Convex Hull Aided Registration Method (CHARM)
Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are e...
Saved in:
Published in | IEEE transactions on visualization and computer graphics Vol. 23; no. 9; pp. 2042 - 2055 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1077-2626 1941-0506 1941-0506 |
DOI | 10.1109/TVCG.2016.2602858 |
Cover
Abstract | Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve non-rigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods. |
---|---|
AbstractList | Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve non-rigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods. Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve non-rigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods.Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve non-rigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods. |
Author | Yongtian Wang Danni Ai Jian Yang Yitian Zhao Jingfan Fan Yonghuai Liu Ge Wang |
Author_xml | – sequence: 1 givenname: Jingfan surname: Fan fullname: Fan, Jingfan – sequence: 2 givenname: Jian surname: Yang fullname: Yang, Jian – sequence: 3 givenname: Yitian surname: Zhao fullname: Zhao, Yitian – sequence: 4 givenname: Danni surname: Ai fullname: Ai, Danni – sequence: 5 givenname: Yonghuai surname: Liu fullname: Liu, Yonghuai – sequence: 6 givenname: Ge surname: Wang fullname: Wang, Ge – sequence: 7 givenname: Yongtian surname: Wang fullname: Wang, Yongtian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28113589$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LxDAQQIMorq7-ABGk4EUPXWeS5uu4FHUFRZDVa2jTVCPdVptW9N_bdVcPe_CUObw3E94-2a6b2hFyhDBBBH0xf0qvJxRQTKgAqrjaInuoE4yBg9geZpAypoKKEdkP4RUAk0TpXTKiCpFxpfdInDb1h_uMZn1VRVNfuCJ6cM8-dG3W-aaO7lz30hTRWTqbPtydH5CdMquCO1y_Y_J4dTlPZ_Ht_fVNOr2NbYK6i3VCJbegVMaKjGaIpRLWciiFlSASWrDC5dxKaZkGkatElraQFnLpWC4Ha0zOVnvf2ua9d6EzCx-sq6qsdk0fDCqBAlGjHtDTDfS16dt6-J2hKBNGgVE-UCdrqs8XrjBvrV9k7Zf5DTEAuAJs24TQuvIPQTDL2GYZ2yxjm3XswZEbjvXdT7ahnq_-NY9XpnfO_V2SnEtQjH0DqsOH-w |
CODEN | ITVGEA |
CitedBy_id | crossref_primary_10_1111_cgf_13751 crossref_primary_10_3390_app14188475 crossref_primary_10_1007_s12518_023_00498_8 crossref_primary_10_1111_cgf_14502 crossref_primary_10_1016_j_media_2019_101545 crossref_primary_10_1016_j_ins_2017_12_048 crossref_primary_10_1016_j_cmpb_2020_105370 crossref_primary_10_3788_AOS230742 crossref_primary_10_1007_s11517_019_01992_1 crossref_primary_10_1088_1361_6501_ad63c3 crossref_primary_10_1016_j_cmpb_2019_04_006 crossref_primary_10_1016_j_media_2019_03_006 crossref_primary_10_3390_s19153268 |
Cites_doi | 10.1145/235815.235821 10.1109/CVPR.2009.5206748 10.1016/j.patcog.2016.02.023 10.1109/TPAMI.2010.223 10.1109/34.121791 10.1109/TPAMI.2010.207 10.1109/ICCV.2013.417 10.1145/1516522.1516526 10.1023/B:VISI.0000029664.99615.94 10.1109/TPAMI.2010.46 10.1109/34.993558 10.1109/34.24792 10.1145/1291233.1291311 10.1109/CVPR.2014.491 10.1016/S1077-3142(03)00009-2 10.1109/CVPR.2011.5995744 10.1109/TPAMI.2011.248 10.1145/1618452.1618521 10.1111/j.1467-8659.2008.01282.x 10.1145/1201775.882368 10.1007/978-3-540-24672-5_18 10.1109/TPAMI.2005.220 10.1109/TDPVT.2004.1335392 10.1109/ICCV.2015.236 10.1016/j.neucom.2016.01.078 10.1007/3-540-47979-1_28 10.1145/358669.358692 10.1007/978-3-540-77974-2 10.1145/1360612.1360684 10.1109/34.88573 10.1109/34.765655 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TVCG.2016.2602858 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library (LUT) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0506 |
EndPage | 2055 |
ExternalDocumentID | 28113589 10_1109_TVCG_2016_2602858 7557083 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Basic Research Program of China grantid: 2013CB328806 – fundername: National Hi-Tech Research and Development Program grantid: 2015AA043203 – fundername: National Science & Technology Pillar Program grantid: 2013BAI01B01 – fundername: National Science Foundation grantid: 81430039; 61501030 funderid: 10.13039/100000001 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 AAYXX CITATION RIG 5VS AAYOK AETIX AGSQL AI. AIBXA ALLEH H~9 IFJZH NPM RNI RZB VH1 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c419t-94275c088a3da2a11f86cc50f6c70642d3deb5c77c3906b847fcd7c0b7e3b78a3 |
IEDL.DBID | RIE |
ISSN | 1077-2626 1941-0506 |
IngestDate | Thu Sep 04 17:39:28 EDT 2025 Mon Jun 30 06:43:03 EDT 2025 Thu Apr 03 06:56:21 EDT 2025 Tue Jul 01 03:58:50 EDT 2025 Thu Apr 24 22:50:54 EDT 2025 Wed Aug 27 02:47:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-94275c088a3da2a11f86cc50f6c70642d3deb5c77c3906b847fcd7c0b7e3b78a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28113589 |
PQID | 2174320325 |
PQPubID | 75741 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TVCG_2016_2602858 proquest_journals_2174320325 crossref_citationtrail_10_1109_TVCG_2016_2602858 proquest_miscellaneous_1861611919 pubmed_primary_28113589 ieee_primary_7557083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on visualization and computer graphics |
PublicationTitleAbbrev | TVCG |
PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 li (ref22) 2008; 27 mohamed (ref32) 2006 ref34 ref12 ref15 ref14 ref31 wu (ref17) 2008 ref33 ref10 ref2 mitra (ref21) 2007 ref1 ref16 ref19 ref18 wand (ref25) 2009; 28 (ref37) 2007 berg (ref30) 2008 brown (ref20) 2007 aiger (ref11) 2008; 27 li (ref23) 2009; 28 cagniart (ref24) 2010 ref26 lian (ref39) 2011; 11 wu (ref38) 2003; 3 (ref36) 0 ref28 ref27 ref29 ref7 ref9 ref4 ref3 ref6 ref5 ref40 liu (ref8) 2011; 33 |
References_xml | – ident: ref33 doi: 10.1145/235815.235821 – ident: ref18 doi: 10.1109/CVPR.2009.5206748 – ident: ref28 doi: 10.1016/j.patcog.2016.02.023 – ident: ref9 doi: 10.1109/TPAMI.2010.223 – ident: ref1 doi: 10.1109/34.121791 – volume: 33 start-page: 1058 year: 2011 ident: ref8 article-title: Penalizing closest point sharing for automatic free form shape registration publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.207 – ident: ref26 doi: 10.1109/ICCV.2013.417 – volume: 28 start-page: 15:1 year: 2009 ident: ref25 article-title: Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data publication-title: ACM Trans Graph doi: 10.1145/1516522.1516526 – ident: ref34 doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 11 start-page: 79 year: 2011 ident: ref39 article-title: Shrec'11 track: Shape retrieval on non-rigid 3D watertight meshes publication-title: Proceedings of the 4th Eurographics Conference on 3D Object Retrieval – ident: ref10 doi: 10.1109/TPAMI.2010.46 – start-page: 1 year: 2008 ident: ref17 article-title: 3D model matching with Viewpoint-Invariant Patches (VIP) publication-title: Proc IEEE Conf Comput Vision Pattern Recognition – ident: ref14 doi: 10.1109/34.993558 – ident: ref2 doi: 10.1109/34.24792 – start-page: 326 year: 2010 ident: ref24 article-title: Probabilistic deformable surface tracking from multiple videos publication-title: Proc 11th Eur Conf Computer Vision – ident: ref16 doi: 10.1145/1291233.1291311 – start-page: 173 year: 2007 ident: ref21 article-title: Dynamic geometry registration publication-title: Proc 5th Eurographics Symp Geometry Process – ident: ref40 doi: 10.1109/CVPR.2014.491 – ident: ref3 doi: 10.1016/S1077-3142(03)00009-2 – ident: ref6 doi: 10.1109/CVPR.2011.5995744 – start-page: 21:1 year: 2007 ident: ref20 article-title: Global non-rigid alignment of 3D scans publication-title: Proc ACM SIGGRAPH – start-page: 1 year: 2006 ident: ref32 article-title: An O(n log n) output-sensitive algorithm to detect and resolve conflicts for 1D range filters in router tables – ident: ref7 doi: 10.1109/TPAMI.2011.248 – volume: 28 start-page: 175:1 year: 2009 ident: ref23 article-title: Robust single-view geometry and motion reconstruction publication-title: ACM Trans Graph doi: 10.1145/1618452.1618521 – volume: 27 start-page: 1421 year: 2008 ident: ref22 article-title: Global correspondence optimization for nonrigid registration of depth scans publication-title: Proc 6th Eurographics Symp Geometry Comput Graph Forum doi: 10.1111/j.1467-8659.2008.01282.x – ident: ref31 doi: 10.1145/1201775.882368 – ident: ref15 doi: 10.1007/978-3-540-24672-5_18 – ident: ref13 doi: 10.1109/TPAMI.2005.220 – ident: ref19 doi: 10.1109/TDPVT.2004.1335392 – ident: ref27 doi: 10.1109/ICCV.2015.236 – ident: ref29 doi: 10.1016/j.neucom.2016.01.078 – ident: ref5 doi: 10.1007/3-540-47979-1_28 – volume: 3 start-page: 185 year: 2003 ident: ref38 article-title: A stream algorithm for the decimation of massive meshes publication-title: Proc Graph Interface – ident: ref4 doi: 10.1145/358669.358692 – year: 0 ident: ref36 article-title: The stanford 3d scanning repository. – year: 2008 ident: ref30 publication-title: Computational Geometry Algorithms and Applications doi: 10.1007/978-3-540-77974-2 – volume: 27 start-page: 85:1 year: 2008 ident: ref11 article-title: 4-points congruent sets for robust pairwise surface registration publication-title: ACM Trans Graph doi: 10.1145/1360612.1360684 – ident: ref35 doi: 10.1109/34.88573 – ident: ref12 doi: 10.1109/34.765655 – year: 2007 ident: ref37 article-title: Aim@shape shape repository v4.0 |
SSID | ssj0014489 |
Score | 2.314122 |
Snippet | Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2042 |
SubjectTerms | Algorithms Computational geometry Computational modeling Computing time convex hull Convexity Deformable models Deformation Feature extraction Hulls invariant feature Iterative closest point algorithm non-rigid registration Object recognition Outliers (statistics) parallel projection Photogrammetry Point pairs Point set Registration Robustness Solid modeling State of the art Three-dimensional displays Transformations |
Title | Convex Hull Aided Registration Method (CHARM) |
URI | https://ieeexplore.ieee.org/document/7557083 https://www.ncbi.nlm.nih.gov/pubmed/28113589 https://www.proquest.com/docview/2174320325 https://www.proquest.com/docview/1861611919 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-mT_rg90d1SgUfVOzWJm3SPo7hHMJ8kE18K02aiiib6AbiX-9d2pUhKr4FmvQjd8ndr3f5HcBppDTnQiivIBqAMGOJl2XY4gVnBvGICAs6nDy4Ff1RePMQPTTgsj4LY4yxyWemRU0by88neka_ytqS-KJivgRLqGblWa06YoAwIynzC6XH0EuvIpiBn7SH991rSuISLXTeWRxRjT4WBwGPqLj7gjmy9VV-dzWtyemtw2D-smWmyXNrNlUt_fmNx_G_X7MBa5Xv6XZKZdmEhhlvweoCI-E2eF3KQv9w-4hM3c5TbnL3zjzW5LruwBacds-6_c7d4HwHRr2rYbfvVRUVPB0GydRLQiYjjRtLxvOMZUFQxELryC-EloREcp4bFWkpNU98odByFTqX2lfScCVx1C4sjydjsw8u7gMhQhXmS1MQ6aDCgQgNAx1rJTJfOeDPJzbVFd04Vb14SS3s8JOUxJKSWNJKLA5c1ENeS66Nvzpv05TWHavZdKA5l15arcb31MIuKhUfOXBSX8Z1RMGRbGwms_c0iAU6v4heEwf2SqnX954ry8HPzzyEFUbG3maeNWF5-jYzR-iqTNWx1dEvTODeXQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ReigcWlpoCa-mEgdakSWxYzs5rlaFtCUc0IK4WbHjVBVoF8GuVPHrmXGyEUJt1ZulePLw2J75MuNvAPaFsZxLaaKGaADSiuVRVWGLN5w5xCMybehwcnkmi4v0-5W4WoLD_iyMc84nn7kBNX0sv57aOf0qO1LEF5XxF_AS7X4q2tNafcwAgUbeZhiqiKGf3sUwkzg_Gl-OTiiNSw7QfWeZoCp9LEsSLqi8-xOD5Cus_N3Z9Ebn-A2Ui9dtc02uB_OZGdiHZ0yO__s9a_C68z7DYTtd3sKSm7yD1SechOsQjSgP_XdYIDYNh79qV4fn7mdPrxuWvuR0eDAqhufl5w24OP46HhVRV1MhsmmSz6I8ZUpY3FoqXlesSpImk9aKuJFWERapee2MsEpZnsfSoO1qbK1sbJTjRqHUe1ieTCduE0LcCVIEKyxWriHaQYOCCA4Tm1kjq9gEEC8GVtuOcJzqXtxoDzziXJNaNKlFd2oJ4Esvctuybfyr8zoNad-xG80Adhba0916vNceeFGxeBHAp_4yriQKj1QTN53f6yST6P4ifs0D-NBqvb_3YrJs_fmZH-FVMS5P9em3sx_bsMLI9Ps8tB1Ynt3N3S46LjOz5-frIyBl4ao |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convex+Hull+Aided+Registration+Method+%28CHARM%29&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Fan%2C+Jingfan&rft.au=Yang%2C+Jian&rft.au=Zhao%2C+Yitian&rft.au=Ai%2C+Danni&rft.date=2017-09-01&rft.issn=1941-0506&rft.eissn=1941-0506&rft.volume=23&rft.issue=9&rft.spage=2042&rft_id=info:doi/10.1109%2FTVCG.2016.2602858&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |