Convex Hull Aided Registration Method (CHARM)

Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are e...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 23; no. 9; pp. 2042 - 2055
Main Authors Fan, Jingfan, Yang, Jian, Zhao, Yitian, Ai, Danni, Liu, Yonghuai, Wang, Ge, Wang, Yongtian
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1077-2626
1941-0506
1941-0506
DOI10.1109/TVCG.2016.2602858

Cover

Abstract Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve non-rigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods.
AbstractList Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve non-rigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods.
Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve non-rigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods.Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve non-rigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods.
Author Yongtian Wang
Danni Ai
Jian Yang
Yitian Zhao
Jingfan Fan
Yonghuai Liu
Ge Wang
Author_xml – sequence: 1
  givenname: Jingfan
  surname: Fan
  fullname: Fan, Jingfan
– sequence: 2
  givenname: Jian
  surname: Yang
  fullname: Yang, Jian
– sequence: 3
  givenname: Yitian
  surname: Zhao
  fullname: Zhao, Yitian
– sequence: 4
  givenname: Danni
  surname: Ai
  fullname: Ai, Danni
– sequence: 5
  givenname: Yonghuai
  surname: Liu
  fullname: Liu, Yonghuai
– sequence: 6
  givenname: Ge
  surname: Wang
  fullname: Wang, Ge
– sequence: 7
  givenname: Yongtian
  surname: Wang
  fullname: Wang, Yongtian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28113589$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LxDAQQIMorq7-ABGk4EUPXWeS5uu4FHUFRZDVa2jTVCPdVptW9N_bdVcPe_CUObw3E94-2a6b2hFyhDBBBH0xf0qvJxRQTKgAqrjaInuoE4yBg9geZpAypoKKEdkP4RUAk0TpXTKiCpFxpfdInDb1h_uMZn1VRVNfuCJ6cM8-dG3W-aaO7lz30hTRWTqbPtydH5CdMquCO1y_Y_J4dTlPZ_Ht_fVNOr2NbYK6i3VCJbegVMaKjGaIpRLWciiFlSASWrDC5dxKaZkGkatElraQFnLpWC4Ha0zOVnvf2ua9d6EzCx-sq6qsdk0fDCqBAlGjHtDTDfS16dt6-J2hKBNGgVE-UCdrqs8XrjBvrV9k7Zf5DTEAuAJs24TQuvIPQTDL2GYZ2yxjm3XswZEbjvXdT7ahnq_-NY9XpnfO_V2SnEtQjH0DqsOH-w
CODEN ITVGEA
CitedBy_id crossref_primary_10_1111_cgf_13751
crossref_primary_10_3390_app14188475
crossref_primary_10_1007_s12518_023_00498_8
crossref_primary_10_1111_cgf_14502
crossref_primary_10_1016_j_media_2019_101545
crossref_primary_10_1016_j_ins_2017_12_048
crossref_primary_10_1016_j_cmpb_2020_105370
crossref_primary_10_3788_AOS230742
crossref_primary_10_1007_s11517_019_01992_1
crossref_primary_10_1088_1361_6501_ad63c3
crossref_primary_10_1016_j_cmpb_2019_04_006
crossref_primary_10_1016_j_media_2019_03_006
crossref_primary_10_3390_s19153268
Cites_doi 10.1145/235815.235821
10.1109/CVPR.2009.5206748
10.1016/j.patcog.2016.02.023
10.1109/TPAMI.2010.223
10.1109/34.121791
10.1109/TPAMI.2010.207
10.1109/ICCV.2013.417
10.1145/1516522.1516526
10.1023/B:VISI.0000029664.99615.94
10.1109/TPAMI.2010.46
10.1109/34.993558
10.1109/34.24792
10.1145/1291233.1291311
10.1109/CVPR.2014.491
10.1016/S1077-3142(03)00009-2
10.1109/CVPR.2011.5995744
10.1109/TPAMI.2011.248
10.1145/1618452.1618521
10.1111/j.1467-8659.2008.01282.x
10.1145/1201775.882368
10.1007/978-3-540-24672-5_18
10.1109/TPAMI.2005.220
10.1109/TDPVT.2004.1335392
10.1109/ICCV.2015.236
10.1016/j.neucom.2016.01.078
10.1007/3-540-47979-1_28
10.1145/358669.358692
10.1007/978-3-540-77974-2
10.1145/1360612.1360684
10.1109/34.88573
10.1109/34.765655
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2016.2602858
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library (LUT)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 2055
ExternalDocumentID 28113589
10_1109_TVCG_2016_2602858
7557083
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Basic Research Program of China
  grantid: 2013CB328806
– fundername: National Hi-Tech Research and Development Program
  grantid: 2015AA043203
– fundername: National Science & Technology Pillar Program
  grantid: 2013BAI01B01
– fundername: National Science Foundation
  grantid: 81430039; 61501030
  funderid: 10.13039/100000001
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
AAYXX
CITATION
RIG
5VS
AAYOK
AETIX
AGSQL
AI.
AIBXA
ALLEH
H~9
IFJZH
NPM
RNI
RZB
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c419t-94275c088a3da2a11f86cc50f6c70642d3deb5c77c3906b847fcd7c0b7e3b78a3
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Thu Sep 04 17:39:28 EDT 2025
Mon Jun 30 06:43:03 EDT 2025
Thu Apr 03 06:56:21 EDT 2025
Tue Jul 01 03:58:50 EDT 2025
Thu Apr 24 22:50:54 EDT 2025
Wed Aug 27 02:47:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-94275c088a3da2a11f86cc50f6c70642d3deb5c77c3906b847fcd7c0b7e3b78a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28113589
PQID 2174320325
PQPubID 75741
PageCount 14
ParticipantIDs crossref_primary_10_1109_TVCG_2016_2602858
proquest_journals_2174320325
crossref_citationtrail_10_1109_TVCG_2016_2602858
proquest_miscellaneous_1861611919
pubmed_primary_28113589
ieee_primary_7557083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
li (ref22) 2008; 27
mohamed (ref32) 2006
ref34
ref12
ref15
ref14
ref31
wu (ref17) 2008
ref33
ref10
ref2
mitra (ref21) 2007
ref1
ref16
ref19
ref18
wand (ref25) 2009; 28
(ref37) 2007
berg (ref30) 2008
brown (ref20) 2007
aiger (ref11) 2008; 27
li (ref23) 2009; 28
cagniart (ref24) 2010
ref26
lian (ref39) 2011; 11
wu (ref38) 2003; 3
(ref36) 0
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
ref40
liu (ref8) 2011; 33
References_xml – ident: ref33
  doi: 10.1145/235815.235821
– ident: ref18
  doi: 10.1109/CVPR.2009.5206748
– ident: ref28
  doi: 10.1016/j.patcog.2016.02.023
– ident: ref9
  doi: 10.1109/TPAMI.2010.223
– ident: ref1
  doi: 10.1109/34.121791
– volume: 33
  start-page: 1058
  year: 2011
  ident: ref8
  article-title: Penalizing closest point sharing for automatic free form shape registration
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.207
– ident: ref26
  doi: 10.1109/ICCV.2013.417
– volume: 28
  start-page: 15:1
  year: 2009
  ident: ref25
  article-title: Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data
  publication-title: ACM Trans Graph
  doi: 10.1145/1516522.1516526
– ident: ref34
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 11
  start-page: 79
  year: 2011
  ident: ref39
  article-title: Shrec'11 track: Shape retrieval on non-rigid 3D watertight meshes
  publication-title: Proceedings of the 4th Eurographics Conference on 3D Object Retrieval
– ident: ref10
  doi: 10.1109/TPAMI.2010.46
– start-page: 1
  year: 2008
  ident: ref17
  article-title: 3D model matching with Viewpoint-Invariant Patches (VIP)
  publication-title: Proc IEEE Conf Comput Vision Pattern Recognition
– ident: ref14
  doi: 10.1109/34.993558
– ident: ref2
  doi: 10.1109/34.24792
– start-page: 326
  year: 2010
  ident: ref24
  article-title: Probabilistic deformable surface tracking from multiple videos
  publication-title: Proc 11th Eur Conf Computer Vision
– ident: ref16
  doi: 10.1145/1291233.1291311
– start-page: 173
  year: 2007
  ident: ref21
  article-title: Dynamic geometry registration
  publication-title: Proc 5th Eurographics Symp Geometry Process
– ident: ref40
  doi: 10.1109/CVPR.2014.491
– ident: ref3
  doi: 10.1016/S1077-3142(03)00009-2
– ident: ref6
  doi: 10.1109/CVPR.2011.5995744
– start-page: 21:1
  year: 2007
  ident: ref20
  article-title: Global non-rigid alignment of 3D scans
  publication-title: Proc ACM SIGGRAPH
– start-page: 1
  year: 2006
  ident: ref32
  article-title: An O(n log n) output-sensitive algorithm to detect and resolve conflicts for 1D range filters in router tables
– ident: ref7
  doi: 10.1109/TPAMI.2011.248
– volume: 28
  start-page: 175:1
  year: 2009
  ident: ref23
  article-title: Robust single-view geometry and motion reconstruction
  publication-title: ACM Trans Graph
  doi: 10.1145/1618452.1618521
– volume: 27
  start-page: 1421
  year: 2008
  ident: ref22
  article-title: Global correspondence optimization for nonrigid registration of depth scans
  publication-title: Proc 6th Eurographics Symp Geometry Comput Graph Forum
  doi: 10.1111/j.1467-8659.2008.01282.x
– ident: ref31
  doi: 10.1145/1201775.882368
– ident: ref15
  doi: 10.1007/978-3-540-24672-5_18
– ident: ref13
  doi: 10.1109/TPAMI.2005.220
– ident: ref19
  doi: 10.1109/TDPVT.2004.1335392
– ident: ref27
  doi: 10.1109/ICCV.2015.236
– ident: ref29
  doi: 10.1016/j.neucom.2016.01.078
– ident: ref5
  doi: 10.1007/3-540-47979-1_28
– volume: 3
  start-page: 185
  year: 2003
  ident: ref38
  article-title: A stream algorithm for the decimation of massive meshes
  publication-title: Proc Graph Interface
– ident: ref4
  doi: 10.1145/358669.358692
– year: 0
  ident: ref36
  article-title: The stanford 3d scanning repository.
– year: 2008
  ident: ref30
  publication-title: Computational Geometry Algorithms and Applications
  doi: 10.1007/978-3-540-77974-2
– volume: 27
  start-page: 85:1
  year: 2008
  ident: ref11
  article-title: 4-points congruent sets for robust pairwise surface registration
  publication-title: ACM Trans Graph
  doi: 10.1145/1360612.1360684
– ident: ref35
  doi: 10.1109/34.88573
– ident: ref12
  doi: 10.1109/34.765655
– year: 2007
  ident: ref37
  article-title: Aim@shape shape repository v4.0
SSID ssj0014489
Score 2.314122
Snippet Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2042
SubjectTerms Algorithms
Computational geometry
Computational modeling
Computing time
convex hull
Convexity
Deformable models
Deformation
Feature extraction
Hulls
invariant feature
Iterative closest point algorithm
non-rigid registration
Object recognition
Outliers (statistics)
parallel projection
Photogrammetry
Point pairs
Point set
Registration
Robustness
Solid modeling
State of the art
Three-dimensional displays
Transformations
Title Convex Hull Aided Registration Method (CHARM)
URI https://ieeexplore.ieee.org/document/7557083
https://www.ncbi.nlm.nih.gov/pubmed/28113589
https://www.proquest.com/docview/2174320325
https://www.proquest.com/docview/1861611919
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-mT_rg90d1SgUfVOzWJm3SPo7hHMJ8kE18K02aiiib6AbiX-9d2pUhKr4FmvQjd8ndr3f5HcBppDTnQiivIBqAMGOJl2XY4gVnBvGICAs6nDy4Ff1RePMQPTTgsj4LY4yxyWemRU0by88neka_ytqS-KJivgRLqGblWa06YoAwIynzC6XH0EuvIpiBn7SH991rSuISLXTeWRxRjT4WBwGPqLj7gjmy9VV-dzWtyemtw2D-smWmyXNrNlUt_fmNx_G_X7MBa5Xv6XZKZdmEhhlvweoCI-E2eF3KQv9w-4hM3c5TbnL3zjzW5LruwBacds-6_c7d4HwHRr2rYbfvVRUVPB0GydRLQiYjjRtLxvOMZUFQxELryC-EloREcp4bFWkpNU98odByFTqX2lfScCVx1C4sjydjsw8u7gMhQhXmS1MQ6aDCgQgNAx1rJTJfOeDPJzbVFd04Vb14SS3s8JOUxJKSWNJKLA5c1ENeS66Nvzpv05TWHavZdKA5l15arcb31MIuKhUfOXBSX8Z1RMGRbGwms_c0iAU6v4heEwf2SqnX954ry8HPzzyEFUbG3maeNWF5-jYzR-iqTNWx1dEvTODeXQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ReigcWlpoCa-mEgdakSWxYzs5rlaFtCUc0IK4WbHjVBVoF8GuVPHrmXGyEUJt1ZulePLw2J75MuNvAPaFsZxLaaKGaADSiuVRVWGLN5w5xCMybehwcnkmi4v0-5W4WoLD_iyMc84nn7kBNX0sv57aOf0qO1LEF5XxF_AS7X4q2tNafcwAgUbeZhiqiKGf3sUwkzg_Gl-OTiiNSw7QfWeZoCp9LEsSLqi8-xOD5Cus_N3Z9Ebn-A2Ui9dtc02uB_OZGdiHZ0yO__s9a_C68z7DYTtd3sKSm7yD1SechOsQjSgP_XdYIDYNh79qV4fn7mdPrxuWvuR0eDAqhufl5w24OP46HhVRV1MhsmmSz6I8ZUpY3FoqXlesSpImk9aKuJFWERapee2MsEpZnsfSoO1qbK1sbJTjRqHUe1ieTCduE0LcCVIEKyxWriHaQYOCCA4Tm1kjq9gEEC8GVtuOcJzqXtxoDzziXJNaNKlFd2oJ4Esvctuybfyr8zoNad-xG80Adhba0916vNceeFGxeBHAp_4yriQKj1QTN53f6yST6P4ifs0D-NBqvb_3YrJs_fmZH-FVMS5P9em3sx_bsMLI9Ps8tB1Ynt3N3S46LjOz5-frIyBl4ao
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convex+Hull+Aided+Registration+Method+%28CHARM%29&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Fan%2C+Jingfan&rft.au=Yang%2C+Jian&rft.au=Zhao%2C+Yitian&rft.au=Ai%2C+Danni&rft.date=2017-09-01&rft.issn=1941-0506&rft.eissn=1941-0506&rft.volume=23&rft.issue=9&rft.spage=2042&rft_id=info:doi/10.1109%2FTVCG.2016.2602858&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon