOW9usreUF49Dyet1Yo0RjDKwvyZvZdwz-5x5i0j1GC12Xs_p91OJQ2VoqyR5FOc_-quBCZvTVA7pvenB6DNibMOlT6xl4PwO59hgDtNpiOraVgsFOc6YPK9Y7Pa9YH1asWaXZUSz_EZ_8H5G9nmWt8dpsAkZ9-z0DKv9QSFYfYn-YCciN3yEEHS3CYMFhAJu08_j_J_4C4zjOwQ
CitedBy_id crossref_primary_10_3390_ph14070687
crossref_primary_10_1002_adma_202303432
crossref_primary_10_1038_s42003_020_01420_3
crossref_primary_10_1111_jam_14357
crossref_primary_10_1016_j_phymed_2021_153710
crossref_primary_10_1042_BCJ20170461
crossref_primary_10_1371_journal_pone_0117065
crossref_primary_10_3390_ph7030265
crossref_primary_10_1002_ppap_202400048
crossref_primary_10_3389_fmicb_2021_725916
crossref_primary_10_1016_j_actbio_2023_09_014
crossref_primary_10_1080_00914037_2022_2066668
crossref_primary_10_1002_jobm_202100133
crossref_primary_10_1080_08927014_2025_2460491
crossref_primary_10_1002_iub_1973
crossref_primary_10_1016_j_bbrc_2020_01_002
crossref_primary_10_1007_s10534_014_9768_x
crossref_primary_10_1128_spectrum_02056_21
crossref_primary_10_1146_annurev_pharmtox_010814_124712
crossref_primary_10_1038_s41598_020_79976_7
crossref_primary_10_3390_antibiotics11060794
crossref_primary_10_1007_s00284_015_0937_0
crossref_primary_10_3390_antibiotics12101518
crossref_primary_10_1002_ppap_202200204
crossref_primary_10_1038_srep21385
crossref_primary_10_1002_advs_202300472
crossref_primary_10_1111_jfd_13540
crossref_primary_10_1002_adma_202407268
crossref_primary_10_1093_femspd_ftv018
crossref_primary_10_1002_jobm_201500617
crossref_primary_10_1016_j_ijfoodmicro_2018_06_021
crossref_primary_10_1038_srep19262
crossref_primary_10_1007_s12272_016_0769_x
crossref_primary_10_3390_md11061836
crossref_primary_10_1073_pnas_1425007112
crossref_primary_10_1002_adma_201302952
crossref_primary_10_1128_AAC_02142_13
crossref_primary_10_1016_j_gene_2020_145289
crossref_primary_10_1007_s13205_019_1801_x
crossref_primary_10_1038_s41598_017_03576_1
crossref_primary_10_1007_s00253_015_6553_x
crossref_primary_10_1007_s00726_019_02804_4
crossref_primary_10_1016_j_ejps_2023_106648
crossref_primary_10_3389_fphar_2024_1340029
crossref_primary_10_1007_s10989_020_10068_w
crossref_primary_10_1007_s00284_016_1092_y
crossref_primary_10_3389_fmicb_2024_1390765
crossref_primary_10_1016_j_ejps_2017_11_008
crossref_primary_10_3390_biom10060893
crossref_primary_10_1016_j_foodcont_2020_107148
crossref_primary_10_1007_s00253_015_6375_x
crossref_primary_10_1016_j_porgcoat_2014_02_002
crossref_primary_10_1128_IAI_01915_14
Cites_doi 10.1093/jac/dkg301
10.1016/S0140-6736(01)05321-1
10.1590/S0074-02762011000100007
10.3390/ijms12095971
10.1016/S0966-842X(00)01913-2
10.1016/j.biomaterials.2011.11.057
10.1016/0304-4157(90)90006-X
10.1016/j.bbrc.2011.01.046
10.1128/CMR.00056-05
10.1016/j.bbamem.2007.02.024
10.1126/science.177.4046.314
10.1016/j.canlet.2007.03.002
10.1016/j.cell.2007.06.049
10.1111/j.1399-302X.2007.00366.x
10.1128/JCM.22.6.996-1006.1985
10.1128/AAC.01053-10
10.1034/j.1601-0825.9.s1.5.x
10.1126/science.3961484
10.1093/jac/dkn393
10.1016/j.ijantimicag.2004.09.005
10.1016/j.tim.2004.11.010
10.1016/S1473-3099(01)00092-5
10.1093/jac/dkl120
10.1016/j.tiv.2004.04.014
10.1074/jbc.272.18.12008
10.1002/psc.479
10.1038/417552a
10.1016/S0005-2736(02)00470-4
10.1038/35037627
10.1093/jac/48.2.203
10.1016/j.peptides.2008.07.016
10.1038/nrmicro2333
10.1038/415389a
10.1128/AAC.49.7.2959-2964.2005
10.1016/S0196-9781(00)00254-0
10.1128/IAI.00318-08
10.1016/j.peptides.2009.06.004
10.1016/j.biochi.2011.07.011
10.1177/002215549704500107
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright © 2012 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: Copyright © 2012 Elsevier B.V. All rights reserved.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2012.08.012
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 1838
ExternalDocumentID 22921812
10_1016_j_bbagen_2012_08_012
US201600024094
S0304416512002322
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c419t-ac667d910c2e0a5a54707da69c7e4982454d2e11fcb3cc1501ef193bca62baae3
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Tue Aug 05 09:29:58 EDT 2025
Fri Jul 11 15:32:42 EDT 2025
Mon Jul 21 06:04:44 EDT 2025
Thu Apr 24 23:03:33 EDT 2025
Tue Jul 01 00:21:59 EDT 2025
Wed Dec 27 19:17:12 EST 2023
Fri Feb 23 02:34:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords CLSI
PBS
TCP
BHI
MIC
CH3CN
EPS
FICI
Pleuronectes americanus
Pleurocidin
MTT
AMPs
Antibiofilm effect
LB
Membrane damage
PI
Synergistic effect
Hydroxyl radical
NCCLS
HPF
PES
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-ac667d910c2e0a5a54707da69c7e4982454d2e11fcb3cc1501ef193bca62baae3
Notes http://dx.doi.org/10.1016/j.bbagen.2012.08.012
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22921812
PQID 1115065124
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000034640
proquest_miscellaneous_1115065124
pubmed_primary_22921812
crossref_citationtrail_10_1016_j_bbagen_2012_08_012
crossref_primary_10_1016_j_bbagen_2012_08_012
fao_agris_US201600024094
elsevier_sciencedirect_doi_10_1016_j_bbagen_2012_08_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dempsey (bb0155) 1990; 1031
Cho, Lee (bb0085) 2011; 93
Overhage, Campisano, Bains, Torfs, Rehm, Hancock (bb0050) 2008; 76
Kohanski, Dwyer, Collins (bb0150) 2010; 8
Sedlacek, Walker (bb0215) 2007; 22
Spindler, Hale, Giddings, Hancock, Gill (bb0195) 2011; 55
Zunino, Ducore, Storms (bb0165) 2007; 254
Hancock (bb0020) 2001; 1
Jung, Park, Sung, Suh, Lee, Hahm, Lee (bb0075) 2007; 1768
Zasloff (bb0005) 2002; 415
Stewart, Costerton (bb0035) 2001; 358
Eliopoulos, Moellering (bb0110) 1991
Cui, Zhao, Tian, Zhang, Lü, Jiang (bb0130) 2012; 33
Ulvatne, Karoliussen, Siberg, Rekdal, Svendsen (bb0205) 2001; 48
Pankey, Ashcraft (bb0115) 2005; 49
Park, Park, Hahm (bb0190) 2011; 12
Kemp, Brouwer (bb0170) 2004; 18
Maisetta, Mangoni, Esin, Pichierri, Capria, Brancatisano, Luca, Barnini, Barra, Campa, Batoni (bb0025) 2009; 30
Hancock (bb0060) 2001; 1
Cassone, Vogiatzi, La Montagna, De Olivier Inacio, Cudic, Wade, Otvos (bb0015) 2008; 29
Cirioni, Silvestri, Ghiselli, Orlando, Riva, Mocchegiani, Chiodi, Castelletti, Gabrielli, Saba, Scalise, Giacometti (bb0030) 2008; 62
Cho, Lee (bb0135) 2011; 405
Habermann (bb0160) 1972; 177
Merrifield (bb0090) 1986; 232
Christensen, Simpson, Younger, Baddour, Barrett, Melton, Beachey (bb0140) 1985; 22
Sheppard (bb0095) 2003; 9
CLSI (bb0100) 2005
Jenssen, Hamill, Hancock (bb0065) 2006; 19
Saint, Cadiou, Bessin, Molle (bb0080) 2002; 1564
Giacometti, Cirioni, Del Prete, Paggi, D'Errico, Scalise (bb0185) 2000; 21
Fux, Costerton, Stewart, Stoodley (bb0045) 2005; 13
Mah, O'Toole (bb0040) 2001; 9
CLSI (bb0105) 2003
Odds (bb0120) 2003; 52
Reddy, Yedery, Aranha (bb0055) 2004; 24
Cole, Weis, Diamond (bb0070) 1997; 272
Singh, Schaefer, Parsek, Moninger, Welsh, Greenberg (bb0210) 2000; 407
Kohanski, Dwyer, Hayete, Lawrence, Collins (bb0125) 2007; 130
Singh, Parsek, Greenberg, Welsh (bb0010) 2002; 417
Wei, Campagna, Bobek (bb0145) 2006; 57
Silva, Araújo, Santos, Nunes (bb0180) 2011; 106
Baehni, Takeuchi (bb0175) 2003; 9
Suzuki, Fujikura, Higashiyama, Takata (bb0200) 1997; 45
Maisetta (10.1016/j.bbagen.2012.08.012_bb0025) 2009; 30
Hancock (10.1016/j.bbagen.2012.08.012_bb0060) 2001; 1
Stewart (10.1016/j.bbagen.2012.08.012_bb0035) 2001; 358
Cole (10.1016/j.bbagen.2012.08.012_bb0070) 1997; 272
Silva (10.1016/j.bbagen.2012.08.012_bb0180) 2011; 106
Mah (10.1016/j.bbagen.2012.08.012_bb0040) 2001; 9
Cho (10.1016/j.bbagen.2012.08.012_bb0135) 2011; 405
Singh (10.1016/j.bbagen.2012.08.012_bb0010) 2002; 417
Cui (10.1016/j.bbagen.2012.08.012_bb0130) 2012; 33
Fux (10.1016/j.bbagen.2012.08.012_bb0045) 2005; 13
Cho (10.1016/j.bbagen.2012.08.012_bb0085) 2011; 93
Eliopoulos (10.1016/j.bbagen.2012.08.012_bb0110) 1991
Cassone (10.1016/j.bbagen.2012.08.012_bb0015) 2008; 29
Giacometti (10.1016/j.bbagen.2012.08.012_bb0185) 2000; 21
Jenssen (10.1016/j.bbagen.2012.08.012_bb0065) 2006; 19
Odds (10.1016/j.bbagen.2012.08.012_bb0120) 2003; 52
Kohanski (10.1016/j.bbagen.2012.08.012_bb0125) 2007; 130
Overhage (10.1016/j.bbagen.2012.08.012_bb0050) 2008; 76
Singh (10.1016/j.bbagen.2012.08.012_bb0210) 2000; 407
Christensen (10.1016/j.bbagen.2012.08.012_bb0140) 1985; 22
Reddy (10.1016/j.bbagen.2012.08.012_bb0055) 2004; 24
Sheppard (10.1016/j.bbagen.2012.08.012_bb0095) 2003; 9
Wei (10.1016/j.bbagen.2012.08.012_bb0145) 2006; 57
Dempsey (10.1016/j.bbagen.2012.08.012_bb0155) 1990; 1031
CLSI (10.1016/j.bbagen.2012.08.012_bb0100) 2005
CLSI (10.1016/j.bbagen.2012.08.012_bb0105) 2003
Saint (10.1016/j.bbagen.2012.08.012_bb0080) 2002; 1564
Baehni (10.1016/j.bbagen.2012.08.012_bb0175) 2003; 9
Zasloff (10.1016/j.bbagen.2012.08.012_bb0005) 2002; 415
Hancock (10.1016/j.bbagen.2012.08.012_bb0020) 2001; 1
Cirioni (10.1016/j.bbagen.2012.08.012_bb0030) 2008; 62
Spindler (10.1016/j.bbagen.2012.08.012_bb0195) 2011; 55
Suzuki (10.1016/j.bbagen.2012.08.012_bb0200) 1997; 45
Ulvatne (10.1016/j.bbagen.2012.08.012_bb0205) 2001; 48
Zunino (10.1016/j.bbagen.2012.08.012_bb0165) 2007; 254
Habermann (10.1016/j.bbagen.2012.08.012_bb0160) 1972; 177
Merrifield (10.1016/j.bbagen.2012.08.012_bb0090) 1986; 232
Kohanski (10.1016/j.bbagen.2012.08.012_bb0150) 2010; 8
Pankey (10.1016/j.bbagen.2012.08.012_bb0115) 2005; 49
Park (10.1016/j.bbagen.2012.08.012_bb0190) 2011; 12
Jung (10.1016/j.bbagen.2012.08.012_bb0075) 2007; 1768
Kemp (10.1016/j.bbagen.2012.08.012_bb0170) 2004; 18
Sedlacek (10.1016/j.bbagen.2012.08.012_bb0215) 2007; 22
References_xml – volume: 93
  start-page: 1873
  year: 2011
  end-page: 1879
  ident: bb0085
  article-title: Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in
  publication-title: Biochime
– volume: 1564
  start-page: 359
  year: 2002
  end-page: 364
  ident: bb0080
  article-title: Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers
  publication-title: Biochim. Biophys. Acta
– volume: 24
  start-page: 536
  year: 2004
  end-page: 547
  ident: bb0055
  article-title: Antimicrobial peptides: premises and promises
  publication-title: Int. J. Antimicrob. Agents
– volume: 407
  start-page: 762
  year: 2000
  end-page: 764
  ident: bb0210
  article-title: Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms
  publication-title: Nature
– volume: 52
  start-page: 1
  year: 2003
  ident: bb0120
  article-title: Synergy, antagonism, and what the checkerboard puts between them
  publication-title: J. Antimicrob. Chemother.
– volume: 57
  start-page: 1100
  year: 2006
  end-page: 1109
  ident: bb0145
  article-title: Effect of MUC7 peptides on the growth of bacteria and on
  publication-title: J. Antimicrob. Chemother.
– volume: 21
  start-page: 1155
  year: 2000
  end-page: 1160
  ident: bb0185
  article-title: Combination studies between polycationic peptides and clinically used antibiotics against Gram-positive and Gram-negative bacteria
  publication-title: Peptides
– volume: 29
  start-page: 1878
  year: 2008
  end-page: 1886
  ident: bb0015
  article-title: Scope and limitations of the designer proline-rich antibacterial peptide dimer, A3-APO, alone or in synergy with conventional antibiotics
  publication-title: Peptides
– volume: 13
  start-page: 34
  year: 2005
  end-page: 40
  ident: bb0045
  article-title: Survival strategies of infectious biofilm
  publication-title: Trends Microbiol.
– volume: 232
  start-page: 341
  year: 1986
  end-page: 347
  ident: bb0090
  article-title: Solid phase synthesis
  publication-title: Science
– volume: 30
  start-page: 1622
  year: 2009
  end-page: 1626
  ident: bb0025
  article-title: In vitro bactericidal activity of the N-terminal fragment of the frog peptide esculentin-1b (Esc 1-18) in combination with conventional antibiotics against
  publication-title: Peptides
– year: 2005
  ident: bb0100
  article-title: Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing
– volume: 1031
  start-page: 143
  year: 1990
  end-page: 161
  ident: bb0155
  article-title: The actions of melittin on membranes
  publication-title: Biochim. Biophys. Acta
– volume: 106
  start-page: 44
  year: 2011
  end-page: 50
  ident: bb0180
  article-title: Evaluation of the synergistic potential of vancomycin combined with other antimicrobial agents against methicillin-resistant
  publication-title: Mem. Inst. Oswaldo Cruz
– volume: 12
  start-page: 5971
  year: 2011
  end-page: 5992
  ident: bb0190
  article-title: The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation
  publication-title: Int. J. Mol. Sci.
– volume: 33
  start-page: 2327
  year: 2012
  end-page: 2333
  ident: bb0130
  article-title: The molecular mechanism of action of bactericidal gold nanoparticles on
  publication-title: Biomaterials
– volume: 76
  start-page: 4176
  year: 2008
  end-page: 4182
  ident: bb0050
  article-title: Human host defense peptide LL-37 prevents bacterial biofilm formation
  publication-title: Infect. Immun.
– volume: 272
  start-page: 12008
  year: 1997
  end-page: 12013
  ident: bb0070
  article-title: Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: 869
  year: 2004
  end-page: 877
  ident: bb0170
  article-title: Viability assessment in sandwich-cultured rat hepatocytes after xenobiotic exposure
  publication-title: Toxicol. Vitro
– volume: 1768
  start-page: 1400
  year: 2007
  end-page: 1405
  ident: bb0075
  article-title: Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance
  publication-title: Biochim. Biophys. Acta
– volume: 62
  start-page: 1332
  year: 2008
  end-page: 1338
  ident: bb0030
  article-title: Protective effects of the combination of α-helical antimicrobial peptides and rifampicin in three rat models of
  publication-title: J. Antimicrob. Chemother.
– volume: 55
  start-page: 1706
  year: 2011
  end-page: 1716
  ident: bb0195
  article-title: Deciphering the mode of action of the synthetic antimicrobial peptide Bac8c
  publication-title: Antimicrob. Agents Chemother.
– volume: 9
  start-page: 23
  year: 2003
  end-page: 29
  ident: bb0175
  article-title: Anti-plaque agents in the prevention of biofilm-associated oral diseases
  publication-title: Oral Dis.
– volume: 48
  start-page: 203
  year: 2001
  end-page: 208
  ident: bb0205
  article-title: Short antibacterial peptides and erythromycin act synergically against
  publication-title: J. Antimicrob. Chemother.
– volume: 8
  start-page: 423
  year: 2010
  end-page: 435
  ident: bb0150
  article-title: How antibiotics kill bacteria: from targets to networks
  publication-title: Nat. Rev. Microbiol.
– volume: 19
  start-page: 491
  year: 2006
  end-page: 511
  ident: bb0065
  article-title: Peptide antimicrobial agents
  publication-title: Clin. Microbiol. Rev.
– volume: 1
  start-page: 156
  year: 2001
  end-page: 164
  ident: bb0060
  article-title: Cationic peptides: effectors in innate immunity and novel antimicrobials
  publication-title: Lancet Infect. Dis.
– volume: 254
  start-page: 119
  year: 2007
  end-page: 127
  ident: bb0165
  article-title: Parthenolide induces significant apoptosis and production of reactive oxygen species in high-risk pre-B leukemia cells
  publication-title: Cancer Lett.
– volume: 9
  start-page: 545
  year: 2003
  end-page: 552
  ident: bb0095
  article-title: The fluorenylmethoxycarbonyl group in solid phase synthesis
  publication-title: J. Pept. Sci.
– start-page: 432
  year: 1991
  end-page: 492
  ident: bb0110
  article-title: Antimicrobial combinations
  publication-title: Antibiotics in Laboratory Medicine
– volume: 415
  start-page: 389
  year: 2002
  end-page: 395
  ident: bb0005
  article-title: Antimicrobial peptides of multicellular organisms
  publication-title: Nature
– volume: 417
  start-page: 552
  year: 2002
  end-page: 555
  ident: bb0010
  article-title: A component of innate immunity prevents bacterial biofilm development
  publication-title: Nature
– volume: 1
  start-page: 156
  year: 2001
  end-page: 164
  ident: bb0020
  article-title: Cationic peptides: effectors in innate immunity and novel antimicrobials
  publication-title: Lancet Infect. Dis.
– volume: 130
  start-page: 797
  year: 2007
  end-page: 810
  ident: bb0125
  article-title: A common mechanism of cellular death induced by bactericidal antibiotics
  publication-title: Cell
– volume: 177
  start-page: 314
  year: 1972
  end-page: 322
  ident: bb0160
  article-title: Bee and wasp venoms
  publication-title: Science
– volume: 9
  start-page: 34
  year: 2001
  end-page: 39
  ident: bb0040
  article-title: Mechanisms of biofilm resistance to antimicrobial agents
  publication-title: Trends Microbiol.
– volume: 49
  start-page: 2959
  year: 2005
  end-page: 2964
  ident: bb0115
  article-title: In vitro synergy of ciprofloxacin and gatifloxacin against ciprofloxacin-resistant
  publication-title: Antimicrob. Agents Chemother.
– volume: 358
  start-page: 135
  year: 2001
  end-page: 138
  ident: bb0035
  article-title: Antibiotic resistance of bacteria in biofilms
  publication-title: Lancet
– year: 2003
  ident: bb0105
  article-title: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically
– volume: 405
  start-page: 422
  year: 2011
  end-page: 427
  ident: bb0135
  article-title: The characteristic region of arenicin-1 involved with a bacterial membrane targeting mechanism
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 22
  start-page: 996
  year: 1985
  end-page: 1006
  ident: bb0140
  article-title: Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices
  publication-title: J. Clin. Microbiol.
– volume: 45
  start-page: 49
  year: 1997
  end-page: 53
  ident: bb0200
  article-title: DNA staining for fluorescence and laser confocal microscopy
  publication-title: J. Histochem. Cytochem.
– volume: 22
  start-page: 333
  year: 2007
  end-page: 339
  ident: bb0215
  article-title: Antibiotic resistance in an in vitro subgingival biofilm model
  publication-title: Oral Microbiol. Immunol.
– volume: 52
  start-page: 1
  year: 2003
  ident: 10.1016/j.bbagen.2012.08.012_bb0120
  article-title: Synergy, antagonism, and what the checkerboard puts between them
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkg301
– volume: 358
  start-page: 135
  year: 2001
  ident: 10.1016/j.bbagen.2012.08.012_bb0035
  article-title: Antibiotic resistance of bacteria in biofilms
  publication-title: Lancet
  doi: 10.1016/S0140-6736(01)05321-1
– volume: 106
  start-page: 44
  year: 2011
  ident: 10.1016/j.bbagen.2012.08.012_bb0180
  article-title: Evaluation of the synergistic potential of vancomycin combined with other antimicrobial agents against methicillin-resistant Staphylococcus aureus and coagulase-negative Staphylococcus spp. strains
  publication-title: Mem. Inst. Oswaldo Cruz
  doi: 10.1590/S0074-02762011000100007
– volume: 12
  start-page: 5971
  year: 2011
  ident: 10.1016/j.bbagen.2012.08.012_bb0190
  article-title: The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms12095971
– volume: 9
  start-page: 34
  year: 2001
  ident: 10.1016/j.bbagen.2012.08.012_bb0040
  article-title: Mechanisms of biofilm resistance to antimicrobial agents
  publication-title: Trends Microbiol.
  doi: 10.1016/S0966-842X(00)01913-2
– volume: 33
  start-page: 2327
  year: 2012
  ident: 10.1016/j.bbagen.2012.08.012_bb0130
  article-title: The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.11.057
– volume: 1031
  start-page: 143
  year: 1990
  ident: 10.1016/j.bbagen.2012.08.012_bb0155
  article-title: The actions of melittin on membranes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4157(90)90006-X
– volume: 405
  start-page: 422
  year: 2011
  ident: 10.1016/j.bbagen.2012.08.012_bb0135
  article-title: The characteristic region of arenicin-1 involved with a bacterial membrane targeting mechanism
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.01.046
– volume: 19
  start-page: 491
  year: 2006
  ident: 10.1016/j.bbagen.2012.08.012_bb0065
  article-title: Peptide antimicrobial agents
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00056-05
– volume: 1768
  start-page: 1400
  year: 2007
  ident: 10.1016/j.bbagen.2012.08.012_bb0075
  article-title: Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2007.02.024
– volume: 177
  start-page: 314
  year: 1972
  ident: 10.1016/j.bbagen.2012.08.012_bb0160
  article-title: Bee and wasp venoms
  publication-title: Science
  doi: 10.1126/science.177.4046.314
– volume: 254
  start-page: 119
  year: 2007
  ident: 10.1016/j.bbagen.2012.08.012_bb0165
  article-title: Parthenolide induces significant apoptosis and production of reactive oxygen species in high-risk pre-B leukemia cells
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2007.03.002
– volume: 130
  start-page: 797
  year: 2007
  ident: 10.1016/j.bbagen.2012.08.012_bb0125
  article-title: A common mechanism of cellular death induced by bactericidal antibiotics
  publication-title: Cell
  doi: 10.1016/j.cell.2007.06.049
– volume: 22
  start-page: 333
  year: 2007
  ident: 10.1016/j.bbagen.2012.08.012_bb0215
  article-title: Antibiotic resistance in an in vitro subgingival biofilm model
  publication-title: Oral Microbiol. Immunol.
  doi: 10.1111/j.1399-302X.2007.00366.x
– volume: 22
  start-page: 996
  year: 1985
  ident: 10.1016/j.bbagen.2012.08.012_bb0140
  article-title: Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.22.6.996-1006.1985
– volume: 55
  start-page: 1706
  year: 2011
  ident: 10.1016/j.bbagen.2012.08.012_bb0195
  article-title: Deciphering the mode of action of the synthetic antimicrobial peptide Bac8c
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01053-10
– volume: 9
  start-page: 23
  year: 2003
  ident: 10.1016/j.bbagen.2012.08.012_bb0175
  article-title: Anti-plaque agents in the prevention of biofilm-associated oral diseases
  publication-title: Oral Dis.
  doi: 10.1034/j.1601-0825.9.s1.5.x
– year: 2003
  ident: 10.1016/j.bbagen.2012.08.012_bb0105
– start-page: 432
  year: 1991
  ident: 10.1016/j.bbagen.2012.08.012_bb0110
  article-title: Antimicrobial combinations
– volume: 232
  start-page: 341
  year: 1986
  ident: 10.1016/j.bbagen.2012.08.012_bb0090
  article-title: Solid phase synthesis
  publication-title: Science
  doi: 10.1126/science.3961484
– volume: 62
  start-page: 1332
  year: 2008
  ident: 10.1016/j.bbagen.2012.08.012_bb0030
  article-title: Protective effects of the combination of α-helical antimicrobial peptides and rifampicin in three rat models of Pseudomonas aeruginosa infection
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkn393
– volume: 24
  start-page: 536
  year: 2004
  ident: 10.1016/j.bbagen.2012.08.012_bb0055
  article-title: Antimicrobial peptides: premises and promises
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2004.09.005
– volume: 13
  start-page: 34
  year: 2005
  ident: 10.1016/j.bbagen.2012.08.012_bb0045
  article-title: Survival strategies of infectious biofilm
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2004.11.010
– volume: 1
  start-page: 156
  year: 2001
  ident: 10.1016/j.bbagen.2012.08.012_bb0060
  article-title: Cationic peptides: effectors in innate immunity and novel antimicrobials
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(01)00092-5
– year: 2005
  ident: 10.1016/j.bbagen.2012.08.012_bb0100
– volume: 57
  start-page: 1100
  year: 2006
  ident: 10.1016/j.bbagen.2012.08.012_bb0145
  article-title: Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkl120
– volume: 18
  start-page: 869
  year: 2004
  ident: 10.1016/j.bbagen.2012.08.012_bb0170
  article-title: Viability assessment in sandwich-cultured rat hepatocytes after xenobiotic exposure
  publication-title: Toxicol. Vitro
  doi: 10.1016/j.tiv.2004.04.014
– volume: 272
  start-page: 12008
  year: 1997
  ident: 10.1016/j.bbagen.2012.08.012_bb0070
  article-title: Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.18.12008
– volume: 9
  start-page: 545
  year: 2003
  ident: 10.1016/j.bbagen.2012.08.012_bb0095
  article-title: The fluorenylmethoxycarbonyl group in solid phase synthesis
  publication-title: J. Pept. Sci.
  doi: 10.1002/psc.479
– volume: 1
  start-page: 156
  year: 2001
  ident: 10.1016/j.bbagen.2012.08.012_bb0020
  article-title: Cationic peptides: effectors in innate immunity and novel antimicrobials
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(01)00092-5
– volume: 417
  start-page: 552
  year: 2002
  ident: 10.1016/j.bbagen.2012.08.012_bb0010
  article-title: A component of innate immunity prevents bacterial biofilm development
  publication-title: Nature
  doi: 10.1038/417552a
– volume: 1564
  start-page: 359
  year: 2002
  ident: 10.1016/j.bbagen.2012.08.012_bb0080
  article-title: Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(02)00470-4
– volume: 407
  start-page: 762
  year: 2000
  ident: 10.1016/j.bbagen.2012.08.012_bb0210
  article-title: Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms
  publication-title: Nature
  doi: 10.1038/35037627
– volume: 48
  start-page: 203
  year: 2001
  ident: 10.1016/j.bbagen.2012.08.012_bb0205
  article-title: Short antibacterial peptides and erythromycin act synergically against Escherichia coli
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/48.2.203
– volume: 29
  start-page: 1878
  year: 2008
  ident: 10.1016/j.bbagen.2012.08.012_bb0015
  article-title: Scope and limitations of the designer proline-rich antibacterial peptide dimer, A3-APO, alone or in synergy with conventional antibiotics
  publication-title: Peptides
  doi: 10.1016/j.peptides.2008.07.016
– volume: 8
  start-page: 423
  year: 2010
  ident: 10.1016/j.bbagen.2012.08.012_bb0150
  article-title: How antibiotics kill bacteria: from targets to networks
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2333
– volume: 415
  start-page: 389
  year: 2002
  ident: 10.1016/j.bbagen.2012.08.012_bb0005
  article-title: Antimicrobial peptides of multicellular organisms
  publication-title: Nature
  doi: 10.1038/415389a
– volume: 49
  start-page: 2959
  year: 2005
  ident: 10.1016/j.bbagen.2012.08.012_bb0115
  article-title: In vitro synergy of ciprofloxacin and gatifloxacin against ciprofloxacin-resistant Pseudomonas aeruginosa
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.49.7.2959-2964.2005
– volume: 21
  start-page: 1155
  year: 2000
  ident: 10.1016/j.bbagen.2012.08.012_bb0185
  article-title: Combination studies between polycationic peptides and clinically used antibiotics against Gram-positive and Gram-negative bacteria
  publication-title: Peptides
  doi: 10.1016/S0196-9781(00)00254-0
– volume: 76
  start-page: 4176
  year: 2008
  ident: 10.1016/j.bbagen.2012.08.012_bb0050
  article-title: Human host defense peptide LL-37 prevents bacterial biofilm formation
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00318-08
– volume: 30
  start-page: 1622
  year: 2009
  ident: 10.1016/j.bbagen.2012.08.012_bb0025
  article-title: In vitro bactericidal activity of the N-terminal fragment of the frog peptide esculentin-1b (Esc 1-18) in combination with conventional antibiotics against Stenotrophomonas maltophilia
  publication-title: Peptides
  doi: 10.1016/j.peptides.2009.06.004
– volume: 93
  start-page: 1873
  year: 2011
  ident: 10.1016/j.bbagen.2012.08.012_bb0085
  article-title: Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in Candida albicans
  publication-title: Biochime
  doi: 10.1016/j.biochi.2011.07.011
– volume: 45
  start-page: 49
  year: 1997
  ident: 10.1016/j.bbagen.2012.08.012_bb0200
  article-title: DNA staining for fluorescence and laser confocal microscopy
  publication-title: J. Histochem. Cytochem.
  doi: 10.1177/002215549704500107
SSID ssj0000595
ssj0025309
Score 2.2991893
Snippet Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of pleurocidin...
BACKGROUND: Pleurocidin, a 25-mer antimicrobial peptide (AMP), is known to exert bactericidal activity. However, the synergistic activity and mechanism(s) of...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1831
SubjectTerms ampicillin
Anti-Bacterial Agents - pharmacology
Anti-Infective Agents - pharmacology
antibacterial properties
Antibiofilm effect
Antimicrobial Cationic Peptides - pharmacology
antimicrobial peptides
Bacteria - drug effects
biofilm
Biofilms - drug effects
Cell Membrane - drug effects
cell membranes
death
Drug Combinations
Drug Synergism
drug therapy
Enterococcus faecium
erythromycin
Fish Proteins - pharmacology
fluorescein
Hydroxyl radical
Hydroxyl Radical - metabolism
hydroxyl radicals
Membrane damage
Microbial Sensitivity Tests
Microbial Viability - drug effects
NAD (coenzyme)
NADP - metabolism
oxidative stress
permeability
Pleurocidin
Pleuronectes americanus
propidium
synergism
Synergistic effect
thiourea
Thiourea - pharmacology
tissue culture
viability
Title Antimicrobial peptide pleurocidin synergizes with antibiotics through hydroxyl radical formation and membrane damage, and exerts antibiofilm activity
URI https://dx.doi.org/10.1016/j.bbagen.2012.08.012
https://www.ncbi.nlm.nih.gov/pubmed/22921812
https://www.proquest.com/docview/1115065124
https://www.proquest.com/docview/2000034640
Volume 1820
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYILgvLo8qiMxJF0E9uJk-NqRbWwogfKit4sP0vQJrvqpoftof-C_8tMHos4lEqcolh2FHvGM9_Y8yDkvQncZblzkQPzIxIA36LccRMFKx1YHzJkAc87vpxms4X4fJ6e75HpEAuDbpW97O9keiut-5Zxv5rjdVmOz_BSD-AEaCxUPAzlsBASufz45o-bB8CHtLtJEBH2HsLnWh8vY2DTYhZUPBHMj-OE3aae7gW9uh2Etsro5Al53KNIOul-9CnZ8_UBedDVldwekIfToYzbM_JrUjdlVbb5lmDIGr1YnKfrJWblsCWoLrrZYgBgee03FI9lKSx2acoVJnCmfR0f-mPr0OFlSS91e7NDd1GP0N3RyldgdteeOl3BZD-0jVjOqdkMnwvlsqIYRoHVKp6TxcnHb9NZ1NdiiKxIiibSNsukA2xhmY91qlMhY-l0VljpRZEzkQrHfJIEa7i1gDITHwAbGqszZrT2_AXZr1e1PyQ01zLkseGcAxYTqdPCu1QGnbgid2koRoQPJFC2T1SO9TKWavBI-6k6wikknMIymgkbkWg3at0l6rijvxyoq_5iOAW65I6Rh8AMSl-AFFaLM4Y5-tpUcYUYkXcDhyggM969wNKvrjZoaKUx8uo_-mDUVMxFJuIRedmx124qjBUtGHv137_9mjzCt84V5w3Zby6v_FsAVI05anfMEbk_-TSfneJz_vX7_Ddr5CKL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RoIpeUEsfBGi7lXqsG3v9PkZRUSiQC0Tittpn6yp2ImIO6f_g_zLjR6oeKFKv9q5lz4xnvt2d-Qbgs3KhSTJjPIPLDy9C-OZlJlSe06nB1UfqEkf7HZezZDqPvt_ENzsw6WthKK2y8_2tT2-8dXdl1ElztCqK0RUd6iGcwIhFgYejH94ldqp4ALvjs_Pp7I9DjpvmKzTeowl9BV2T5qUU_rdEhEqbgtlXP-CPRahnTi4fx6FNPDp9CfsdkGTj9l1fwY6tDuB521pycwB7k76T22u4H1d1URYN5RJOWVEii7FstSBiDl1g9GLrDdUAFr_tmtHOLEN5F6pYEocz61r5sJ8bQzkvC3Yrm8Mdti18xOGGlbbElXdlmZElfuyX5iJ1dKrX_eNcsSgZVVJQw4o3MD_9dj2Zel07Bk9HQV57UidJahBeaG59GUuUtZ8ameQ6tVGecRS-4TYInFah1gg0A-sQHiotE66ktOFbGFTLyh4Cy2TqMl-FYYhwLIqNjKyJUycDk2cmdvkQwl4FQndc5dQyYyH6pLRfolWcIMUJ6qQZ8CF421mrlqvjifFpr13xl80JDCdPzDxEYxDyBzpiMb_iRNPXsMXl0RA-9RYiUM10_IKiX96taa0V-2Su_xhDhVN-GCWRP4R3rXltP4XzvMFjR__92h9hb3p9eSEuzmbnx_CC7rSZOScwqG_v7HvEV7X60P0_Dy9QI5k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antimicrobial+peptide+pleurocidin+synergizes+with+antibiotics+through+hydroxyl+radical+formation+and+membrane+damage%2C+and+exerts+antibiofilm+activity&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Choi%2C+Hyemin&rft.au=Lee%2C+Dong+Gun&rft.date=2012-12-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1820&rft.issue=12&rft.spage=1831&rft.epage=1838&rft_id=info:doi/10.1016%2Fj.bbagen.2012.08.012&rft.externalDocID=S0304416512002322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon