Exploring the effect of intracellular loop 1 genetic variants in human ABCG2 on transport activity and protein abundance
ABCG2 (breast cancer resistance protein, BCRP), can affect drug disposition, and thus, variation in the ABCG2 gene may alter drug exposure. We studied non-synonymous naturally occurring single-nucleotide variants (SNVs) in intracellular loop 1 (ICL1), which contains a coupling helix that transmits c...
Saved in:
Published in | Drug metabolism and pharmacokinetics Vol. 62; p. 101482 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1347-4367 1880-0920 1880-0920 |
DOI | 10.1016/j.dmpk.2025.101482 |
Cover
Loading…
Abstract | ABCG2 (breast cancer resistance protein, BCRP), can affect drug disposition, and thus, variation in the ABCG2 gene may alter drug exposure. We studied non-synonymous naturally occurring single-nucleotide variants (SNVs) in intracellular loop 1 (ICL1), which contains a coupling helix that transmits conformational changes in the protein. Reference ABCG2, the common SNVs V12M and Q141K, and five SNVs (K453R, I456V, H457R, G462R and G462V) in ICL1 were expressed in HEK293 cells. Additionally, combinations of selected SNVs were expressed to determine if an activating substitution in ICL1 could compensate for an inactivating substitution elsewhere. Transport of Lucifer yellow, estrone sulfate and rosuvastatin was studied using membrane vesicles and the ABCG2 abundance was quantified. While K453R and I456V abundance was similar to the reference ABCG2, abundance was lower for H457R and G462R/V. Apparent transport activities were partially substrate dependent, but excluding G462R/V, the ICL variants transported at least one of the substrates similarly to the reference ABCG2. In double substitutions, I456V had a more consistent effect than H457R on both transport activity and protein abundance. Altogether, SNVs in ICL1 can have both detrimental and beneficial effects on ABCG2 activity. Effects may be hard to predict, especially if more than one SNV is present.
[Display omitted] |
---|---|
AbstractList | ABCG2 (breast cancer resistance protein, BCRP), can affect drug disposition, and thus, variation in the ABCG2 gene may alter drug exposure. We studied non-synonymous naturally occurring single-nucleotide variants (SNVs) in intracellular loop 1 (ICL1), which contains a coupling helix that transmits conformational changes in the protein. Reference ABCG2, the common SNVs V12M and Q141K, and five SNVs (K453R, I456V, H457R, G462R and G462V) in ICL1 were expressed in HEK293 cells. Additionally, combinations of selected SNVs were expressed to determine if an activating substitution in ICL1 could compensate for an inactivating substitution elsewhere. Transport of Lucifer yellow, estrone sulfate and rosuvastatin was studied using membrane vesicles and the ABCG2 abundance was quantified. While K453R and I456V abundance was similar to the reference ABCG2, abundance was lower for H457R and G462R/V. Apparent transport activities were partially substrate dependent, but excluding G462R/V, the ICL variants transported at least one of the substrates similarly to the reference ABCG2. In double substitutions, I456V had a more consistent effect than H457R on both transport activity and protein abundance. Altogether, SNVs in ICL1 can have both detrimental and beneficial effects on ABCG2 activity. Effects may be hard to predict, especially if more than one SNV is present.
[Display omitted] ABCG2 (breast cancer resistance protein, BCRP), can affect drug disposition, and thus, variation in the ABCG2 gene may alter drug exposure. We studied non-synonymous naturally occurring single-nucleotide variants (SNVs) in intracellular loop 1 (ICL1), which contains a coupling helix that transmits conformational changes in the protein. Reference ABCG2, the common SNVs V12M and Q141K, and five SNVs (K453R, I456V, H457R, G462R and G462V) in ICL1 were expressed in HEK293 cells. Additionally, combinations of selected SNVs were expressed to determine if an activating substitution in ICL1 could compensate for an inactivating substitution elsewhere. Transport of Lucifer yellow, estrone sulfate and rosuvastatin was studied using membrane vesicles and the ABCG2 abundance was quantified. While K453R and I456V abundance was similar to the reference ABCG2, abundance was lower for H457R and G462R/V. Apparent transport activities were partially substrate dependent, but excluding G462R/V, the ICL variants transported at least one of the substrates similarly to the reference ABCG2. In double substitutions, I456V had a more consistent effect than H457R on both transport activity and protein abundance. Altogether, SNVs in ICL1 can have both detrimental and beneficial effects on ABCG2 activity. Effects may be hard to predict, especially if more than one SNV is present. ABCG2 (breast cancer resistance protein, BCRP), can affect drug disposition, and thus, variation in the ABCG2 gene may alter drug exposure. We studied non-synonymous naturally occurring single-nucleotide variants (SNVs) in intracellular loop 1 (ICL1), which contains a coupling helix that transmits conformational changes in the protein. Reference ABCG2, the common SNVs V12M and Q141K, and five SNVs (K453R, I456V, H457R, G462R and G462V) in ICL1 were expressed in HEK293 cells. Additionally, combinations of selected SNVs were expressed to determine if an activating substitution in ICL1 could compensate for an inactivating substitution elsewhere. Transport of Lucifer yellow, estrone sulfate and rosuvastatin was studied using membrane vesicles and the ABCG2 abundance was quantified. While K453R and I456V abundance was similar to the reference ABCG2, abundance was lower for H457R and G462R/V. Apparent transport activities were partially substrate dependent, but excluding G462R/V, the ICL variants transported at least one of the substrates similarly to the reference ABCG2. In double substitutions, I456V had a more consistent effect than H457R on both transport activity and protein abundance. Altogether, SNVs in ICL1 can have both detrimental and beneficial effects on ABCG2 activity. Effects may be hard to predict, especially if more than one SNV is present.ABCG2 (breast cancer resistance protein, BCRP), can affect drug disposition, and thus, variation in the ABCG2 gene may alter drug exposure. We studied non-synonymous naturally occurring single-nucleotide variants (SNVs) in intracellular loop 1 (ICL1), which contains a coupling helix that transmits conformational changes in the protein. Reference ABCG2, the common SNVs V12M and Q141K, and five SNVs (K453R, I456V, H457R, G462R and G462V) in ICL1 were expressed in HEK293 cells. Additionally, combinations of selected SNVs were expressed to determine if an activating substitution in ICL1 could compensate for an inactivating substitution elsewhere. Transport of Lucifer yellow, estrone sulfate and rosuvastatin was studied using membrane vesicles and the ABCG2 abundance was quantified. While K453R and I456V abundance was similar to the reference ABCG2, abundance was lower for H457R and G462R/V. Apparent transport activities were partially substrate dependent, but excluding G462R/V, the ICL variants transported at least one of the substrates similarly to the reference ABCG2. In double substitutions, I456V had a more consistent effect than H457R on both transport activity and protein abundance. Altogether, SNVs in ICL1 can have both detrimental and beneficial effects on ABCG2 activity. Effects may be hard to predict, especially if more than one SNV is present. |
ArticleNumber | 101482 |
Author | Auriola, Seppo Bhattacharya, Madhushree Suominen, Laura Kidron, Heidi Timmermans, Ritchie G.M. Sjöstedt, Noora Vellonen, Kati-Sisko Vieraankivi, Marika |
Author_xml | – sequence: 1 givenname: Noora orcidid: 0000-0001-6960-7757 surname: Sjöstedt fullname: Sjöstedt, Noora organization: Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland – sequence: 2 givenname: Ritchie G.M. surname: Timmermans fullname: Timmermans, Ritchie G.M. organization: Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland – sequence: 3 givenname: Marika surname: Vieraankivi fullname: Vieraankivi, Marika organization: Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland – sequence: 4 givenname: Laura orcidid: 0000-0003-1163-0182 surname: Suominen fullname: Suominen, Laura organization: Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland – sequence: 5 givenname: Kati-Sisko orcidid: 0000-0002-3225-9186 surname: Vellonen fullname: Vellonen, Kati-Sisko organization: School of Pharmacy, University of Eastern Finland, Kuopio, Finland – sequence: 6 givenname: Madhushree surname: Bhattacharya fullname: Bhattacharya, Madhushree organization: Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland – sequence: 7 givenname: Seppo surname: Auriola fullname: Auriola, Seppo organization: School of Pharmacy, University of Eastern Finland, Kuopio, Finland – sequence: 8 givenname: Heidi surname: Kidron fullname: Kidron, Heidi email: heidi.kidron@helsinki.fi organization: Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40203631$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vFSEYhYmpsR_6B1wYlm7mytd8kLipN7WaNHGja8LAS8t1BkZgbtp_Xya3unTDS8hz3nDOuURnIQZA6D0lO0po9-mws_Pye8cIa7cHMbBX6IIOA2mIZOSs3rnoG8G7_hxd5nwghPNWsDfoXBBGeMfpBXq8eVymmHy4x-UBMDgHpuDosA8laQPTtE464SnGBVN8DwGKN_iok9eh5Erhh3XWAV9_2d8yHAOuqpCXmArWpvijL09YB4uXFAtUWo9rsDoYeIteOz1lePcyr9Cvrzc_99-aux-33_fXd40RVJZGAgfZmraaEwy46clIpeisAWetI72zdOhHA9TZjnE29nyQA6ln2_aStsCv0MfT3vqDPyvkomafN186QFyz4jUwwXopZUU_vKDrOINVS_KzTk_qb1oVYCfApJhzAvcPoURtlaiD2ipRWyXqVEkVfT6JoLo8ekgqGw81AetTzVrZ6P8nfwZX75RE |
Cites_doi | 10.1007/s00441-012-1417-5 10.1042/BCJ20170923 10.1007/s11095-017-2127-1 10.1007/s11095-021-03107-8 10.1016/j.xphs.2021.08.013 10.1002/jps.24366 10.1093/nar/gkz836 10.1038/s41586-018-0680-3 10.1111/j.1464-410X.2008.07913.x 10.1038/clpt.2013.12 10.1007/s00280-004-0931-x 10.2133/dmpk.22.428 10.1186/2045-8118-10-21 10.1093/nar/gks539 10.1002/jps.23436 10.1136/rmdopen-2017-000464 10.1002/ijc.11669 10.1023/B:PHAM.0000045245.21637.d4 10.1002/cpt.362 10.1124/jpet.109.163493 10.1124/dmd.118.083030 10.1073/pnas.1214530110 10.1186/s40246-018-0157-3 10.1038/clpt.2009.197 10.1038/s41598-017-11794-w 10.1124/dmd.114.062174 10.1208/s12248-014-9668-6 10.1038/sj.bjp.0706904 10.1124/jpet.115.225045 10.1038/nmeth0410-248 10.1124/dmd.117.079228 10.1007/s11095-008-9752-7 10.1038/nature22345 |
ContentType | Journal Article |
Copyright | 2025 The Japanese Society for the Study of Xenobiotics Copyright © 2025 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2025 The Japanese Society for the Study of Xenobiotics – notice: Copyright © 2025 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.dmpk.2025.101482 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1880-0920 |
ExternalDocumentID | 40203631 10_1016_j_dmpk_2025_101482 S134743672500432X |
Genre | Journal Article |
GroupedDBID | --- --M 0R~ 29G 2WC 4.4 457 53G 5GY 6I. 7-5 8P~ AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGUBO AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BAWUL BKOJK BKOMP BLXMC CS3 DIK DU5 E3Z EBS EFJIC EFKBS EJD F5P FDB FEDTE FIRID FYGXN GBLVA GX1 HH5 HVGLF HZ~ JMI JSF JSH KOM KQ8 M41 MOJWN O9- OAUVE OVT RJT RNS ROL RZJ SPCBC SSP SSZ T5K TKC TR2 ~G- AAYXX AGRNS BNPGV CITATION CGR CUY CVF ECM EIF NPM SSH 7X8 |
ID | FETCH-LOGICAL-c419t-9e3e95c548242e3c70b1946dcefddf07fd187bce1fd6232b738980738557915e3 |
IEDL.DBID | AIKHN |
ISSN | 1347-4367 1880-0920 |
IngestDate | Wed Jul 02 05:03:32 EDT 2025 Mon Jul 21 05:56:52 EDT 2025 Thu Jul 31 00:01:55 EDT 2025 Sat Aug 30 17:17:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Breast cancer resistance protein (BCRP) Mutation Coupling helix Polymorphism |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-9e3e95c548242e3c70b1946dcefddf07fd187bce1fd6232b738980738557915e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6960-7757 0000-0003-1163-0182 0000-0002-3225-9186 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S134743672500432X |
PMID | 40203631 |
PQID | 3188427999 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3188427999 pubmed_primary_40203631 crossref_primary_10_1016_j_dmpk_2025_101482 elsevier_sciencedirect_doi_10_1016_j_dmpk_2025_101482 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Drug metabolism and pharmacokinetics |
PublicationTitleAlternate | Drug Metab Pharmacokinet |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Manolaridis, Jackson, Taylor, Kowal, Stahlberg, Locher (bib11) 2018; 563 Lee, O'Connor, Ritchie, Galetin, Cook, Ragueneau-Majlessi (bib2) 2015; 43 Furukawa, Wakabayashi, Tamura, Nakagawa, Morishima, Osawa (bib9) 2009; 26 Taylor, Manolaridis, Jackson, Kowal, Stahlberg, Locher (bib6) 2017; 546 Tanaka, Kitamura, Maeda, Sugiyama (bib29) 2015; 104 Bauer, Römermann, Karch, Wulkersdorfer, Stanek, Philippe (bib3) 2016; 100 Dankers, Sweep, Pertijs, Verweij, van den Heuvel, Koenderink (bib13) 2012; 349 Mizuarai, Aozasa, Kotani (bib24) 2004; 109 Woodward, Tukaye, Cui, Greenwell, Constantoulakis, Parker (bib10) 2013; 110 Tamura, Onishi, An, Koshiba, Wakabayashi, Hoshijima (bib23) 2007; 22 Morisaki, Robey, Özvegy-Laczka, Honjo, Polgar, Steadman (bib22) 2005; 56 Cai, Bikadi, Ni, Lee, Wang, Rosenberg (bib31) 2010; 333 Adzhubei, Schmidt, Peshkin, Ramensky, Gerasimova, Bork (bib33) 2010; 7 Mao, Unadkat (bib1) 2015; 17 Bircsak, Moscovitz, Wen, Archer, Yuen, Mohammed (bib26) 2018; 46 Prasad, Lai, Lin, Unadkat (bib27) 2013; 102 Ingelman-Sundberg, Mkrtchian, Zhou, Lauschke (bib19) 2018; 12 Clark, Kerr, Callaghan (bib7) 2006; 149 Sim, Kumar, Hu, Henikoff, Schneider, Ng (bib32) 2012; 40 Sjöstedt, van den Heuvel, Koenderink, Kidron (bib14) 2017; 34 Giacomini, Balimane, Cho, Eadon, Edeki, Hillgren (bib18) 2013; 94 Khunweeraphong, Stockner, Kuchler (bib12) 2017; 7 Wan, Wang, Li, Xu, Pei, Peng (bib25) 2015; 354 Gardner, Ahlers, Shukla, Sissung, Ockers, Price (bib28) 2008; 102 Fairley, Lowy-Gallego, Perry, Flicek (bib20) 2020; 48 Puris, Auriola, Korhonen, Loppi, Kanninen, Malm (bib17) 2021; 110 Niemi (bib5) 2010; 87 Higashino, Takada, Nakaoka, Toyoda, Stiburkova, Miyata (bib30) 2017; 3 Cox, Kapoor, Briggs, Kerr (bib8) 2018; 475 Heyes, Kapoor, Kerr (bib4) 2018; 46 Uchida, Tachikawa, Obuchi, Hoshi, Tomioka, Ohtsuki (bib16) 2013; 10 Kondo, Suzuki, Itoda, Ozawa, Sawada, Kobayashi (bib21) 2004; 21 Kiander, Vellonen, Malinen, Gynther, Hagström, Bhattacharya (bib15) 2021; 38 Wan (10.1016/j.dmpk.2025.101482_bib25) 2015; 354 Cox (10.1016/j.dmpk.2025.101482_bib8) 2018; 475 Heyes (10.1016/j.dmpk.2025.101482_bib4) 2018; 46 Clark (10.1016/j.dmpk.2025.101482_bib7) 2006; 149 Sjöstedt (10.1016/j.dmpk.2025.101482_bib14) 2017; 34 Bauer (10.1016/j.dmpk.2025.101482_bib3) 2016; 100 Manolaridis (10.1016/j.dmpk.2025.101482_bib11) 2018; 563 Ingelman-Sundberg (10.1016/j.dmpk.2025.101482_bib19) 2018; 12 Morisaki (10.1016/j.dmpk.2025.101482_bib22) 2005; 56 Mizuarai (10.1016/j.dmpk.2025.101482_bib24) 2004; 109 Higashino (10.1016/j.dmpk.2025.101482_bib30) 2017; 3 Woodward (10.1016/j.dmpk.2025.101482_bib10) 2013; 110 Fairley (10.1016/j.dmpk.2025.101482_bib20) 2020; 48 Kondo (10.1016/j.dmpk.2025.101482_bib21) 2004; 21 Furukawa (10.1016/j.dmpk.2025.101482_bib9) 2009; 26 Khunweeraphong (10.1016/j.dmpk.2025.101482_bib12) 2017; 7 Adzhubei (10.1016/j.dmpk.2025.101482_bib33) 2010; 7 Tamura (10.1016/j.dmpk.2025.101482_bib23) 2007; 22 Tanaka (10.1016/j.dmpk.2025.101482_bib29) 2015; 104 Kiander (10.1016/j.dmpk.2025.101482_bib15) 2021; 38 Mao (10.1016/j.dmpk.2025.101482_bib1) 2015; 17 Uchida (10.1016/j.dmpk.2025.101482_bib16) 2013; 10 Gardner (10.1016/j.dmpk.2025.101482_bib28) 2008; 102 Prasad (10.1016/j.dmpk.2025.101482_bib27) 2013; 102 Sim (10.1016/j.dmpk.2025.101482_bib32) 2012; 40 Taylor (10.1016/j.dmpk.2025.101482_bib6) 2017; 546 Dankers (10.1016/j.dmpk.2025.101482_bib13) 2012; 349 Bircsak (10.1016/j.dmpk.2025.101482_bib26) 2018; 46 Niemi (10.1016/j.dmpk.2025.101482_bib5) 2010; 87 Cai (10.1016/j.dmpk.2025.101482_bib31) 2010; 333 Lee (10.1016/j.dmpk.2025.101482_bib2) 2015; 43 Giacomini (10.1016/j.dmpk.2025.101482_bib18) 2013; 94 Puris (10.1016/j.dmpk.2025.101482_bib17) 2021; 110 |
References_xml | – volume: 34 start-page: 1626 year: 2017 end-page: 1636 ident: bib14 article-title: Transmembrane domain single-nucleotide polymorphisms impair expression and transport activity of ABC transporter ABCG2 publication-title: Pharm Res – volume: 3 year: 2017 ident: bib30 article-title: Multiple common and rare variants of ABCG2 cause gout publication-title: RMD Open – volume: 475 start-page: 1553 year: 2018 end-page: 1567 ident: bib8 article-title: Residues contributing to drug transport by ABCG2 are localised to multiple drug-binding pockets publication-title: Biochem J – volume: 94 start-page: 23 year: 2013 end-page: 26 ident: bib18 article-title: International transporter consortium commentary on clinically important transporter polymorphisms publication-title: Clin Pharmacol Ther – volume: 38 start-page: 1663 year: 2021 end-page: 1675 ident: bib15 article-title: The effect of single nucleotide variations in the transmembrane domain of OATP1B1 on in vitro functionality publication-title: Pharm Res – volume: 21 start-page: 1895 year: 2004 end-page: 1903 ident: bib21 article-title: Functional analysis of SNPs variants of BCRP/ABCG2 publication-title: Pharm Res – volume: 102 start-page: 1694 year: 2008 end-page: 1699 ident: bib28 article-title: Association of the ABCG2 C421A polymorphism with prostate cancer risk and survival publication-title: BJU Int – volume: 110 start-page: 3953 year: 2021 end-page: 3962 ident: bib17 article-title: Systemic inflammation induced changes in protein expression of ABC transporters and ionotropic glutamate receptor subunit 1 in the cerebral cortex of familial Alzheimer's disease mouse model publication-title: J Pharm Sci – volume: 40 start-page: W452 year: 2012 end-page: W457 ident: bib32 article-title: SIFT web server: predicting effects of amino acid substitutions on proteins publication-title: Nucleic Acids Res – volume: 46 start-page: 1886 year: 2018 end-page: 1899 ident: bib4 article-title: Polymorphisms of the multidrug pump ABCG2: a systematic review of their effect on protein expression, function, and drug pharmacokinetics publication-title: Drug Metab Dispos – volume: 349 start-page: 551 year: 2012 end-page: 563 ident: bib13 article-title: Localization of breast cancer resistance protein (Bcrp) in endocrine organs and inhibition of its transport activity by steroid hormones publication-title: Cell Tissue Res – volume: 17 start-page: 65 year: 2015 end-page: 82 ident: bib1 article-title: Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update publication-title: AAPS J – volume: 149 start-page: 506 year: 2006 end-page: 515 ident: bib7 article-title: Multiple drugbinding sites on the R482G isoform of the ABCG2 transporter publication-title: Br J Pharmacol – volume: 12 start-page: 26 year: 2018 ident: bib19 article-title: Integrating rare genetic variants into pharmacogenetic drug response predictions publication-title: Hum Genom – volume: 7 year: 2017 ident: bib12 article-title: The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion publication-title: Sci Rep – volume: 563 start-page: 426 year: 2018 end-page: 430 ident: bib11 article-title: Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states publication-title: Nature – volume: 354 start-page: 310 year: 2015 end-page: 315 ident: bib25 article-title: Marked alteration of rosuvastatin pharmacokinetics in healthy Chinese with ABCG2 34G>A and 421C>A homozygote or compound heterozygote publication-title: J Pharmacol Exp Ther – volume: 104 start-page: 3039 year: 2015 end-page: 3048 ident: bib29 article-title: Quantitative analysis of the ABCG2 c.421C>A polymorphism effect on in vivo transport activity of breast cancer resistance protein (BCRP) using an intestinal absorption model publication-title: J Pharm Sci – volume: 87 start-page: 130 year: 2010 end-page: 133 ident: bib5 article-title: Transporter pharmacogenetics and statin toxicity publication-title: Clin Pharmacol Ther – volume: 26 start-page: 469 year: 2009 end-page: 479 ident: bib9 article-title: Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations publication-title: Pharm Res – volume: 22 start-page: 428 year: 2007 end-page: 440 ident: bib23 article-title: In vitro evaluation of photosensitivity risk related to genetic polymorphisms of human ABC transporter ABCG2 and inhibition by drugs publication-title: Drug Metabol Pharmacokinet – volume: 48 start-page: D941 year: 2020 end-page: D947 ident: bib20 article-title: The International Genome Sample Resource (IGSR) collection of open human genomic variation resources publication-title: Nucleic Acids Res – volume: 333 start-page: 670 year: 2010 end-page: 681 ident: bib31 article-title: Role of basic residues within or near the predicted transmembrane helix 2 of the human breast cancer resistance protein in drug transport publication-title: J Pharmacol Exp Ther – volume: 102 start-page: 787 year: 2013 end-page: 793 ident: bib27 article-title: Interindividual variability in the hepatic expression of the human breast cancer resistance protein (BCRP/ABCG2): effect of age, sex, and genotype publication-title: J Pharm Sci – volume: 110 start-page: 5223 year: 2013 end-page: 5228 ident: bib10 article-title: Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules publication-title: Proc Natl Acad Sci U S A – volume: 10 start-page: 21 year: 2013 ident: bib16 article-title: A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: application for inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker proteins at the blood-brain barrier in ddY, FVB, and C57BL/6J mice publication-title: Fluids Barriers CNS – volume: 546 start-page: 504 year: 2017 end-page: 509 ident: bib6 article-title: Structure of the human multidrug transporter ABCG2 publication-title: Nature – volume: 46 start-page: 619 year: 2018 end-page: 627 ident: bib26 article-title: Interindividual regulation of the breast cancer resistance protein/ABCG2 transporter in term human placentas publication-title: Drug Metab Dispos – volume: 7 start-page: 248 year: 2010 end-page: 249 ident: bib33 article-title: A method and server for predicting damaging missense mutations publication-title: Nat Methods – volume: 43 start-page: 490 year: 2015 end-page: 509 ident: bib2 article-title: Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design publication-title: Drug Metab Dispos – volume: 100 start-page: 131 year: 2016 end-page: 141 ident: bib3 article-title: Pilot PET study to assess the functional interplay between ABCB1 and ABCG2 at the human blood–brain barrier publication-title: Clin Pharmacol Ther – volume: 109 start-page: 238 year: 2004 end-page: 246 ident: bib24 article-title: Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2 publication-title: Int J Cancer – volume: 56 start-page: 161 year: 2005 end-page: 172 ident: bib22 article-title: Single nucleotide polymorphisms modify the transporter activity of ABCG2 publication-title: Cancer Chemother Pharmacol – volume: 349 start-page: 551 year: 2012 ident: 10.1016/j.dmpk.2025.101482_bib13 article-title: Localization of breast cancer resistance protein (Bcrp) in endocrine organs and inhibition of its transport activity by steroid hormones publication-title: Cell Tissue Res doi: 10.1007/s00441-012-1417-5 – volume: 475 start-page: 1553 year: 2018 ident: 10.1016/j.dmpk.2025.101482_bib8 article-title: Residues contributing to drug transport by ABCG2 are localised to multiple drug-binding pockets publication-title: Biochem J doi: 10.1042/BCJ20170923 – volume: 34 start-page: 1626 year: 2017 ident: 10.1016/j.dmpk.2025.101482_bib14 article-title: Transmembrane domain single-nucleotide polymorphisms impair expression and transport activity of ABC transporter ABCG2 publication-title: Pharm Res doi: 10.1007/s11095-017-2127-1 – volume: 38 start-page: 1663 year: 2021 ident: 10.1016/j.dmpk.2025.101482_bib15 article-title: The effect of single nucleotide variations in the transmembrane domain of OATP1B1 on in vitro functionality publication-title: Pharm Res doi: 10.1007/s11095-021-03107-8 – volume: 110 start-page: 3953 year: 2021 ident: 10.1016/j.dmpk.2025.101482_bib17 article-title: Systemic inflammation induced changes in protein expression of ABC transporters and ionotropic glutamate receptor subunit 1 in the cerebral cortex of familial Alzheimer's disease mouse model publication-title: J Pharm Sci doi: 10.1016/j.xphs.2021.08.013 – volume: 104 start-page: 3039 year: 2015 ident: 10.1016/j.dmpk.2025.101482_bib29 article-title: Quantitative analysis of the ABCG2 c.421C>A polymorphism effect on in vivo transport activity of breast cancer resistance protein (BCRP) using an intestinal absorption model publication-title: J Pharm Sci doi: 10.1002/jps.24366 – volume: 48 start-page: D941 year: 2020 ident: 10.1016/j.dmpk.2025.101482_bib20 article-title: The International Genome Sample Resource (IGSR) collection of open human genomic variation resources publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz836 – volume: 563 start-page: 426 year: 2018 ident: 10.1016/j.dmpk.2025.101482_bib11 article-title: Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states publication-title: Nature doi: 10.1038/s41586-018-0680-3 – volume: 102 start-page: 1694 year: 2008 ident: 10.1016/j.dmpk.2025.101482_bib28 article-title: Association of the ABCG2 C421A polymorphism with prostate cancer risk and survival publication-title: BJU Int doi: 10.1111/j.1464-410X.2008.07913.x – volume: 94 start-page: 23 year: 2013 ident: 10.1016/j.dmpk.2025.101482_bib18 article-title: International transporter consortium commentary on clinically important transporter polymorphisms publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.2013.12 – volume: 56 start-page: 161 year: 2005 ident: 10.1016/j.dmpk.2025.101482_bib22 article-title: Single nucleotide polymorphisms modify the transporter activity of ABCG2 publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-004-0931-x – volume: 22 start-page: 428 year: 2007 ident: 10.1016/j.dmpk.2025.101482_bib23 article-title: In vitro evaluation of photosensitivity risk related to genetic polymorphisms of human ABC transporter ABCG2 and inhibition by drugs publication-title: Drug Metabol Pharmacokinet doi: 10.2133/dmpk.22.428 – volume: 10 start-page: 21 year: 2013 ident: 10.1016/j.dmpk.2025.101482_bib16 publication-title: Fluids Barriers CNS doi: 10.1186/2045-8118-10-21 – volume: 40 start-page: W452 year: 2012 ident: 10.1016/j.dmpk.2025.101482_bib32 article-title: SIFT web server: predicting effects of amino acid substitutions on proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/gks539 – volume: 102 start-page: 787 year: 2013 ident: 10.1016/j.dmpk.2025.101482_bib27 article-title: Interindividual variability in the hepatic expression of the human breast cancer resistance protein (BCRP/ABCG2): effect of age, sex, and genotype publication-title: J Pharm Sci doi: 10.1002/jps.23436 – volume: 3 year: 2017 ident: 10.1016/j.dmpk.2025.101482_bib30 article-title: Multiple common and rare variants of ABCG2 cause gout publication-title: RMD Open doi: 10.1136/rmdopen-2017-000464 – volume: 109 start-page: 238 year: 2004 ident: 10.1016/j.dmpk.2025.101482_bib24 article-title: Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2 publication-title: Int J Cancer doi: 10.1002/ijc.11669 – volume: 21 start-page: 1895 year: 2004 ident: 10.1016/j.dmpk.2025.101482_bib21 article-title: Functional analysis of SNPs variants of BCRP/ABCG2 publication-title: Pharm Res doi: 10.1023/B:PHAM.0000045245.21637.d4 – volume: 100 start-page: 131 year: 2016 ident: 10.1016/j.dmpk.2025.101482_bib3 article-title: Pilot PET study to assess the functional interplay between ABCB1 and ABCG2 at the human blood–brain barrier publication-title: Clin Pharmacol Ther doi: 10.1002/cpt.362 – volume: 333 start-page: 670 year: 2010 ident: 10.1016/j.dmpk.2025.101482_bib31 article-title: Role of basic residues within or near the predicted transmembrane helix 2 of the human breast cancer resistance protein in drug transport publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.109.163493 – volume: 46 start-page: 1886 year: 2018 ident: 10.1016/j.dmpk.2025.101482_bib4 article-title: Polymorphisms of the multidrug pump ABCG2: a systematic review of their effect on protein expression, function, and drug pharmacokinetics publication-title: Drug Metab Dispos doi: 10.1124/dmd.118.083030 – volume: 110 start-page: 5223 year: 2013 ident: 10.1016/j.dmpk.2025.101482_bib10 article-title: Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1214530110 – volume: 12 start-page: 26 year: 2018 ident: 10.1016/j.dmpk.2025.101482_bib19 article-title: Integrating rare genetic variants into pharmacogenetic drug response predictions publication-title: Hum Genom doi: 10.1186/s40246-018-0157-3 – volume: 87 start-page: 130 year: 2010 ident: 10.1016/j.dmpk.2025.101482_bib5 article-title: Transporter pharmacogenetics and statin toxicity publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.2009.197 – volume: 7 year: 2017 ident: 10.1016/j.dmpk.2025.101482_bib12 article-title: The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion publication-title: Sci Rep doi: 10.1038/s41598-017-11794-w – volume: 43 start-page: 490 year: 2015 ident: 10.1016/j.dmpk.2025.101482_bib2 article-title: Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design publication-title: Drug Metab Dispos doi: 10.1124/dmd.114.062174 – volume: 17 start-page: 65 year: 2015 ident: 10.1016/j.dmpk.2025.101482_bib1 article-title: Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update publication-title: AAPS J doi: 10.1208/s12248-014-9668-6 – volume: 149 start-page: 506 year: 2006 ident: 10.1016/j.dmpk.2025.101482_bib7 article-title: Multiple drugbinding sites on the R482G isoform of the ABCG2 transporter publication-title: Br J Pharmacol doi: 10.1038/sj.bjp.0706904 – volume: 354 start-page: 310 year: 2015 ident: 10.1016/j.dmpk.2025.101482_bib25 article-title: Marked alteration of rosuvastatin pharmacokinetics in healthy Chinese with ABCG2 34G>A and 421C>A homozygote or compound heterozygote publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.115.225045 – volume: 7 start-page: 248 year: 2010 ident: 10.1016/j.dmpk.2025.101482_bib33 article-title: A method and server for predicting damaging missense mutations publication-title: Nat Methods doi: 10.1038/nmeth0410-248 – volume: 46 start-page: 619 year: 2018 ident: 10.1016/j.dmpk.2025.101482_bib26 article-title: Interindividual regulation of the breast cancer resistance protein/ABCG2 transporter in term human placentas publication-title: Drug Metab Dispos doi: 10.1124/dmd.117.079228 – volume: 26 start-page: 469 year: 2009 ident: 10.1016/j.dmpk.2025.101482_bib9 article-title: Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations publication-title: Pharm Res doi: 10.1007/s11095-008-9752-7 – volume: 546 start-page: 504 year: 2017 ident: 10.1016/j.dmpk.2025.101482_bib6 article-title: Structure of the human multidrug transporter ABCG2 publication-title: Nature doi: 10.1038/nature22345 |
SSID | ssj0033542 |
Score | 2.4032025 |
Snippet | ABCG2 (breast cancer resistance protein, BCRP), can affect drug disposition, and thus, variation in the ABCG2 gene may alter drug exposure. We studied... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 101482 |
SubjectTerms | ATP Binding Cassette Transporter, Subfamily G, Member 2 - chemistry ATP Binding Cassette Transporter, Subfamily G, Member 2 - genetics ATP Binding Cassette Transporter, Subfamily G, Member 2 - metabolism Biological Transport - genetics Breast cancer resistance protein (BCRP) Coupling helix Estrone - analogs & derivatives Estrone - metabolism Genetic Variation - genetics HEK293 Cells Humans Mutation Neoplasm Proteins - chemistry Neoplasm Proteins - genetics Neoplasm Proteins - metabolism Polymorphism Polymorphism, Single Nucleotide - genetics Rosuvastatin Calcium - metabolism |
Title | Exploring the effect of intracellular loop 1 genetic variants in human ABCG2 on transport activity and protein abundance |
URI | https://dx.doi.org/10.1016/j.dmpk.2025.101482 https://www.ncbi.nlm.nih.gov/pubmed/40203631 https://www.proquest.com/docview/3188427999 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba7YUL4s0CrQYJ9UKjXcd24hy3K9oFRFWJVtqbFb-kLZCs6Ba1_74zcdKKQzlwjDVWohl7Zux83wxjH3DvaadizKwuXCaDUJkuVJm54B0a3EYfie_87aRYnMsvS7XcYvOBC0Owyt73J5_eeet-ZNJrc7JerSbfiQQpRVFiEKe6cstttpOLqtAjtjP7_HVxMjhkIVTXQ4fkM5rQc2cSzMv_Wv_AY2KuaEDq_KH49FD-2cWhoyfscZ9Awix941O2FZpnbP80VaC-OYCze0LV5QHsw-l9beqb5-z6DnMHmPlBQnNAG2FFl7x0i0-wVPjZtmvggIuLOI7wBw_UhJdBKeia-sHscH6cQ9vAZiiODsSQoEYUUDceuvIPKF1bYpqgUl-w86NPZ_NF1jdfyJzk1SarggiVcnigwSAehCunlley8C5E7-O0jJ7r0rrAo8cMKrclZj56SrVxVFlxFcRLNmraJrxmwLlTdDVcWhmlk3ktVK1RxMbKWaf0mH0cVG7WqcaGGcBnF4YMZMhAJhlozNRgFfPXSjEYBP457_1gQoNbiDRaN6G9ujTo1rTMS0yVx-xVsu3dd8juT63gb_7zrW_ZI3pK4LJ3bLT5fRV2MY3Z2L1-me6x7eMlvwVQlfKh |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAX1PLqUgqDhHqh0W4SO3aOy4qype2qEltpb1b8kpZHsqJbRP89M3HSikM5cHXGSjRjz4yd75th7B3uPWVFCIlRhU24z0WiCiET651Fg5vgAvGdz-fF7JJ_XorlFpv2XBiCVXa-P_r01lt3I6NOm6P1ajX6QiRInhcSgzjVlVs-YNtUnYoP2Pbk5HQ27x1ynou2hw7JJzSh485EmJf7sf6Gx8RM0ABX2X3x6b78s41DxzvscZdAwiR-4y7b8vUTdngRK1DfHMHijlB1dQSHcHFXm_rmKft9i7kDzPwgojmgCbCiS166xSdYKnxvmjWkgIuLOI7wCw_UhJdBKWib-sHkw_RTBk0Nm744OhBDghpRQFU7aMs_oHRliGmCSn3GLo8_LqazpGu-kFielpuk9LkvhcUDDQZxn1s5NmnJC2d9cC6MZXCpksb6NDjMoDIjMfNRY6qNI2SZCp8_Z4O6qf0egzS1gq6GpeGBW55VuagUiphQWmOFGrL3vcr1OtbY0D347KsmA2kykI4GGjLRW0X_tVI0BoF_znvbm1DjFiKNVrVvrq80ujXFM4mp8pC9iLa9_Q7e_qnN05f_-dY37OFscX6mz07mp_vsET2JQLNXbLD5ee0PMKXZmNfdkv0DDYj0lg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+effect+of+intracellular+loop+1+genetic+variants+in+human+ABCG2+on+transport+activity+and+protein+abundance&rft.jtitle=Drug+metabolism+and+pharmacokinetics&rft.au=Sj%C3%B6stedt%2C+Noora&rft.au=Timmermans%2C+Ritchie+G.M.&rft.au=Vieraankivi%2C+Marika&rft.au=Suominen%2C+Laura&rft.date=2025-06-01&rft.issn=1347-4367&rft.volume=62&rft.spage=101482&rft_id=info:doi/10.1016%2Fj.dmpk.2025.101482&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dmpk_2025_101482 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-4367&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-4367&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-4367&client=summon |