Re-study on localized structures based on variable separation solutions from the modified tanh-function method

We derive variable separation solutions of the ( 1 + 1 )-dimensional KdV-type model by means of the modified tan h -function method with three different ansätz. Superficially speaking, the positive and negative power-symmetric ansatz seems to be better than the positive-power ansatz and radical sign...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 83; no. 3; pp. 1331 - 1339
Main Authors Wang, Yue-Yue, Zhang, Yu-Peng, Dai, Chao-Qing
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We derive variable separation solutions of the ( 1 + 1 )-dimensional KdV-type model by means of the modified tan h -function method with three different ansätz. Superficially speaking, the positive and negative power-symmetric ansatz seems to be better than the positive-power ansatz and radical sign combined ansatz because the positive and negative power-symmetric ansatz can construct the most forms of variable separation solutions. Actually, we find that various “different” solutions obtained by the modified tanh-function method are not independent, and many of the so-called new solutions are equivalent to one another. Moreover, in the two- or multi-component system, if we construct localized coherent structures for a special component based on variable separation solutions, we must note the structure constructed by the other component for the same equation in order to avoid the appearance of some divergent and un-physical structures. We hope that these results above contribute to the analysis on exact solutions and the construction of localized structures for other nonlinear models.
AbstractList We derive variable separation solutions of the ( 1 + 1 )-dimensional KdV-type model by means of the modified tan h -function method with three different ansätz. Superficially speaking, the positive and negative power-symmetric ansatz seems to be better than the positive-power ansatz and radical sign combined ansatz because the positive and negative power-symmetric ansatz can construct the most forms of variable separation solutions. Actually, we find that various “different” solutions obtained by the modified tanh-function method are not independent, and many of the so-called new solutions are equivalent to one another. Moreover, in the two- or multi-component system, if we construct localized coherent structures for a special component based on variable separation solutions, we must note the structure constructed by the other component for the same equation in order to avoid the appearance of some divergent and un-physical structures. We hope that these results above contribute to the analysis on exact solutions and the construction of localized structures for other nonlinear models.
We derive variable separation solutions of the (\[1+1\])-dimensional KdV-type model by means of the modified tanh-function method with three different ansätz. Superficially speaking, the positive and negative power-symmetric ansatz seems to be better than the positive-power ansatz and radical sign combined ansatz because the positive and negative power-symmetric ansatz can construct the most forms of variable separation solutions. Actually, we find that various “different” solutions obtained by the modified tanh-function method are not independent, and many of the so-called new solutions are equivalent to one another. Moreover, in the two- or multi-component system, if we construct localized coherent structures for a special component based on variable separation solutions, we must note the structure constructed by the other component for the same equation in order to avoid the appearance of some divergent and un-physical structures. We hope that these results above contribute to the analysis on exact solutions and the construction of localized structures for other nonlinear models.
We derive variable separation solutions of the (\(1+1\))-dimensional KdV-type model by means of the modified tanh-function method with three different ansaetz. Superficially speaking, the positive and negative power-symmetric ansatz seems to be better than the positive-power ansatz and radical sign combined ansatz because the positive and negative power-symmetric ansatz can construct the most forms of variable separation solutions. Actually, we find that various "different" solutions obtained by the modified tanh-function method are not independent, and many of the so-called new solutions are equivalent to one another. Moreover, in the two- or multi-component system, if we construct localized coherent structures for a special component based on variable separation solutions, we must note the structure constructed by the other component for the same equation in order to avoid the appearance of some divergent and un-physical structures. We hope that these results above contribute to the analysis on exact solutions and the construction of localized structures for other nonlinear models.
Author Zhang, Yu-Peng
Wang, Yue-Yue
Dai, Chao-Qing
Author_xml – sequence: 1
  givenname: Yue-Yue
  surname: Wang
  fullname: Wang, Yue-Yue
  email: wangyy424@163.com
  organization: School of Sciences, Zhejiang A & F University
– sequence: 2
  givenname: Yu-Peng
  surname: Zhang
  fullname: Zhang, Yu-Peng
  organization: School of Sciences, Zhejiang A & F University
– sequence: 3
  givenname: Chao-Qing
  surname: Dai
  fullname: Dai, Chao-Qing
  organization: School of Sciences, Zhejiang A & F University
BookMark eNp9kVFLHDEQx4NY8LT9AL4t-NKX1Ek2uWQfi6gtCIXSgm8hm531IrvJmWQF--mbuysIgn2ZCTP_32SS_yk5DjEgIecMvjAAdZkZA8UoMEm5gDWVR2TFpGopX3f3x2QFHRcUOrg_Iac5PwJAy0GvSPiJNJdleGliaKbo7OT_4NDkkhZXloS56W2uhdp9tsnbfsIm49YmW3yt5Tgtu0NuxhTnpmywmePgR1-RYsOGjktwe-WMZROHj-TDaKeMn_7lM_L75vrX1Td69-P2-9XXO-oE6wq1SroebY-aqw5six3XvZYgtFZydPWBgitEO6xrZCh6se6lY1qiYHxA256Rz4e52xSfFszFzD47nCYbMC7ZMA0aFNRQpRdvpI9xSaFuZziXnWgF73hVsYPKpZhzwtFsk59tejEMzM4Bc3DAVAfMzgEjK6PeMM6X_b-VZP30X5IfyFxvCQ-YXnd6H_oL6JaeFg
CitedBy_id crossref_primary_10_1080_25765299_2018_1449348
crossref_primary_10_1515_phys_2019_0031
crossref_primary_10_1007_s11071_018_4428_2
crossref_primary_10_1155_2023_9996773
crossref_primary_10_1080_25765299_2019_1580815
crossref_primary_10_1088_0253_6102_68_4_478
crossref_primary_10_1016_j_camwa_2018_08_010
crossref_primary_10_1088_1402_4896_ab20d2
crossref_primary_10_1007_s11071_018_4130_4
crossref_primary_10_1007_s11071_021_06350_1
crossref_primary_10_1088_1572_9494_ab7ed6
crossref_primary_10_1016_j_ijleo_2024_171939
crossref_primary_10_1088_1402_4896_ab4a50
crossref_primary_10_1002_mma_5076
crossref_primary_10_1007_s12043_018_1568_3
crossref_primary_10_1016_j_ijleo_2019_162971
crossref_primary_10_1016_j_physleta_2025_130367
crossref_primary_10_1007_s44198_024_00173_5
crossref_primary_10_1016_j_aej_2020_06_002
crossref_primary_10_1007_s11071_018_4123_3
crossref_primary_10_1155_2019_4072754
crossref_primary_10_1016_j_aml_2017_10_013
crossref_primary_10_1007_s10598_023_09563_8
crossref_primary_10_1016_j_ijleo_2018_12_131
crossref_primary_10_1016_j_ijleo_2018_12_011
crossref_primary_10_1142_S0217984920502152
crossref_primary_10_1088_0253_6102_67_4_396
crossref_primary_10_1142_S0218863523500364
crossref_primary_10_1142_S0217984919501926
crossref_primary_10_3390_axioms8040134
crossref_primary_10_1155_2020_2929045
crossref_primary_10_1109_JPHOT_2018_2807920
crossref_primary_10_1080_09500340_2018_1442509
crossref_primary_10_1007_s12346_024_01137_2
crossref_primary_10_1016_j_ijleo_2019_163898
crossref_primary_10_1016_j_ijleo_2017_11_200
crossref_primary_10_1016_j_ijleo_2019_163213
crossref_primary_10_33187_jmsm_558879
crossref_primary_10_1080_25765299_2019_1642079
crossref_primary_10_1007_s11071_017_3713_9
crossref_primary_10_1186_s13662_019_2271_5
crossref_primary_10_1016_j_ijleo_2019_163296
crossref_primary_10_1155_2019_9290582
crossref_primary_10_1016_j_ijleo_2019_04_099
crossref_primary_10_1140_epjp_i2016_16211_7
crossref_primary_10_1016_j_ijleo_2019_163170
crossref_primary_10_1007_s11071_016_3141_2
crossref_primary_10_1016_j_camwa_2018_03_024
crossref_primary_10_1088_1674_1056_ab90ea
crossref_primary_10_1140_epjp_i2017_11816_x
crossref_primary_10_1007_s11082_018_1646_2
crossref_primary_10_1016_j_aml_2020_106326
crossref_primary_10_1016_j_ijleo_2019_06_005
crossref_primary_10_1007_s11071_018_4670_7
crossref_primary_10_1007_s11071_018_4049_9
crossref_primary_10_1007_s11071_019_04964_0
crossref_primary_10_1016_j_apm_2019_11_056
crossref_primary_10_1140_epjp_i2018_12198_3
crossref_primary_10_1088_1402_4896_ac12e6
crossref_primary_10_1016_j_ijleo_2021_168224
crossref_primary_10_1007_s11071_019_04978_8
crossref_primary_10_1007_s11071_018_4330_y
crossref_primary_10_1007_s11071_018_4563_9
crossref_primary_10_1140_epjp_i2018_11881_7
crossref_primary_10_1142_S0217984925500368
crossref_primary_10_1007_s11071_018_4050_3
crossref_primary_10_1016_j_vacuum_2017_10_004
crossref_primary_10_1088_1402_4896_ab34ea
crossref_primary_10_1016_j_cjph_2019_06_002
crossref_primary_10_3934_math_2025030
crossref_primary_10_1016_j_aml_2018_03_005
crossref_primary_10_1142_S0217984924502658
crossref_primary_10_1515_phys_2019_0043
crossref_primary_10_1007_s11071_016_3197_z
crossref_primary_10_1088_1402_4896_ab8d02
crossref_primary_10_1515_zna_2016_0229
crossref_primary_10_1088_1402_4896_ab66e0
crossref_primary_10_3934_math_2019_3_896
crossref_primary_10_1080_17455030_2020_1788748
crossref_primary_10_1140_epjp_i2018_11959_2
crossref_primary_10_1007_s11082_024_06387_7
crossref_primary_10_1007_s11071_022_08092_0
crossref_primary_10_1631_FITEE_1900221
crossref_primary_10_1007_s11082_021_03059_8
crossref_primary_10_1007_s12043_022_02448_2
crossref_primary_10_1016_j_ijleo_2019_163434
crossref_primary_10_1016_j_cnsns_2016_07_002
crossref_primary_10_1007_s11071_016_2895_x
crossref_primary_10_1007_s11071_024_10325_3
crossref_primary_10_1016_j_physleta_2023_129134
crossref_primary_10_1016_j_rinp_2023_106566
crossref_primary_10_1155_2019_8034731
Cites_doi 10.1017/CBO9780511623998
10.1007/s11071-014-1676-7
10.1016/j.cnsns.2013.10.029
10.1007/s11071-014-1236-1
10.1007/s11071-013-1162-7
10.1016/j.amc.2008.12.014
10.1103/PhysRevLett.70.564
10.1016/j.ijnonlinmec.2007.12.001
10.1088/1054-660X/25/2/025402
10.1142/S021886351550006X
10.1016/j.physleta.2005.03.083
10.1063/1.1287644
10.1016/j.cnsns.2010.10.025
10.1088/0253-6102/51/3/29
10.1088/0253-6102/45/1/024
10.1103/PhysRevA.65.053605
10.1016/j.cnsns.2013.05.027
10.1016/0375-9601(92)90072-T
10.1063/1.529234
10.1016/0375-9601(93)90848-T
10.1063/1.2186255
10.1016/j.amc.2010.03.073
10.1007/s11071-015-1978-4
10.1080/14786449508620739
10.1016/j.cnsns.2010.03.001
10.1016/j.cnsns.2009.01.023
10.1142/S0129055X07002948
10.1088/1674-1056/19/5/050204
10.7498/aps.63.080506
10.1103/PhysRevLett.71.1661
10.1016/0022-247X(91)90267-4
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2015
Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2015
– notice: Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s11071-015-2406-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Engineering Database
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 1339
ExternalDocumentID 10_1007_s11071_015_2406_5
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11375007
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LY13F050006
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c419t-a75cbeabe82790a3e928b85048875fc406427eead67ee1e4b46b5c185e412dea3
IEDL.DBID BENPR
ISSN 0924-090X
IngestDate Thu Jul 10 17:34:29 EDT 2025
Fri Jul 25 11:10:37 EDT 2025
Tue Jul 01 01:51:53 EDT 2025
Thu Apr 24 23:09:31 EDT 2025
Fri Feb 21 02:32:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Different ansätz
Divergent structure
Modified tanh-function method
Korteweg–de Vries-type model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-a75cbeabe82790a3e928b85048875fc406427eead67ee1e4b46b5c185e412dea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2259434292
PQPubID 2043746
PageCount 9
ParticipantIDs proquest_miscellaneous_1808070080
proquest_journals_2259434292
crossref_primary_10_1007_s11071_015_2406_5
crossref_citationtrail_10_1007_s11071_015_2406_5
springer_journals_10_1007_s11071_015_2406_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2016
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Rosenaup, Hyman (CR34) 1993; 70
Chen, Wei (CR2) 2009; 51
Zhong, Belic, Petrovic (CR17) 2014; 76
Agüero, Belyaeva, Serkin (CR35) 2011; 16
Mirzazadeh, Eslami, Savescu, Bhrawy, Alshaery, Hilal (CR8) 2015; 24
Zheng, Zhu (CR19) 2007; 34
CR36
Ablowtiz, Clarkson (CR5) 1991
CR33
CR32
Zhou, Zhu, Savescu, Bhrawy, Biswas (CR12) 2015; 16
Chen, Zhu (CR16) 2015; 81
Kudryashov, Ryabov, Sinelshchikov (CR24) 2011; 16
Zhang, Ma, Chen (CR21) 2014; 63
Savescu, Alshaery, Hilal, Bhrawy, Zhou, Biswas (CR9) 2015; 9
Zhou, Zhu, Yu, Liu, Wei, Yao, Bhrawy, Biswas (CR13) 2015; 25
Chen (CR14) 2015; 79
Kudryashov (CR23) 2009; 14
Zhu (CR15) 2014; 76
Nimmo (CR29) 1992; 168
Dai, Wang (CR28) 2014; 19
Demiray (CR4) 2008; 43
Vega-Guzman, Zhou, Alshaery, Hilal, Bhrawy, Biswas (CR11) 2015; 17
Korteweg, de Vries (CR1) 1895; 39
CR27
Zheng, Chen, Zhang (CR18) 2005; 340
Huang, Szeftel, Zhu (CR3) 2002; 65
Verosky (CR30) 1991; 32
Dai, Wang (CR22) 2009; 208
Parkes (CR25) 2010; 217
Rehman, Gambino, Roy Choudhury (CR37) 2014; 19
Lou (CR6) 1993; 175
Calogero, Degasperis, Xiaoda (CR31) 2000; 41
Dai, Zhang (CR26) 2006; 47
Vega-Guzman, Zhou, Alshaery, Hilal, Bhrawy, Biswas (CR10) 2015; 17
Zhu, Zheng, Fang (CR20) 2006; 45
Savescu, Bhrawy, Hilal, Alshaery, Moraru, Biswas (CR7) 2015; 9
EJ Parkes (2406_CR25) 2010; 217
Q Zhou (2406_CR13) 2015; 25
CL Zheng (2406_CR19) 2007; 34
JJC Nimmo (2406_CR29) 1992; 168
Q Zhou (2406_CR12) 2015; 16
2406_CR27
J Vega-Guzman (2406_CR10) 2015; 17
M Savescu (2406_CR7) 2015; 9
HP Zhu (2406_CR20) 2006; 45
CQ Dai (2406_CR28) 2014; 19
HP Zhu (2406_CR15) 2014; 76
MJ Ablowtiz (2406_CR5) 1991
CL Zheng (2406_CR18) 2005; 340
T Rehman (2406_CR37) 2014; 19
MA Agüero (2406_CR35) 2011; 16
2406_CR33
WL Zhang (2406_CR21) 2014; 63
CQ Dai (2406_CR22) 2009; 208
YX Chen (2406_CR14) 2015; 79
2406_CR32
JH Chen (2406_CR2) 2009; 51
NA Kudryashov (2406_CR24) 2011; 16
P Rosenaup (2406_CR34) 1993; 70
J Vega-Guzman (2406_CR11) 2015; 17
H Demiray (2406_CR4) 2008; 43
M Mirzazadeh (2406_CR8) 2015; 24
2406_CR36
GX Huang (2406_CR3) 2002; 65
SY Lou (2406_CR6) 1993; 175
F Calogero (2406_CR31) 2000; 41
HY Chen (2406_CR16) 2015; 81
JM Verosky (2406_CR30) 1991; 32
WP Zhong (2406_CR17) 2014; 76
DJ Korteweg (2406_CR1) 1895; 39
M Savescu (2406_CR9) 2015; 9
NA Kudryashov (2406_CR23) 2009; 14
CQ Dai (2406_CR26) 2006; 47
References_xml – year: 1991
  ident: CR5
  publication-title: Soliton, Nonlinear Evolution Equations and Inverse Scattering
  doi: 10.1017/CBO9780511623998
– volume: 79
  start-page: 427
  year: 2015
  end-page: 436
  ident: CR14
  article-title: Sech-type and Gaussian-type light bullet solutions to the generalized (3 + 1)-dimensional cubic-quintic Schrodinger equation in PT-symmetric potentials
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1676-7
– volume: 19
  start-page: 1746
  year: 2014
  end-page: 1769
  ident: CR37
  article-title: Smooth and non-smooth traveling wave solutions of some generalized Camassa-Holm equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2013.10.029
– volume: 76
  start-page: 1651
  year: 2014
  end-page: 1659
  ident: CR15
  article-title: Spatiotemporal solitons on cnoidal wave backgrounds in three media with different distributed transverse diffraction and dispersion
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1236-1
– volume: 63
  start-page: 080506
  year: 2014
  ident: CR21
  article-title: Complex wave solutions and localized excitations of (2+1)-dimensional Korteweg-de Vries system
  publication-title: Acta Phys. Sin.
– volume: 76
  start-page: 717
  year: 2014
  end-page: 723
  ident: CR17
  article-title: Solitary and extended waves in the generalized sinh-Gordon equation with a variable coefficient
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-1162-7
– volume: 208
  start-page: 453
  year: 2009
  end-page: 461
  ident: CR22
  article-title: The novel solitary wave structures and interactions in the (2+1)-dimensional Korteweg-de Vries system
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2008.12.014
– volume: 70
  start-page: 564
  year: 1993
  end-page: 567
  ident: CR34
  article-title: Compactons: solitons with finites wavelength
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.564
– ident: CR33
– volume: 43
  start-page: 241
  year: 2008
  end-page: 245
  ident: CR4
  article-title: Nonlinear waves in a fluid-filled inhomogeneous elastic tube with variable radius
  publication-title: Int. J. Nonlinear Mech.
  doi: 10.1016/j.ijnonlinmec.2007.12.001
– volume: 25
  start-page: 025402
  year: 2015
  ident: CR13
  article-title: Bright, dark and singular optical solitons in a cascaded system
  publication-title: Laser Phys.
  doi: 10.1088/1054-660X/25/2/025402
– volume: 34
  start-page: 492
  year: 2007
  end-page: 498
  ident: CR19
  article-title: Localized excitations with periodic and chaotic behaviors in (1 + 1)-dimensional Korteweg-de Vries type system
  publication-title: Chaos Solitons Fractals
– volume: 24
  start-page: 1550006
  year: 2015
  ident: CR8
  article-title: Anjan Biswas: optical solitons in DWDM system with spatio-temporal dispersion
  publication-title: J. Nonlinear Opt. Phys. Mater.
  doi: 10.1142/S021886351550006X
– volume: 340
  start-page: 397
  year: 2005
  end-page: 402
  ident: CR18
  article-title: Peakon, compacton and loop excitations with periodic behavior in KdV type models related to Schrödinger system
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2005.03.083
– volume: 41
  start-page: 6399
  year: 2000
  end-page: 6443
  ident: CR31
  article-title: Nonlinear Schrödinger-type equations from multiscale reduction of PDEs. I. Systematic derivation
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1287644
– ident: CR27
– volume: 16
  start-page: 3071
  year: 2011
  end-page: 3080
  ident: CR35
  article-title: Compacton anti-compacton pair for hydrogen bonds and rotational waves in DNA dynamics commun
  publication-title: Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.10.025
– volume: 51
  start-page: 524
  year: 2009
  end-page: 528
  ident: CR2
  article-title: Effects of adiabatic dust charge fluctuation and particles collisions on dust-acoustic solitary waves in three-dimensional magnetized dusty plasmas
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/51/3/29
– volume: 45
  start-page: 127
  year: 2006
  end-page: 130
  ident: CR20
  article-title: Exact solution to (1 + 1)-dimensional higher-order schrodinger equation via an extended mapping approach
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/45/1/024
– volume: 16
  start-page: 152
  year: 2015
  end-page: 159
  ident: CR12
  article-title: Optical solitons with nonlinear dispersion in parabolic law medium
  publication-title: Proc Rom. Acad. A
– volume: 65
  start-page: 053605
  year: 2002
  ident: CR3
  article-title: Dynamics of dark solitons in quasi-one-dimensional Bose-Einstein condensates
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.65.053605
– volume: 19
  start-page: 19
  year: 2014
  end-page: 28
  ident: CR28
  article-title: Notes on the equivalence of different variable separation approaches for nonlinear evolution equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2013.05.027
– volume: 168
  start-page: 113
  year: 1992
  end-page: 119
  ident: CR29
  article-title: A class of solutions of the Konopelchenko-Rogers equation
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(92)90072-T
– volume: 17
  start-page: 74
  year: 2015
  end-page: 81
  ident: CR10
  article-title: Optical solitons in cascaded system with spatio-temporal dispersion
  publication-title: Optoelectron. Adv. Mater. Rapid Commun.
– volume: 9
  start-page: 10
  year: 2015
  end-page: 13
  ident: CR7
  article-title: Optical solitons in birefringent fibers with four-wave mixing for parabolic law nonlinearity, Optoelectronics and Advanced Materials-Rapid
  publication-title: Communications
– volume: 32
  start-page: 1733
  year: 1991
  end-page: 1736
  ident: CR30
  article-title: Negative powers of Olver recursion operators
  publication-title: J. Math. Phys.
  doi: 10.1063/1.529234
– volume: 175
  start-page: 23
  year: 1993
  end-page: 26
  ident: CR6
  article-title: Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(93)90848-T
– volume: 47
  start-page: 043501
  year: 2006
  ident: CR26
  article-title: Novel variable separation solutions and exotic localized excitations via the ETM in nonlinear soliton systems
  publication-title: J. Math. Phys.
  doi: 10.1063/1.2186255
– volume: 217
  start-page: 1759
  year: 2010
  end-page: 1763
  ident: CR25
  article-title: Observations on the basic (G’/G): expansion method for finding solutions to nonlinear evolution equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.03.073
– volume: 81
  start-page: 141
  year: 2015
  end-page: 149
  ident: CR16
  article-title: Controllable behaviors of spatiotemporal breathers in a generalized variable-coefficient nonlinear Schrödinger model from arterial mechanics and optical fibers
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-1978-4
– volume: 39
  start-page: 422
  year: 1895
  end-page: 443
  ident: CR1
  article-title: On the change of form of long wave advancing in a rectangular canal and on a new-type of long stationary waves
  publication-title: Phiols. Mag
  doi: 10.1080/14786449508620739
– volume: 9
  start-page: 14
  year: 2015
  end-page: 19
  ident: CR9
  article-title: Optical solitons in DWDM system with four-wave mixing
  publication-title: Optoelectron. Adv. Mater. Rapid. Commun.
– ident: CR32
– volume: 17
  start-page: 165
  year: 2015
  end-page: 171
  ident: CR11
  article-title: Optical solitons in cascaded system with spatio-temporal dispersion by ansatz approach
  publication-title: Optoelectron. Adv. Mater. Rapid Commun.
– ident: CR36
– volume: 16
  start-page: 596
  year: 2011
  end-page: 598
  ident: CR24
  article-title: Comment on: “Application of the (G’/G) method for the complex KdV equation” [Huiqun Zhang, Commun Nonlinear Sci Numer Simulat 15, 2010, 1700–1704]
  publication-title: Commun. Non Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.03.001
– volume: 14
  start-page: 3507
  year: 2009
  end-page: 3529
  ident: CR23
  article-title: Seven common errors in finding exact solutions of nonlinear differential equations
  publication-title: Commun. Non Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2009.01.023
– volume: 217
  start-page: 1759
  year: 2010
  ident: 2406_CR25
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.03.073
– volume: 32
  start-page: 1733
  year: 1991
  ident: 2406_CR30
  publication-title: J. Math. Phys.
  doi: 10.1063/1.529234
– volume: 19
  start-page: 19
  year: 2014
  ident: 2406_CR28
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2013.05.027
– volume: 76
  start-page: 1651
  year: 2014
  ident: 2406_CR15
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1236-1
– volume: 340
  start-page: 397
  year: 2005
  ident: 2406_CR18
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2005.03.083
– volume: 45
  start-page: 127
  year: 2006
  ident: 2406_CR20
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/45/1/024
– volume-title: Soliton, Nonlinear Evolution Equations and Inverse Scattering
  year: 1991
  ident: 2406_CR5
  doi: 10.1017/CBO9780511623998
– volume: 16
  start-page: 3071
  year: 2011
  ident: 2406_CR35
  publication-title: Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.10.025
– volume: 168
  start-page: 113
  year: 1992
  ident: 2406_CR29
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(92)90072-T
– volume: 9
  start-page: 10
  year: 2015
  ident: 2406_CR7
  publication-title: Communications
– volume: 70
  start-page: 564
  year: 1993
  ident: 2406_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.564
– volume: 9
  start-page: 14
  year: 2015
  ident: 2406_CR9
  publication-title: Optoelectron. Adv. Mater. Rapid. Commun.
– ident: 2406_CR27
  doi: 10.1142/S0129055X07002948
– volume: 16
  start-page: 152
  year: 2015
  ident: 2406_CR12
  publication-title: Proc Rom. Acad. A
– volume: 81
  start-page: 141
  year: 2015
  ident: 2406_CR16
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-1978-4
– volume: 19
  start-page: 1746
  year: 2014
  ident: 2406_CR37
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2013.10.029
– ident: 2406_CR33
  doi: 10.1088/1674-1056/19/5/050204
– volume: 63
  start-page: 080506
  year: 2014
  ident: 2406_CR21
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.63.080506
– ident: 2406_CR36
  doi: 10.1103/PhysRevLett.71.1661
– volume: 24
  start-page: 1550006
  year: 2015
  ident: 2406_CR8
  publication-title: J. Nonlinear Opt. Phys. Mater.
  doi: 10.1142/S021886351550006X
– volume: 43
  start-page: 241
  year: 2008
  ident: 2406_CR4
  publication-title: Int. J. Nonlinear Mech.
  doi: 10.1016/j.ijnonlinmec.2007.12.001
– volume: 51
  start-page: 524
  year: 2009
  ident: 2406_CR2
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/51/3/29
– volume: 76
  start-page: 717
  year: 2014
  ident: 2406_CR17
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-1162-7
– volume: 34
  start-page: 492
  year: 2007
  ident: 2406_CR19
  publication-title: Chaos Solitons Fractals
– volume: 208
  start-page: 453
  year: 2009
  ident: 2406_CR22
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2008.12.014
– volume: 175
  start-page: 23
  year: 1993
  ident: 2406_CR6
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(93)90848-T
– volume: 41
  start-page: 6399
  year: 2000
  ident: 2406_CR31
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1287644
– volume: 79
  start-page: 427
  year: 2015
  ident: 2406_CR14
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1676-7
– volume: 65
  start-page: 053605
  year: 2002
  ident: 2406_CR3
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.65.053605
– volume: 25
  start-page: 025402
  year: 2015
  ident: 2406_CR13
  publication-title: Laser Phys.
  doi: 10.1088/1054-660X/25/2/025402
– volume: 17
  start-page: 74
  year: 2015
  ident: 2406_CR10
  publication-title: Optoelectron. Adv. Mater. Rapid Commun.
– volume: 14
  start-page: 3507
  year: 2009
  ident: 2406_CR23
  publication-title: Commun. Non Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2009.01.023
– volume: 16
  start-page: 596
  year: 2011
  ident: 2406_CR24
  publication-title: Commun. Non Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.03.001
– volume: 47
  start-page: 043501
  year: 2006
  ident: 2406_CR26
  publication-title: J. Math. Phys.
  doi: 10.1063/1.2186255
– volume: 39
  start-page: 422
  year: 1895
  ident: 2406_CR1
  publication-title: Phiols. Mag
  doi: 10.1080/14786449508620739
– ident: 2406_CR32
  doi: 10.1016/0022-247X(91)90267-4
– volume: 17
  start-page: 165
  year: 2015
  ident: 2406_CR11
  publication-title: Optoelectron. Adv. Mater. Rapid Commun.
SSID ssj0003208
Score 2.4320495
Snippet We derive variable separation solutions of the ( 1 + 1 )-dimensional KdV-type model by means of the modified tan h -function method with three different...
We derive variable separation solutions of the (\[1+1\])-dimensional KdV-type model by means of the modified tanh-function method with three different ansätz....
We derive variable separation solutions of the (\(1+1\))-dimensional KdV-type model by means of the modified tanh-function method with three different ansaetz....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1331
SubjectTerms Automotive Engineering
Classical Mechanics
Coherence
Construction
Control
Dynamical Systems
Engineering
Equivalence
Exact solutions
Mathematical analysis
Mathematical models
Mathematical programming
Mechanical Engineering
Original Paper
Queuing theory
Radicals
Separation
Vibration
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPTgW1xfRPCkBNo0SZvjIsoi6EFc2FtpHouCdoWuHvz1zvSxq6KClx7aaQKdzMw3neQbgFMVO58kieReK8OlStAPalHwSBgrrNepr3sR3NzqwVBej9SoPcdddbvdu5Jk7annh90wU6HUV1FFQHO1CMsKU3faxzUU_Zn7TUTdhi7CxIJ-Qoy6UuZPQ3wNRnOE-a0oWseaqw1Ya0Ei6zda3YSFUG7BegsYWWuO1RasfmIT3IbyLvCaLZZNSlbHqMd3FG8YYl8xrWYUsjw9fcMMmc5MsSo03N94b7YIGR05YQgM2fPEP45pSkSQD5xCYC3ZdJ3egeHV5f3FgLftFLiTsZnyIlXOhsKGTKQmKpJgRGYzRSacqrGTlIqkAVeWxmscpJXaKofxPMhY-FAku7BUTsqwBwwNPSu0dpEzhfTOZNFYeswVjVMhGBv1IOq-a-5arnFqefGUz1mSSRU5qiInVeSqB2ezV14aoo2_hA87ZeWtzVU5eiYiuxNG9OBk9hithUogRRkmr1UeE41mSjC5B-edkudD_Drh_r-kD2AFcVW7ufsQllDP4Qixy9Qe12v1A2pa5bc
  priority: 102
  providerName: Springer Nature
Title Re-study on localized structures based on variable separation solutions from the modified tanh-function method
URI https://link.springer.com/article/10.1007/s11071-015-2406-5
https://www.proquest.com/docview/2259434292
https://www.proquest.com/docview/1808070080
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB61uxd64FFasVBWRuIEspo4thOf0IJ2WxVRoYqVllMUP1atBElRWg78emYSZ5dWopccEieWMq9vPPY3AG9V6nyWZZJ7rQyXKkM_qEXFE2GssF7nvutF8OVcny7l2Uqt4oJbG7dVDj6xc9S-cbRGfox6R1RmwogP1784dY2i6mpsobELY3TBRTGC8cf5-deLjS_ORNeTLsEsg1YkVkNdszs8h5kPpdKKKgyaq7uRaQs371VIu8CzeAqPI2Jks17Ez2An1PvwJKJHFm2z3Ye9f6gFn0N9EXhHHcuamnUB6-oPDu_pYm8xx2YUvzw9_Y3pMh2gYm3oicDx3kYjGZ0_YYgS2c_GX61pSoSTl5ziYTeyb0F9AMvF_NunUx57K3AnU3PDq1w5GyobCpGbpMqCEYUtFNlzrtZOUl6SB1Qzjdc0SCu1VQ6De5Cp8KHKDmFUN3V4AQytvqi0dokzlfTOFMlaekwcjVMhGJtMIBn-a-ki8Tj1v_hRbimTSRQliqIkUZRqAu82r1z3rBsPDT4ahFVGA2zLrbpM4M3mMZoO1UOqOjS3bZkSp2ZOmHkC7wchbz_x3wlfPjzhK3iEqCpu7T6CEQo2vEbkcmOnsFssTqYwnp18_zyfRmXFu0sx-wvvLe4P
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeeBQQCwWMBBeQReLYTnxACAHLlj4OqJX2ZuLHikolKUoLgh_Fb2TGSXYBid56ySFxYskznvnGk_kG4InKfSiKQvKgleFSFWgHtah5JowTLugypF4Ee_t6dig_zNV8DX6NtTD0W-VoE5OhDq2nM_IXqHdEZSaMeHXylVPXKMquji00erXYiT--Y8jWvdx-i_J9KsT03cGbGR-6CnAvc3PK61J5F2sXK1GarC6iEZWrFGlyqRZeEiIvIy6wxmsepZPaKY9uLcpchFgX-N1LcFkW6MmpMn36fmn5C5E64GUY09D5x3zMoqZSPYyzKHBXlM_QXP3tB1fg9p98bHJz0xtwbcCn7HWvUDdhLTabcH3AqmywBN0mbPxBZHgLmo-RJ6Ja1jYsucejnzi8J6c9w4iekbcM9PQbBudUrsW62NOO472l_jOqdmGISdmXNhwtaEoEr585ed80sm94fRsOL2TN78B60zbxLjC0MVWttc-8qWXwpsoWMmCYaryK0bhsAtm4rtYPNOfUbePYrgiaSRQWRWFJFFZN4NnylZOe4-O8wVujsOyw3Tu7Us4JPF4-xo1K2Ze6ie1ZZ3Ni8CwJoU_g-Sjk1Sf-O-G98yd8BFdmB3u7dnd7f-c-XEU8N_xUvgXrKOT4ADHTqXuYFJXBp4veGb8B_9om1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-sgrQP9aOVnlUbwSdLcDebZDePYnuoVSmlB_cWNh-Hgt0T9vShf70z-3FnpS34sg_JbAI7M5mZncxvAA5U6kOWZZIHrQyXKsNzUIuSJ8I44YLOQ9OL4PJKn47k-ViNuz6ndX_bvU9JtjUNhNJUzY7uwuRoUfiGUQuFwYqyA5qrV7AiqRgYBXokjudHMY40RzEGGfRDYtynNf-2xJ-GaeFtPkuQNnZnuA5vO4eRHbcc3oClWG3CWuc8sk4160148wRZ8B1UPyJvkGPZtGKNvbr5jeQtWuw9htiMzFeg2QeMlql-itWxxQHHsblAMio_Yegksl_TcDOhLdGbvOZkDhvKtgP1exgNv_48OeVdawXuZWpmvMyVd7F0sRC5ScosGlG4QpE652riJYUleUQp0_hMo3RSO-XRtkeZihDLbAuWq2kVPwBDpS9KrX3iTSmDN0UykQHjRuNVjMYlA0j672p9hztO7S9u7QIxmVhhkRWWWGHVAA7nr9y1oBv_I97pmWU7_astnlIEfCeMGMD-fBo1h9IhZRWn97VNCVIzJ5d5AJ97Ji-W-OeG2y-i_gSr378M7cXZ1beP8Brdre7O9w4sI8vjLro0M7fXiO0jtRDs3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Re-study+on+localized+structures+based+on+variable+separation+solutions+from+the+modified+tanh-function+method&rft.jtitle=Nonlinear+dynamics&rft.au=Wang%2C+Yue-Yue&rft.au=Zhang%2C+Yu-Peng&rft.au=Dai%2C+Chao-Qing&rft.date=2016-02-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=83&rft.issue=3&rft.spage=1331&rft.epage=1339&rft_id=info:doi/10.1007%2Fs11071-015-2406-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_015_2406_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon