Comparison of near and mid-infrared reflectance spectroscopy for the estimation of soil organic carbon fractions in Madagascar agricultural soils

Assessing the different pools of soil organic carbon (SOC) improves our understanding of how and at what rate the different forms of carbon (C) are being formed or lost in soils. Physical fractionation of soil organic matter (SOM) has often been used to separate and quantify SOC pools, but this appr...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 33; p. e00638
Main Authors Ramifehiarivo, Nandrianina, Barthès, Bernard G., Cambou, Aurélie, Chapuis-Lardy, Lydie, Chevallier, Tiphaine, Albrecht, Alain, Razafimbelo, Tantely
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2023
Elsevier
Subjects
Online AccessGet full text
ISSN2352-0094
2352-0094
DOI10.1016/j.geodrs.2023.e00638

Cover

Loading…
Abstract Assessing the different pools of soil organic carbon (SOC) improves our understanding of how and at what rate the different forms of carbon (C) are being formed or lost in soils. Physical fractionation of soil organic matter (SOM) has often been used to separate and quantify SOC pools, but this approach is very tedious and can rarely be performed on large sample sets. Infrared spectroscopy has proven useful for time- and cost-effective quantification of total SOC, which prompted us to study its ability to characterise the distribution of SOC in physical fractions. This study aimed to compare the potential of near- and mid-infrared reflectance spectroscopy (NIRS and MIRS, respectively) to predict the distribution of SOC in particle-size and particle-density fractions, using spectra of unfractionated soils. A set of 134 sieved (< 2 mm) soil samples originating from seven sites in contrasting pedoclimatic regions of Madagascar was studied. For each sample, five SOM fractions were separated: the particulate organic matter fraction (POM) and the particle-size fractions >200 μm, 50–200-μm, 20–50-μm and < 20 μm. The mass (g fraction 100 g−1 soil), SOC concentration (gC kg−1 fraction) and SOC amount (gC fraction kg−1 soil) were determined for each fraction in the laboratory. The NIR and MIR spectra were acquired on finely ground (< 0.2 mm) aliquots of unfractionated soil. Then, spectra were used for the prediction of each variable (i.e., the mass, SOC concentration and amount of each fraction, and SOC content of unfractionated soil), which was achieved with locally weighted partial least squares regression (LW-PLSR) on NIRS and MIRS data separately. For both spectral ranges, the same samples were used for calibration (n = 109, selected for spectral representativeness) and validation (n = 25). Models based on NIRS and MIRS yielded excellent predictions for SOC content in unfractionated soil (R2 = 0.98 and ratio of performance to interquartile range RPIQ ≥13) and accurate predictions (R2 ≥ 0.75 and RPIQ ≥2) for the mass, SOC concentration and SOC amount in most fractions. The predictions of SOC concentrations and SOC amounts were better in the fractions <200 μm (R2 ≥ 0.85 and RPIQ >3), especially in the fraction <20 μm (R2 > 0.9 and RPIQ >4.5). In most cases, NIRS slightly outperformed MIRS. This result contradicts most previous studies performed on soils from temperate regions but confirms those performed on soils from tropical regions. Infrared spectroscopy allowed accurate prediction of SOC distribution in particle-size fractions, which paves the way to high-throughput characterization of SOM. •SOC of particle-size fractions was studied in Ferralsols, Arenosols and Fluvisols.•Infrared spectra of unfractionated soil were used to estimate SOC in the fractions.•NIRS slightly outperformed MIRS for the studied Malagasy soils.•Predictions were particularly accurate for SOC amount in the <20 μm fraction.
AbstractList Assessing the different pools of soil organic carbon (SOC) improves our understanding of how and at what rate the different forms of carbon (C) are being formed or lost in soils. Physical fractionation of soil organic matter (SOM) has often been used to separate and quantify SOC pools, but this approach is very tedious and can rarely be performed on large sample sets. Infrared spectroscopy has proven useful for time- and cost-effective quantification of total SOC, which prompted us to study its ability to characterise the distribution of SOC in physical fractions. This study aimed to compare the potential of near- and mid-infrared reflectance spectroscopy (NIRS and MIRS, respectively) to predict the distribution of SOC in particle-size and particle-density fractions, using spectra of unfractionated soils. A set of 134 sieved (< 2 mm) soil samples originating from seven sites in contrasting pedoclimatic regions of Madagascar was studied. For each sample, five SOM fractions were separated: the particulate organic matter fraction (POM) and the particle-size fractions >200 μm, 50–200-μm, 20–50-μm and < 20 μm. The mass (g fraction 100 g−1 soil), SOC concentration (gC kg−1 fraction) and SOC amount (gC fraction kg−1 soil) were determined for each fraction in the laboratory. The NIR and MIR spectra were acquired on finely ground (< 0.2 mm) aliquots of unfractionated soil. Then, spectra were used for the prediction of each variable (i.e., the mass, SOC concentration and amount of each fraction, and SOC content of unfractionated soil), which was achieved with locally weighted partial least squares regression (LW-PLSR) on NIRS and MIRS data separately. For both spectral ranges, the same samples were used for calibration (n = 109, selected for spectral representativeness) and validation (n = 25). Models based on NIRS and MIRS yielded excellent predictions for SOC content in unfractionated soil (R2 = 0.98 and ratio of performance to interquartile range RPIQ ≥13) and accurate predictions (R2 ≥ 0.75 and RPIQ ≥2) for the mass, SOC concentration and SOC amount in most fractions. The predictions of SOC concentrations and SOC amounts were better in the fractions <200 μm (R2 ≥ 0.85 and RPIQ >3), especially in the fraction <20 μm (R2 > 0.9 and RPIQ >4.5). In most cases, NIRS slightly outperformed MIRS. This result contradicts most previous studies performed on soils from temperate regions but confirms those performed on soils from tropical regions. Infrared spectroscopy allowed accurate prediction of SOC distribution in particle-size fractions, which paves the way to high-throughput characterization of SOM. •SOC of particle-size fractions was studied in Ferralsols, Arenosols and Fluvisols.•Infrared spectra of unfractionated soil were used to estimate SOC in the fractions.•NIRS slightly outperformed MIRS for the studied Malagasy soils.•Predictions were particularly accurate for SOC amount in the <20 μm fraction.
Assessing the different pools of soil organic carbon (SOC) improves our understanding of how and at what rate the different forms of carbon (C) are being formed or lost in soils. Physical fractionation of soil organic matter (SOM) has often been used to separate and quantify SOC pools, but this approach is very tedious and can rarely be performed on large sample sets. Infrared spectroscopy has proven useful for time-and cost-effective quan-tification of total SOC, which prompted us to study its ability to characterise the distribution of SOC in physical fractions. This study aimed to compare the potential of near-and mid-infrared reflectance spectroscopy (NIRS and MIRS, respectively) to predict the distribution of SOC in particle-size and particle-density fractions, using spectra of unfractionated soils. A set of 134 sieved (< 2 mm) soil samples originating from seven sites in contrasting pedoclimatic regions of Madagascar was studied. For each sample, five SOM fractions were separated: the particulate organic matter fraction (POM) and the particle-size fractions > 200, 50-200, 20-50 and < 20 µm. The mass (g fraction 100 g(-1) soil), SOC concentration (gC kg(-1) fraction) and SOC amount (gC fraction kg(-1) soil) were determined for each fraction in the laboratory. The NIR and MIR spectra were acquired on finely ground (< 0.2 mm) aliquots of unfractionated soil. Then, spectra were used for the prediction of each variable (i.e., the mass, SOC concentration and amount of each fraction, and SOC content of unfractionated soil), which was achieved with locally weighted partial least squares regression (LW-PLSR) on NIRS and MIRS data separately. For both spectral ranges, the same samples were used for calibration (n = 109, selected for spectral representativeness) and validation (n = 25). Models based on NIRS and MIRS yielded excellent predictions for SOC content in unfractionated soil (R² = 0.98 and ratio of performance to interquartile range RPIQ >= 13) and accurate predictions (R² >= 0.75 and RPIQ >= 2) for the mass, SOC concentration and SOC amount in most fractions. The predictions of SOC concentrations and SOC amounts were better in the fractions < 200 µm (R² >= 0.85 and RPIQ > 3), especially in the fraction < 20 µm (R² > 0.9 and RPIQ > 4.5). In most cases, NIRS slightly outperformed MIRS. This result contradicts most previous studies performed on soils from temperate regions but confirms those performed on soils from tropical regions. Infrared spectroscopy allowed accurate prediction of SOC distribution in particle-size fractions, which paves the way to high-throughput characterization of SOM.
Assessing the different pools of soil organic carbon (SOC) improves our understanding of how and at what rate the different forms of carbon (C) are being formed or lost in soils. Physical fractionation of soil organic matter (SOM) has often been used to separate and quantify SOC pools, but this approach is very tedious and can rarely be performed on large sample sets. Infrared spectroscopy has proven useful for time- and cost-effective quantification of total SOC, which prompted us to study its ability to characterise the distribution of SOC in physical fractions. This study aimed to compare the potential of near- and mid-infrared reflectance spectroscopy (NIRS and MIRS, respectively) to predict the distribution of SOC in particle-size and particle-density fractions, using spectra of unfractionated soils. A set of 134 sieved (< 2 mm) soil samples originating from seven sites in contrasting pedoclimatic regions of Madagascar was studied. For each sample, five SOM fractions were separated: the particulate organic matter fraction (POM) and the particle-size fractions >200 μm, 50–200-μm, 20–50-μm and < 20 μm. The mass (g fraction 100 g⁻¹ soil), SOC concentration (gC kg⁻¹ fraction) and SOC amount (gC fraction kg⁻¹ soil) were determined for each fraction in the laboratory. The NIR and MIR spectra were acquired on finely ground (< 0.2 mm) aliquots of unfractionated soil. Then, spectra were used for the prediction of each variable (i.e., the mass, SOC concentration and amount of each fraction, and SOC content of unfractionated soil), which was achieved with locally weighted partial least squares regression (LW-PLSR) on NIRS and MIRS data separately. For both spectral ranges, the same samples were used for calibration (n = 109, selected for spectral representativeness) and validation (n = 25). Models based on NIRS and MIRS yielded excellent predictions for SOC content in unfractionated soil (R² = 0.98 and ratio of performance to interquartile range RPIQ ≥13) and accurate predictions (R² ≥ 0.75 and RPIQ ≥2) for the mass, SOC concentration and SOC amount in most fractions. The predictions of SOC concentrations and SOC amounts were better in the fractions <200 μm (R² ≥ 0.85 and RPIQ >3), especially in the fraction <20 μm (R² > 0.9 and RPIQ >4.5). In most cases, NIRS slightly outperformed MIRS. This result contradicts most previous studies performed on soils from temperate regions but confirms those performed on soils from tropical regions. Infrared spectroscopy allowed accurate prediction of SOC distribution in particle-size fractions, which paves the way to high-throughput characterization of SOM.
ArticleNumber e00638
Author Cambou, Aurélie
Barthès, Bernard G.
Ramifehiarivo, Nandrianina
Razafimbelo, Tantely
Albrecht, Alain
Chapuis-Lardy, Lydie
Chevallier, Tiphaine
Author_xml – sequence: 1
  givenname: Nandrianina
  surname: Ramifehiarivo
  fullname: Ramifehiarivo, Nandrianina
  email: ranandrianina@hotmail.fr
  organization: Laboratoire des RadioIsotopes, University of Antananarivo, BP3383 Route d'Andraisoro, 101 Antananarivo, Madagascar
– sequence: 2
  givenname: Bernard G.
  surname: Barthès
  fullname: Barthès, Bernard G.
  organization: Eco&sols, Université de Montpellier, Cirad, Inrae, IRD, Institut Agro, 34060 Montpellier, France
– sequence: 3
  givenname: Aurélie
  surname: Cambou
  fullname: Cambou, Aurélie
  organization: Eco&sols, Université de Montpellier, Cirad, Inrae, IRD, Institut Agro, 34060 Montpellier, France
– sequence: 4
  givenname: Lydie
  surname: Chapuis-Lardy
  fullname: Chapuis-Lardy, Lydie
  organization: Eco&sols, Université de Montpellier, Cirad, Inrae, IRD, Institut Agro, 34060 Montpellier, France
– sequence: 5
  givenname: Tiphaine
  surname: Chevallier
  fullname: Chevallier, Tiphaine
  organization: Eco&sols, Université de Montpellier, Cirad, Inrae, IRD, Institut Agro, 34060 Montpellier, France
– sequence: 6
  givenname: Alain
  surname: Albrecht
  fullname: Albrecht, Alain
  organization: Eco&sols, Université de Montpellier, Cirad, Inrae, IRD, Institut Agro, 34060 Montpellier, France
– sequence: 7
  givenname: Tantely
  surname: Razafimbelo
  fullname: Razafimbelo, Tantely
  organization: Laboratoire des RadioIsotopes, University of Antananarivo, BP3383 Route d'Andraisoro, 101 Antananarivo, Madagascar
BackLink https://hal.inrae.fr/hal-04117582$$DView record in HAL
BookMark eNqFUU1v1DAQtVCRKKX_gIOPcMjij2Rjc0CqVkCRFnGBszWxJ1uvvHaws5X6M_jHOA1IiAOcZjR-73nmvefkIqaIhLzkbMMZ3745bg6YXC4bwYTcIGNbqZ6QSyE70TCm24s_-mfkupQjY0zoTvZbcUl-7NJpguxLijSNNCJkCtHRk3eNj2OGjI5mHAPaGaJFWqba5VRsmh7omDKd75Bimf0JZr-KlOQDTfkA0VtqIQ91XJXs8l6oj_QzODhAsctfh-ztOcznDOGRWF6QpyOEgte_6hX59uH9191ts__y8dPuZt_Yluu50eiGrneKMeUssmEYhGtVp7kdWt53uuthlL0CPg5WS5BKc4Wyd1ZKHEBJeUVer7p3EMyU6_75wSTw5vZmb5YZa3kVUuKeV-yrFTvl9P1crzUnXyyGABHTuRihWq1Uz5mq0Lcr1FaTSnXOWD8_WjNn8MFwZpbYzNGssZklNrPGVsntX-Tfi_2H9m6lYfXr3mM2xXqsaTmfa1rGJf9vgZ-TXrlP
CitedBy_id crossref_primary_10_3390_atmos15030250
crossref_primary_10_1038_s41467_025_57355_y
crossref_primary_10_1016_j_chemolab_2024_105247
crossref_primary_10_1016_j_geoderma_2024_116818
Cites_doi 10.3390/rs9101081
10.1021/ac60214a047
10.2136/sssaj2008.0213
10.1016/j.still.2004.12.006
10.2136/sssaj2001.652480x
10.1007/s12571-009-0009-z
10.1016/j.geoderma.2007.01.007
10.1038/s41561-020-0612-3
10.1080/05704928.2013.811081
10.1255/jnirs.1232
10.1016/j.geoderma.2014.10.019
10.1016/j.still.2007.10.012
10.1016/j.ecolecon.2007.09.020
10.1007/s10533-021-00755-1
10.1016/j.catena.2022.106075
10.1016/j.agee.2020.107030
10.1016/j.geoderma.2015.06.021
10.1016/j.chemolab.2007.06.007
10.1071/SR15019
10.1016/j.agee.2016.08.030
10.1016/j.soilbio.2007.03.007
10.1016/j.geoderma.2020.114401
10.1016/j.foreco.2007.10.027
10.3389/fenvs.2020.514701
10.5194/bg-17-5025-2020
10.1080/00401706.1969.10490666
10.1016/j.geoderma.2018.03.025
10.1890/16-0024.1
10.2136/sssaj2009.0375
10.1016/j.geoderma.2013.07.017
10.1016/j.soilbio.2007.12.023
10.1016/j.soilbio.2018.03.026
10.1007/978-1-4612-2930-8_1
10.1007/s10533-011-9679-7
10.1016/j.soilbio.2006.07.010
10.1111/j.1365-2389.2000.00353.x
10.1016/S0016-7061(97)00039-6
10.3390/soilsystems3010011
10.1371/journal.pone.0066409
10.1111/ejss.12761
10.1016/j.agee.2005.12.014
10.1016/j.geoderma.2022.115837
10.1016/j.geoderma.2007.10.003
10.1016/j.soilbio.2011.02.019
10.1111/gcb.14376
10.1016/j.geoderma.2019.02.008
10.1016/j.geoderma.2017.01.002
10.1016/j.geoderma.2017.10.010
10.1111/gcb.14859
10.1111/ejss.12237
10.1002/cem.3209
10.1016/j.envres.2021.111580
10.1590/S0103-90162013000300009
10.1371/journal.pone.0233242
10.1016/j.trac.2010.05.006
10.1080/00103629509369406
10.1016/0048-9697(87)90528-6
10.1016/S1161-0301(97)00045-2
10.1080/00103620600819461
10.1016/j.geoderma.2018.07.026
10.1016/j.geoderma.2009.04.005
10.1016/j.soilbio.2018.06.025
10.1038/s41467-020-18887-7
10.1016/j.jenvman.2017.02.013
10.1016/j.geoderma.2006.03.026
10.1255/jnirs.1080
10.1097/SS.0000000000000074
10.4155/cmt.13.63
10.1038/nature17174
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
VOOES
DOI 10.1016/j.geodrs.2023.e00638
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID oai_HAL_hal_04117582v1
10_1016_j_geodrs_2023_e00638
S2352009423000342
GeographicLocations Madagascar
GeographicLocations_xml – name: Madagascar
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
1XC
VOOES
ID FETCH-LOGICAL-c419t-9edb57d8008dce0bbb2d48591cb4175957af378a1fbc93a38918e37dc33eba833
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Fri May 09 12:18:50 EDT 2025
Fri Aug 22 20:22:59 EDT 2025
Thu Apr 24 23:01:35 EDT 2025
Tue Jul 01 02:07:20 EDT 2025
Fri Feb 23 02:35:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ferralsols
Fluvisols
Infrared reflectance spectroscopy
Soil fractionation
Soil organic matter
Tropical soils
Arenosols
Locally weighted PLSR
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-9edb57d8008dce0bbb2d48591cb4175957af378a1fbc93a38918e37dc33eba833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8285-3856
0000-0002-4661-7466
0000-0003-0393-3239
OpenAccessLink https://hal.inrae.fr/hal-04117582
PQID 2849887108
PQPubID 24069
ParticipantIDs hal_primary_oai_HAL_hal_04117582v1
proquest_miscellaneous_2849887108
crossref_citationtrail_10_1016_j_geodrs_2023_e00638
crossref_primary_10_1016_j_geodrs_2023_e00638
elsevier_sciencedirect_doi_10_1016_j_geodrs_2023_e00638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wood, Sokol, Bell, Bradford, Naeem, Wallenstein, Palm (bb0395) 2016; 26
Stevens, Nocita, Tóth, Montanarella, van Wesemael (bb0355) 2013; 8
Lavallee, Soong, Cotrufo (bb0215) 2020; 26
Bellon-Maurel, McBratney (bb0040) 2011; 43
Greenberg, Seidel, Vohland, Ludwig (bb0170) 2021; 73
Jaconi, Poeplau, Ramirez-Lopez, Van Wesemael, Don (bb0190) 2019; 70
Knox, Grunwald, McDowell, Bruland, Myers, Harris (bb0205) 2015; 239–240
Gupta, Vasava, Das, Choubey (bb0175) 2018; 325
Madhavan, Baldock, Read, Murphy, Cunningham, Perring, Herrmann, Lewis, Cavagnaro, England, Paul, Weston, Baker (bb0240) 2017; 193
Lal (bb0210) 2009; 1
Paustian, Lehmann, Ogle, Reay, Robertson, Smith (bb0275) 2016; 532
Rabenarivo, Chapuis-Lardy, Brunet, Chotte, Rabeharisoa, Barthès (bb0300) 2013; 21
Briedis, Baldock, de Moraes Sá, dos Santos, Milori (bb0055) 2020; 373
Feller (bb0120) 1979; 17
Reeves (bb0320) 2010; 158
Cambou, Barthès, Moulin, Chauvin, Faye, Masse, Chevallier, Chapuis-Lardy (bb0075) 2022; 212
Osland, Gabler, Grace, Day, McCoy, McLeod, From, Enwright, Feher, Stagg, Hartley (bb0265) 2018; 24
Christensen (bb0090) 1992; vol. 20
Stevens, Ramirez-Lopez (bb0350) 2020
Wight, Ashworth, Allen (bb0390) 2016; 261
Boysworth, Booksh (bb0050) 2008
Barthès, Kouakoua, Moulin, Hmaidi, Gallali, Clairotte, Bernoux, Bourdon, Toucet, Chevallier (bb0035) 2016; 24
Fujisaki, Chapuis-Lardy, Albrecht, Razafimbelo, Chotte, Chevallier (bb0140) 2018; 313
Poeplau, Don, Six, Kaiser, Benbi, Chenu, Cotrufo, Derrien, Gioacchini, Grand, Gregorich, Griepentrog, Gunina, Haddix, Kuzyakov, Kühnel, Macdonald, Soong, Trigalet, Vermeire, Rovira, van Wesemael, Wiesmeier, Yeasmin, Yevdokimov, Nieder (bb0285) 2018; 125
Vasava, Das (bb0370) 2022; 417
Feng, Plante, Six (bb0130) 2013; 112
Fernández Pierna, Dardenne (bb0135) 2008; 91
Razafimbelo, Chevallier, Albrecht, Chapuis-Lardy, Rakotondrasolo, Michellon, Rabeharisoa, Bernoux (bb0315) 2013; 70
Brunet, Barthès, Chotte, Feller (bb0060) 2007; 139
Lesnoff, Metz, Roger (bb0230) 2020; 34
Ding, Huang, Sun, Jiang, Chen (bb0110) 2014; 9
Barthès, Brunet, Hien, Enjalric, Conche, Freschet, d’Annunzio, Toucet-Louri (bb0025) 2008; 40
Grandière, Razafimbelo, Barthès, Blanchart, Louri, Ferrer, Chenu, Wolf, Albrecht, Feller (bb0165) 2007; 14
Kennard, Stone (bb0200) 1969; 11
Le Guillou, Wetterlind, Viscarra Rossel, Hicks, Grundy, Tuomi (bb0220) 2015; 53
Gnacadja, Wiese (bb0160) 2016
Minasny, Malone, McBratney, Angers, Arrouays, Chambers, Chaplot, Chen, Cheng, Das, Field, Gimona, Hedley, Hong, Mandal, Marchant, Martin, McConkey, Mulder, O’Rourke, Richer-de-Forges, Odeh, Padarian, Paustian, Pan, Poggio, Savin, Stolbovoy, Stockmann, Sulaeman, Tsui, Vågen, van Wesemael, Winowiecki (bb0255) 2017; 292
Malou, Sebag, Moulin, Chevallier, Badiane-Ndour, Thiam, Chapuis-Lardy (bb0245) 2020; 301
Prăvălie, Nita, Patriche, Niculiță, Birsan, Roșca, Bandoc (bb0290) 2021; 201
Razafimbelo, Barthès, Larré-Larrouy, De Luca, Laurent, Cerri, Feller (bb0305) 2006; 115
Barthès, Kouakoua, Larré-Larrouy, Razafimbelo, de Luca, Azontonde, Neves, de Freitas, Feller (bb0030) 2008; 1–2
Meurer, Chenu, Coucheney, Herrmann, Keller, Kätterer, Nimblad Svensson, Jarvis (bb0250) 2020; 17
Chenu, Rumpel, Lehmann (bb0085) 2015
Angst, Messinger, Greiner, Häusler, Hertel, Kirfel, Kögel-Knabner, Leuschner, Rethemeyer, Mueller (bb0015) 2018; 122
Puget, Chenu, Balesdent (bb0295) 2000; 51
Swinton, Lupi, Robertson, Hamilton (bb0360) 2007; 64
Cozzolino, Morón (bb0095) 2006; 85
Nduwamungu, Ziadi, Tremblay, Parent (bb0260) 2009; 73
Peng, Knadel, Gislum, Schelde, Thomsen, Greve (bb0280) 2014; 179
IUSS Working Group WRB (bb0185) 2015
Amelung, Bossio, de Vries, Kögel-Knabner, Lehmann, Amundson, Bol, Collins, Lal, Leifeld, Minasny, Pan, Paustian, Rumpel, Sanderman, van Groenigen, Mooney, van Wesemael, Wander, Chabbi (bb0005) 2020; 11
Reeves, Follett, McCarty, Kimble (bb0325) 2006; 37
Vargas, Paz, de Jong (bb0365) 2013; 4
Razafimbelo, Albrecht, Oliver, Chevallier, Chapuis-Lardy, Feller (bb0310) 2008; 98
Andriamananjara, Hewson, Razakamanarivo, Andrisoa, Ranaivoson, Ramboatiana, Razafindrakoto, Ramifehiarivo, Razafimanantsoa, Rabeharisoa, Ramananantoandro, Rasolohery, Rabetokotany, Razafimbelo (bb0010) 2016; 233
Kawamura, Tsujimoto, Rabenarivo, Asai, Andriamananjara, Rakotoson (bb0195) 2017; 9
Calderón, Reeves, Collins, Paul (bb0070) 2011; 75
Soriano-Disla, Janik, Viscarra Rossel, Macdonald, McLaughlin (bb0340) 2014; 49
Soucémarianadin, Cécillon, Chenu, Baudin, Nicolas, Girardin, Delahaie, Barré (bb0345) 2019; 342
Sanderman, Baldock, Dangal, Ludwig, Potter, Rivard, Savage (bb0330) 2021; 156
Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, McBratney (bb0045) 2010; 29
Gavinelli, Feller, Larré-Larrouy, Bacye, Djegui, de Nzila (bb0145) 1995; 26
Parent, Parent, Parent (bb0270) 2021; 16
Ge, Thomasson, Morgan (bb0150) 2014; 213
Balesdent (bb0020) 1987; 62
Gee, Bauder (bb0155) 1986
Madari, Reeves, Machado, Guimarães, Torres, McCarty (bb0235) 2006; 136
Chang, Laird, Mausbach, Hurburgh (bb0080) 2001; 65
Savitzky, Golay (bb0335) 1964; 36
d’Annunzio, Conche, Landais, Saint-André, Joffre, Barthès (bb0105) 2008; 255
Wiesmeier, Urbanski, Hobley, Lang, von Lützow, Marin-Spiotta, van Wesemael, Rabot, Ließ, Garcia-Franco, Wollschläger, Vogel, Kögel-Knabner (bb0385) 2019; 333
Von Lützow, Kögel-Knabner, Ekschmitt, Flessa, Guggenberger, Matzner, Marschner (bb0380) 2007; 39
Lehmann, Hansel, Kaiser, Kleber, Maher, Manzoni, Nunan, Reichstein, Schimel, Torn, Wieder, Kögel-Knabner (bb0225) 2020; 13
Viscarra Rossel, Hicks (bb0375) 2015; 66
Dangal, Sanderman, Wills, Ramirez-Lopez (bb0100) 2019; 3
Dynarski, Bossio, Scow (bb0115) 2020; 8
Hassink, Whitmore, Kubát (bb0180) 1997; 1–3
Feller, Beare (bb0125) 1997; 79
Zimmermann, Leifeld, Fuhrer (bb0400) 2007; 39
Bellon-Maurel (10.1016/j.geodrs.2023.e00638_bb0040) 2011; 43
d’Annunzio (10.1016/j.geodrs.2023.e00638_bb0105) 2008; 255
Knox (10.1016/j.geodrs.2023.e00638_bb0205) 2015; 239–240
Le Guillou (10.1016/j.geodrs.2023.e00638_bb0220) 2015; 53
Malou (10.1016/j.geodrs.2023.e00638_bb0245) 2020; 301
Lesnoff (10.1016/j.geodrs.2023.e00638_bb0230) 2020; 34
Stevens (10.1016/j.geodrs.2023.e00638_bb0350)
Meurer (10.1016/j.geodrs.2023.e00638_bb0250) 2020; 17
Dynarski (10.1016/j.geodrs.2023.e00638_bb0115) 2020; 8
Puget (10.1016/j.geodrs.2023.e00638_bb0295) 2000; 51
Chang (10.1016/j.geodrs.2023.e00638_bb0080) 2001; 65
Paustian (10.1016/j.geodrs.2023.e00638_bb0275) 2016; 532
Von Lützow (10.1016/j.geodrs.2023.e00638_bb0380) 2007; 39
Ding (10.1016/j.geodrs.2023.e00638_bb0110) 2014; 9
Gnacadja (10.1016/j.geodrs.2023.e00638_bb0160) 2016
Angst (10.1016/j.geodrs.2023.e00638_bb0015) 2018; 122
Minasny (10.1016/j.geodrs.2023.e00638_bb0255) 2017; 292
Gupta (10.1016/j.geodrs.2023.e00638_bb0175) 2018; 325
Swinton (10.1016/j.geodrs.2023.e00638_bb0360) 2007; 64
Gavinelli (10.1016/j.geodrs.2023.e00638_bb0145) 1995; 26
Prăvălie (10.1016/j.geodrs.2023.e00638_bb0290) 2021; 201
Jaconi (10.1016/j.geodrs.2023.e00638_bb0190) 2019; 70
Soucémarianadin (10.1016/j.geodrs.2023.e00638_bb0345) 2019; 342
Wiesmeier (10.1016/j.geodrs.2023.e00638_bb0385) 2019; 333
Calderón (10.1016/j.geodrs.2023.e00638_bb0070) 2011; 75
Hassink (10.1016/j.geodrs.2023.e00638_bb0180) 1997; 1–3
Brunet (10.1016/j.geodrs.2023.e00638_bb0060) 2007; 139
Feller (10.1016/j.geodrs.2023.e00638_bb0125) 1997; 79
Feng (10.1016/j.geodrs.2023.e00638_bb0130) 2013; 112
Barthès (10.1016/j.geodrs.2023.e00638_bb0030) 2008; 1–2
Bellon-Maurel (10.1016/j.geodrs.2023.e00638_bb0045) 2010; 29
Lal (10.1016/j.geodrs.2023.e00638_bb0210) 2009; 1
Stevens (10.1016/j.geodrs.2023.e00638_bb0355) 2013; 8
Barthès (10.1016/j.geodrs.2023.e00638_bb0035) 2016; 24
Christensen (10.1016/j.geodrs.2023.e00638_bb0090) 1992; vol. 20
IUSS Working Group WRB (10.1016/j.geodrs.2023.e00638_bb0185) 2015
Barthès (10.1016/j.geodrs.2023.e00638_bb0025) 2008; 40
Reeves (10.1016/j.geodrs.2023.e00638_bb0320) 2010; 158
Wood (10.1016/j.geodrs.2023.e00638_bb0395) 2016; 26
Razafimbelo (10.1016/j.geodrs.2023.e00638_bb0305) 2006; 115
Fernández Pierna (10.1016/j.geodrs.2023.e00638_bb0135) 2008; 91
Lehmann (10.1016/j.geodrs.2023.e00638_bb0225) 2020; 13
Osland (10.1016/j.geodrs.2023.e00638_bb0265) 2018; 24
Razafimbelo (10.1016/j.geodrs.2023.e00638_bb0310) 2008; 98
Kennard (10.1016/j.geodrs.2023.e00638_bb0200) 1969; 11
Nduwamungu (10.1016/j.geodrs.2023.e00638_bb0260) 2009; 73
Razafimbelo (10.1016/j.geodrs.2023.e00638_bb0315) 2013; 70
Parent (10.1016/j.geodrs.2023.e00638_bb0270) 2021; 16
Sanderman (10.1016/j.geodrs.2023.e00638_bb0330) 2021; 156
Vasava (10.1016/j.geodrs.2023.e00638_bb0370) 2022; 417
Reeves (10.1016/j.geodrs.2023.e00638_bb0325) 2006; 37
Balesdent (10.1016/j.geodrs.2023.e00638_bb0020) 1987; 62
Madari (10.1016/j.geodrs.2023.e00638_bb0235) 2006; 136
Boysworth (10.1016/j.geodrs.2023.e00638_bb0050) 2008
Soriano-Disla (10.1016/j.geodrs.2023.e00638_bb0340) 2014; 49
Gee (10.1016/j.geodrs.2023.e00638_bb0155) 1986
Viscarra Rossel (10.1016/j.geodrs.2023.e00638_bb0375) 2015; 66
Cambou (10.1016/j.geodrs.2023.e00638_bb0075) 2022; 212
Dangal (10.1016/j.geodrs.2023.e00638_bb0100) 2019; 3
Zimmermann (10.1016/j.geodrs.2023.e00638_bb0400) 2007; 39
Feller (10.1016/j.geodrs.2023.e00638_bb0120) 1979; 17
Kawamura (10.1016/j.geodrs.2023.e00638_bb0195) 2017; 9
Cozzolino (10.1016/j.geodrs.2023.e00638_bb0095) 2006; 85
Rabenarivo (10.1016/j.geodrs.2023.e00638_bb0300) 2013; 21
Lavallee (10.1016/j.geodrs.2023.e00638_bb0215) 2020; 26
Grandière (10.1016/j.geodrs.2023.e00638_bb0165) 2007; 14
Madhavan (10.1016/j.geodrs.2023.e00638_bb0240) 2017; 193
Vargas (10.1016/j.geodrs.2023.e00638_bb0365) 2013; 4
Andriamananjara (10.1016/j.geodrs.2023.e00638_bb0010) 2016; 233
Wight (10.1016/j.geodrs.2023.e00638_bb0390) 2016; 261
Greenberg (10.1016/j.geodrs.2023.e00638_bb0170) 2021; 73
Ge (10.1016/j.geodrs.2023.e00638_bb0150) 2014; 213
Fujisaki (10.1016/j.geodrs.2023.e00638_bb0140) 2018; 313
Poeplau (10.1016/j.geodrs.2023.e00638_bb0285) 2018; 125
Briedis (10.1016/j.geodrs.2023.e00638_bb0055) 2020; 373
Peng (10.1016/j.geodrs.2023.e00638_bb0280) 2014; 179
Chenu (10.1016/j.geodrs.2023.e00638_bb0085) 2015
Amelung (10.1016/j.geodrs.2023.e00638_bb0005) 2020; 11
Savitzky (10.1016/j.geodrs.2023.e00638_bb0335) 1964; 36
References_xml – volume: 193
  start-page: 290
  year: 2017
  end-page: 299
  ident: bb0240
  article-title: Rapid prediction of particulate, humus and resistant fractions of soil organic carbon in reforested lands using infrared spectroscopy
  publication-title: J. Environ. Manag.
– volume: 39
  start-page: 224
  year: 2007
  end-page: 231
  ident: bb0400
  article-title: Quantifying soil organic carbon fractions by infrared-spectroscopy
  publication-title: Soil Biol. Biochem.
– volume: 65
  start-page: 480
  year: 2001
  end-page: 490
  ident: bb0080
  article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 115
  start-page: 285
  year: 2006
  end-page: 289
  ident: bb0305
  article-title: Effect of sugarcane residue management (mulching versus burning) on organic matter in a clayey Oxisol from southern Brazil
  publication-title: Agric. Ecosyst. Environ.
– volume: 17
  start-page: 339
  year: 1979
  end-page: 346
  ident: bb0120
  article-title: Une méthode de fractionnement granulométrique de la matière organique des sols. Application aux sols tropicaux, à textures grossières, très pauvres en humus
  publication-title: Cahiers ORSTOM série Pédologie
– volume: 122
  start-page: 19
  year: 2018
  end-page: 30
  ident: bb0015
  article-title: Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds
  publication-title: Soil Biol. Biochem.
– volume: 239–240
  start-page: 229
  year: 2015
  end-page: 239
  ident: bb0205
  article-title: Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy
  publication-title: Geoderma
– year: 2015
  ident: bb0185
  article-title: World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106
– volume: 301
  year: 2020
  ident: bb0245
  article-title: The Rock-Eval® signature of soil organic carbon in arenosols of the Senegalese groundnut basin. How do agricultural practices matter?
  publication-title: Agric. Ecosyst. Environ.
– volume: 125
  start-page: 10
  year: 2018
  end-page: 26
  ident: bb0285
  article-title: Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – a comprehensive method comparison
  publication-title: Soil Biol. Biochem.
– volume: 29
  start-page: 1073
  year: 2010
  end-page: 1081
  ident: bb0045
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: Trends Anal. Chem.
– volume: 17
  start-page: 5025
  year: 2020
  end-page: 5042
  ident: bb0250
  article-title: Modelling dynamic interactions between soil structure and the storage and turnover of soil organic matter
  publication-title: Biogeosciences
– volume: 342
  start-page: 65
  year: 2019
  end-page: 74
  ident: bb0345
  article-title: Heterogeneity of the chemical composition and thermal stability of particulate organic matter in French forest soils
  publication-title: Geoderma
– volume: 34
  year: 2020
  ident: bb0230
  article-title: Comparison of locally weighted PLS strategies for regression and discrimination on agronomic NIR data
  publication-title: J. Chemom.
– volume: 156
  start-page: 97
  year: 2021
  end-page: 114
  ident: bb0330
  article-title: Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy
  publication-title: Biogeochemistry
– volume: 4
  start-page: 579
  year: 2013
  end-page: 582
  ident: bb0365
  article-title: Quantification of forest degradation and belowground carbon dynamics: ongoing challenges for monitoring, reporting and verification activities for REDD+
  publication-title: Carbon Manag.
– volume: 333
  start-page: 149
  year: 2019
  end-page: 162
  ident: bb0385
  article-title: Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales
  publication-title: Geoderma
– volume: 11
  start-page: 137
  year: 1969
  end-page: 148
  ident: bb0200
  article-title: Computer aided design of experiments
  publication-title: Technometrics
– volume: 21
  start-page: 495
  year: 2013
  end-page: 509
  ident: bb0300
  article-title: Comparing near and mid-infrared reflectance spectroscopy for determining properties of Malagasy soils, using global or local calibration
  publication-title: J. Near Infrared Spectrosc.
– volume: 292
  start-page: 59
  year: 2017
  end-page: 86
  ident: bb0255
  article-title: Soil carbon 4 per mille
  publication-title: Geoderma
– volume: 66
  start-page: 438
  year: 2015
  end-page: 450
  ident: bb0375
  article-title: Soil organic carbon and its fractions estimated by visible–near infrared transfer functions
  publication-title: Eur. J. Soil Sci.
– volume: 26
  start-page: 261
  year: 2020
  end-page: 273
  ident: bb0215
  article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century
  publication-title: Glob. Chang. Biol.
– volume: 16
  year: 2021
  ident: bb0270
  article-title: Determining soil particle-size distribution from infrared spectra using machine learning predictions: methodology and modeling
  publication-title: PLoS One
– volume: 1–2
  start-page: 14
  year: 2008
  end-page: 25
  ident: bb0030
  article-title: Texture and sesquioxide effects on water-stable aggregates and organic matter in some tropical soils
  publication-title: Geoderma
– volume: 53
  start-page: 913
  year: 2015
  end-page: 921
  ident: bb0220
  article-title: How does grinding affect the mid-infrared spectra of soil and their multivariate calibrations to texture and organic carbon?
  publication-title: Soil Res.
– volume: 325
  start-page: 59
  year: 2018
  end-page: 71
  ident: bb0175
  article-title: Local modeling approaches for estimating soil properties in selected Indian soils using diffuse reflectance data over visible to near-infrared region
  publication-title: Geoderma
– volume: vol. 20
  start-page: 1
  year: 1992
  end-page: 90
  ident: bb0090
  article-title: Physical fractionation of soil and organic matter in primary particle size and density separates, Stewart
  publication-title: Advances in Soil Science
– volume: 261
  start-page: 36
  year: 2016
  end-page: 43
  ident: bb0390
  article-title: Organic substrate, clay type, texture, and water influence on NIR carbon measurements
  publication-title: Geoderma
– volume: 85
  start-page: 78
  year: 2006
  end-page: 85
  ident: bb0095
  article-title: Potential of near-infrared reflectance spectroscopy and chemometrics to predict soil organic carbon fractions
  publication-title: Soil Tillage Res.
– volume: 26
  start-page: 1749
  year: 1995
  end-page: 1760
  ident: bb0145
  article-title: A routine method to study soil organic matter by particle-size fractionation: examples for tropical soils
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 70
  start-page: 127
  year: 2019
  end-page: 139
  ident: bb0190
  article-title: Log-ratio transformation is the key to determining soil organic carbon fractions with near-infrared spectroscopy
  publication-title: Eur. J. Soil Sci.
– volume: 39
  start-page: 2183
  year: 2007
  end-page: 2207
  ident: bb0380
  article-title: SOM fractionation methods: relevance to functional pools and to stabilization mechanisms
  publication-title: Soil Biol. Biochem.
– volume: 313
  start-page: 41
  year: 2018
  end-page: 51
  ident: bb0140
  article-title: Data synthesis of carbon distribution in particle size fractions of tropical soils: implications for soil carbon storage potential in croplands
  publication-title: Geoderma
– volume: 98
  start-page: 140
  year: 2008
  end-page: 149
  ident: bb0310
  article-title: Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems
  publication-title: Soil Tillage Res.
– volume: 13
  start-page: 529
  year: 2020
  end-page: 534
  ident: bb0225
  article-title: Persistence of soil organic carbon caused by functional complexity
  publication-title: Nat. Geosci.
– volume: 8
  year: 2020
  ident: bb0115
  article-title: Dynamic stability of soil carbon: reassessing the “permanence” of soil carbon sequestration
  publication-title: Front. Environ. Sci.
– volume: 79
  start-page: 69
  year: 1997
  end-page: 116
  ident: bb0125
  article-title: Physical control of soil organic matter dynamics in the tropics
  publication-title: Geoderma
– volume: 9
  year: 2014
  ident: bb0110
  article-title: Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than in coarse particles: an incubation study with temperate grassland and forest soils in northern China
  publication-title: PLoS One
– year: 2020
  ident: bb0350
  article-title: Package ‘Prospectr’. R Package Version 2020
– start-page: 383
  year: 1986
  end-page: 411
  ident: bb0155
  article-title: Particle-size analysis
  publication-title: Methods of Soil Analysis Part 1. Soil Science Society of America Book Series 5, Madison, Wisconsin
– start-page: 207
  year: 2008
  end-page: 229
  ident: bb0050
  article-title: Aspects of multivariate calibration applied to near-infrared spectroscopy
  publication-title: Handbook of Near-Infrared Analysis
– volume: 532
  start-page: 49
  year: 2016
  end-page: 57
  ident: bb0275
  article-title: Climate-smart soils
  publication-title: Nature
– volume: 112
  start-page: 81
  year: 2013
  end-page: 93
  ident: bb0130
  article-title: Improving estimates of maximal organic carbon stabilization by fine soil particles
  publication-title: Biogeochemistry
– volume: 136
  start-page: 245
  year: 2006
  end-page: 259
  ident: bb0235
  article-title: Mid- and near-infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols
  publication-title: Geoderma
– volume: 158
  start-page: 3
  year: 2010
  end-page: 14
  ident: bb0320
  article-title: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done?
  publication-title: Geoderma
– volume: 26
  start-page: 2072
  year: 2016
  end-page: 2085
  ident: bb0395
  article-title: Opposing effects of different soil organic matter fractions on crop yields
  publication-title: Ecol. Appl.
– volume: 11
  start-page: 5427
  year: 2020
  ident: bb0005
  article-title: Towards a global-scale soil climate mitigation strategy
  publication-title: Nat. Commun.
– volume: 73
  year: 2021
  ident: bb0170
  article-title: Performance of field-scale lab vs in situ visible/near- and mid-infrared spectroscopy for estimation of soil properties
  publication-title: Eur. J. Soil Sci.
– volume: 233
  start-page: 1
  year: 2016
  end-page: 15
  ident: bb0010
  article-title: Land cover impacts on aboveground and soil carbon stocks in Malagasy rainforest
  publication-title: Agric. Ecosyst. Environ.
– volume: 40
  start-page: 1533
  year: 2008
  end-page: 1537
  ident: bb0025
  article-title: Determining the distributions of soil carbon and nitrogen in particle size fractions using near-infrared reflectance spectrum of bulk soil samples
  publication-title: Soil Biol. Biochem.
– start-page: 383
  year: 2015
  end-page: 419
  ident: bb0085
  article-title: Methods for studying soil organic matter: Nature, dynamics, spatial accessibility, and interactions with minerals
  publication-title: Soil Microbiology, Ecology and Biochemistry
– volume: 179
  start-page: 325
  year: 2014
  end-page: 332
  ident: bb0280
  article-title: Quantification of SOC and clay content using visible near-infrared reflectance–mid-infrared reflectance spectroscopy with jack-knifing partial least squares regression
  publication-title: Soil Sci.
– volume: 1
  start-page: 45
  year: 2009
  end-page: 57
  ident: bb0210
  article-title: Soil degradation as a reason for inadequate human nutrition
  publication-title: Food Secur.
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: bb0335
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
– volume: 201
  year: 2021
  ident: bb0290
  article-title: Global changes in soil organic carbon and implications for land degradation neutrality and climate stability
  publication-title: Environ. Res.
– volume: 64
  start-page: 245
  year: 2007
  end-page: 252
  ident: bb0360
  article-title: Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits
  publication-title: Ecol. Econ.
– volume: 139
  start-page: 106
  year: 2007
  end-page: 117
  ident: bb0060
  article-title: Determination of carbon and nitrogen contents in Alfisols, Oxisols and Ultisols from Africa and Brazil using NIRS analysis: effects of sample grinding and set heterogeneity
  publication-title: Geoderma
– volume: 73
  start-page: 1896
  year: 2009
  end-page: 1903
  ident: bb0260
  article-title: Near-infrared reflectance spectroscopy prediction of soil properties: effects of sample cups and preparation
  publication-title: Soil Sci. Soc. Am. J.
– volume: 213
  start-page: 57
  year: 2014
  end-page: 63
  ident: bb0150
  article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination
  publication-title: Geoderma
– volume: 417
  year: 2022
  ident: bb0370
  article-title: Assessment of soil properties using spectral signatures of bulk soils and their aggregate size fractions
  publication-title: Geoderma
– volume: 62
  start-page: 405
  year: 1987
  end-page: 408
  ident: bb0020
  article-title: The turnover of soil organic fractions estimated by radiocarbon dating
  publication-title: Sci. Total Environ.
– volume: 24
  start-page: 5361
  year: 2018
  end-page: 5379
  ident: bb0265
  article-title: Climate and plant controls on soil organic matter in coastal wetlands
  publication-title: Glob. Chang. Biol.
– start-page: 61
  year: 2016
  end-page: 95
  ident: bb0160
  article-title: Land degradation neutrality: will Africa achieve it? Institutional solutions to land degradation and restoration in Africa
  publication-title: Climate Change and Multi-Dimensional Sustainability in African Agriculture: Climate Change and Sustainability in Agriculture
– volume: 91
  start-page: 94
  year: 2008
  end-page: 98
  ident: bb0135
  article-title: Soil parameter quantification by NIRS as a Chemometric challenge at ‘
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 1–3
  start-page: 189
  year: 1997
  end-page: 199
  ident: bb0180
  article-title: Size and density fractionation of soil organic matter and the physical capacity of soils to protect organic matter
  publication-title: Eur. J. Agron.
– volume: 51
  start-page: 595
  year: 2000
  end-page: 605
  ident: bb0295
  article-title: Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates
  publication-title: Eur. J. Soil Sci.
– volume: 8
  year: 2013
  ident: bb0355
  article-title: Prediction of soil organic carbon at the european scale by visible and near infrared reflectance spectroscopy
  publication-title: PLoS One
– volume: 24
  start-page: 199
  year: 2016
  end-page: 214
  ident: bb0035
  article-title: Studying the physical protection of soil carbon with quantitative infrared spectroscopy
  publication-title: J. Near Infrared Spectrosc.
– volume: 373
  year: 2020
  ident: bb0055
  article-title: Strategies to improve the prediction of bulk soil and fraction organic carbon in Brazilian samples by using an Australian national mid-infrared spectral library
  publication-title: Geoderma
– volume: 49
  start-page: 139
  year: 2014
  end-page: 186
  ident: bb0340
  article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties
  publication-title: Appl. Spectrosc. Rev.
– volume: 9
  start-page: 1081
  year: 2017
  ident: bb0195
  article-title: Vis-NIR Spectroscopy and PLS regression with waveband selection for estimating the total C and N of paddy soils in Madagascar
  publication-title: Remote Sens.
– volume: 14
  start-page: 117
  year: 2007
  end-page: 133
  ident: bb0165
  article-title: Distribution granulo-densimétrique de la matière organique dans un sol argileux sous semis direct avec couverture végétale des Hautes Terres malgaches
  publication-title: Etude et Gestion Des Sols
– volume: 212
  year: 2022
  ident: bb0075
  article-title: Prediction of soil carbon and nitrogen contents using visible and near infrared diffuse reflectance spectroscopy in varying salt-affected soils in sine Saloum (Senegal)
  publication-title: Catena
– volume: 37
  start-page: 2307
  year: 2006
  end-page: 2325
  ident: bb0325
  article-title: Can near or mid-infrared diffuse reflectance spectroscopy be used to determine soil carbon pools?
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 70
  start-page: 204
  year: 2013
  end-page: 208
  ident: bb0315
  article-title: Texture and organic carbon contents do not impact amount of carbon protected in Malagasy soils
  publication-title: Sci. Agric.
– volume: 255
  start-page: 1050
  year: 2008
  end-page: 1056
  ident: bb0105
  article-title: Pairwise comparison of soil organic particle-size distributions in native savannas and Eucalyptus plantations in Congo
  publication-title: For. Ecol. Manag.
– volume: 75
  start-page: 568
  year: 2011
  end-page: 579
  ident: bb0070
  article-title: Chemical differences in soil organic matter fractions determined by diffuse-reflectance mid-infrared spectroscopy
  publication-title: Soil Sci. Soc. Am. J.
– volume: 43
  start-page: 1398
  year: 2011
  end-page: 1410
  ident: bb0040
  article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – critical review and research perspectives
  publication-title: Soil Biol. Biochem.
– volume: 3
  start-page: 11
  year: 2019
  ident: bb0100
  article-title: Accurate and precise prediction of soil properties from a large mid-infrared spectral library
  publication-title: Soil Syst
– volume: 73
  year: 2021
  ident: 10.1016/j.geodrs.2023.e00638_bb0170
  article-title: Performance of field-scale lab vs in situ visible/near- and mid-infrared spectroscopy for estimation of soil properties
  publication-title: Eur. J. Soil Sci.
– volume: 9
  start-page: 1081
  year: 2017
  ident: 10.1016/j.geodrs.2023.e00638_bb0195
  article-title: Vis-NIR Spectroscopy and PLS regression with waveband selection for estimating the total C and N of paddy soils in Madagascar
  publication-title: Remote Sens.
  doi: 10.3390/rs9101081
– volume: 36
  start-page: 1627
  year: 1964
  ident: 10.1016/j.geodrs.2023.e00638_bb0335
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– ident: 10.1016/j.geodrs.2023.e00638_bb0350
– volume: 73
  start-page: 1896
  year: 2009
  ident: 10.1016/j.geodrs.2023.e00638_bb0260
  article-title: Near-infrared reflectance spectroscopy prediction of soil properties: effects of sample cups and preparation
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2008.0213
– volume: 85
  start-page: 78
  year: 2006
  ident: 10.1016/j.geodrs.2023.e00638_bb0095
  article-title: Potential of near-infrared reflectance spectroscopy and chemometrics to predict soil organic carbon fractions
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2004.12.006
– volume: 65
  start-page: 480
  year: 2001
  ident: 10.1016/j.geodrs.2023.e00638_bb0080
  article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.652480x
– volume: 1
  start-page: 45
  year: 2009
  ident: 10.1016/j.geodrs.2023.e00638_bb0210
  article-title: Soil degradation as a reason for inadequate human nutrition
  publication-title: Food Secur.
  doi: 10.1007/s12571-009-0009-z
– volume: 139
  start-page: 106
  year: 2007
  ident: 10.1016/j.geodrs.2023.e00638_bb0060
  article-title: Determination of carbon and nitrogen contents in Alfisols, Oxisols and Ultisols from Africa and Brazil using NIRS analysis: effects of sample grinding and set heterogeneity
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.01.007
– volume: 13
  start-page: 529
  year: 2020
  ident: 10.1016/j.geodrs.2023.e00638_bb0225
  article-title: Persistence of soil organic carbon caused by functional complexity
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-020-0612-3
– volume: 49
  start-page: 139
  year: 2014
  ident: 10.1016/j.geodrs.2023.e00638_bb0340
  article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2013.811081
– volume: 24
  start-page: 199
  year: 2016
  ident: 10.1016/j.geodrs.2023.e00638_bb0035
  article-title: Studying the physical protection of soil carbon with quantitative infrared spectroscopy
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.1232
– start-page: 383
  year: 2015
  ident: 10.1016/j.geodrs.2023.e00638_bb0085
  article-title: Methods for studying soil organic matter: Nature, dynamics, spatial accessibility, and interactions with minerals
– volume: 239–240
  start-page: 229
  year: 2015
  ident: 10.1016/j.geodrs.2023.e00638_bb0205
  article-title: Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.10.019
– volume: 98
  start-page: 140
  year: 2008
  ident: 10.1016/j.geodrs.2023.e00638_bb0310
  article-title: Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2007.10.012
– volume: 64
  start-page: 245
  year: 2007
  ident: 10.1016/j.geodrs.2023.e00638_bb0360
  article-title: Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2007.09.020
– volume: 156
  start-page: 97
  year: 2021
  ident: 10.1016/j.geodrs.2023.e00638_bb0330
  article-title: Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-021-00755-1
– volume: 212
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00638_bb0075
  article-title: Prediction of soil carbon and nitrogen contents using visible and near infrared diffuse reflectance spectroscopy in varying salt-affected soils in sine Saloum (Senegal)
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106075
– volume: 301
  year: 2020
  ident: 10.1016/j.geodrs.2023.e00638_bb0245
  article-title: The Rock-Eval® signature of soil organic carbon in arenosols of the Senegalese groundnut basin. How do agricultural practices matter?
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2020.107030
– volume: 261
  start-page: 36
  year: 2016
  ident: 10.1016/j.geodrs.2023.e00638_bb0390
  article-title: Organic substrate, clay type, texture, and water influence on NIR carbon measurements
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.06.021
– volume: 91
  start-page: 94
  year: 2008
  ident: 10.1016/j.geodrs.2023.e00638_bb0135
  article-title: Soil parameter quantification by NIRS as a Chemometric challenge at ‘Chimiométrie 2006’
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2007.06.007
– volume: 53
  start-page: 913
  year: 2015
  ident: 10.1016/j.geodrs.2023.e00638_bb0220
  article-title: How does grinding affect the mid-infrared spectra of soil and their multivariate calibrations to texture and organic carbon?
  publication-title: Soil Res.
  doi: 10.1071/SR15019
– volume: 233
  start-page: 1
  year: 2016
  ident: 10.1016/j.geodrs.2023.e00638_bb0010
  article-title: Land cover impacts on aboveground and soil carbon stocks in Malagasy rainforest
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.08.030
– volume: 39
  start-page: 2183
  year: 2007
  ident: 10.1016/j.geodrs.2023.e00638_bb0380
  article-title: SOM fractionation methods: relevance to functional pools and to stabilization mechanisms
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.03.007
– volume: 373
  year: 2020
  ident: 10.1016/j.geodrs.2023.e00638_bb0055
  article-title: Strategies to improve the prediction of bulk soil and fraction organic carbon in Brazilian samples by using an Australian national mid-infrared spectral library
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114401
– volume: 255
  start-page: 1050
  year: 2008
  ident: 10.1016/j.geodrs.2023.e00638_bb0105
  article-title: Pairwise comparison of soil organic particle-size distributions in native savannas and Eucalyptus plantations in Congo
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2007.10.027
– volume: 8
  year: 2020
  ident: 10.1016/j.geodrs.2023.e00638_bb0115
  article-title: Dynamic stability of soil carbon: reassessing the “permanence” of soil carbon sequestration
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2020.514701
– volume: 17
  start-page: 5025
  year: 2020
  ident: 10.1016/j.geodrs.2023.e00638_bb0250
  article-title: Modelling dynamic interactions between soil structure and the storage and turnover of soil organic matter
  publication-title: Biogeosciences
  doi: 10.5194/bg-17-5025-2020
– volume: 11
  start-page: 137
  year: 1969
  ident: 10.1016/j.geodrs.2023.e00638_bb0200
  article-title: Computer aided design of experiments
  publication-title: Technometrics
  doi: 10.1080/00401706.1969.10490666
– volume: 325
  start-page: 59
  year: 2018
  ident: 10.1016/j.geodrs.2023.e00638_bb0175
  article-title: Local modeling approaches for estimating soil properties in selected Indian soils using diffuse reflectance data over visible to near-infrared region
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.03.025
– volume: 26
  start-page: 2072
  year: 2016
  ident: 10.1016/j.geodrs.2023.e00638_bb0395
  article-title: Opposing effects of different soil organic matter fractions on crop yields
  publication-title: Ecol. Appl.
  doi: 10.1890/16-0024.1
– volume: 75
  start-page: 568
  year: 2011
  ident: 10.1016/j.geodrs.2023.e00638_bb0070
  article-title: Chemical differences in soil organic matter fractions determined by diffuse-reflectance mid-infrared spectroscopy
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2009.0375
– volume: 213
  start-page: 57
  year: 2014
  ident: 10.1016/j.geodrs.2023.e00638_bb0150
  article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.017
– volume: 40
  start-page: 1533
  year: 2008
  ident: 10.1016/j.geodrs.2023.e00638_bb0025
  article-title: Determining the distributions of soil carbon and nitrogen in particle size fractions using near-infrared reflectance spectrum of bulk soil samples
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.12.023
– year: 2015
  ident: 10.1016/j.geodrs.2023.e00638_bb0185
– volume: 122
  start-page: 19
  year: 2018
  ident: 10.1016/j.geodrs.2023.e00638_bb0015
  article-title: Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.03.026
– volume: vol. 20
  start-page: 1
  year: 1992
  ident: 10.1016/j.geodrs.2023.e00638_bb0090
  article-title: Physical fractionation of soil and organic matter in primary particle size and density separates, Stewart
  doi: 10.1007/978-1-4612-2930-8_1
– volume: 17
  start-page: 339
  year: 1979
  ident: 10.1016/j.geodrs.2023.e00638_bb0120
  article-title: Une méthode de fractionnement granulométrique de la matière organique des sols. Application aux sols tropicaux, à textures grossières, très pauvres en humus
  publication-title: Cahiers ORSTOM série Pédologie
– volume: 112
  start-page: 81
  year: 2013
  ident: 10.1016/j.geodrs.2023.e00638_bb0130
  article-title: Improving estimates of maximal organic carbon stabilization by fine soil particles
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-011-9679-7
– volume: 39
  start-page: 224
  year: 2007
  ident: 10.1016/j.geodrs.2023.e00638_bb0400
  article-title: Quantifying soil organic carbon fractions by infrared-spectroscopy
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2006.07.010
– volume: 51
  start-page: 595
  year: 2000
  ident: 10.1016/j.geodrs.2023.e00638_bb0295
  article-title: Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2000.00353.x
– volume: 79
  start-page: 69
  year: 1997
  ident: 10.1016/j.geodrs.2023.e00638_bb0125
  article-title: Physical control of soil organic matter dynamics in the tropics
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(97)00039-6
– volume: 3
  start-page: 11
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00638_bb0100
  article-title: Accurate and precise prediction of soil properties from a large mid-infrared spectral library
  publication-title: Soil Syst
  doi: 10.3390/soilsystems3010011
– volume: 8
  year: 2013
  ident: 10.1016/j.geodrs.2023.e00638_bb0355
  article-title: Prediction of soil organic carbon at the european scale by visible and near infrared reflectance spectroscopy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0066409
– volume: 9
  year: 2014
  ident: 10.1016/j.geodrs.2023.e00638_bb0110
  article-title: Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than in coarse particles: an incubation study with temperate grassland and forest soils in northern China
  publication-title: PLoS One
– start-page: 383
  year: 1986
  ident: 10.1016/j.geodrs.2023.e00638_bb0155
  article-title: Particle-size analysis
– volume: 70
  start-page: 127
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00638_bb0190
  article-title: Log-ratio transformation is the key to determining soil organic carbon fractions with near-infrared spectroscopy
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12761
– volume: 115
  start-page: 285
  year: 2006
  ident: 10.1016/j.geodrs.2023.e00638_bb0305
  article-title: Effect of sugarcane residue management (mulching versus burning) on organic matter in a clayey Oxisol from southern Brazil
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2005.12.014
– volume: 417
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00638_bb0370
  article-title: Assessment of soil properties using spectral signatures of bulk soils and their aggregate size fractions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.115837
– volume: 14
  start-page: 117
  issue: 2
  year: 2007
  ident: 10.1016/j.geodrs.2023.e00638_bb0165
  article-title: Distribution granulo-densimétrique de la matière organique dans un sol argileux sous semis direct avec couverture végétale des Hautes Terres malgaches
  publication-title: Etude et Gestion Des Sols
– volume: 1–2
  start-page: 14
  year: 2008
  ident: 10.1016/j.geodrs.2023.e00638_bb0030
  article-title: Texture and sesquioxide effects on water-stable aggregates and organic matter in some tropical soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.10.003
– volume: 43
  start-page: 1398
  year: 2011
  ident: 10.1016/j.geodrs.2023.e00638_bb0040
  article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – critical review and research perspectives
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.02.019
– volume: 24
  start-page: 5361
  year: 2018
  ident: 10.1016/j.geodrs.2023.e00638_bb0265
  article-title: Climate and plant controls on soil organic matter in coastal wetlands
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14376
– volume: 342
  start-page: 65
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00638_bb0345
  article-title: Heterogeneity of the chemical composition and thermal stability of particulate organic matter in French forest soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.02.008
– volume: 292
  start-page: 59
  year: 2017
  ident: 10.1016/j.geodrs.2023.e00638_bb0255
  article-title: Soil carbon 4 per mille
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.01.002
– volume: 313
  start-page: 41
  year: 2018
  ident: 10.1016/j.geodrs.2023.e00638_bb0140
  article-title: Data synthesis of carbon distribution in particle size fractions of tropical soils: implications for soil carbon storage potential in croplands
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.10.010
– volume: 26
  start-page: 261
  year: 2020
  ident: 10.1016/j.geodrs.2023.e00638_bb0215
  article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14859
– volume: 66
  start-page: 438
  year: 2015
  ident: 10.1016/j.geodrs.2023.e00638_bb0375
  article-title: Soil organic carbon and its fractions estimated by visible–near infrared transfer functions
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12237
– volume: 34
  year: 2020
  ident: 10.1016/j.geodrs.2023.e00638_bb0230
  article-title: Comparison of locally weighted PLS strategies for regression and discrimination on agronomic NIR data
  publication-title: J. Chemom.
  doi: 10.1002/cem.3209
– volume: 201
  year: 2021
  ident: 10.1016/j.geodrs.2023.e00638_bb0290
  article-title: Global changes in soil organic carbon and implications for land degradation neutrality and climate stability
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.111580
– volume: 70
  start-page: 204
  year: 2013
  ident: 10.1016/j.geodrs.2023.e00638_bb0315
  article-title: Texture and organic carbon contents do not impact amount of carbon protected in Malagasy soils
  publication-title: Sci. Agric.
  doi: 10.1590/S0103-90162013000300009
– volume: 16
  year: 2021
  ident: 10.1016/j.geodrs.2023.e00638_bb0270
  article-title: Determining soil particle-size distribution from infrared spectra using machine learning predictions: methodology and modeling
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0233242
– volume: 29
  start-page: 1073
  year: 2010
  ident: 10.1016/j.geodrs.2023.e00638_bb0045
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2010.05.006
– volume: 26
  start-page: 1749
  year: 1995
  ident: 10.1016/j.geodrs.2023.e00638_bb0145
  article-title: A routine method to study soil organic matter by particle-size fractionation: examples for tropical soils
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103629509369406
– volume: 62
  start-page: 405
  year: 1987
  ident: 10.1016/j.geodrs.2023.e00638_bb0020
  article-title: The turnover of soil organic fractions estimated by radiocarbon dating
  publication-title: Sci. Total Environ.
  doi: 10.1016/0048-9697(87)90528-6
– start-page: 207
  year: 2008
  ident: 10.1016/j.geodrs.2023.e00638_bb0050
  article-title: Aspects of multivariate calibration applied to near-infrared spectroscopy
– volume: 1–3
  start-page: 189
  year: 1997
  ident: 10.1016/j.geodrs.2023.e00638_bb0180
  article-title: Size and density fractionation of soil organic matter and the physical capacity of soils to protect organic matter
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(97)00045-2
– volume: 37
  start-page: 2307
  year: 2006
  ident: 10.1016/j.geodrs.2023.e00638_bb0325
  article-title: Can near or mid-infrared diffuse reflectance spectroscopy be used to determine soil carbon pools?
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103620600819461
– volume: 333
  start-page: 149
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00638_bb0385
  article-title: Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.07.026
– volume: 158
  start-page: 3
  year: 2010
  ident: 10.1016/j.geodrs.2023.e00638_bb0320
  article-title: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.04.005
– volume: 125
  start-page: 10
  year: 2018
  ident: 10.1016/j.geodrs.2023.e00638_bb0285
  article-title: Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – a comprehensive method comparison
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.06.025
– volume: 11
  start-page: 5427
  year: 2020
  ident: 10.1016/j.geodrs.2023.e00638_bb0005
  article-title: Towards a global-scale soil climate mitigation strategy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18887-7
– volume: 193
  start-page: 290
  year: 2017
  ident: 10.1016/j.geodrs.2023.e00638_bb0240
  article-title: Rapid prediction of particulate, humus and resistant fractions of soil organic carbon in reforested lands using infrared spectroscopy
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.02.013
– volume: 136
  start-page: 245
  year: 2006
  ident: 10.1016/j.geodrs.2023.e00638_bb0235
  article-title: Mid- and near-infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2006.03.026
– volume: 21
  start-page: 495
  year: 2013
  ident: 10.1016/j.geodrs.2023.e00638_bb0300
  article-title: Comparing near and mid-infrared reflectance spectroscopy for determining properties of Malagasy soils, using global or local calibration
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.1080
– volume: 179
  start-page: 325
  year: 2014
  ident: 10.1016/j.geodrs.2023.e00638_bb0280
  article-title: Quantification of SOC and clay content using visible near-infrared reflectance–mid-infrared reflectance spectroscopy with jack-knifing partial least squares regression
  publication-title: Soil Sci.
  doi: 10.1097/SS.0000000000000074
– start-page: 61
  year: 2016
  ident: 10.1016/j.geodrs.2023.e00638_bb0160
  article-title: Land degradation neutrality: will Africa achieve it? Institutional solutions to land degradation and restoration in Africa
– volume: 4
  start-page: 579
  year: 2013
  ident: 10.1016/j.geodrs.2023.e00638_bb0365
  article-title: Quantification of forest degradation and belowground carbon dynamics: ongoing challenges for monitoring, reporting and verification activities for REDD+
  publication-title: Carbon Manag.
  doi: 10.4155/cmt.13.63
– volume: 532
  start-page: 49
  year: 2016
  ident: 10.1016/j.geodrs.2023.e00638_bb0275
  article-title: Climate-smart soils
  publication-title: Nature
  doi: 10.1038/nature17174
SSID ssj0002953762
Score 2.2873194
Snippet Assessing the different pools of soil organic carbon (SOC) improves our understanding of how and at what rate the different forms of carbon (C) are being...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00638
SubjectTerms Agricultural sciences
Arenosols
cost effectiveness
Ferralsols
Fluvisols
fractionation
Infrared reflectance spectroscopy
infrared spectroscopy
Life Sciences
Locally weighted PLSR
Madagascar
particle size
particulate organic matter
prediction
reflectance spectroscopy
soil
Soil fractionation
soil organic carbon
Soil organic matter
Soil study
Tropical soils
Title Comparison of near and mid-infrared reflectance spectroscopy for the estimation of soil organic carbon fractions in Madagascar agricultural soils
URI https://dx.doi.org/10.1016/j.geodrs.2023.e00638
https://www.proquest.com/docview/2849887108
https://hal.inrae.fr/hal-04117582
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe-GCQIBYXjJVr2Y3tlM7x9WKatulPQAVvUV-LqlKsspuK_Vn8I-ZiZNIIKFKnKJYGdvyTGbG9sw3hBxlKnATLfzfueNMFjowE_PIggJ7JbXLMoX5zucXx8tLeXaVX-2RxZALg2GVve5POr3T1n3LtF_N6aaqpl-56CCDwB_oUFZADx9wURzDDuxgfrpaXoxHLbxAzBLelZnLOUOaIYmui_Rah8a3CN3NxcfQ2fB_GalHPzBa8i-l3Vmik6fkSe9C0nma5TOyF-rn5NdiLChIm0hrEGBqak9_Vp6BELUYZ05hIDylR0bTLsUSoSybzT0Fz5WCJ0gRciPlMmIn26a6oansk6POtBaaY5syIba0qum58WZttg7HWrcjikdHuH1BLk8-fVssWV9ugTmZFTtWBG9z5cGD1N6FmbWWe4nwds5KcDKKXJkolDZZtK4QBi84dRDKOyGCNVqIl2S_burwitDc-yhlUEF5KY132mroU4GvlsWQBzUhYljf0vVY5FgS46Ycgs6uy8SVErlSJq5MCBupNgmL44Hv1cC68g-ZKsFcPEB5CJweB0EI7uX8c4ltM4ngpprfZRPyYRCEEv5JvGgxdWhuoScNQg870Zl-_d9TeEMe41uKSntL9nftbXgH_s_Ovu_lG5-rL99XvwGJXQlL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4ALAgFieRSDuIbdxA52jqtVq5Tu7oVW6s3yK0uqkqyyWyR-Rv9xZ-wkEkioElcntiPPeOaLPfMNIZ9T4TNdGdjfuc0SXkif6CqvEi_AX3Fp01RgvvNq_bW85N-u8qsDshhyYTCssrf90aYHa923TPvVnG7revo9Y4EyCPBAYFkBO3yE7FSg7Efzs_NyPR61ZAVylmShzFyeJdhnSKILkV4b37oOqbsz9sUHH_4vJ_XoB0ZL_mW0gyc6fUae9hCSzuNXPicHvnlB7hZjQUHaVrQBBaa6cfRn7RJQog7jzClMhKf0KGgaUiyRyrLd_qaAXCkgQYqUGzGXEQfZtfUNjWWfLLW6M9BcdTETYkfrhq600xu9szjXphtZPELH3UtyeXpysSiTvtxCYnla7JPCO5MLBwhSOutnxpjMcaS3s4YDyChyoSsmpE4rYwum8YJTeiacZcwbLRl7RQ6btvGvCc2dqzj3wgvHuXZWGgljCsBqaeVzLyaEDeurbM9FjiUxbtQQdHatolQUSkVFqUxIMvbaRi6OB94Xg-jUHzqlwF080PMTSHqcBCm4y_lSYduMI7mpzH6lE_JxUAQFexIvWnTj21sYSYLSw5_oTL7570_4QB6XF6ulWp6tz9-SJ_gkRqi9I4f77ta_Byy0N8e9rt8DtrIKjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+near+and+mid-infrared+reflectance+spectroscopy+for+the+estimation+of+soil+organic+carbon+fractions+in+Madagascar+agricultural+soils&rft.jtitle=Geoderma+Regional&rft.au=Ramifehiarivo%2C+Nandrianina&rft.au=Barth%C3%A8s%2C+Bernard+G&rft.au=Cambou%2C+Aur%C3%A9lie&rft.au=Chapuis-Lardy%2C+Lydie&rft.date=2023-06-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft_id=info:doi/10.1016%2Fj.geodrs.2023.e00638&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon