Re-study on localized structures based on variable separation solutions from the modified tanh-function method
We derive variable separation solutions of the ( 1 + 1 )-dimensional KdV-type model by means of the modified tan h -function method with three different ansätz. Superficially speaking, the positive and negative power-symmetric ansatz seems to be better than the positive-power ansatz and radical sign...
Saved in:
Published in | Nonlinear dynamics Vol. 83; no. 3; pp. 1331 - 1339 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.02.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We derive variable separation solutions of the (
1
+
1
)-dimensional KdV-type model by means of the modified tan
h
-function method with three different ansätz. Superficially speaking, the positive and negative power-symmetric ansatz seems to be better than the positive-power ansatz and radical sign combined ansatz because the positive and negative power-symmetric ansatz can construct the most forms of variable separation solutions. Actually, we find that various “different” solutions obtained by the modified tanh-function method are not independent, and many of the so-called new solutions are equivalent to one another. Moreover, in the two- or multi-component system, if we construct localized coherent structures for a special component based on variable separation solutions, we must note the structure constructed by the other component for the same equation in order to avoid the appearance of some divergent and un-physical structures. We hope that these results above contribute to the analysis on exact solutions and the construction of localized structures for other nonlinear models. |
---|---|
AbstractList | We derive variable separation solutions of the (
1
+
1
)-dimensional KdV-type model by means of the modified tan
h
-function method with three different ansätz. Superficially speaking, the positive and negative power-symmetric ansatz seems to be better than the positive-power ansatz and radical sign combined ansatz because the positive and negative power-symmetric ansatz can construct the most forms of variable separation solutions. Actually, we find that various “different” solutions obtained by the modified tanh-function method are not independent, and many of the so-called new solutions are equivalent to one another. Moreover, in the two- or multi-component system, if we construct localized coherent structures for a special component based on variable separation solutions, we must note the structure constructed by the other component for the same equation in order to avoid the appearance of some divergent and un-physical structures. We hope that these results above contribute to the analysis on exact solutions and the construction of localized structures for other nonlinear models. We derive variable separation solutions of the (\[1+1\])-dimensional KdV-type model by means of the modified tanh-function method with three different ansätz. Superficially speaking, the positive and negative power-symmetric ansatz seems to be better than the positive-power ansatz and radical sign combined ansatz because the positive and negative power-symmetric ansatz can construct the most forms of variable separation solutions. Actually, we find that various “different” solutions obtained by the modified tanh-function method are not independent, and many of the so-called new solutions are equivalent to one another. Moreover, in the two- or multi-component system, if we construct localized coherent structures for a special component based on variable separation solutions, we must note the structure constructed by the other component for the same equation in order to avoid the appearance of some divergent and un-physical structures. We hope that these results above contribute to the analysis on exact solutions and the construction of localized structures for other nonlinear models. We derive variable separation solutions of the (\(1+1\))-dimensional KdV-type model by means of the modified tanh-function method with three different ansaetz. Superficially speaking, the positive and negative power-symmetric ansatz seems to be better than the positive-power ansatz and radical sign combined ansatz because the positive and negative power-symmetric ansatz can construct the most forms of variable separation solutions. Actually, we find that various "different" solutions obtained by the modified tanh-function method are not independent, and many of the so-called new solutions are equivalent to one another. Moreover, in the two- or multi-component system, if we construct localized coherent structures for a special component based on variable separation solutions, we must note the structure constructed by the other component for the same equation in order to avoid the appearance of some divergent and un-physical structures. We hope that these results above contribute to the analysis on exact solutions and the construction of localized structures for other nonlinear models. |
Author | Zhang, Yu-Peng Wang, Yue-Yue Dai, Chao-Qing |
Author_xml | – sequence: 1 givenname: Yue-Yue surname: Wang fullname: Wang, Yue-Yue email: wangyy424@163.com organization: School of Sciences, Zhejiang A & F University – sequence: 2 givenname: Yu-Peng surname: Zhang fullname: Zhang, Yu-Peng organization: School of Sciences, Zhejiang A & F University – sequence: 3 givenname: Chao-Qing surname: Dai fullname: Dai, Chao-Qing organization: School of Sciences, Zhejiang A & F University |
BookMark | eNp9kVFLHDEQx4NY8LT9AL4t-NKX1Ek2uWQfi6gtCIXSgm8hm531IrvJmWQF--mbuysIgn2ZCTP_32SS_yk5DjEgIecMvjAAdZkZA8UoMEm5gDWVR2TFpGopX3f3x2QFHRcUOrg_Iac5PwJAy0GvSPiJNJdleGliaKbo7OT_4NDkkhZXloS56W2uhdp9tsnbfsIm49YmW3yt5Tgtu0NuxhTnpmywmePgR1-RYsOGjktwe-WMZROHj-TDaKeMn_7lM_L75vrX1Td69-P2-9XXO-oE6wq1SroebY-aqw5six3XvZYgtFZydPWBgitEO6xrZCh6se6lY1qiYHxA256Rz4e52xSfFszFzD47nCYbMC7ZMA0aFNRQpRdvpI9xSaFuZziXnWgF73hVsYPKpZhzwtFsk59tejEMzM4Bc3DAVAfMzgEjK6PeMM6X_b-VZP30X5IfyFxvCQ-YXnd6H_oL6JaeFg |
CitedBy_id | crossref_primary_10_1080_25765299_2018_1449348 crossref_primary_10_1515_phys_2019_0031 crossref_primary_10_1007_s11071_018_4428_2 crossref_primary_10_1155_2023_9996773 crossref_primary_10_1080_25765299_2019_1580815 crossref_primary_10_1088_0253_6102_68_4_478 crossref_primary_10_1016_j_camwa_2018_08_010 crossref_primary_10_1088_1402_4896_ab20d2 crossref_primary_10_1007_s11071_018_4130_4 crossref_primary_10_1007_s11071_021_06350_1 crossref_primary_10_1088_1572_9494_ab7ed6 crossref_primary_10_1016_j_ijleo_2024_171939 crossref_primary_10_1088_1402_4896_ab4a50 crossref_primary_10_1002_mma_5076 crossref_primary_10_1007_s12043_018_1568_3 crossref_primary_10_1016_j_ijleo_2019_162971 crossref_primary_10_1016_j_physleta_2025_130367 crossref_primary_10_1007_s44198_024_00173_5 crossref_primary_10_1016_j_aej_2020_06_002 crossref_primary_10_1007_s11071_018_4123_3 crossref_primary_10_1155_2019_4072754 crossref_primary_10_1016_j_aml_2017_10_013 crossref_primary_10_1007_s10598_023_09563_8 crossref_primary_10_1016_j_ijleo_2018_12_131 crossref_primary_10_1016_j_ijleo_2018_12_011 crossref_primary_10_1142_S0217984920502152 crossref_primary_10_1088_0253_6102_67_4_396 crossref_primary_10_1142_S0218863523500364 crossref_primary_10_1142_S0217984919501926 crossref_primary_10_3390_axioms8040134 crossref_primary_10_1155_2020_2929045 crossref_primary_10_1109_JPHOT_2018_2807920 crossref_primary_10_1080_09500340_2018_1442509 crossref_primary_10_1007_s12346_024_01137_2 crossref_primary_10_1016_j_ijleo_2019_163898 crossref_primary_10_1016_j_ijleo_2017_11_200 crossref_primary_10_1016_j_ijleo_2019_163213 crossref_primary_10_33187_jmsm_558879 crossref_primary_10_1080_25765299_2019_1642079 crossref_primary_10_1007_s11071_017_3713_9 crossref_primary_10_1186_s13662_019_2271_5 crossref_primary_10_1016_j_ijleo_2019_163296 crossref_primary_10_1155_2019_9290582 crossref_primary_10_1016_j_ijleo_2019_04_099 crossref_primary_10_1140_epjp_i2016_16211_7 crossref_primary_10_1016_j_ijleo_2019_163170 crossref_primary_10_1007_s11071_016_3141_2 crossref_primary_10_1016_j_camwa_2018_03_024 crossref_primary_10_1088_1674_1056_ab90ea crossref_primary_10_1140_epjp_i2017_11816_x crossref_primary_10_1007_s11082_018_1646_2 crossref_primary_10_1016_j_aml_2020_106326 crossref_primary_10_1016_j_ijleo_2019_06_005 crossref_primary_10_1007_s11071_018_4670_7 crossref_primary_10_1007_s11071_018_4049_9 crossref_primary_10_1007_s11071_019_04964_0 crossref_primary_10_1016_j_apm_2019_11_056 crossref_primary_10_1140_epjp_i2018_12198_3 crossref_primary_10_1088_1402_4896_ac12e6 crossref_primary_10_1016_j_ijleo_2021_168224 crossref_primary_10_1007_s11071_019_04978_8 crossref_primary_10_1007_s11071_018_4330_y crossref_primary_10_1007_s11071_018_4563_9 crossref_primary_10_1140_epjp_i2018_11881_7 crossref_primary_10_1142_S0217984925500368 crossref_primary_10_1007_s11071_018_4050_3 crossref_primary_10_1016_j_vacuum_2017_10_004 crossref_primary_10_1088_1402_4896_ab34ea crossref_primary_10_1016_j_cjph_2019_06_002 crossref_primary_10_3934_math_2025030 crossref_primary_10_1016_j_aml_2018_03_005 crossref_primary_10_1142_S0217984924502658 crossref_primary_10_1515_phys_2019_0043 crossref_primary_10_1007_s11071_016_3197_z crossref_primary_10_1088_1402_4896_ab8d02 crossref_primary_10_1515_zna_2016_0229 crossref_primary_10_1088_1402_4896_ab66e0 crossref_primary_10_3934_math_2019_3_896 crossref_primary_10_1080_17455030_2020_1788748 crossref_primary_10_1140_epjp_i2018_11959_2 crossref_primary_10_1007_s11082_024_06387_7 crossref_primary_10_1007_s11071_022_08092_0 crossref_primary_10_1631_FITEE_1900221 crossref_primary_10_1007_s11082_021_03059_8 crossref_primary_10_1007_s12043_022_02448_2 crossref_primary_10_1016_j_ijleo_2019_163434 crossref_primary_10_1016_j_cnsns_2016_07_002 crossref_primary_10_1007_s11071_016_2895_x crossref_primary_10_1007_s11071_024_10325_3 crossref_primary_10_1016_j_physleta_2023_129134 crossref_primary_10_1016_j_rinp_2023_106566 crossref_primary_10_1155_2019_8034731 |
Cites_doi | 10.1017/CBO9780511623998 10.1007/s11071-014-1676-7 10.1016/j.cnsns.2013.10.029 10.1007/s11071-014-1236-1 10.1007/s11071-013-1162-7 10.1016/j.amc.2008.12.014 10.1103/PhysRevLett.70.564 10.1016/j.ijnonlinmec.2007.12.001 10.1088/1054-660X/25/2/025402 10.1142/S021886351550006X 10.1016/j.physleta.2005.03.083 10.1063/1.1287644 10.1016/j.cnsns.2010.10.025 10.1088/0253-6102/51/3/29 10.1088/0253-6102/45/1/024 10.1103/PhysRevA.65.053605 10.1016/j.cnsns.2013.05.027 10.1016/0375-9601(92)90072-T 10.1063/1.529234 10.1016/0375-9601(93)90848-T 10.1063/1.2186255 10.1016/j.amc.2010.03.073 10.1007/s11071-015-1978-4 10.1080/14786449508620739 10.1016/j.cnsns.2010.03.001 10.1016/j.cnsns.2009.01.023 10.1142/S0129055X07002948 10.1088/1674-1056/19/5/050204 10.7498/aps.63.080506 10.1103/PhysRevLett.71.1661 10.1016/0022-247X(91)90267-4 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media Dordrecht 2015 Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2015 – notice: Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s11071-015-2406-5 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Engineering Database Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-269X |
EndPage | 1339 |
ExternalDocumentID | 10_1007_s11071_015_2406_5 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11375007 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LY13F050006 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c419t-a75cbeabe82790a3e928b85048875fc406427eead67ee1e4b46b5c185e412dea3 |
IEDL.DBID | BENPR |
ISSN | 0924-090X |
IngestDate | Thu Jul 10 17:34:29 EDT 2025 Fri Jul 25 11:10:37 EDT 2025 Tue Jul 01 01:51:53 EDT 2025 Thu Apr 24 23:09:31 EDT 2025 Fri Feb 21 02:32:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Different ansätz Divergent structure Modified tanh-function method Korteweg–de Vries-type model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-a75cbeabe82790a3e928b85048875fc406427eead67ee1e4b46b5c185e412dea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2259434292 |
PQPubID | 2043746 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1808070080 proquest_journals_2259434292 crossref_primary_10_1007_s11071_015_2406_5 crossref_citationtrail_10_1007_s11071_015_2406_5 springer_journals_10_1007_s11071_015_2406_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
PublicationTitle | Nonlinear dynamics |
PublicationTitleAbbrev | Nonlinear Dyn |
PublicationYear | 2016 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Rosenaup, Hyman (CR34) 1993; 70 Chen, Wei (CR2) 2009; 51 Zhong, Belic, Petrovic (CR17) 2014; 76 Agüero, Belyaeva, Serkin (CR35) 2011; 16 Mirzazadeh, Eslami, Savescu, Bhrawy, Alshaery, Hilal (CR8) 2015; 24 Zheng, Zhu (CR19) 2007; 34 CR36 Ablowtiz, Clarkson (CR5) 1991 CR33 CR32 Zhou, Zhu, Savescu, Bhrawy, Biswas (CR12) 2015; 16 Chen, Zhu (CR16) 2015; 81 Kudryashov, Ryabov, Sinelshchikov (CR24) 2011; 16 Zhang, Ma, Chen (CR21) 2014; 63 Savescu, Alshaery, Hilal, Bhrawy, Zhou, Biswas (CR9) 2015; 9 Zhou, Zhu, Yu, Liu, Wei, Yao, Bhrawy, Biswas (CR13) 2015; 25 Chen (CR14) 2015; 79 Kudryashov (CR23) 2009; 14 Zhu (CR15) 2014; 76 Nimmo (CR29) 1992; 168 Dai, Wang (CR28) 2014; 19 Demiray (CR4) 2008; 43 Vega-Guzman, Zhou, Alshaery, Hilal, Bhrawy, Biswas (CR11) 2015; 17 Korteweg, de Vries (CR1) 1895; 39 CR27 Zheng, Chen, Zhang (CR18) 2005; 340 Huang, Szeftel, Zhu (CR3) 2002; 65 Verosky (CR30) 1991; 32 Dai, Wang (CR22) 2009; 208 Parkes (CR25) 2010; 217 Rehman, Gambino, Roy Choudhury (CR37) 2014; 19 Lou (CR6) 1993; 175 Calogero, Degasperis, Xiaoda (CR31) 2000; 41 Dai, Zhang (CR26) 2006; 47 Vega-Guzman, Zhou, Alshaery, Hilal, Bhrawy, Biswas (CR10) 2015; 17 Zhu, Zheng, Fang (CR20) 2006; 45 Savescu, Bhrawy, Hilal, Alshaery, Moraru, Biswas (CR7) 2015; 9 EJ Parkes (2406_CR25) 2010; 217 Q Zhou (2406_CR13) 2015; 25 CL Zheng (2406_CR19) 2007; 34 JJC Nimmo (2406_CR29) 1992; 168 Q Zhou (2406_CR12) 2015; 16 2406_CR27 J Vega-Guzman (2406_CR10) 2015; 17 M Savescu (2406_CR7) 2015; 9 HP Zhu (2406_CR20) 2006; 45 CQ Dai (2406_CR28) 2014; 19 HP Zhu (2406_CR15) 2014; 76 MJ Ablowtiz (2406_CR5) 1991 CL Zheng (2406_CR18) 2005; 340 T Rehman (2406_CR37) 2014; 19 MA Agüero (2406_CR35) 2011; 16 2406_CR33 WL Zhang (2406_CR21) 2014; 63 CQ Dai (2406_CR22) 2009; 208 YX Chen (2406_CR14) 2015; 79 2406_CR32 JH Chen (2406_CR2) 2009; 51 NA Kudryashov (2406_CR24) 2011; 16 P Rosenaup (2406_CR34) 1993; 70 J Vega-Guzman (2406_CR11) 2015; 17 H Demiray (2406_CR4) 2008; 43 M Mirzazadeh (2406_CR8) 2015; 24 2406_CR36 GX Huang (2406_CR3) 2002; 65 SY Lou (2406_CR6) 1993; 175 F Calogero (2406_CR31) 2000; 41 HY Chen (2406_CR16) 2015; 81 JM Verosky (2406_CR30) 1991; 32 WP Zhong (2406_CR17) 2014; 76 DJ Korteweg (2406_CR1) 1895; 39 M Savescu (2406_CR9) 2015; 9 NA Kudryashov (2406_CR23) 2009; 14 CQ Dai (2406_CR26) 2006; 47 |
References_xml | – year: 1991 ident: CR5 publication-title: Soliton, Nonlinear Evolution Equations and Inverse Scattering doi: 10.1017/CBO9780511623998 – volume: 79 start-page: 427 year: 2015 end-page: 436 ident: CR14 article-title: Sech-type and Gaussian-type light bullet solutions to the generalized (3 + 1)-dimensional cubic-quintic Schrodinger equation in PT-symmetric potentials publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1676-7 – volume: 19 start-page: 1746 year: 2014 end-page: 1769 ident: CR37 article-title: Smooth and non-smooth traveling wave solutions of some generalized Camassa-Holm equations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2013.10.029 – volume: 76 start-page: 1651 year: 2014 end-page: 1659 ident: CR15 article-title: Spatiotemporal solitons on cnoidal wave backgrounds in three media with different distributed transverse diffraction and dispersion publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1236-1 – volume: 63 start-page: 080506 year: 2014 ident: CR21 article-title: Complex wave solutions and localized excitations of (2+1)-dimensional Korteweg-de Vries system publication-title: Acta Phys. Sin. – volume: 76 start-page: 717 year: 2014 end-page: 723 ident: CR17 article-title: Solitary and extended waves in the generalized sinh-Gordon equation with a variable coefficient publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-1162-7 – volume: 208 start-page: 453 year: 2009 end-page: 461 ident: CR22 article-title: The novel solitary wave structures and interactions in the (2+1)-dimensional Korteweg-de Vries system publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2008.12.014 – volume: 70 start-page: 564 year: 1993 end-page: 567 ident: CR34 article-title: Compactons: solitons with finites wavelength publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.564 – ident: CR33 – volume: 43 start-page: 241 year: 2008 end-page: 245 ident: CR4 article-title: Nonlinear waves in a fluid-filled inhomogeneous elastic tube with variable radius publication-title: Int. J. Nonlinear Mech. doi: 10.1016/j.ijnonlinmec.2007.12.001 – volume: 25 start-page: 025402 year: 2015 ident: CR13 article-title: Bright, dark and singular optical solitons in a cascaded system publication-title: Laser Phys. doi: 10.1088/1054-660X/25/2/025402 – volume: 34 start-page: 492 year: 2007 end-page: 498 ident: CR19 article-title: Localized excitations with periodic and chaotic behaviors in (1 + 1)-dimensional Korteweg-de Vries type system publication-title: Chaos Solitons Fractals – volume: 24 start-page: 1550006 year: 2015 ident: CR8 article-title: Anjan Biswas: optical solitons in DWDM system with spatio-temporal dispersion publication-title: J. Nonlinear Opt. Phys. Mater. doi: 10.1142/S021886351550006X – volume: 340 start-page: 397 year: 2005 end-page: 402 ident: CR18 article-title: Peakon, compacton and loop excitations with periodic behavior in KdV type models related to Schrödinger system publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2005.03.083 – volume: 41 start-page: 6399 year: 2000 end-page: 6443 ident: CR31 article-title: Nonlinear Schrödinger-type equations from multiscale reduction of PDEs. I. Systematic derivation publication-title: J. Math. Phys. doi: 10.1063/1.1287644 – ident: CR27 – volume: 16 start-page: 3071 year: 2011 end-page: 3080 ident: CR35 article-title: Compacton anti-compacton pair for hydrogen bonds and rotational waves in DNA dynamics commun publication-title: Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.10.025 – volume: 51 start-page: 524 year: 2009 end-page: 528 ident: CR2 article-title: Effects of adiabatic dust charge fluctuation and particles collisions on dust-acoustic solitary waves in three-dimensional magnetized dusty plasmas publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/51/3/29 – volume: 45 start-page: 127 year: 2006 end-page: 130 ident: CR20 article-title: Exact solution to (1 + 1)-dimensional higher-order schrodinger equation via an extended mapping approach publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/45/1/024 – volume: 16 start-page: 152 year: 2015 end-page: 159 ident: CR12 article-title: Optical solitons with nonlinear dispersion in parabolic law medium publication-title: Proc Rom. Acad. A – volume: 65 start-page: 053605 year: 2002 ident: CR3 article-title: Dynamics of dark solitons in quasi-one-dimensional Bose-Einstein condensates publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.65.053605 – volume: 19 start-page: 19 year: 2014 end-page: 28 ident: CR28 article-title: Notes on the equivalence of different variable separation approaches for nonlinear evolution equations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2013.05.027 – volume: 168 start-page: 113 year: 1992 end-page: 119 ident: CR29 article-title: A class of solutions of the Konopelchenko-Rogers equation publication-title: Phys. Lett. A doi: 10.1016/0375-9601(92)90072-T – volume: 17 start-page: 74 year: 2015 end-page: 81 ident: CR10 article-title: Optical solitons in cascaded system with spatio-temporal dispersion publication-title: Optoelectron. Adv. Mater. Rapid Commun. – volume: 9 start-page: 10 year: 2015 end-page: 13 ident: CR7 article-title: Optical solitons in birefringent fibers with four-wave mixing for parabolic law nonlinearity, Optoelectronics and Advanced Materials-Rapid publication-title: Communications – volume: 32 start-page: 1733 year: 1991 end-page: 1736 ident: CR30 article-title: Negative powers of Olver recursion operators publication-title: J. Math. Phys. doi: 10.1063/1.529234 – volume: 175 start-page: 23 year: 1993 end-page: 26 ident: CR6 article-title: Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation publication-title: Phys. Lett. A doi: 10.1016/0375-9601(93)90848-T – volume: 47 start-page: 043501 year: 2006 ident: CR26 article-title: Novel variable separation solutions and exotic localized excitations via the ETM in nonlinear soliton systems publication-title: J. Math. Phys. doi: 10.1063/1.2186255 – volume: 217 start-page: 1759 year: 2010 end-page: 1763 ident: CR25 article-title: Observations on the basic (G’/G): expansion method for finding solutions to nonlinear evolution equations publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2010.03.073 – volume: 81 start-page: 141 year: 2015 end-page: 149 ident: CR16 article-title: Controllable behaviors of spatiotemporal breathers in a generalized variable-coefficient nonlinear Schrödinger model from arterial mechanics and optical fibers publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-1978-4 – volume: 39 start-page: 422 year: 1895 end-page: 443 ident: CR1 article-title: On the change of form of long wave advancing in a rectangular canal and on a new-type of long stationary waves publication-title: Phiols. Mag doi: 10.1080/14786449508620739 – volume: 9 start-page: 14 year: 2015 end-page: 19 ident: CR9 article-title: Optical solitons in DWDM system with four-wave mixing publication-title: Optoelectron. Adv. Mater. Rapid. Commun. – ident: CR32 – volume: 17 start-page: 165 year: 2015 end-page: 171 ident: CR11 article-title: Optical solitons in cascaded system with spatio-temporal dispersion by ansatz approach publication-title: Optoelectron. Adv. Mater. Rapid Commun. – ident: CR36 – volume: 16 start-page: 596 year: 2011 end-page: 598 ident: CR24 article-title: Comment on: “Application of the (G’/G) method for the complex KdV equation” [Huiqun Zhang, Commun Nonlinear Sci Numer Simulat 15, 2010, 1700–1704] publication-title: Commun. Non Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.03.001 – volume: 14 start-page: 3507 year: 2009 end-page: 3529 ident: CR23 article-title: Seven common errors in finding exact solutions of nonlinear differential equations publication-title: Commun. Non Sci. Numer. Simul. doi: 10.1016/j.cnsns.2009.01.023 – volume: 217 start-page: 1759 year: 2010 ident: 2406_CR25 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2010.03.073 – volume: 32 start-page: 1733 year: 1991 ident: 2406_CR30 publication-title: J. Math. Phys. doi: 10.1063/1.529234 – volume: 19 start-page: 19 year: 2014 ident: 2406_CR28 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2013.05.027 – volume: 76 start-page: 1651 year: 2014 ident: 2406_CR15 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1236-1 – volume: 340 start-page: 397 year: 2005 ident: 2406_CR18 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2005.03.083 – volume: 45 start-page: 127 year: 2006 ident: 2406_CR20 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/45/1/024 – volume-title: Soliton, Nonlinear Evolution Equations and Inverse Scattering year: 1991 ident: 2406_CR5 doi: 10.1017/CBO9780511623998 – volume: 16 start-page: 3071 year: 2011 ident: 2406_CR35 publication-title: Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.10.025 – volume: 168 start-page: 113 year: 1992 ident: 2406_CR29 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(92)90072-T – volume: 9 start-page: 10 year: 2015 ident: 2406_CR7 publication-title: Communications – volume: 70 start-page: 564 year: 1993 ident: 2406_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.564 – volume: 9 start-page: 14 year: 2015 ident: 2406_CR9 publication-title: Optoelectron. Adv. Mater. Rapid. Commun. – ident: 2406_CR27 doi: 10.1142/S0129055X07002948 – volume: 16 start-page: 152 year: 2015 ident: 2406_CR12 publication-title: Proc Rom. Acad. A – volume: 81 start-page: 141 year: 2015 ident: 2406_CR16 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-1978-4 – volume: 19 start-page: 1746 year: 2014 ident: 2406_CR37 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2013.10.029 – ident: 2406_CR33 doi: 10.1088/1674-1056/19/5/050204 – volume: 63 start-page: 080506 year: 2014 ident: 2406_CR21 publication-title: Acta Phys. Sin. doi: 10.7498/aps.63.080506 – ident: 2406_CR36 doi: 10.1103/PhysRevLett.71.1661 – volume: 24 start-page: 1550006 year: 2015 ident: 2406_CR8 publication-title: J. Nonlinear Opt. Phys. Mater. doi: 10.1142/S021886351550006X – volume: 43 start-page: 241 year: 2008 ident: 2406_CR4 publication-title: Int. J. Nonlinear Mech. doi: 10.1016/j.ijnonlinmec.2007.12.001 – volume: 51 start-page: 524 year: 2009 ident: 2406_CR2 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/51/3/29 – volume: 76 start-page: 717 year: 2014 ident: 2406_CR17 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-1162-7 – volume: 34 start-page: 492 year: 2007 ident: 2406_CR19 publication-title: Chaos Solitons Fractals – volume: 208 start-page: 453 year: 2009 ident: 2406_CR22 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2008.12.014 – volume: 175 start-page: 23 year: 1993 ident: 2406_CR6 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(93)90848-T – volume: 41 start-page: 6399 year: 2000 ident: 2406_CR31 publication-title: J. Math. Phys. doi: 10.1063/1.1287644 – volume: 79 start-page: 427 year: 2015 ident: 2406_CR14 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1676-7 – volume: 65 start-page: 053605 year: 2002 ident: 2406_CR3 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.65.053605 – volume: 25 start-page: 025402 year: 2015 ident: 2406_CR13 publication-title: Laser Phys. doi: 10.1088/1054-660X/25/2/025402 – volume: 17 start-page: 74 year: 2015 ident: 2406_CR10 publication-title: Optoelectron. Adv. Mater. Rapid Commun. – volume: 14 start-page: 3507 year: 2009 ident: 2406_CR23 publication-title: Commun. Non Sci. Numer. Simul. doi: 10.1016/j.cnsns.2009.01.023 – volume: 16 start-page: 596 year: 2011 ident: 2406_CR24 publication-title: Commun. Non Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.03.001 – volume: 47 start-page: 043501 year: 2006 ident: 2406_CR26 publication-title: J. Math. Phys. doi: 10.1063/1.2186255 – volume: 39 start-page: 422 year: 1895 ident: 2406_CR1 publication-title: Phiols. Mag doi: 10.1080/14786449508620739 – ident: 2406_CR32 doi: 10.1016/0022-247X(91)90267-4 – volume: 17 start-page: 165 year: 2015 ident: 2406_CR11 publication-title: Optoelectron. Adv. Mater. Rapid Commun. |
SSID | ssj0003208 |
Score | 2.4320495 |
Snippet | We derive variable separation solutions of the (
1
+
1
)-dimensional KdV-type model by means of the modified tan
h
-function method with three different... We derive variable separation solutions of the (\[1+1\])-dimensional KdV-type model by means of the modified tanh-function method with three different ansätz.... We derive variable separation solutions of the (\(1+1\))-dimensional KdV-type model by means of the modified tanh-function method with three different ansaetz.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1331 |
SubjectTerms | Automotive Engineering Classical Mechanics Coherence Construction Control Dynamical Systems Engineering Equivalence Exact solutions Mathematical analysis Mathematical models Mathematical programming Mechanical Engineering Original Paper Queuing theory Radicals Separation Vibration |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPTgW1xfRPCkBNo0SZvjIsoi6EFc2FtpHouCdoWuHvz1zvSxq6KClx7aaQKdzMw3neQbgFMVO58kieReK8OlStAPalHwSBgrrNepr3sR3NzqwVBej9SoPcdddbvdu5Jk7annh90wU6HUV1FFQHO1CMsKU3faxzUU_Zn7TUTdhi7CxIJ-Qoy6UuZPQ3wNRnOE-a0oWseaqw1Ya0Ei6zda3YSFUG7BegsYWWuO1RasfmIT3IbyLvCaLZZNSlbHqMd3FG8YYl8xrWYUsjw9fcMMmc5MsSo03N94b7YIGR05YQgM2fPEP45pSkSQD5xCYC3ZdJ3egeHV5f3FgLftFLiTsZnyIlXOhsKGTKQmKpJgRGYzRSacqrGTlIqkAVeWxmscpJXaKofxPMhY-FAku7BUTsqwBwwNPSu0dpEzhfTOZNFYeswVjVMhGBv1IOq-a-5arnFqefGUz1mSSRU5qiInVeSqB2ezV14aoo2_hA87ZeWtzVU5eiYiuxNG9OBk9hithUogRRkmr1UeE41mSjC5B-edkudD_Drh_r-kD2AFcVW7ufsQllDP4Qixy9Qe12v1A2pa5bc priority: 102 providerName: Springer Nature |
Title | Re-study on localized structures based on variable separation solutions from the modified tanh-function method |
URI | https://link.springer.com/article/10.1007/s11071-015-2406-5 https://www.proquest.com/docview/2259434292 https://www.proquest.com/docview/1808070080 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB61uxd64FFasVBWRuIEspo4thOf0IJ2WxVRoYqVllMUP1atBElRWg78emYSZ5dWopccEieWMq9vPPY3AG9V6nyWZZJ7rQyXKkM_qEXFE2GssF7nvutF8OVcny7l2Uqt4oJbG7dVDj6xc9S-cbRGfox6R1RmwogP1784dY2i6mpsobELY3TBRTGC8cf5-deLjS_ORNeTLsEsg1YkVkNdszs8h5kPpdKKKgyaq7uRaQs371VIu8CzeAqPI2Jks17Ez2An1PvwJKJHFm2z3Ye9f6gFn0N9EXhHHcuamnUB6-oPDu_pYm8xx2YUvzw9_Y3pMh2gYm3oicDx3kYjGZ0_YYgS2c_GX61pSoSTl5ziYTeyb0F9AMvF_NunUx57K3AnU3PDq1w5GyobCpGbpMqCEYUtFNlzrtZOUl6SB1Qzjdc0SCu1VQ6De5Cp8KHKDmFUN3V4AQytvqi0dokzlfTOFMlaekwcjVMhGJtMIBn-a-ki8Tj1v_hRbimTSRQliqIkUZRqAu82r1z3rBsPDT4ahFVGA2zLrbpM4M3mMZoO1UOqOjS3bZkSp2ZOmHkC7wchbz_x3wlfPjzhK3iEqCpu7T6CEQo2vEbkcmOnsFssTqYwnp18_zyfRmXFu0sx-wvvLe4P |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeeBQQCwWMBBeQReLYTnxACAHLlj4OqJX2ZuLHikolKUoLgh_Fb2TGSXYBid56ySFxYskznvnGk_kG4InKfSiKQvKgleFSFWgHtah5JowTLugypF4Ee_t6dig_zNV8DX6NtTD0W-VoE5OhDq2nM_IXqHdEZSaMeHXylVPXKMquji00erXYiT--Y8jWvdx-i_J9KsT03cGbGR-6CnAvc3PK61J5F2sXK1GarC6iEZWrFGlyqRZeEiIvIy6wxmsepZPaKY9uLcpchFgX-N1LcFkW6MmpMn36fmn5C5E64GUY09D5x3zMoqZSPYyzKHBXlM_QXP3tB1fg9p98bHJz0xtwbcCn7HWvUDdhLTabcH3AqmywBN0mbPxBZHgLmo-RJ6Ja1jYsucejnzi8J6c9w4iekbcM9PQbBudUrsW62NOO472l_jOqdmGISdmXNhwtaEoEr585ed80sm94fRsOL2TN78B60zbxLjC0MVWttc-8qWXwpsoWMmCYaryK0bhsAtm4rtYPNOfUbePYrgiaSRQWRWFJFFZN4NnylZOe4-O8wVujsOyw3Tu7Us4JPF4-xo1K2Ze6ie1ZZ3Ni8CwJoU_g-Sjk1Sf-O-G98yd8BFdmB3u7dnd7f-c-XEU8N_xUvgXrKOT4ADHTqXuYFJXBp4veGb8B_9om1w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-sgrQP9aOVnlUbwSdLcDebZDePYnuoVSmlB_cWNh-Hgt0T9vShf70z-3FnpS34sg_JbAI7M5mZncxvAA5U6kOWZZIHrQyXKsNzUIuSJ8I44YLOQ9OL4PJKn47k-ViNuz6ndX_bvU9JtjUNhNJUzY7uwuRoUfiGUQuFwYqyA5qrV7AiqRgYBXokjudHMY40RzEGGfRDYtynNf-2xJ-GaeFtPkuQNnZnuA5vO4eRHbcc3oClWG3CWuc8sk4160148wRZ8B1UPyJvkGPZtGKNvbr5jeQtWuw9htiMzFeg2QeMlql-itWxxQHHsblAMio_Yegksl_TcDOhLdGbvOZkDhvKtgP1exgNv_48OeVdawXuZWpmvMyVd7F0sRC5ScosGlG4QpE652riJYUleUQp0_hMo3RSO-XRtkeZihDLbAuWq2kVPwBDpS9KrX3iTSmDN0UykQHjRuNVjMYlA0j672p9hztO7S9u7QIxmVhhkRWWWGHVAA7nr9y1oBv_I97pmWU7_astnlIEfCeMGMD-fBo1h9IhZRWn97VNCVIzJ5d5AJ97Ji-W-OeG2y-i_gSr378M7cXZ1beP8Brdre7O9w4sI8vjLro0M7fXiO0jtRDs3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Re-study+on+localized+structures+based+on+variable+separation+solutions+from+the+modified+tanh-function+method&rft.jtitle=Nonlinear+dynamics&rft.au=Wang%2C+Yue-Yue&rft.au=Zhang%2C+Yu-Peng&rft.au=Dai%2C+Chao-Qing&rft.date=2016-02-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=83&rft.issue=3&rft.spage=1331&rft.epage=1339&rft_id=info:doi/10.1007%2Fs11071-015-2406-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_015_2406_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |