Comparison of near and mid-infrared reflectance spectroscopy for the estimation of soil organic carbon fractions in Madagascar agricultural soils
Assessing the different pools of soil organic carbon (SOC) improves our understanding of how and at what rate the different forms of carbon (C) are being formed or lost in soils. Physical fractionation of soil organic matter (SOM) has often been used to separate and quantify SOC pools, but this appr...
Saved in:
Published in | Geoderma Regional Vol. 33; p. e00638 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2023
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2352-0094 2352-0094 |
DOI | 10.1016/j.geodrs.2023.e00638 |
Cover
Loading…
Abstract | Assessing the different pools of soil organic carbon (SOC) improves our understanding of how and at what rate the different forms of carbon (C) are being formed or lost in soils. Physical fractionation of soil organic matter (SOM) has often been used to separate and quantify SOC pools, but this approach is very tedious and can rarely be performed on large sample sets. Infrared spectroscopy has proven useful for time- and cost-effective quantification of total SOC, which prompted us to study its ability to characterise the distribution of SOC in physical fractions. This study aimed to compare the potential of near- and mid-infrared reflectance spectroscopy (NIRS and MIRS, respectively) to predict the distribution of SOC in particle-size and particle-density fractions, using spectra of unfractionated soils. A set of 134 sieved (< 2 mm) soil samples originating from seven sites in contrasting pedoclimatic regions of Madagascar was studied. For each sample, five SOM fractions were separated: the particulate organic matter fraction (POM) and the particle-size fractions >200 μm, 50–200-μm, 20–50-μm and < 20 μm. The mass (g fraction 100 g−1 soil), SOC concentration (gC kg−1 fraction) and SOC amount (gC fraction kg−1 soil) were determined for each fraction in the laboratory. The NIR and MIR spectra were acquired on finely ground (< 0.2 mm) aliquots of unfractionated soil. Then, spectra were used for the prediction of each variable (i.e., the mass, SOC concentration and amount of each fraction, and SOC content of unfractionated soil), which was achieved with locally weighted partial least squares regression (LW-PLSR) on NIRS and MIRS data separately. For both spectral ranges, the same samples were used for calibration (n = 109, selected for spectral representativeness) and validation (n = 25).
Models based on NIRS and MIRS yielded excellent predictions for SOC content in unfractionated soil (R2 = 0.98 and ratio of performance to interquartile range RPIQ ≥13) and accurate predictions (R2 ≥ 0.75 and RPIQ ≥2) for the mass, SOC concentration and SOC amount in most fractions. The predictions of SOC concentrations and SOC amounts were better in the fractions <200 μm (R2 ≥ 0.85 and RPIQ >3), especially in the fraction <20 μm (R2 > 0.9 and RPIQ >4.5). In most cases, NIRS slightly outperformed MIRS. This result contradicts most previous studies performed on soils from temperate regions but confirms those performed on soils from tropical regions.
Infrared spectroscopy allowed accurate prediction of SOC distribution in particle-size fractions, which paves the way to high-throughput characterization of SOM.
•SOC of particle-size fractions was studied in Ferralsols, Arenosols and Fluvisols.•Infrared spectra of unfractionated soil were used to estimate SOC in the fractions.•NIRS slightly outperformed MIRS for the studied Malagasy soils.•Predictions were particularly accurate for SOC amount in the <20 μm fraction. |
---|---|
AbstractList | Assessing the different pools of soil organic carbon (SOC) improves our understanding of how and at what rate the different forms of carbon (C) are being formed or lost in soils. Physical fractionation of soil organic matter (SOM) has often been used to separate and quantify SOC pools, but this approach is very tedious and can rarely be performed on large sample sets. Infrared spectroscopy has proven useful for time- and cost-effective quantification of total SOC, which prompted us to study its ability to characterise the distribution of SOC in physical fractions. This study aimed to compare the potential of near- and mid-infrared reflectance spectroscopy (NIRS and MIRS, respectively) to predict the distribution of SOC in particle-size and particle-density fractions, using spectra of unfractionated soils. A set of 134 sieved (< 2 mm) soil samples originating from seven sites in contrasting pedoclimatic regions of Madagascar was studied. For each sample, five SOM fractions were separated: the particulate organic matter fraction (POM) and the particle-size fractions >200 μm, 50–200-μm, 20–50-μm and < 20 μm. The mass (g fraction 100 g−1 soil), SOC concentration (gC kg−1 fraction) and SOC amount (gC fraction kg−1 soil) were determined for each fraction in the laboratory. The NIR and MIR spectra were acquired on finely ground (< 0.2 mm) aliquots of unfractionated soil. Then, spectra were used for the prediction of each variable (i.e., the mass, SOC concentration and amount of each fraction, and SOC content of unfractionated soil), which was achieved with locally weighted partial least squares regression (LW-PLSR) on NIRS and MIRS data separately. For both spectral ranges, the same samples were used for calibration (n = 109, selected for spectral representativeness) and validation (n = 25).
Models based on NIRS and MIRS yielded excellent predictions for SOC content in unfractionated soil (R2 = 0.98 and ratio of performance to interquartile range RPIQ ≥13) and accurate predictions (R2 ≥ 0.75 and RPIQ ≥2) for the mass, SOC concentration and SOC amount in most fractions. The predictions of SOC concentrations and SOC amounts were better in the fractions <200 μm (R2 ≥ 0.85 and RPIQ >3), especially in the fraction <20 μm (R2 > 0.9 and RPIQ >4.5). In most cases, NIRS slightly outperformed MIRS. This result contradicts most previous studies performed on soils from temperate regions but confirms those performed on soils from tropical regions.
Infrared spectroscopy allowed accurate prediction of SOC distribution in particle-size fractions, which paves the way to high-throughput characterization of SOM.
•SOC of particle-size fractions was studied in Ferralsols, Arenosols and Fluvisols.•Infrared spectra of unfractionated soil were used to estimate SOC in the fractions.•NIRS slightly outperformed MIRS for the studied Malagasy soils.•Predictions were particularly accurate for SOC amount in the <20 μm fraction. Assessing the different pools of soil organic carbon (SOC) improves our understanding of how and at what rate the different forms of carbon (C) are being formed or lost in soils. Physical fractionation of soil organic matter (SOM) has often been used to separate and quantify SOC pools, but this approach is very tedious and can rarely be performed on large sample sets. Infrared spectroscopy has proven useful for time-and cost-effective quan-tification of total SOC, which prompted us to study its ability to characterise the distribution of SOC in physical fractions. This study aimed to compare the potential of near-and mid-infrared reflectance spectroscopy (NIRS and MIRS, respectively) to predict the distribution of SOC in particle-size and particle-density fractions, using spectra of unfractionated soils. A set of 134 sieved (< 2 mm) soil samples originating from seven sites in contrasting pedoclimatic regions of Madagascar was studied. For each sample, five SOM fractions were separated: the particulate organic matter fraction (POM) and the particle-size fractions > 200, 50-200, 20-50 and < 20 µm. The mass (g fraction 100 g(-1) soil), SOC concentration (gC kg(-1) fraction) and SOC amount (gC fraction kg(-1) soil) were determined for each fraction in the laboratory. The NIR and MIR spectra were acquired on finely ground (< 0.2 mm) aliquots of unfractionated soil. Then, spectra were used for the prediction of each variable (i.e., the mass, SOC concentration and amount of each fraction, and SOC content of unfractionated soil), which was achieved with locally weighted partial least squares regression (LW-PLSR) on NIRS and MIRS data separately. For both spectral ranges, the same samples were used for calibration (n = 109, selected for spectral representativeness) and validation (n = 25). Models based on NIRS and MIRS yielded excellent predictions for SOC content in unfractionated soil (R² = 0.98 and ratio of performance to interquartile range RPIQ >= 13) and accurate predictions (R² >= 0.75 and RPIQ >= 2) for the mass, SOC concentration and SOC amount in most fractions. The predictions of SOC concentrations and SOC amounts were better in the fractions < 200 µm (R² >= 0.85 and RPIQ > 3), especially in the fraction < 20 µm (R² > 0.9 and RPIQ > 4.5). In most cases, NIRS slightly outperformed MIRS. This result contradicts most previous studies performed on soils from temperate regions but confirms those performed on soils from tropical regions. Infrared spectroscopy allowed accurate prediction of SOC distribution in particle-size fractions, which paves the way to high-throughput characterization of SOM. Assessing the different pools of soil organic carbon (SOC) improves our understanding of how and at what rate the different forms of carbon (C) are being formed or lost in soils. Physical fractionation of soil organic matter (SOM) has often been used to separate and quantify SOC pools, but this approach is very tedious and can rarely be performed on large sample sets. Infrared spectroscopy has proven useful for time- and cost-effective quantification of total SOC, which prompted us to study its ability to characterise the distribution of SOC in physical fractions. This study aimed to compare the potential of near- and mid-infrared reflectance spectroscopy (NIRS and MIRS, respectively) to predict the distribution of SOC in particle-size and particle-density fractions, using spectra of unfractionated soils. A set of 134 sieved (< 2 mm) soil samples originating from seven sites in contrasting pedoclimatic regions of Madagascar was studied. For each sample, five SOM fractions were separated: the particulate organic matter fraction (POM) and the particle-size fractions >200 μm, 50–200-μm, 20–50-μm and < 20 μm. The mass (g fraction 100 g⁻¹ soil), SOC concentration (gC kg⁻¹ fraction) and SOC amount (gC fraction kg⁻¹ soil) were determined for each fraction in the laboratory. The NIR and MIR spectra were acquired on finely ground (< 0.2 mm) aliquots of unfractionated soil. Then, spectra were used for the prediction of each variable (i.e., the mass, SOC concentration and amount of each fraction, and SOC content of unfractionated soil), which was achieved with locally weighted partial least squares regression (LW-PLSR) on NIRS and MIRS data separately. For both spectral ranges, the same samples were used for calibration (n = 109, selected for spectral representativeness) and validation (n = 25). Models based on NIRS and MIRS yielded excellent predictions for SOC content in unfractionated soil (R² = 0.98 and ratio of performance to interquartile range RPIQ ≥13) and accurate predictions (R² ≥ 0.75 and RPIQ ≥2) for the mass, SOC concentration and SOC amount in most fractions. The predictions of SOC concentrations and SOC amounts were better in the fractions <200 μm (R² ≥ 0.85 and RPIQ >3), especially in the fraction <20 μm (R² > 0.9 and RPIQ >4.5). In most cases, NIRS slightly outperformed MIRS. This result contradicts most previous studies performed on soils from temperate regions but confirms those performed on soils from tropical regions. Infrared spectroscopy allowed accurate prediction of SOC distribution in particle-size fractions, which paves the way to high-throughput characterization of SOM. |
ArticleNumber | e00638 |
Author | Cambou, Aurélie Barthès, Bernard G. Ramifehiarivo, Nandrianina Razafimbelo, Tantely Albrecht, Alain Chapuis-Lardy, Lydie Chevallier, Tiphaine |
Author_xml | – sequence: 1 givenname: Nandrianina surname: Ramifehiarivo fullname: Ramifehiarivo, Nandrianina email: ranandrianina@hotmail.fr organization: Laboratoire des RadioIsotopes, University of Antananarivo, BP3383 Route d'Andraisoro, 101 Antananarivo, Madagascar – sequence: 2 givenname: Bernard G. surname: Barthès fullname: Barthès, Bernard G. organization: Eco&sols, Université de Montpellier, Cirad, Inrae, IRD, Institut Agro, 34060 Montpellier, France – sequence: 3 givenname: Aurélie surname: Cambou fullname: Cambou, Aurélie organization: Eco&sols, Université de Montpellier, Cirad, Inrae, IRD, Institut Agro, 34060 Montpellier, France – sequence: 4 givenname: Lydie surname: Chapuis-Lardy fullname: Chapuis-Lardy, Lydie organization: Eco&sols, Université de Montpellier, Cirad, Inrae, IRD, Institut Agro, 34060 Montpellier, France – sequence: 5 givenname: Tiphaine surname: Chevallier fullname: Chevallier, Tiphaine organization: Eco&sols, Université de Montpellier, Cirad, Inrae, IRD, Institut Agro, 34060 Montpellier, France – sequence: 6 givenname: Alain surname: Albrecht fullname: Albrecht, Alain organization: Eco&sols, Université de Montpellier, Cirad, Inrae, IRD, Institut Agro, 34060 Montpellier, France – sequence: 7 givenname: Tantely surname: Razafimbelo fullname: Razafimbelo, Tantely organization: Laboratoire des RadioIsotopes, University of Antananarivo, BP3383 Route d'Andraisoro, 101 Antananarivo, Madagascar |
BackLink | https://hal.inrae.fr/hal-04117582$$DView record in HAL |
BookMark | eNqFUU1v1DAQtVCRKKX_gIOPcMjij2Rjc0CqVkCRFnGBszWxJ1uvvHaws5X6M_jHOA1IiAOcZjR-73nmvefkIqaIhLzkbMMZ3745bg6YXC4bwYTcIGNbqZ6QSyE70TCm24s_-mfkupQjY0zoTvZbcUl-7NJpguxLijSNNCJkCtHRk3eNj2OGjI5mHAPaGaJFWqba5VRsmh7omDKd75Bimf0JZr-KlOQDTfkA0VtqIQ91XJXs8l6oj_QzODhAsctfh-ztOcznDOGRWF6QpyOEgte_6hX59uH9191ts__y8dPuZt_Yluu50eiGrneKMeUssmEYhGtVp7kdWt53uuthlL0CPg5WS5BKc4Wyd1ZKHEBJeUVer7p3EMyU6_75wSTw5vZmb5YZa3kVUuKeV-yrFTvl9P1crzUnXyyGABHTuRihWq1Uz5mq0Lcr1FaTSnXOWD8_WjNn8MFwZpbYzNGssZklNrPGVsntX-Tfi_2H9m6lYfXr3mM2xXqsaTmfa1rGJf9vgZ-TXrlP |
CitedBy_id | crossref_primary_10_3390_atmos15030250 crossref_primary_10_1038_s41467_025_57355_y crossref_primary_10_1016_j_chemolab_2024_105247 crossref_primary_10_1016_j_geoderma_2024_116818 |
Cites_doi | 10.3390/rs9101081 10.1021/ac60214a047 10.2136/sssaj2008.0213 10.1016/j.still.2004.12.006 10.2136/sssaj2001.652480x 10.1007/s12571-009-0009-z 10.1016/j.geoderma.2007.01.007 10.1038/s41561-020-0612-3 10.1080/05704928.2013.811081 10.1255/jnirs.1232 10.1016/j.geoderma.2014.10.019 10.1016/j.still.2007.10.012 10.1016/j.ecolecon.2007.09.020 10.1007/s10533-021-00755-1 10.1016/j.catena.2022.106075 10.1016/j.agee.2020.107030 10.1016/j.geoderma.2015.06.021 10.1016/j.chemolab.2007.06.007 10.1071/SR15019 10.1016/j.agee.2016.08.030 10.1016/j.soilbio.2007.03.007 10.1016/j.geoderma.2020.114401 10.1016/j.foreco.2007.10.027 10.3389/fenvs.2020.514701 10.5194/bg-17-5025-2020 10.1080/00401706.1969.10490666 10.1016/j.geoderma.2018.03.025 10.1890/16-0024.1 10.2136/sssaj2009.0375 10.1016/j.geoderma.2013.07.017 10.1016/j.soilbio.2007.12.023 10.1016/j.soilbio.2018.03.026 10.1007/978-1-4612-2930-8_1 10.1007/s10533-011-9679-7 10.1016/j.soilbio.2006.07.010 10.1111/j.1365-2389.2000.00353.x 10.1016/S0016-7061(97)00039-6 10.3390/soilsystems3010011 10.1371/journal.pone.0066409 10.1111/ejss.12761 10.1016/j.agee.2005.12.014 10.1016/j.geoderma.2022.115837 10.1016/j.geoderma.2007.10.003 10.1016/j.soilbio.2011.02.019 10.1111/gcb.14376 10.1016/j.geoderma.2019.02.008 10.1016/j.geoderma.2017.01.002 10.1016/j.geoderma.2017.10.010 10.1111/gcb.14859 10.1111/ejss.12237 10.1002/cem.3209 10.1016/j.envres.2021.111580 10.1590/S0103-90162013000300009 10.1371/journal.pone.0233242 10.1016/j.trac.2010.05.006 10.1080/00103629509369406 10.1016/0048-9697(87)90528-6 10.1016/S1161-0301(97)00045-2 10.1080/00103620600819461 10.1016/j.geoderma.2018.07.026 10.1016/j.geoderma.2009.04.005 10.1016/j.soilbio.2018.06.025 10.1038/s41467-020-18887-7 10.1016/j.jenvman.2017.02.013 10.1016/j.geoderma.2006.03.026 10.1255/jnirs.1080 10.1097/SS.0000000000000074 10.4155/cmt.13.63 10.1038/nature17174 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.geodrs.2023.e00638 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | oai_HAL_hal_04117582v1 10_1016_j_geodrs_2023_e00638 S2352009423000342 |
GeographicLocations | Madagascar |
GeographicLocations_xml | – name: Madagascar |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 1XC VOOES |
ID | FETCH-LOGICAL-c419t-9edb57d8008dce0bbb2d48591cb4175957af378a1fbc93a38918e37dc33eba833 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Fri May 09 12:18:50 EDT 2025 Fri Aug 22 20:22:59 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 Tue Jul 01 02:07:20 EDT 2025 Fri Feb 23 02:35:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ferralsols Fluvisols Infrared reflectance spectroscopy Soil fractionation Soil organic matter Tropical soils Arenosols Locally weighted PLSR |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-9edb57d8008dce0bbb2d48591cb4175957af378a1fbc93a38918e37dc33eba833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8285-3856 0000-0002-4661-7466 0000-0003-0393-3239 |
OpenAccessLink | https://hal.inrae.fr/hal-04117582 |
PQID | 2849887108 |
PQPubID | 24069 |
ParticipantIDs | hal_primary_oai_HAL_hal_04117582v1 proquest_miscellaneous_2849887108 crossref_citationtrail_10_1016_j_geodrs_2023_e00638 crossref_primary_10_1016_j_geodrs_2023_e00638 elsevier_sciencedirect_doi_10_1016_j_geodrs_2023_e00638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Wood, Sokol, Bell, Bradford, Naeem, Wallenstein, Palm (bb0395) 2016; 26 Stevens, Nocita, Tóth, Montanarella, van Wesemael (bb0355) 2013; 8 Lavallee, Soong, Cotrufo (bb0215) 2020; 26 Bellon-Maurel, McBratney (bb0040) 2011; 43 Greenberg, Seidel, Vohland, Ludwig (bb0170) 2021; 73 Jaconi, Poeplau, Ramirez-Lopez, Van Wesemael, Don (bb0190) 2019; 70 Knox, Grunwald, McDowell, Bruland, Myers, Harris (bb0205) 2015; 239–240 Gupta, Vasava, Das, Choubey (bb0175) 2018; 325 Madhavan, Baldock, Read, Murphy, Cunningham, Perring, Herrmann, Lewis, Cavagnaro, England, Paul, Weston, Baker (bb0240) 2017; 193 Lal (bb0210) 2009; 1 Paustian, Lehmann, Ogle, Reay, Robertson, Smith (bb0275) 2016; 532 Rabenarivo, Chapuis-Lardy, Brunet, Chotte, Rabeharisoa, Barthès (bb0300) 2013; 21 Briedis, Baldock, de Moraes Sá, dos Santos, Milori (bb0055) 2020; 373 Feller (bb0120) 1979; 17 Reeves (bb0320) 2010; 158 Cambou, Barthès, Moulin, Chauvin, Faye, Masse, Chevallier, Chapuis-Lardy (bb0075) 2022; 212 Osland, Gabler, Grace, Day, McCoy, McLeod, From, Enwright, Feher, Stagg, Hartley (bb0265) 2018; 24 Christensen (bb0090) 1992; vol. 20 Stevens, Ramirez-Lopez (bb0350) 2020 Wight, Ashworth, Allen (bb0390) 2016; 261 Boysworth, Booksh (bb0050) 2008 Barthès, Kouakoua, Moulin, Hmaidi, Gallali, Clairotte, Bernoux, Bourdon, Toucet, Chevallier (bb0035) 2016; 24 Fujisaki, Chapuis-Lardy, Albrecht, Razafimbelo, Chotte, Chevallier (bb0140) 2018; 313 Poeplau, Don, Six, Kaiser, Benbi, Chenu, Cotrufo, Derrien, Gioacchini, Grand, Gregorich, Griepentrog, Gunina, Haddix, Kuzyakov, Kühnel, Macdonald, Soong, Trigalet, Vermeire, Rovira, van Wesemael, Wiesmeier, Yeasmin, Yevdokimov, Nieder (bb0285) 2018; 125 Vasava, Das (bb0370) 2022; 417 Feng, Plante, Six (bb0130) 2013; 112 Fernández Pierna, Dardenne (bb0135) 2008; 91 Razafimbelo, Chevallier, Albrecht, Chapuis-Lardy, Rakotondrasolo, Michellon, Rabeharisoa, Bernoux (bb0315) 2013; 70 Brunet, Barthès, Chotte, Feller (bb0060) 2007; 139 Lesnoff, Metz, Roger (bb0230) 2020; 34 Ding, Huang, Sun, Jiang, Chen (bb0110) 2014; 9 Barthès, Brunet, Hien, Enjalric, Conche, Freschet, d’Annunzio, Toucet-Louri (bb0025) 2008; 40 Grandière, Razafimbelo, Barthès, Blanchart, Louri, Ferrer, Chenu, Wolf, Albrecht, Feller (bb0165) 2007; 14 Kennard, Stone (bb0200) 1969; 11 Le Guillou, Wetterlind, Viscarra Rossel, Hicks, Grundy, Tuomi (bb0220) 2015; 53 Gnacadja, Wiese (bb0160) 2016 Minasny, Malone, McBratney, Angers, Arrouays, Chambers, Chaplot, Chen, Cheng, Das, Field, Gimona, Hedley, Hong, Mandal, Marchant, Martin, McConkey, Mulder, O’Rourke, Richer-de-Forges, Odeh, Padarian, Paustian, Pan, Poggio, Savin, Stolbovoy, Stockmann, Sulaeman, Tsui, Vågen, van Wesemael, Winowiecki (bb0255) 2017; 292 Malou, Sebag, Moulin, Chevallier, Badiane-Ndour, Thiam, Chapuis-Lardy (bb0245) 2020; 301 Prăvălie, Nita, Patriche, Niculiță, Birsan, Roșca, Bandoc (bb0290) 2021; 201 Razafimbelo, Barthès, Larré-Larrouy, De Luca, Laurent, Cerri, Feller (bb0305) 2006; 115 Barthès, Kouakoua, Larré-Larrouy, Razafimbelo, de Luca, Azontonde, Neves, de Freitas, Feller (bb0030) 2008; 1–2 Meurer, Chenu, Coucheney, Herrmann, Keller, Kätterer, Nimblad Svensson, Jarvis (bb0250) 2020; 17 Chenu, Rumpel, Lehmann (bb0085) 2015 Angst, Messinger, Greiner, Häusler, Hertel, Kirfel, Kögel-Knabner, Leuschner, Rethemeyer, Mueller (bb0015) 2018; 122 Puget, Chenu, Balesdent (bb0295) 2000; 51 Swinton, Lupi, Robertson, Hamilton (bb0360) 2007; 64 Cozzolino, Morón (bb0095) 2006; 85 Nduwamungu, Ziadi, Tremblay, Parent (bb0260) 2009; 73 Peng, Knadel, Gislum, Schelde, Thomsen, Greve (bb0280) 2014; 179 IUSS Working Group WRB (bb0185) 2015 Amelung, Bossio, de Vries, Kögel-Knabner, Lehmann, Amundson, Bol, Collins, Lal, Leifeld, Minasny, Pan, Paustian, Rumpel, Sanderman, van Groenigen, Mooney, van Wesemael, Wander, Chabbi (bb0005) 2020; 11 Reeves, Follett, McCarty, Kimble (bb0325) 2006; 37 Vargas, Paz, de Jong (bb0365) 2013; 4 Razafimbelo, Albrecht, Oliver, Chevallier, Chapuis-Lardy, Feller (bb0310) 2008; 98 Andriamananjara, Hewson, Razakamanarivo, Andrisoa, Ranaivoson, Ramboatiana, Razafindrakoto, Ramifehiarivo, Razafimanantsoa, Rabeharisoa, Ramananantoandro, Rasolohery, Rabetokotany, Razafimbelo (bb0010) 2016; 233 Kawamura, Tsujimoto, Rabenarivo, Asai, Andriamananjara, Rakotoson (bb0195) 2017; 9 Calderón, Reeves, Collins, Paul (bb0070) 2011; 75 Soriano-Disla, Janik, Viscarra Rossel, Macdonald, McLaughlin (bb0340) 2014; 49 Soucémarianadin, Cécillon, Chenu, Baudin, Nicolas, Girardin, Delahaie, Barré (bb0345) 2019; 342 Sanderman, Baldock, Dangal, Ludwig, Potter, Rivard, Savage (bb0330) 2021; 156 Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, McBratney (bb0045) 2010; 29 Gavinelli, Feller, Larré-Larrouy, Bacye, Djegui, de Nzila (bb0145) 1995; 26 Parent, Parent, Parent (bb0270) 2021; 16 Ge, Thomasson, Morgan (bb0150) 2014; 213 Balesdent (bb0020) 1987; 62 Gee, Bauder (bb0155) 1986 Madari, Reeves, Machado, Guimarães, Torres, McCarty (bb0235) 2006; 136 Chang, Laird, Mausbach, Hurburgh (bb0080) 2001; 65 Savitzky, Golay (bb0335) 1964; 36 d’Annunzio, Conche, Landais, Saint-André, Joffre, Barthès (bb0105) 2008; 255 Wiesmeier, Urbanski, Hobley, Lang, von Lützow, Marin-Spiotta, van Wesemael, Rabot, Ließ, Garcia-Franco, Wollschläger, Vogel, Kögel-Knabner (bb0385) 2019; 333 Von Lützow, Kögel-Knabner, Ekschmitt, Flessa, Guggenberger, Matzner, Marschner (bb0380) 2007; 39 Lehmann, Hansel, Kaiser, Kleber, Maher, Manzoni, Nunan, Reichstein, Schimel, Torn, Wieder, Kögel-Knabner (bb0225) 2020; 13 Viscarra Rossel, Hicks (bb0375) 2015; 66 Dangal, Sanderman, Wills, Ramirez-Lopez (bb0100) 2019; 3 Dynarski, Bossio, Scow (bb0115) 2020; 8 Hassink, Whitmore, Kubát (bb0180) 1997; 1–3 Feller, Beare (bb0125) 1997; 79 Zimmermann, Leifeld, Fuhrer (bb0400) 2007; 39 Bellon-Maurel (10.1016/j.geodrs.2023.e00638_bb0040) 2011; 43 d’Annunzio (10.1016/j.geodrs.2023.e00638_bb0105) 2008; 255 Knox (10.1016/j.geodrs.2023.e00638_bb0205) 2015; 239–240 Le Guillou (10.1016/j.geodrs.2023.e00638_bb0220) 2015; 53 Malou (10.1016/j.geodrs.2023.e00638_bb0245) 2020; 301 Lesnoff (10.1016/j.geodrs.2023.e00638_bb0230) 2020; 34 Stevens (10.1016/j.geodrs.2023.e00638_bb0350) Meurer (10.1016/j.geodrs.2023.e00638_bb0250) 2020; 17 Dynarski (10.1016/j.geodrs.2023.e00638_bb0115) 2020; 8 Puget (10.1016/j.geodrs.2023.e00638_bb0295) 2000; 51 Chang (10.1016/j.geodrs.2023.e00638_bb0080) 2001; 65 Paustian (10.1016/j.geodrs.2023.e00638_bb0275) 2016; 532 Von Lützow (10.1016/j.geodrs.2023.e00638_bb0380) 2007; 39 Ding (10.1016/j.geodrs.2023.e00638_bb0110) 2014; 9 Gnacadja (10.1016/j.geodrs.2023.e00638_bb0160) 2016 Angst (10.1016/j.geodrs.2023.e00638_bb0015) 2018; 122 Minasny (10.1016/j.geodrs.2023.e00638_bb0255) 2017; 292 Gupta (10.1016/j.geodrs.2023.e00638_bb0175) 2018; 325 Swinton (10.1016/j.geodrs.2023.e00638_bb0360) 2007; 64 Gavinelli (10.1016/j.geodrs.2023.e00638_bb0145) 1995; 26 Prăvălie (10.1016/j.geodrs.2023.e00638_bb0290) 2021; 201 Jaconi (10.1016/j.geodrs.2023.e00638_bb0190) 2019; 70 Soucémarianadin (10.1016/j.geodrs.2023.e00638_bb0345) 2019; 342 Wiesmeier (10.1016/j.geodrs.2023.e00638_bb0385) 2019; 333 Calderón (10.1016/j.geodrs.2023.e00638_bb0070) 2011; 75 Hassink (10.1016/j.geodrs.2023.e00638_bb0180) 1997; 1–3 Brunet (10.1016/j.geodrs.2023.e00638_bb0060) 2007; 139 Feller (10.1016/j.geodrs.2023.e00638_bb0125) 1997; 79 Feng (10.1016/j.geodrs.2023.e00638_bb0130) 2013; 112 Barthès (10.1016/j.geodrs.2023.e00638_bb0030) 2008; 1–2 Bellon-Maurel (10.1016/j.geodrs.2023.e00638_bb0045) 2010; 29 Lal (10.1016/j.geodrs.2023.e00638_bb0210) 2009; 1 Stevens (10.1016/j.geodrs.2023.e00638_bb0355) 2013; 8 Barthès (10.1016/j.geodrs.2023.e00638_bb0035) 2016; 24 Christensen (10.1016/j.geodrs.2023.e00638_bb0090) 1992; vol. 20 IUSS Working Group WRB (10.1016/j.geodrs.2023.e00638_bb0185) 2015 Barthès (10.1016/j.geodrs.2023.e00638_bb0025) 2008; 40 Reeves (10.1016/j.geodrs.2023.e00638_bb0320) 2010; 158 Wood (10.1016/j.geodrs.2023.e00638_bb0395) 2016; 26 Razafimbelo (10.1016/j.geodrs.2023.e00638_bb0305) 2006; 115 Fernández Pierna (10.1016/j.geodrs.2023.e00638_bb0135) 2008; 91 Lehmann (10.1016/j.geodrs.2023.e00638_bb0225) 2020; 13 Osland (10.1016/j.geodrs.2023.e00638_bb0265) 2018; 24 Razafimbelo (10.1016/j.geodrs.2023.e00638_bb0310) 2008; 98 Kennard (10.1016/j.geodrs.2023.e00638_bb0200) 1969; 11 Nduwamungu (10.1016/j.geodrs.2023.e00638_bb0260) 2009; 73 Razafimbelo (10.1016/j.geodrs.2023.e00638_bb0315) 2013; 70 Parent (10.1016/j.geodrs.2023.e00638_bb0270) 2021; 16 Sanderman (10.1016/j.geodrs.2023.e00638_bb0330) 2021; 156 Vasava (10.1016/j.geodrs.2023.e00638_bb0370) 2022; 417 Reeves (10.1016/j.geodrs.2023.e00638_bb0325) 2006; 37 Balesdent (10.1016/j.geodrs.2023.e00638_bb0020) 1987; 62 Madari (10.1016/j.geodrs.2023.e00638_bb0235) 2006; 136 Boysworth (10.1016/j.geodrs.2023.e00638_bb0050) 2008 Soriano-Disla (10.1016/j.geodrs.2023.e00638_bb0340) 2014; 49 Gee (10.1016/j.geodrs.2023.e00638_bb0155) 1986 Viscarra Rossel (10.1016/j.geodrs.2023.e00638_bb0375) 2015; 66 Cambou (10.1016/j.geodrs.2023.e00638_bb0075) 2022; 212 Dangal (10.1016/j.geodrs.2023.e00638_bb0100) 2019; 3 Zimmermann (10.1016/j.geodrs.2023.e00638_bb0400) 2007; 39 Feller (10.1016/j.geodrs.2023.e00638_bb0120) 1979; 17 Kawamura (10.1016/j.geodrs.2023.e00638_bb0195) 2017; 9 Cozzolino (10.1016/j.geodrs.2023.e00638_bb0095) 2006; 85 Rabenarivo (10.1016/j.geodrs.2023.e00638_bb0300) 2013; 21 Lavallee (10.1016/j.geodrs.2023.e00638_bb0215) 2020; 26 Grandière (10.1016/j.geodrs.2023.e00638_bb0165) 2007; 14 Madhavan (10.1016/j.geodrs.2023.e00638_bb0240) 2017; 193 Vargas (10.1016/j.geodrs.2023.e00638_bb0365) 2013; 4 Andriamananjara (10.1016/j.geodrs.2023.e00638_bb0010) 2016; 233 Wight (10.1016/j.geodrs.2023.e00638_bb0390) 2016; 261 Greenberg (10.1016/j.geodrs.2023.e00638_bb0170) 2021; 73 Ge (10.1016/j.geodrs.2023.e00638_bb0150) 2014; 213 Fujisaki (10.1016/j.geodrs.2023.e00638_bb0140) 2018; 313 Poeplau (10.1016/j.geodrs.2023.e00638_bb0285) 2018; 125 Briedis (10.1016/j.geodrs.2023.e00638_bb0055) 2020; 373 Peng (10.1016/j.geodrs.2023.e00638_bb0280) 2014; 179 Chenu (10.1016/j.geodrs.2023.e00638_bb0085) 2015 Amelung (10.1016/j.geodrs.2023.e00638_bb0005) 2020; 11 Savitzky (10.1016/j.geodrs.2023.e00638_bb0335) 1964; 36 |
References_xml | – volume: 193 start-page: 290 year: 2017 end-page: 299 ident: bb0240 article-title: Rapid prediction of particulate, humus and resistant fractions of soil organic carbon in reforested lands using infrared spectroscopy publication-title: J. Environ. Manag. – volume: 39 start-page: 224 year: 2007 end-page: 231 ident: bb0400 article-title: Quantifying soil organic carbon fractions by infrared-spectroscopy publication-title: Soil Biol. Biochem. – volume: 65 start-page: 480 year: 2001 end-page: 490 ident: bb0080 article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties publication-title: Soil Sci. Soc. Am. J. – volume: 115 start-page: 285 year: 2006 end-page: 289 ident: bb0305 article-title: Effect of sugarcane residue management (mulching versus burning) on organic matter in a clayey Oxisol from southern Brazil publication-title: Agric. Ecosyst. Environ. – volume: 17 start-page: 339 year: 1979 end-page: 346 ident: bb0120 article-title: Une méthode de fractionnement granulométrique de la matière organique des sols. Application aux sols tropicaux, à textures grossières, très pauvres en humus publication-title: Cahiers ORSTOM série Pédologie – volume: 122 start-page: 19 year: 2018 end-page: 30 ident: bb0015 article-title: Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds publication-title: Soil Biol. Biochem. – volume: 239–240 start-page: 229 year: 2015 end-page: 239 ident: bb0205 article-title: Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy publication-title: Geoderma – year: 2015 ident: bb0185 article-title: World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106 – volume: 301 year: 2020 ident: bb0245 article-title: The Rock-Eval® signature of soil organic carbon in arenosols of the Senegalese groundnut basin. How do agricultural practices matter? publication-title: Agric. Ecosyst. Environ. – volume: 125 start-page: 10 year: 2018 end-page: 26 ident: bb0285 article-title: Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – a comprehensive method comparison publication-title: Soil Biol. Biochem. – volume: 29 start-page: 1073 year: 2010 end-page: 1081 ident: bb0045 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: Trends Anal. Chem. – volume: 17 start-page: 5025 year: 2020 end-page: 5042 ident: bb0250 article-title: Modelling dynamic interactions between soil structure and the storage and turnover of soil organic matter publication-title: Biogeosciences – volume: 342 start-page: 65 year: 2019 end-page: 74 ident: bb0345 article-title: Heterogeneity of the chemical composition and thermal stability of particulate organic matter in French forest soils publication-title: Geoderma – volume: 34 year: 2020 ident: bb0230 article-title: Comparison of locally weighted PLS strategies for regression and discrimination on agronomic NIR data publication-title: J. Chemom. – volume: 156 start-page: 97 year: 2021 end-page: 114 ident: bb0330 article-title: Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy publication-title: Biogeochemistry – volume: 4 start-page: 579 year: 2013 end-page: 582 ident: bb0365 article-title: Quantification of forest degradation and belowground carbon dynamics: ongoing challenges for monitoring, reporting and verification activities for REDD+ publication-title: Carbon Manag. – volume: 333 start-page: 149 year: 2019 end-page: 162 ident: bb0385 article-title: Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales publication-title: Geoderma – volume: 11 start-page: 137 year: 1969 end-page: 148 ident: bb0200 article-title: Computer aided design of experiments publication-title: Technometrics – volume: 21 start-page: 495 year: 2013 end-page: 509 ident: bb0300 article-title: Comparing near and mid-infrared reflectance spectroscopy for determining properties of Malagasy soils, using global or local calibration publication-title: J. Near Infrared Spectrosc. – volume: 292 start-page: 59 year: 2017 end-page: 86 ident: bb0255 article-title: Soil carbon 4 per mille publication-title: Geoderma – volume: 66 start-page: 438 year: 2015 end-page: 450 ident: bb0375 article-title: Soil organic carbon and its fractions estimated by visible–near infrared transfer functions publication-title: Eur. J. Soil Sci. – volume: 26 start-page: 261 year: 2020 end-page: 273 ident: bb0215 article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century publication-title: Glob. Chang. Biol. – volume: 16 year: 2021 ident: bb0270 article-title: Determining soil particle-size distribution from infrared spectra using machine learning predictions: methodology and modeling publication-title: PLoS One – volume: 1–2 start-page: 14 year: 2008 end-page: 25 ident: bb0030 article-title: Texture and sesquioxide effects on water-stable aggregates and organic matter in some tropical soils publication-title: Geoderma – volume: 53 start-page: 913 year: 2015 end-page: 921 ident: bb0220 article-title: How does grinding affect the mid-infrared spectra of soil and their multivariate calibrations to texture and organic carbon? publication-title: Soil Res. – volume: 325 start-page: 59 year: 2018 end-page: 71 ident: bb0175 article-title: Local modeling approaches for estimating soil properties in selected Indian soils using diffuse reflectance data over visible to near-infrared region publication-title: Geoderma – volume: vol. 20 start-page: 1 year: 1992 end-page: 90 ident: bb0090 article-title: Physical fractionation of soil and organic matter in primary particle size and density separates, Stewart publication-title: Advances in Soil Science – volume: 261 start-page: 36 year: 2016 end-page: 43 ident: bb0390 article-title: Organic substrate, clay type, texture, and water influence on NIR carbon measurements publication-title: Geoderma – volume: 85 start-page: 78 year: 2006 end-page: 85 ident: bb0095 article-title: Potential of near-infrared reflectance spectroscopy and chemometrics to predict soil organic carbon fractions publication-title: Soil Tillage Res. – volume: 26 start-page: 1749 year: 1995 end-page: 1760 ident: bb0145 article-title: A routine method to study soil organic matter by particle-size fractionation: examples for tropical soils publication-title: Commun. Soil Sci. Plant Anal. – volume: 70 start-page: 127 year: 2019 end-page: 139 ident: bb0190 article-title: Log-ratio transformation is the key to determining soil organic carbon fractions with near-infrared spectroscopy publication-title: Eur. J. Soil Sci. – volume: 39 start-page: 2183 year: 2007 end-page: 2207 ident: bb0380 article-title: SOM fractionation methods: relevance to functional pools and to stabilization mechanisms publication-title: Soil Biol. Biochem. – volume: 313 start-page: 41 year: 2018 end-page: 51 ident: bb0140 article-title: Data synthesis of carbon distribution in particle size fractions of tropical soils: implications for soil carbon storage potential in croplands publication-title: Geoderma – volume: 98 start-page: 140 year: 2008 end-page: 149 ident: bb0310 article-title: Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems publication-title: Soil Tillage Res. – volume: 13 start-page: 529 year: 2020 end-page: 534 ident: bb0225 article-title: Persistence of soil organic carbon caused by functional complexity publication-title: Nat. Geosci. – volume: 8 year: 2020 ident: bb0115 article-title: Dynamic stability of soil carbon: reassessing the “permanence” of soil carbon sequestration publication-title: Front. Environ. Sci. – volume: 79 start-page: 69 year: 1997 end-page: 116 ident: bb0125 article-title: Physical control of soil organic matter dynamics in the tropics publication-title: Geoderma – volume: 9 year: 2014 ident: bb0110 article-title: Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than in coarse particles: an incubation study with temperate grassland and forest soils in northern China publication-title: PLoS One – year: 2020 ident: bb0350 article-title: Package ‘Prospectr’. R Package Version 2020 – start-page: 383 year: 1986 end-page: 411 ident: bb0155 article-title: Particle-size analysis publication-title: Methods of Soil Analysis Part 1. Soil Science Society of America Book Series 5, Madison, Wisconsin – start-page: 207 year: 2008 end-page: 229 ident: bb0050 article-title: Aspects of multivariate calibration applied to near-infrared spectroscopy publication-title: Handbook of Near-Infrared Analysis – volume: 532 start-page: 49 year: 2016 end-page: 57 ident: bb0275 article-title: Climate-smart soils publication-title: Nature – volume: 112 start-page: 81 year: 2013 end-page: 93 ident: bb0130 article-title: Improving estimates of maximal organic carbon stabilization by fine soil particles publication-title: Biogeochemistry – volume: 136 start-page: 245 year: 2006 end-page: 259 ident: bb0235 article-title: Mid- and near-infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols publication-title: Geoderma – volume: 158 start-page: 3 year: 2010 end-page: 14 ident: bb0320 article-title: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done? publication-title: Geoderma – volume: 26 start-page: 2072 year: 2016 end-page: 2085 ident: bb0395 article-title: Opposing effects of different soil organic matter fractions on crop yields publication-title: Ecol. Appl. – volume: 11 start-page: 5427 year: 2020 ident: bb0005 article-title: Towards a global-scale soil climate mitigation strategy publication-title: Nat. Commun. – volume: 73 year: 2021 ident: bb0170 article-title: Performance of field-scale lab vs in situ visible/near- and mid-infrared spectroscopy for estimation of soil properties publication-title: Eur. J. Soil Sci. – volume: 233 start-page: 1 year: 2016 end-page: 15 ident: bb0010 article-title: Land cover impacts on aboveground and soil carbon stocks in Malagasy rainforest publication-title: Agric. Ecosyst. Environ. – volume: 40 start-page: 1533 year: 2008 end-page: 1537 ident: bb0025 article-title: Determining the distributions of soil carbon and nitrogen in particle size fractions using near-infrared reflectance spectrum of bulk soil samples publication-title: Soil Biol. Biochem. – start-page: 383 year: 2015 end-page: 419 ident: bb0085 article-title: Methods for studying soil organic matter: Nature, dynamics, spatial accessibility, and interactions with minerals publication-title: Soil Microbiology, Ecology and Biochemistry – volume: 179 start-page: 325 year: 2014 end-page: 332 ident: bb0280 article-title: Quantification of SOC and clay content using visible near-infrared reflectance–mid-infrared reflectance spectroscopy with jack-knifing partial least squares regression publication-title: Soil Sci. – volume: 1 start-page: 45 year: 2009 end-page: 57 ident: bb0210 article-title: Soil degradation as a reason for inadequate human nutrition publication-title: Food Secur. – volume: 36 start-page: 1627 year: 1964 end-page: 1639 ident: bb0335 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. – volume: 201 year: 2021 ident: bb0290 article-title: Global changes in soil organic carbon and implications for land degradation neutrality and climate stability publication-title: Environ. Res. – volume: 64 start-page: 245 year: 2007 end-page: 252 ident: bb0360 article-title: Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits publication-title: Ecol. Econ. – volume: 139 start-page: 106 year: 2007 end-page: 117 ident: bb0060 article-title: Determination of carbon and nitrogen contents in Alfisols, Oxisols and Ultisols from Africa and Brazil using NIRS analysis: effects of sample grinding and set heterogeneity publication-title: Geoderma – volume: 73 start-page: 1896 year: 2009 end-page: 1903 ident: bb0260 article-title: Near-infrared reflectance spectroscopy prediction of soil properties: effects of sample cups and preparation publication-title: Soil Sci. Soc. Am. J. – volume: 213 start-page: 57 year: 2014 end-page: 63 ident: bb0150 article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination publication-title: Geoderma – volume: 417 year: 2022 ident: bb0370 article-title: Assessment of soil properties using spectral signatures of bulk soils and their aggregate size fractions publication-title: Geoderma – volume: 62 start-page: 405 year: 1987 end-page: 408 ident: bb0020 article-title: The turnover of soil organic fractions estimated by radiocarbon dating publication-title: Sci. Total Environ. – volume: 24 start-page: 5361 year: 2018 end-page: 5379 ident: bb0265 article-title: Climate and plant controls on soil organic matter in coastal wetlands publication-title: Glob. Chang. Biol. – start-page: 61 year: 2016 end-page: 95 ident: bb0160 article-title: Land degradation neutrality: will Africa achieve it? Institutional solutions to land degradation and restoration in Africa publication-title: Climate Change and Multi-Dimensional Sustainability in African Agriculture: Climate Change and Sustainability in Agriculture – volume: 91 start-page: 94 year: 2008 end-page: 98 ident: bb0135 article-title: Soil parameter quantification by NIRS as a Chemometric challenge at ‘ publication-title: Chemom. Intell. Lab. Syst. – volume: 1–3 start-page: 189 year: 1997 end-page: 199 ident: bb0180 article-title: Size and density fractionation of soil organic matter and the physical capacity of soils to protect organic matter publication-title: Eur. J. Agron. – volume: 51 start-page: 595 year: 2000 end-page: 605 ident: bb0295 article-title: Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates publication-title: Eur. J. Soil Sci. – volume: 8 year: 2013 ident: bb0355 article-title: Prediction of soil organic carbon at the european scale by visible and near infrared reflectance spectroscopy publication-title: PLoS One – volume: 24 start-page: 199 year: 2016 end-page: 214 ident: bb0035 article-title: Studying the physical protection of soil carbon with quantitative infrared spectroscopy publication-title: J. Near Infrared Spectrosc. – volume: 373 year: 2020 ident: bb0055 article-title: Strategies to improve the prediction of bulk soil and fraction organic carbon in Brazilian samples by using an Australian national mid-infrared spectral library publication-title: Geoderma – volume: 49 start-page: 139 year: 2014 end-page: 186 ident: bb0340 article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties publication-title: Appl. Spectrosc. Rev. – volume: 9 start-page: 1081 year: 2017 ident: bb0195 article-title: Vis-NIR Spectroscopy and PLS regression with waveband selection for estimating the total C and N of paddy soils in Madagascar publication-title: Remote Sens. – volume: 14 start-page: 117 year: 2007 end-page: 133 ident: bb0165 article-title: Distribution granulo-densimétrique de la matière organique dans un sol argileux sous semis direct avec couverture végétale des Hautes Terres malgaches publication-title: Etude et Gestion Des Sols – volume: 212 year: 2022 ident: bb0075 article-title: Prediction of soil carbon and nitrogen contents using visible and near infrared diffuse reflectance spectroscopy in varying salt-affected soils in sine Saloum (Senegal) publication-title: Catena – volume: 37 start-page: 2307 year: 2006 end-page: 2325 ident: bb0325 article-title: Can near or mid-infrared diffuse reflectance spectroscopy be used to determine soil carbon pools? publication-title: Commun. Soil Sci. Plant Anal. – volume: 70 start-page: 204 year: 2013 end-page: 208 ident: bb0315 article-title: Texture and organic carbon contents do not impact amount of carbon protected in Malagasy soils publication-title: Sci. Agric. – volume: 255 start-page: 1050 year: 2008 end-page: 1056 ident: bb0105 article-title: Pairwise comparison of soil organic particle-size distributions in native savannas and Eucalyptus plantations in Congo publication-title: For. Ecol. Manag. – volume: 75 start-page: 568 year: 2011 end-page: 579 ident: bb0070 article-title: Chemical differences in soil organic matter fractions determined by diffuse-reflectance mid-infrared spectroscopy publication-title: Soil Sci. Soc. Am. J. – volume: 43 start-page: 1398 year: 2011 end-page: 1410 ident: bb0040 article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – critical review and research perspectives publication-title: Soil Biol. Biochem. – volume: 3 start-page: 11 year: 2019 ident: bb0100 article-title: Accurate and precise prediction of soil properties from a large mid-infrared spectral library publication-title: Soil Syst – volume: 73 year: 2021 ident: 10.1016/j.geodrs.2023.e00638_bb0170 article-title: Performance of field-scale lab vs in situ visible/near- and mid-infrared spectroscopy for estimation of soil properties publication-title: Eur. J. Soil Sci. – volume: 9 start-page: 1081 year: 2017 ident: 10.1016/j.geodrs.2023.e00638_bb0195 article-title: Vis-NIR Spectroscopy and PLS regression with waveband selection for estimating the total C and N of paddy soils in Madagascar publication-title: Remote Sens. doi: 10.3390/rs9101081 – volume: 36 start-page: 1627 year: 1964 ident: 10.1016/j.geodrs.2023.e00638_bb0335 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. doi: 10.1021/ac60214a047 – ident: 10.1016/j.geodrs.2023.e00638_bb0350 – volume: 73 start-page: 1896 year: 2009 ident: 10.1016/j.geodrs.2023.e00638_bb0260 article-title: Near-infrared reflectance spectroscopy prediction of soil properties: effects of sample cups and preparation publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2008.0213 – volume: 85 start-page: 78 year: 2006 ident: 10.1016/j.geodrs.2023.e00638_bb0095 article-title: Potential of near-infrared reflectance spectroscopy and chemometrics to predict soil organic carbon fractions publication-title: Soil Tillage Res. doi: 10.1016/j.still.2004.12.006 – volume: 65 start-page: 480 year: 2001 ident: 10.1016/j.geodrs.2023.e00638_bb0080 article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.652480x – volume: 1 start-page: 45 year: 2009 ident: 10.1016/j.geodrs.2023.e00638_bb0210 article-title: Soil degradation as a reason for inadequate human nutrition publication-title: Food Secur. doi: 10.1007/s12571-009-0009-z – volume: 139 start-page: 106 year: 2007 ident: 10.1016/j.geodrs.2023.e00638_bb0060 article-title: Determination of carbon and nitrogen contents in Alfisols, Oxisols and Ultisols from Africa and Brazil using NIRS analysis: effects of sample grinding and set heterogeneity publication-title: Geoderma doi: 10.1016/j.geoderma.2007.01.007 – volume: 13 start-page: 529 year: 2020 ident: 10.1016/j.geodrs.2023.e00638_bb0225 article-title: Persistence of soil organic carbon caused by functional complexity publication-title: Nat. Geosci. doi: 10.1038/s41561-020-0612-3 – volume: 49 start-page: 139 year: 2014 ident: 10.1016/j.geodrs.2023.e00638_bb0340 article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2013.811081 – volume: 24 start-page: 199 year: 2016 ident: 10.1016/j.geodrs.2023.e00638_bb0035 article-title: Studying the physical protection of soil carbon with quantitative infrared spectroscopy publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.1232 – start-page: 383 year: 2015 ident: 10.1016/j.geodrs.2023.e00638_bb0085 article-title: Methods for studying soil organic matter: Nature, dynamics, spatial accessibility, and interactions with minerals – volume: 239–240 start-page: 229 year: 2015 ident: 10.1016/j.geodrs.2023.e00638_bb0205 article-title: Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2014.10.019 – volume: 98 start-page: 140 year: 2008 ident: 10.1016/j.geodrs.2023.e00638_bb0310 article-title: Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems publication-title: Soil Tillage Res. doi: 10.1016/j.still.2007.10.012 – volume: 64 start-page: 245 year: 2007 ident: 10.1016/j.geodrs.2023.e00638_bb0360 article-title: Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2007.09.020 – volume: 156 start-page: 97 year: 2021 ident: 10.1016/j.geodrs.2023.e00638_bb0330 article-title: Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy publication-title: Biogeochemistry doi: 10.1007/s10533-021-00755-1 – volume: 212 year: 2022 ident: 10.1016/j.geodrs.2023.e00638_bb0075 article-title: Prediction of soil carbon and nitrogen contents using visible and near infrared diffuse reflectance spectroscopy in varying salt-affected soils in sine Saloum (Senegal) publication-title: Catena doi: 10.1016/j.catena.2022.106075 – volume: 301 year: 2020 ident: 10.1016/j.geodrs.2023.e00638_bb0245 article-title: The Rock-Eval® signature of soil organic carbon in arenosols of the Senegalese groundnut basin. How do agricultural practices matter? publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2020.107030 – volume: 261 start-page: 36 year: 2016 ident: 10.1016/j.geodrs.2023.e00638_bb0390 article-title: Organic substrate, clay type, texture, and water influence on NIR carbon measurements publication-title: Geoderma doi: 10.1016/j.geoderma.2015.06.021 – volume: 91 start-page: 94 year: 2008 ident: 10.1016/j.geodrs.2023.e00638_bb0135 article-title: Soil parameter quantification by NIRS as a Chemometric challenge at ‘Chimiométrie 2006’ publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2007.06.007 – volume: 53 start-page: 913 year: 2015 ident: 10.1016/j.geodrs.2023.e00638_bb0220 article-title: How does grinding affect the mid-infrared spectra of soil and their multivariate calibrations to texture and organic carbon? publication-title: Soil Res. doi: 10.1071/SR15019 – volume: 233 start-page: 1 year: 2016 ident: 10.1016/j.geodrs.2023.e00638_bb0010 article-title: Land cover impacts on aboveground and soil carbon stocks in Malagasy rainforest publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.08.030 – volume: 39 start-page: 2183 year: 2007 ident: 10.1016/j.geodrs.2023.e00638_bb0380 article-title: SOM fractionation methods: relevance to functional pools and to stabilization mechanisms publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.03.007 – volume: 373 year: 2020 ident: 10.1016/j.geodrs.2023.e00638_bb0055 article-title: Strategies to improve the prediction of bulk soil and fraction organic carbon in Brazilian samples by using an Australian national mid-infrared spectral library publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114401 – volume: 255 start-page: 1050 year: 2008 ident: 10.1016/j.geodrs.2023.e00638_bb0105 article-title: Pairwise comparison of soil organic particle-size distributions in native savannas and Eucalyptus plantations in Congo publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2007.10.027 – volume: 8 year: 2020 ident: 10.1016/j.geodrs.2023.e00638_bb0115 article-title: Dynamic stability of soil carbon: reassessing the “permanence” of soil carbon sequestration publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2020.514701 – volume: 17 start-page: 5025 year: 2020 ident: 10.1016/j.geodrs.2023.e00638_bb0250 article-title: Modelling dynamic interactions between soil structure and the storage and turnover of soil organic matter publication-title: Biogeosciences doi: 10.5194/bg-17-5025-2020 – volume: 11 start-page: 137 year: 1969 ident: 10.1016/j.geodrs.2023.e00638_bb0200 article-title: Computer aided design of experiments publication-title: Technometrics doi: 10.1080/00401706.1969.10490666 – volume: 325 start-page: 59 year: 2018 ident: 10.1016/j.geodrs.2023.e00638_bb0175 article-title: Local modeling approaches for estimating soil properties in selected Indian soils using diffuse reflectance data over visible to near-infrared region publication-title: Geoderma doi: 10.1016/j.geoderma.2018.03.025 – volume: 26 start-page: 2072 year: 2016 ident: 10.1016/j.geodrs.2023.e00638_bb0395 article-title: Opposing effects of different soil organic matter fractions on crop yields publication-title: Ecol. Appl. doi: 10.1890/16-0024.1 – volume: 75 start-page: 568 year: 2011 ident: 10.1016/j.geodrs.2023.e00638_bb0070 article-title: Chemical differences in soil organic matter fractions determined by diffuse-reflectance mid-infrared spectroscopy publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2009.0375 – volume: 213 start-page: 57 year: 2014 ident: 10.1016/j.geodrs.2023.e00638_bb0150 article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.017 – volume: 40 start-page: 1533 year: 2008 ident: 10.1016/j.geodrs.2023.e00638_bb0025 article-title: Determining the distributions of soil carbon and nitrogen in particle size fractions using near-infrared reflectance spectrum of bulk soil samples publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.12.023 – year: 2015 ident: 10.1016/j.geodrs.2023.e00638_bb0185 – volume: 122 start-page: 19 year: 2018 ident: 10.1016/j.geodrs.2023.e00638_bb0015 article-title: Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.03.026 – volume: vol. 20 start-page: 1 year: 1992 ident: 10.1016/j.geodrs.2023.e00638_bb0090 article-title: Physical fractionation of soil and organic matter in primary particle size and density separates, Stewart doi: 10.1007/978-1-4612-2930-8_1 – volume: 17 start-page: 339 year: 1979 ident: 10.1016/j.geodrs.2023.e00638_bb0120 article-title: Une méthode de fractionnement granulométrique de la matière organique des sols. Application aux sols tropicaux, à textures grossières, très pauvres en humus publication-title: Cahiers ORSTOM série Pédologie – volume: 112 start-page: 81 year: 2013 ident: 10.1016/j.geodrs.2023.e00638_bb0130 article-title: Improving estimates of maximal organic carbon stabilization by fine soil particles publication-title: Biogeochemistry doi: 10.1007/s10533-011-9679-7 – volume: 39 start-page: 224 year: 2007 ident: 10.1016/j.geodrs.2023.e00638_bb0400 article-title: Quantifying soil organic carbon fractions by infrared-spectroscopy publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2006.07.010 – volume: 51 start-page: 595 year: 2000 ident: 10.1016/j.geodrs.2023.e00638_bb0295 article-title: Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2000.00353.x – volume: 79 start-page: 69 year: 1997 ident: 10.1016/j.geodrs.2023.e00638_bb0125 article-title: Physical control of soil organic matter dynamics in the tropics publication-title: Geoderma doi: 10.1016/S0016-7061(97)00039-6 – volume: 3 start-page: 11 year: 2019 ident: 10.1016/j.geodrs.2023.e00638_bb0100 article-title: Accurate and precise prediction of soil properties from a large mid-infrared spectral library publication-title: Soil Syst doi: 10.3390/soilsystems3010011 – volume: 8 year: 2013 ident: 10.1016/j.geodrs.2023.e00638_bb0355 article-title: Prediction of soil organic carbon at the european scale by visible and near infrared reflectance spectroscopy publication-title: PLoS One doi: 10.1371/journal.pone.0066409 – volume: 9 year: 2014 ident: 10.1016/j.geodrs.2023.e00638_bb0110 article-title: Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than in coarse particles: an incubation study with temperate grassland and forest soils in northern China publication-title: PLoS One – start-page: 383 year: 1986 ident: 10.1016/j.geodrs.2023.e00638_bb0155 article-title: Particle-size analysis – volume: 70 start-page: 127 year: 2019 ident: 10.1016/j.geodrs.2023.e00638_bb0190 article-title: Log-ratio transformation is the key to determining soil organic carbon fractions with near-infrared spectroscopy publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12761 – volume: 115 start-page: 285 year: 2006 ident: 10.1016/j.geodrs.2023.e00638_bb0305 article-title: Effect of sugarcane residue management (mulching versus burning) on organic matter in a clayey Oxisol from southern Brazil publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2005.12.014 – volume: 417 year: 2022 ident: 10.1016/j.geodrs.2023.e00638_bb0370 article-title: Assessment of soil properties using spectral signatures of bulk soils and their aggregate size fractions publication-title: Geoderma doi: 10.1016/j.geoderma.2022.115837 – volume: 14 start-page: 117 issue: 2 year: 2007 ident: 10.1016/j.geodrs.2023.e00638_bb0165 article-title: Distribution granulo-densimétrique de la matière organique dans un sol argileux sous semis direct avec couverture végétale des Hautes Terres malgaches publication-title: Etude et Gestion Des Sols – volume: 1–2 start-page: 14 year: 2008 ident: 10.1016/j.geodrs.2023.e00638_bb0030 article-title: Texture and sesquioxide effects on water-stable aggregates and organic matter in some tropical soils publication-title: Geoderma doi: 10.1016/j.geoderma.2007.10.003 – volume: 43 start-page: 1398 year: 2011 ident: 10.1016/j.geodrs.2023.e00638_bb0040 article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – critical review and research perspectives publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.02.019 – volume: 24 start-page: 5361 year: 2018 ident: 10.1016/j.geodrs.2023.e00638_bb0265 article-title: Climate and plant controls on soil organic matter in coastal wetlands publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14376 – volume: 342 start-page: 65 year: 2019 ident: 10.1016/j.geodrs.2023.e00638_bb0345 article-title: Heterogeneity of the chemical composition and thermal stability of particulate organic matter in French forest soils publication-title: Geoderma doi: 10.1016/j.geoderma.2019.02.008 – volume: 292 start-page: 59 year: 2017 ident: 10.1016/j.geodrs.2023.e00638_bb0255 article-title: Soil carbon 4 per mille publication-title: Geoderma doi: 10.1016/j.geoderma.2017.01.002 – volume: 313 start-page: 41 year: 2018 ident: 10.1016/j.geodrs.2023.e00638_bb0140 article-title: Data synthesis of carbon distribution in particle size fractions of tropical soils: implications for soil carbon storage potential in croplands publication-title: Geoderma doi: 10.1016/j.geoderma.2017.10.010 – volume: 26 start-page: 261 year: 2020 ident: 10.1016/j.geodrs.2023.e00638_bb0215 article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14859 – volume: 66 start-page: 438 year: 2015 ident: 10.1016/j.geodrs.2023.e00638_bb0375 article-title: Soil organic carbon and its fractions estimated by visible–near infrared transfer functions publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12237 – volume: 34 year: 2020 ident: 10.1016/j.geodrs.2023.e00638_bb0230 article-title: Comparison of locally weighted PLS strategies for regression and discrimination on agronomic NIR data publication-title: J. Chemom. doi: 10.1002/cem.3209 – volume: 201 year: 2021 ident: 10.1016/j.geodrs.2023.e00638_bb0290 article-title: Global changes in soil organic carbon and implications for land degradation neutrality and climate stability publication-title: Environ. Res. doi: 10.1016/j.envres.2021.111580 – volume: 70 start-page: 204 year: 2013 ident: 10.1016/j.geodrs.2023.e00638_bb0315 article-title: Texture and organic carbon contents do not impact amount of carbon protected in Malagasy soils publication-title: Sci. Agric. doi: 10.1590/S0103-90162013000300009 – volume: 16 year: 2021 ident: 10.1016/j.geodrs.2023.e00638_bb0270 article-title: Determining soil particle-size distribution from infrared spectra using machine learning predictions: methodology and modeling publication-title: PLoS One doi: 10.1371/journal.pone.0233242 – volume: 29 start-page: 1073 year: 2010 ident: 10.1016/j.geodrs.2023.e00638_bb0045 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2010.05.006 – volume: 26 start-page: 1749 year: 1995 ident: 10.1016/j.geodrs.2023.e00638_bb0145 article-title: A routine method to study soil organic matter by particle-size fractionation: examples for tropical soils publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103629509369406 – volume: 62 start-page: 405 year: 1987 ident: 10.1016/j.geodrs.2023.e00638_bb0020 article-title: The turnover of soil organic fractions estimated by radiocarbon dating publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(87)90528-6 – start-page: 207 year: 2008 ident: 10.1016/j.geodrs.2023.e00638_bb0050 article-title: Aspects of multivariate calibration applied to near-infrared spectroscopy – volume: 1–3 start-page: 189 year: 1997 ident: 10.1016/j.geodrs.2023.e00638_bb0180 article-title: Size and density fractionation of soil organic matter and the physical capacity of soils to protect organic matter publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(97)00045-2 – volume: 37 start-page: 2307 year: 2006 ident: 10.1016/j.geodrs.2023.e00638_bb0325 article-title: Can near or mid-infrared diffuse reflectance spectroscopy be used to determine soil carbon pools? publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103620600819461 – volume: 333 start-page: 149 year: 2019 ident: 10.1016/j.geodrs.2023.e00638_bb0385 article-title: Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales publication-title: Geoderma doi: 10.1016/j.geoderma.2018.07.026 – volume: 158 start-page: 3 year: 2010 ident: 10.1016/j.geodrs.2023.e00638_bb0320 article-title: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done? publication-title: Geoderma doi: 10.1016/j.geoderma.2009.04.005 – volume: 125 start-page: 10 year: 2018 ident: 10.1016/j.geodrs.2023.e00638_bb0285 article-title: Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – a comprehensive method comparison publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.06.025 – volume: 11 start-page: 5427 year: 2020 ident: 10.1016/j.geodrs.2023.e00638_bb0005 article-title: Towards a global-scale soil climate mitigation strategy publication-title: Nat. Commun. doi: 10.1038/s41467-020-18887-7 – volume: 193 start-page: 290 year: 2017 ident: 10.1016/j.geodrs.2023.e00638_bb0240 article-title: Rapid prediction of particulate, humus and resistant fractions of soil organic carbon in reforested lands using infrared spectroscopy publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2017.02.013 – volume: 136 start-page: 245 year: 2006 ident: 10.1016/j.geodrs.2023.e00638_bb0235 article-title: Mid- and near-infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols publication-title: Geoderma doi: 10.1016/j.geoderma.2006.03.026 – volume: 21 start-page: 495 year: 2013 ident: 10.1016/j.geodrs.2023.e00638_bb0300 article-title: Comparing near and mid-infrared reflectance spectroscopy for determining properties of Malagasy soils, using global or local calibration publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.1080 – volume: 179 start-page: 325 year: 2014 ident: 10.1016/j.geodrs.2023.e00638_bb0280 article-title: Quantification of SOC and clay content using visible near-infrared reflectance–mid-infrared reflectance spectroscopy with jack-knifing partial least squares regression publication-title: Soil Sci. doi: 10.1097/SS.0000000000000074 – start-page: 61 year: 2016 ident: 10.1016/j.geodrs.2023.e00638_bb0160 article-title: Land degradation neutrality: will Africa achieve it? Institutional solutions to land degradation and restoration in Africa – volume: 4 start-page: 579 year: 2013 ident: 10.1016/j.geodrs.2023.e00638_bb0365 article-title: Quantification of forest degradation and belowground carbon dynamics: ongoing challenges for monitoring, reporting and verification activities for REDD+ publication-title: Carbon Manag. doi: 10.4155/cmt.13.63 – volume: 532 start-page: 49 year: 2016 ident: 10.1016/j.geodrs.2023.e00638_bb0275 article-title: Climate-smart soils publication-title: Nature doi: 10.1038/nature17174 |
SSID | ssj0002953762 |
Score | 2.2873194 |
Snippet | Assessing the different pools of soil organic carbon (SOC) improves our understanding of how and at what rate the different forms of carbon (C) are being... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00638 |
SubjectTerms | Agricultural sciences Arenosols cost effectiveness Ferralsols Fluvisols fractionation Infrared reflectance spectroscopy infrared spectroscopy Life Sciences Locally weighted PLSR Madagascar particle size particulate organic matter prediction reflectance spectroscopy soil Soil fractionation soil organic carbon Soil organic matter Soil study Tropical soils |
Title | Comparison of near and mid-infrared reflectance spectroscopy for the estimation of soil organic carbon fractions in Madagascar agricultural soils |
URI | https://dx.doi.org/10.1016/j.geodrs.2023.e00638 https://www.proquest.com/docview/2849887108 https://hal.inrae.fr/hal-04117582 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe-GCQIBYXjJVr2Y3tlM7x9WKatulPQAVvUV-LqlKsspuK_Vn8I-ZiZNIIKFKnKJYGdvyTGbG9sw3hBxlKnATLfzfueNMFjowE_PIggJ7JbXLMoX5zucXx8tLeXaVX-2RxZALg2GVve5POr3T1n3LtF_N6aaqpl-56CCDwB_oUFZADx9wURzDDuxgfrpaXoxHLbxAzBLelZnLOUOaIYmui_Rah8a3CN3NxcfQ2fB_GalHPzBa8i-l3Vmik6fkSe9C0nma5TOyF-rn5NdiLChIm0hrEGBqak9_Vp6BELUYZ05hIDylR0bTLsUSoSybzT0Fz5WCJ0gRciPlMmIn26a6oansk6POtBaaY5syIba0qum58WZttg7HWrcjikdHuH1BLk8-fVssWV9ugTmZFTtWBG9z5cGD1N6FmbWWe4nwds5KcDKKXJkolDZZtK4QBi84dRDKOyGCNVqIl2S_burwitDc-yhlUEF5KY132mroU4GvlsWQBzUhYljf0vVY5FgS46Ycgs6uy8SVErlSJq5MCBupNgmL44Hv1cC68g-ZKsFcPEB5CJweB0EI7uX8c4ltM4ngpprfZRPyYRCEEv5JvGgxdWhuoScNQg870Zl-_d9TeEMe41uKSntL9nftbXgH_s_Ovu_lG5-rL99XvwGJXQlL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4ALAgFieRSDuIbdxA52jqtVq5Tu7oVW6s3yK0uqkqyyWyR-Rv9xZ-wkEkioElcntiPPeOaLPfMNIZ9T4TNdGdjfuc0SXkif6CqvEi_AX3Fp01RgvvNq_bW85N-u8qsDshhyYTCssrf90aYHa923TPvVnG7revo9Y4EyCPBAYFkBO3yE7FSg7Efzs_NyPR61ZAVylmShzFyeJdhnSKILkV4b37oOqbsz9sUHH_4vJ_XoB0ZL_mW0gyc6fUae9hCSzuNXPicHvnlB7hZjQUHaVrQBBaa6cfRn7RJQog7jzClMhKf0KGgaUiyRyrLd_qaAXCkgQYqUGzGXEQfZtfUNjWWfLLW6M9BcdTETYkfrhq600xu9szjXphtZPELH3UtyeXpysSiTvtxCYnla7JPCO5MLBwhSOutnxpjMcaS3s4YDyChyoSsmpE4rYwum8YJTeiacZcwbLRl7RQ6btvGvCc2dqzj3wgvHuXZWGgljCsBqaeVzLyaEDeurbM9FjiUxbtQQdHatolQUSkVFqUxIMvbaRi6OB94Xg-jUHzqlwF080PMTSHqcBCm4y_lSYduMI7mpzH6lE_JxUAQFexIvWnTj21sYSYLSw5_oTL7570_4QB6XF6ulWp6tz9-SJ_gkRqi9I4f77ta_Byy0N8e9rt8DtrIKjg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+near+and+mid-infrared+reflectance+spectroscopy+for+the+estimation+of+soil+organic+carbon+fractions+in+Madagascar+agricultural+soils&rft.jtitle=Geoderma+Regional&rft.au=Ramifehiarivo%2C+Nandrianina&rft.au=Barth%C3%A8s%2C+Bernard+G&rft.au=Cambou%2C+Aur%C3%A9lie&rft.au=Chapuis-Lardy%2C+Lydie&rft.date=2023-06-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft_id=info:doi/10.1016%2Fj.geodrs.2023.e00638&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |