Pristimerin isolated from Salacia crassifolia (Mart. Ex. Schult.) G. Don. (Celastraceae) roots as a potential antibacterial agent against Staphylococcus aureus

Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-infla...

Full description

Saved in:
Bibliographic Details
Published inJournal of ethnopharmacology Vol. 266; no. NA; p. 113423
Main Authors Nizer, Waleska Stephanie da Cruz, Ferraz, Ariane Coelho, Moraes, Thaís de Fátima Silva, Lima, William Gustavo, Santos, Josana Pereira dos, Duarte, Lucienir Pains, Ferreira, Jaqueline Maria Siqueira, de Brito Magalhães, Cintia Lopes, Vieira-Filho, Sidney Augusto, Andrade, Ana Claúdia dos Santos Pereira, Rodrigues, Rodrigo Araújo Lima, Abrahão, Jonatas Santos, Magalhães, José Carlos de
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 10.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent. This study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria. First, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus. Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS. HER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195–25 μg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus. Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested. Overall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus. [Display omitted] •The hexane extract of roots of Salacia crassifolia and pristimerin are promising anti-Gram-positive agents.•The hexane extract of roots of Salacia crassifolia and pristimerin disrupt cell membranes of Gram-positive bacteria.•The hexane extract of roots of Salacia crassifolia and pristimerin showed antibiofilm effect against Staphylococcus aureus.•The combination of the extract of roots of Salacia crassifolia and pristimerin with antibiotics produced a synergic effect.
AbstractList Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent. This study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria. First, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus. Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS. HER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195-25 μg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus. Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested. Overall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus.
Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent.ETHNOPHARMACOLOGICAL RELEVANCEPristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent.This study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria.AIM OF THE STUDYThis study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria.First, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus. Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS.MATERIALS AND METHODSFirst, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus. Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS.HER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195-25 μg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus. Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested.RESULTSHER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195-25 μg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus. Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested.Overall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus.CONCLUSIONSOverall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus.
Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent.This study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria.First, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus. Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS.HER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195–25 μg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus. Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested.Overall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus.
Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent. This study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria. First, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus. Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS. HER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195–25 μg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus. Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested. Overall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus. [Display omitted] •The hexane extract of roots of Salacia crassifolia and pristimerin are promising anti-Gram-positive agents.•The hexane extract of roots of Salacia crassifolia and pristimerin disrupt cell membranes of Gram-positive bacteria.•The hexane extract of roots of Salacia crassifolia and pristimerin showed antibiofilm effect against Staphylococcus aureus.•The combination of the extract of roots of Salacia crassifolia and pristimerin with antibiotics produced a synergic effect.
Ethnopharmacological relevance Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent. Aim of the study This study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria. Materials and methods First, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus . Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS. Results: HER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195-25 μg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus . Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested. Conclusions: Overall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus. Graphical abstract Image 1. Highlights: The hexane extract of roots of Salacia crassifolia and pristimerin are promising anti-Gram-positive agents. The hexane extract of roots of Salacia crassifolia and pristimerin disrupt cell membranes of Gram-positive bacteria. The hexane extract of roots of Salacia crassifolia and pristimerin showed antibiofilm effect against Staphylococcus aureus . The combination of the extract of roots of Salacia crassifolia and pristimerin with antibiotics produced a synergic effect.
ArticleNumber 113423
Author Lima, William Gustavo
Duarte, Lucienir Pains
Abrahão, Jonatas Santos
Nizer, Waleska Stephanie da Cruz
Santos, Josana Pereira dos
Ferraz, Ariane Coelho
Vieira-Filho, Sidney Augusto
Moraes, Thaís de Fátima Silva
Andrade, Ana Claúdia dos Santos Pereira
de Brito Magalhães, Cintia Lopes
Ferreira, Jaqueline Maria Siqueira
Magalhães, José Carlos de
Rodrigues, Rodrigo Araújo Lima
Author_xml – sequence: 1
  givenname: Waleska Stephanie da Cruz
  orcidid: 0000-0002-5134-719X
  surname: Nizer
  fullname: Nizer, Waleska Stephanie da Cruz
  email: waleskaob@gmail.com
  organization: Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, MG, Brazil
– sequence: 2
  givenname: Ariane Coelho
  surname: Ferraz
  fullname: Ferraz, Ariane Coelho
  email: arianecferraz@gmail.com
  organization: Institute of Exact and Biological Sciences, Biological Science Research Nucleus, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
– sequence: 3
  givenname: Thaís de Fátima Silva
  surname: Moraes
  fullname: Moraes, Thaís de Fátima Silva
  email: thais.moraes00@hotmail.com
  organization: Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
– sequence: 4
  givenname: William Gustavo
  surname: Lima
  fullname: Lima, William Gustavo
  email: williamgustavo_1992@hotmail.com
  organization: Laboratory of Medical Microbiology, Campus Centro Oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, MG, Brazil
– sequence: 5
  givenname: Josana Pereira dos
  surname: Santos
  fullname: Santos, Josana Pereira dos
  email: josanaitinga@hotmail.com
  organization: Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
– sequence: 6
  givenname: Lucienir Pains
  surname: Duarte
  fullname: Duarte, Lucienir Pains
  email: lucienir@gmail.com
  organization: Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
– sequence: 7
  givenname: Jaqueline Maria Siqueira
  surname: Ferreira
  fullname: Ferreira, Jaqueline Maria Siqueira
  email: jackmaria4@gmail.com
  organization: Laboratory of Medical Microbiology, Campus Centro Oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, MG, Brazil
– sequence: 8
  givenname: Cintia Lopes
  surname: de Brito Magalhães
  fullname: de Brito Magalhães, Cintia Lopes
  email: cintia.magalhaes@gmail.com
  organization: Institute of Exact and Biological Sciences, Biological Science Research Nucleus, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
– sequence: 9
  givenname: Sidney Augusto
  surname: Vieira-Filho
  fullname: Vieira-Filho, Sidney Augusto
  email: bibo@ef.ufop.br
  organization: Department of Pharmacy, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
– sequence: 10
  givenname: Ana Claúdia dos Santos Pereira
  surname: Andrade
  fullname: Andrade, Ana Claúdia dos Santos Pereira
  email: anaclaudiaandrade29@gmail.com
  organization: Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
– sequence: 11
  givenname: Rodrigo Araújo Lima
  surname: Rodrigues
  fullname: Rodrigues, Rodrigo Araújo Lima
  email: rodriguesral07@gmail.com
  organization: Institute of Exact and Biological Sciences, Biological Science Research Nucleus, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
– sequence: 12
  givenname: Jonatas Santos
  surname: Abrahão
  fullname: Abrahão, Jonatas Santos
  email: jonatas.abrahao@gmail.com
  organization: Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
– sequence: 13
  givenname: José Carlos de
  surname: Magalhães
  fullname: Magalhães, José Carlos de
  email: josecarlos@ufsj.edu.br
  organization: Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, MG, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33007390$$D View this record in MEDLINE/PubMed
BookMark eNqNks-OFCEQxolZ4_7RB_BiOM4epoUGGjqezLiuJms0GT2TGrraZcI0I9DGfRpfVSaze_GwmhCqiny_qqT4zsnJFCck5CVnDWe8e71ttrhvWtbWmgvZiifkjBvdLrXS4oScMaHN0mjJT8l5zlvGmOaSPSOnQtRU9OyM_P6SfC5-h8lP1OcYoOBAxxR3dA0BnAfqEuTsxxhqvvgEqTT06ldD1-52DqW5pNcNfRenhi5WGCCXBA4BL2mKsWQK9dB9LDgVD4FCDRtwpY47VN_rc73BT7nQdYH97V2ILjo3V2xOOOfn5OkIIeOL-3hBvr2_-rr6sLz5fP1x9fZm6STvy9IgtC2TfWe4UB3nXcdqVKCk5sAZKC7MgMMGtNy0QsmuRzEK0ykH_QgbLi7I4th3n-KPGXOxO58dhgATxjnbVimtO2kE-x8p7zvV9d2_pVIayYQxqkpf3UvnzQ4Hu09-B-nOPnxVFeijwKWYc8LROl-g-DjVlftgObMHU9itraawB1PYoykqyf8iH5o_xrw5MliX_tNjstl5nBwOPqErdoj-EfoPWivNVw
CitedBy_id crossref_primary_10_1016_j_phymed_2023_154973
crossref_primary_10_1016_j_tiv_2024_105867
crossref_primary_10_1080_14786419_2021_2023865
crossref_primary_10_3389_fonc_2021_671548
crossref_primary_10_2147_DDDT_S460093
crossref_primary_10_3390_molecules26133891
crossref_primary_10_5586_aa_169582
crossref_primary_10_2174_0122103155298189240415092518
crossref_primary_10_3390_molecules27238210
crossref_primary_10_3390_molecules28093873
crossref_primary_10_1016_j_jinorgbio_2023_112201
crossref_primary_10_3390_metabo12090839
crossref_primary_10_1016_j_sajb_2024_07_057
crossref_primary_10_1016_j_mtcomm_2024_110228
crossref_primary_10_3390_foods10030591
crossref_primary_10_1002_advs_202413174
crossref_primary_10_1080_14786419_2024_2309554
Cites_doi 10.1055/s-2006-957581
10.1155/2019/7431439
10.3390/molecules18011053
10.1039/C9MD00044E
10.1007/s10096-018-3223-9
10.1016/j.sajb.2017.11.010
10.3390/molecules23061494
10.5301/ijao.5000027
10.4103/jpnr.JPNR_8_18
10.1016/j.jep.2010.04.025
10.1055/s-2005-864096
10.1016/j.biopha.2018.12.076
10.1080/02681218980000501
10.1016/j.phrs.2017.11.027
10.1016/S0167-7012(03)00034-4
10.1007/s12272-013-0054-1
10.1007/s11908-004-0042-1
10.1016/j.bcp.2016.09.025
10.1038/s41579-018-0147-4
10.1089/mdr.2018.0016
10.1186/s12906-016-1371-y
10.3390/molecules24132471
10.1016/j.phymed.2012.05.013
10.1111/jam.13301
10.1017/ice.2017.177
10.1016/j.bcp.2016.12.002
10.2165/00003495-199652030-00005
10.1128/mBio.00198-12
10.1016/0022-1759(83)90303-4
10.1007/s12088-016-0625-1
10.1055/s-0030-1250500
10.1590/0037-8682-0452-2016
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jep.2020.113423
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1872-7573
ExternalDocumentID 33007390
10_1016_j_jep_2020_113423
S0378874120333080
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAWTL
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AKRWK
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SPT
SSH
SSP
SSZ
T5K
TN5
~G-
~KM
.GJ
29K
53G
5VS
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HMT
HVGLF
HX~
HZ~
R2-
RIG
SEW
WUQ
ZGI
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c419t-8ea22049681356116603565a5471a10a5138dedba74b235469e3f3865ca9fab13
IEDL.DBID .~1
ISSN 0378-8741
1872-7573
IngestDate Tue Aug 05 11:27:16 EDT 2025
Thu Jul 10 17:31:48 EDT 2025
Fri Jul 11 12:13:58 EDT 2025
Mon Jul 21 05:36:49 EDT 2025
Tue Jul 01 03:08:56 EDT 2025
Thu Apr 24 22:57:13 EDT 2025
Sun Apr 06 06:54:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue NA
Keywords CLSI
FIC
CI
MIC
FICI
Pristimerin
Anti-staphylococcal
MTT
ATCC
MBC
S. aureus biofilm
HER
PASS
ANOVA
OD
SI
Synergic effect
MRSA
Salacia crassifolia
Antibacterial activity
MH
TEM
WHO
Language English
License This article is made available under the Elsevier license.
Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-8ea22049681356116603565a5471a10a5138dedba74b235469e3f3865ca9fab13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5134-719X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0378874120333080
PMID 33007390
PQID 2448403885
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2557764830
proquest_miscellaneous_2551965696
proquest_miscellaneous_2448403885
pubmed_primary_33007390
crossref_citationtrail_10_1016_j_jep_2020_113423
crossref_primary_10_1016_j_jep_2020_113423
elsevier_sciencedirect_doi_10_1016_j_jep_2020_113423
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-10
PublicationDateYYYYMMDD 2021-02-10
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-10
  day: 10
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Journal of ethnopharmacology
PublicationTitleAlternate J Ethnopharmacol
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mohr (bib28) 2016
Craft, Nguyen, Berg, Townsend (bib9) 2019; 10
González, Alvarenga, Bazzocchi, Ravelo, Moujir (bib18) 1998; 64
Akbari, Hakemi-Vala, Pashaie, Bevalian, Hashemi, Pooshang Bagheri (bib3) 2019; 25
Alder, Eisenstein (bib4) 2004; 6
Carvalho, Carollo, de Magalhães, Palumbo, Boaretto, e Sá, Ferraz, Lima, Siqueira, Ferreira (bib6) 2018; 114
Dos Santos, Leite, da Costa Siqueira, Regasini, Martinez, Nogueira, Galuppo, Stolf, Pereira, Cicarelli, Furlan, Graminha (bib13) 2013; 18
Pitts, Hamilton, Zelver, Stewart (bib31) 2003; 54
Romero, Vivacqua, Abdulhamid, Baigori, Slanis, Allori, Tereschuk (bib33) 2016; 49
De Zoysa, Rathnayake, Hewawasam, Wijayaratne (bib12) 2019
Santos, Oliveira, Vieira-Filho, Pereira, de Souza, Gouveia, Sabino, Evangelista, Takahashi, Moura, Almeida, Duarte (bib36) 2020; 43
Borgers, Van De Ven, Van Cutsem (bib5) 1989; 27
Guimarães, Meireles, Lemos, Guimarães, Endringer, Fronza, Scherer (bib19) 2019; 24
Sant, Tupe, Ramana, Deshpande (bib35) 2016; 121
Mokoka, McGaw, Mdee, Bagla, Iwalewa, Eloff (bib29) 2013; 13
Fields, Lee, McConnell (bib16) 2017; 134
Acree, Morgan, David (bib2) 2017; 38
Cevatemre, Erkısa, Aztopal, Karakas, Alper, Tsimplouli, Sereti, Dimas, Armutak, Gurevin (bib7) 2018; 129
López, de León, Moujir (bib23) 2011; 77
Tavares (bib38) 2014
Mosmann (bib30) 1983; 65
Sharma, Dhasmana, Dubey, Kumar, Gangwal, Gupta, Singh (bib37) 2017; 57
Gonçalves, Braga, de Oliveira, Santiago, Carvalho, Cabral, Santiago, Sousa, Barros, do Nascimento, Nagao-Dias (bib17) 2012; 19
Kaplan, Izano, Gopal, Karwacki, Kim, Bose, Bayles, Horswill (bib21) 2012; 3
Kim, Park, Kim (bib22) 2013; 36
Rodrigues, Duarte, Silva, Silva, Mercadante-Simões, Takahashi, Matildes, Fonseca, Gomes, Vieira Filho (bib32) 2015; 38
World Health Organization WHO (bib41) 2017
Cruz, Ferraz, Lima, Moraes, Ferreira, Ferreira, de Brito Magalhães, Duarte, Vieira Filho, de Magalhães (bib10) 2018; 9
Li, Yan, Sun, Liu, Su, Chen, Zhang (bib25) 2019; 10
Lima, Alves-Nascimento, Andrade, Vieira, de Azambuja Ribeiro, Thomé, dos Santos, Ferreira, Soares (bib27) 2019; 111
Turner, Sharma-Kuinkel, Maskarinec, Eichenberger, Shah, Carugati, Holland, Fowler (bib39) 2019; 17
Voukeng, Beng, Kuete (bib40) 2016; 16
Devi, Nisha, Sakthivel, Pandian (bib11) 2010; 130
Fernandes, Martens (bib15) 2017; 133
Kaplan (bib20) 2011; 34
Rybak, McGrath (bib34) 1996; 52
Abdallah (bib1) 2011; 1
Clinical and Laboratory Standards Institute CLSI (bib8) 2012; 32
Espindola, Dusi, Demarque, Braz-Filho, Yan, Bokesch, Gustafson, Beutler (bib14) 2018; 23
León, Beltrán, Moujir (bib24) 2005; 71
Lima, Alves, Cruz, Paiva (bib26) 2018; 37
Guimarães (10.1016/j.jep.2020.113423_bib19) 2019; 24
Kaplan (10.1016/j.jep.2020.113423_bib21) 2012; 3
Mohr (10.1016/j.jep.2020.113423_bib28) 2016
Rybak (10.1016/j.jep.2020.113423_bib34) 1996; 52
Acree (10.1016/j.jep.2020.113423_bib2) 2017; 38
Dos Santos (10.1016/j.jep.2020.113423_bib13) 2013; 18
Fields (10.1016/j.jep.2020.113423_bib16) 2017; 134
Craft (10.1016/j.jep.2020.113423_bib9) 2019; 10
Tavares (10.1016/j.jep.2020.113423_bib38) 2014
Pitts (10.1016/j.jep.2020.113423_bib31) 2003; 54
Clinical and Laboratory Standards Institute CLSI (10.1016/j.jep.2020.113423_bib8) 2012; 32
González (10.1016/j.jep.2020.113423_bib18) 1998; 64
Kaplan (10.1016/j.jep.2020.113423_bib20) 2011; 34
Lima (10.1016/j.jep.2020.113423_bib27) 2019; 111
Devi (10.1016/j.jep.2020.113423_bib11) 2010; 130
World Health Organization WHO (10.1016/j.jep.2020.113423_bib41) 2017
Sharma (10.1016/j.jep.2020.113423_bib37) 2017; 57
Voukeng (10.1016/j.jep.2020.113423_bib40) 2016; 16
Kim (10.1016/j.jep.2020.113423_bib22) 2013; 36
Santos (10.1016/j.jep.2020.113423_bib36) 2020; 43
Alder (10.1016/j.jep.2020.113423_bib4) 2004; 6
Romero (10.1016/j.jep.2020.113423_bib33) 2016; 49
Espindola (10.1016/j.jep.2020.113423_bib14) 2018; 23
López (10.1016/j.jep.2020.113423_bib23) 2011; 77
Mosmann (10.1016/j.jep.2020.113423_bib30) 1983; 65
León (10.1016/j.jep.2020.113423_bib24) 2005; 71
Abdallah (10.1016/j.jep.2020.113423_bib1) 2011; 1
Borgers (10.1016/j.jep.2020.113423_bib5) 1989; 27
Carvalho (10.1016/j.jep.2020.113423_bib6) 2018; 114
Mokoka (10.1016/j.jep.2020.113423_bib29) 2013; 13
Akbari (10.1016/j.jep.2020.113423_bib3) 2019; 25
De Zoysa (10.1016/j.jep.2020.113423_bib12) 2019
Li (10.1016/j.jep.2020.113423_bib25) 2019; 10
Sant (10.1016/j.jep.2020.113423_bib35) 2016; 121
Rodrigues (10.1016/j.jep.2020.113423_bib32) 2015; 38
Lima (10.1016/j.jep.2020.113423_bib26) 2018; 37
Turner (10.1016/j.jep.2020.113423_bib39) 2019; 17
Cevatemre (10.1016/j.jep.2020.113423_bib7) 2018; 129
Fernandes (10.1016/j.jep.2020.113423_bib15) 2017; 133
Gonçalves (10.1016/j.jep.2020.113423_bib17) 2012; 19
Cruz (10.1016/j.jep.2020.113423_bib10) 2018; 9
References_xml – volume: 77
  start-page: 726
  year: 2011
  end-page: 729
  ident: bib23
  article-title: Antibacterial properties of phenolic triterpenoids against
  publication-title: Planta Med.
– volume: 49
  start-page: 703
  year: 2016
  end-page: 712
  ident: bib33
  article-title: Biofilm inhibition activity of traditional medicinal plants from Northwestern Argentina against native pathogen and environmental microorganisms
  publication-title: Rev. Soc. Bras. Med. Trop.
– volume: 18
  start-page: 1053
  year: 2013
  end-page: 1062
  ident: bib13
  article-title: Antiprotozoal activity of quinonemethide triterpenes from
  publication-title: Molecules
– volume: 57
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib37
  article-title: Bacterial virulence factors: secreted for survival
  publication-title: Indian J. Microbiol.
– volume: 27
  start-page: 381
  year: 1989
  end-page: 389
  ident: bib5
  article-title: Structural degeneration of
  publication-title: J. Med. Vet. Mycol.
– volume: 114
  start-page: 181
  year: 2018
  end-page: 187
  ident: bib6
  article-title: Antibacterial and antifungal activities of phenolic compound-enriched ethyl acetate fraction from
  publication-title: South Afr. J. Bot.
– volume: 129
  start-page: 500
  year: 2018
  end-page: 514
  ident: bib7
  article-title: A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autopaghy in breast cancer
  publication-title: Pharmacol. Res.
– volume: 38
  start-page: 1226
  year: 2017
  end-page: 1234
  ident: bib2
  article-title: infections in chicago, 2006-2014: increase in CA MSSA and decrease in MRSA incidence
  publication-title: Infect. Control Hosp. Epidemiol.
– volume: 6
  start-page: 251
  year: 2004
  end-page: 253
  ident: bib4
  article-title: The advance of bactericidal drugs in the treatment of infection
  publication-title: Curr. Infect. Dis. Rep.
– volume: 9
  start-page: 21
  year: 2018
  end-page: 26
  ident: bib10
  article-title: Evaluation of the activity of
  publication-title: J. Pharm. Negat. Results
– volume: 19
  start-page: 962
  year: 2012
  end-page: 968
  ident: bib17
  article-title: Effect of subinihibitory and inhibitory concentrations of
  publication-title: Phytomedicine
– volume: 10
  start-page: 1231
  year: 2019
  end-page: 1241
  ident: bib9
  article-title: Methicillin-resistant
  publication-title: Med. Chem. Comm.
– volume: 25
  start-page: 193
  year: 2019
  end-page: 202
  ident: bib3
  article-title: Highly synergistic effects of melittin with conventional antibiotics against multidrug-resistant isolates of
  publication-title: Microb. Drug Resist.
– start-page: 237
  year: 2016
  end-page: 272
  ident: bib28
  article-title: History of antibiotics research
  publication-title: How to Overcome the Antibiotic Crisis
– volume: 17
  start-page: 203
  year: 2019
  end-page: 218
  ident: bib39
  article-title: Methicillin-resistant
  publication-title: Nat. Rev. Microbiol.
– volume: 64
  start-page: 769
  year: 1998
  end-page: 771
  ident: bib18
  article-title: A new bioactive norquinone-methide triterpene from
  publication-title: Planta Med.
– volume: 36
  start-page: 495
  year: 2013
  end-page: 500
  ident: bib22
  article-title: Anti-inflammatory effect of pristimerin on lipopolysaccharide-induced inflammatory responses in murine macrophages
  publication-title: Arch. Pharm. Res.
– volume: 1
  start-page: 16
  year: 2011
  end-page: 20
  ident: bib1
  article-title: Plants: an alternative source for antimicrobials
  publication-title: J. Appl. Pharmaceut. Sci.
– volume: 71
  start-page: 313
  year: 2005
  end-page: 319
  ident: bib24
  article-title: Antimicrobial activity of 6-oxophenolic triterpenoids. Mode of action against
  publication-title: Planta Med.
– volume: 111
  start-page: 270
  year: 2019
  end-page: 281
  ident: bib27
  article-title: Are the Statins promising antifungal agents against invasive candidiasis?
  publication-title: Biomed. Pharmacother.
– volume: 37
  start-page: 1009
  year: 2018
  end-page: 1019
  ident: bib26
  article-title: Chromosomally encoded and plasmid-mediated polymyxins resistance in
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
– year: 2019
  ident: bib12
  article-title: Determination of
  publication-title: Internet J. Microbiol.
– volume: 3
  start-page: e00198
  year: 2012
  end-page: e00212
  ident: bib21
  article-title: Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in
  publication-title: MBio
– volume: 65
  start-page: 55
  year: 1983
  end-page: 63
  ident: bib30
  article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays
  publication-title: J. Immunol. Methods
– year: 2017
  ident: bib41
  article-title: WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed
– volume: 34
  start-page: 737
  year: 2011
  end-page: 751
  ident: bib20
  article-title: Antibiotic-induced biofilm formation
  publication-title: Int. J. Artif. Organs
– volume: 43
  start-page: 558
  year: 2020
  end-page: 567
  ident: bib36
  article-title: Phytochemical and biological studies of constituents from roots of
  publication-title: Quim. Nova
– volume: 130
  start-page: 107
  year: 2010
  end-page: 115
  ident: bib11
  article-title: Eugenol (an essential oil of clove) acts as an antibacterial agent against
  publication-title: J. Ethnopharmacol.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib25
  article-title: Anti-cancer effects of pristimerin and the mechanisms: a critical review
  publication-title: Front. Pharmacol.
– volume: 133
  start-page: 152
  year: 2017
  end-page: 163
  ident: bib15
  article-title: Antibiotics in late clinical development
  publication-title: Biochem. Pharmacol.
– volume: 134
  start-page: 74
  year: 2017
  end-page: 86
  ident: bib16
  article-title: Using bacterial genomes and essential genes for the development of new antibiotics
  publication-title: Biochem. Pharmacol.
– volume: 38
  start-page: 237
  year: 2015
  end-page: 242
  ident: bib32
  article-title: (Celastraceae): chemical constituents and antimicrobial activity
  publication-title: Quim. Nova
– volume: 16
  start-page: 388
  year: 2016
  end-page: 396
  ident: bib40
  article-title: Antibacterial activity of six medicinal Cameroonian plants against Gram-positive and Gram-negative multidrug-resistant phenotypes
  publication-title: BMC Compl. Alternative Med.
– volume: 121
  start-page: 1498
  year: 2016
  end-page: 1510
  ident: bib35
  article-title: Fungal cell membrane - promising drug target for antifungal therapy
  publication-title: J. Appl. Microbiol.
– year: 2014
  ident: bib38
  article-title: Antibióticos e quimioterápicos para o clínico
– volume: 54
  start-page: 269
  year: 2003
  end-page: 276
  ident: bib31
  article-title: A microtiter-plate screening method for biofilm disinfection and removal
  publication-title: J. Microbiol. Methods
– volume: 52
  start-page: 390
  year: 1996
  end-page: 405
  ident: bib34
  article-title: Combination antimicrobial therapy for bacterial infections
  publication-title: Drugs
– volume: 13
  start-page: 11
  year: 2013
  ident: bib29
  article-title: Antimicrobial activity and cytotoxicity of triterpenes isolated from leaves of
  publication-title: BMC Compl. Alternative Med.
– volume: 23
  start-page: 1494
  year: 2018
  ident: bib14
  article-title: Cytotoxic triterpenes from
  publication-title: Molecules
– volume: 24
  start-page: 2471
  year: 2019
  end-page: 2482
  ident: bib19
  article-title: Antibacterial activity of terpenes and terpenoids present in essential oils
  publication-title: Molecules
– volume: 32
  start-page: 1
  year: 2012
  end-page: 68
  ident: bib8
  publication-title: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard
– volume: 64
  start-page: 769
  year: 1998
  ident: 10.1016/j.jep.2020.113423_bib18
  article-title: A new bioactive norquinone-methide triterpene from Maytenus scutioides
  publication-title: Planta Med.
  doi: 10.1055/s-2006-957581
– year: 2019
  ident: 10.1016/j.jep.2020.113423_bib12
  article-title: Determination of in vitro antimicrobial activity of five Sri Lankan medicinal plants against selected human pathogenic bacteria
  publication-title: Internet J. Microbiol.
  doi: 10.1155/2019/7431439
– volume: 18
  start-page: 1053
  year: 2013
  ident: 10.1016/j.jep.2020.113423_bib13
  article-title: Antiprotozoal activity of quinonemethide triterpenes from Maytenus ilicifolia (Celastraceae)
  publication-title: Molecules
  doi: 10.3390/molecules18011053
– volume: 10
  start-page: 1231
  year: 2019
  ident: 10.1016/j.jep.2020.113423_bib9
  article-title: Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype
  publication-title: Med. Chem. Comm.
  doi: 10.1039/C9MD00044E
– volume: 37
  start-page: 1009
  year: 2018
  ident: 10.1016/j.jep.2020.113423_bib26
  article-title: Chromosomally encoded and plasmid-mediated polymyxins resistance in Acinetobacter baumannii: a huge public health threat
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
  doi: 10.1007/s10096-018-3223-9
– volume: 114
  start-page: 181
  year: 2018
  ident: 10.1016/j.jep.2020.113423_bib6
  article-title: Antibacterial and antifungal activities of phenolic compound-enriched ethyl acetate fraction from Cochlospermum regium (mart. Et. Schr.) Pilger roots: mechanisms of action and synergism with tannin and gallic acid
  publication-title: South Afr. J. Bot.
  doi: 10.1016/j.sajb.2017.11.010
– volume: 13
  start-page: 11
  year: 2013
  ident: 10.1016/j.jep.2020.113423_bib29
  article-title: Antimicrobial activity and cytotoxicity of triterpenes isolated from leaves of Maytenus undata (Celastraceae)
  publication-title: BMC Compl. Alternative Med.
– volume: 23
  start-page: 1494
  year: 2018
  ident: 10.1016/j.jep.2020.113423_bib14
  article-title: Cytotoxic triterpenes from Salacia crassifolia and metabolite profiling of Celastraceae species
  publication-title: Molecules
  doi: 10.3390/molecules23061494
– volume: 34
  start-page: 737
  year: 2011
  ident: 10.1016/j.jep.2020.113423_bib20
  article-title: Antibiotic-induced biofilm formation
  publication-title: Int. J. Artif. Organs
  doi: 10.5301/ijao.5000027
– volume: 38
  start-page: 237
  year: 2015
  ident: 10.1016/j.jep.2020.113423_bib32
  article-title: Salacia crassifólia (Celastraceae): chemical constituents and antimicrobial activity
  publication-title: Quim. Nova
– volume: 9
  start-page: 21
  year: 2018
  ident: 10.1016/j.jep.2020.113423_bib10
  article-title: Evaluation of the activity of Tontelea micrantha extracts against bacteria, Candida and Mayaro virus
  publication-title: J. Pharm. Negat. Results
  doi: 10.4103/jpnr.JPNR_8_18
– volume: 130
  start-page: 107
  year: 2010
  ident: 10.1016/j.jep.2020.113423_bib11
  article-title: Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2010.04.025
– volume: 71
  start-page: 313
  year: 2005
  ident: 10.1016/j.jep.2020.113423_bib24
  article-title: Antimicrobial activity of 6-oxophenolic triterpenoids. Mode of action against Bacillus subtilis
  publication-title: Planta Med.
  doi: 10.1055/s-2005-864096
– volume: 43
  start-page: 558
  year: 2020
  ident: 10.1016/j.jep.2020.113423_bib36
  article-title: Phytochemical and biological studies of constituents from roots of Salacia crassifolia (Celastraceae)
  publication-title: Quim. Nova
– volume: 111
  start-page: 270
  year: 2019
  ident: 10.1016/j.jep.2020.113423_bib27
  article-title: Are the Statins promising antifungal agents against invasive candidiasis?
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.12.076
– volume: 27
  start-page: 381
  year: 1989
  ident: 10.1016/j.jep.2020.113423_bib5
  article-title: Structural degeneration of Aspergillus fumigatus after exposure to saperconazole
  publication-title: J. Med. Vet. Mycol.
  doi: 10.1080/02681218980000501
– volume: 129
  start-page: 500
  year: 2018
  ident: 10.1016/j.jep.2020.113423_bib7
  article-title: A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autopaghy in breast cancer
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2017.11.027
– volume: 54
  start-page: 269
  year: 2003
  ident: 10.1016/j.jep.2020.113423_bib31
  article-title: A microtiter-plate screening method for biofilm disinfection and removal
  publication-title: J. Microbiol. Methods
  doi: 10.1016/S0167-7012(03)00034-4
– volume: 1
  start-page: 16
  year: 2011
  ident: 10.1016/j.jep.2020.113423_bib1
  article-title: Plants: an alternative source for antimicrobials
  publication-title: J. Appl. Pharmaceut. Sci.
– volume: 36
  start-page: 495
  year: 2013
  ident: 10.1016/j.jep.2020.113423_bib22
  article-title: Anti-inflammatory effect of pristimerin on lipopolysaccharide-induced inflammatory responses in murine macrophages
  publication-title: Arch. Pharm. Res.
  doi: 10.1007/s12272-013-0054-1
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.jep.2020.113423_bib25
  article-title: Anti-cancer effects of pristimerin and the mechanisms: a critical review
  publication-title: Front. Pharmacol.
– start-page: 237
  year: 2016
  ident: 10.1016/j.jep.2020.113423_bib28
  article-title: History of antibiotics research
– volume: 6
  start-page: 251
  year: 2004
  ident: 10.1016/j.jep.2020.113423_bib4
  article-title: The advance of bactericidal drugs in the treatment of infection
  publication-title: Curr. Infect. Dis. Rep.
  doi: 10.1007/s11908-004-0042-1
– volume: 133
  start-page: 152
  year: 2017
  ident: 10.1016/j.jep.2020.113423_bib15
  article-title: Antibiotics in late clinical development
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2016.09.025
– volume: 17
  start-page: 203
  year: 2019
  ident: 10.1016/j.jep.2020.113423_bib39
  article-title: Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0147-4
– volume: 25
  start-page: 193
  year: 2019
  ident: 10.1016/j.jep.2020.113423_bib3
  article-title: Highly synergistic effects of melittin with conventional antibiotics against multidrug-resistant isolates of Acinetobacter baumannii and Pseudomonas aeruginosa
  publication-title: Microb. Drug Resist.
  doi: 10.1089/mdr.2018.0016
– volume: 16
  start-page: 388
  year: 2016
  ident: 10.1016/j.jep.2020.113423_bib40
  article-title: Antibacterial activity of six medicinal Cameroonian plants against Gram-positive and Gram-negative multidrug-resistant phenotypes
  publication-title: BMC Compl. Alternative Med.
  doi: 10.1186/s12906-016-1371-y
– volume: 24
  start-page: 2471
  year: 2019
  ident: 10.1016/j.jep.2020.113423_bib19
  article-title: Antibacterial activity of terpenes and terpenoids present in essential oils
  publication-title: Molecules
  doi: 10.3390/molecules24132471
– volume: 19
  start-page: 962
  year: 2012
  ident: 10.1016/j.jep.2020.113423_bib17
  article-title: Effect of subinihibitory and inhibitory concentrations of Plectranthus amboinicus (Lour.) Spreng essential oil on Klebsiella pneumoniae
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2012.05.013
– volume: 121
  start-page: 1498
  year: 2016
  ident: 10.1016/j.jep.2020.113423_bib35
  article-title: Fungal cell membrane - promising drug target for antifungal therapy
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.13301
– volume: 38
  start-page: 1226
  year: 2017
  ident: 10.1016/j.jep.2020.113423_bib2
  article-title: S. aureus infections in chicago, 2006-2014: increase in CA MSSA and decrease in MRSA incidence
  publication-title: Infect. Control Hosp. Epidemiol.
  doi: 10.1017/ice.2017.177
– volume: 134
  start-page: 74
  year: 2017
  ident: 10.1016/j.jep.2020.113423_bib16
  article-title: Using bacterial genomes and essential genes for the development of new antibiotics
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2016.12.002
– volume: 52
  start-page: 390
  year: 1996
  ident: 10.1016/j.jep.2020.113423_bib34
  article-title: Combination antimicrobial therapy for bacterial infections
  publication-title: Drugs
  doi: 10.2165/00003495-199652030-00005
– volume: 3
  start-page: e00198
  issue: 4
  year: 2012
  ident: 10.1016/j.jep.2020.113423_bib21
  article-title: Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus
  publication-title: MBio
  doi: 10.1128/mBio.00198-12
– volume: 65
  start-page: 55
  year: 1983
  ident: 10.1016/j.jep.2020.113423_bib30
  article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays
  publication-title: J. Immunol. Methods
  doi: 10.1016/0022-1759(83)90303-4
– volume: 57
  start-page: 1
  year: 2017
  ident: 10.1016/j.jep.2020.113423_bib37
  article-title: Bacterial virulence factors: secreted for survival
  publication-title: Indian J. Microbiol.
  doi: 10.1007/s12088-016-0625-1
– volume: 77
  start-page: 726
  year: 2011
  ident: 10.1016/j.jep.2020.113423_bib23
  article-title: Antibacterial properties of phenolic triterpenoids against Staphylococcus epidermidis
  publication-title: Planta Med.
  doi: 10.1055/s-0030-1250500
– volume: 32
  start-page: 1
  year: 2012
  ident: 10.1016/j.jep.2020.113423_bib8
– year: 2014
  ident: 10.1016/j.jep.2020.113423_bib38
– volume: 49
  start-page: 703
  year: 2016
  ident: 10.1016/j.jep.2020.113423_bib33
  article-title: Biofilm inhibition activity of traditional medicinal plants from Northwestern Argentina against native pathogen and environmental microorganisms
  publication-title: Rev. Soc. Bras. Med. Trop.
  doi: 10.1590/0037-8682-0452-2016
– year: 2017
  ident: 10.1016/j.jep.2020.113423_bib41
SSID ssj0007140
Score 2.4413974
Snippet Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and...
Ethnopharmacological relevance Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113423
SubjectTerms Animals
Anti-Bacterial Agents - isolation & purification
Anti-Bacterial Agents - pharmacology
Anti-staphylococcal
Antibacterial activity
antibacterial properties
antibiotics
biofilm
Biofilms - drug effects
Chlorocebus aethiops
computer simulation
computer software
cytotoxicity
dose response
gentian violet
Gram-Positive Bacteria - drug effects
hexane
mechanism of action
membrane permeability
Microbial Sensitivity Tests
minimum inhibitory concentration
Plant Roots
Pristimerin
S. aureus biofilm
Salacia
Salacia - chemistry
Salacia crassifolia
Staphylococcal Infections - drug therapy
Staphylococcus aureus
Staphylococcus aureus - drug effects
Synergic effect
synergism
traditional medicine
transmission electron microscopy
Triterpenes - isolation & purification
Triterpenes - pharmacology
triterpenoids
Vero Cells
Title Pristimerin isolated from Salacia crassifolia (Mart. Ex. Schult.) G. Don. (Celastraceae) roots as a potential antibacterial agent against Staphylococcus aureus
URI https://dx.doi.org/10.1016/j.jep.2020.113423
https://www.ncbi.nlm.nih.gov/pubmed/33007390
https://www.proquest.com/docview/2448403885
https://www.proquest.com/docview/2551965696
https://www.proquest.com/docview/2557764830
Volume 266
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5Ceuml9F33EbZQQlIie6VdvY7BTeq2NBicQG5itVoRBSMZW4Lm0r_Sv9pv9IjpIT4UjGyJXbPSzO58o535hrFPJnZzLw9zJwgFva3KcidVYYZT1xA9XCpTeqH_8yKYXanv1_71HpsOuTAUVtmv_d2a3q7W_ZVJ_zQnq6KYLARRocMgekLCKY_Ib1cqJC0f_96GeYRdUiQ1dqj1sLPZxnjdWqKs9NrKJsqTD9mmh7Bna4POn7InPXjkp934nrE9Wz5nh_OOffruhF9uk6k2J_yQz7e81Hcv2J95O6Fpi6bkBXQOMDPjlF_CF3qpISRu1sDSRV4t8fuIGAbG_OzXmC_MTbOsx8f865h_gdryo6kF6q7X2lhtjznQd73hGh--qmqKP8IoIbIi7big6YxSuHDUBfAoB8SFeGFHK2MadGvWttm8ZFfnZ5fTmdPXZ3CMcuPaiaz2PHgYQeRKwDA3CAS-fe3D4GlXaN-VUWazVIcq9aQPR9zKnGqMGh3nOnXlK7ZfVqV9w3hoUxP5uBgroawldsQY_wj3KsNyHcUjJgbJJKYnL6caGstkiFK7TSDMhISZdMIcsc_3XVYdc8euxmoQd_KP-iWwLLu6fRxUI8G0pL0WXdqq2SRATXCdZRT5O9oArcYB3enONmEYqEiKEXvd6d793UDraZ9VvP2_wb9jjz0K0KHqNuI926_Xjf0AhFWnB-0UOmCPTr_9mF38BebcI1s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6Cc2gvpe-6zy2UkJTIXmn1PAY3qdMkxmAHchOr1YooGMnYEjS_pn-131iSQw_xoWBkS-yalWZ25hvtzjeMfdORnTlZkFl-IOhtVZpZiRukOLU10cMlMqEX-lcTf3zt_rrxbvbYqMuFoW2Vre1vbPrGWrdXhu3THC7zfDgTRIUOh-gIiaA8RNy-T-xUXo_tn5xfjCdbgxw0eZHU3qIO3eLmZpvXnSHWSmdT3MR15GPu6TH4uXFDZ8_ZsxY_8pNmiC_YnilesoNpQ0B9f8znD_lU62N-wKcP1NT3r9if6WZO0ypNwXOoHZBmyinFhM_UQkFOXK8Ap_OsXOD3IZEMDPjp7wGf6dt6UQ2O-M8B_wHN5YcjA-BdrZQ2yhxxAPBqzRU-fFlWtAUJo4TU8qShg6YzyuLCUeWApBwoFxKGKy21rtGtXpl6_Zpdn53OR2OrLdFgadeOKis0ynEQZPihLYHEbN8X-PYU5GArWyjPlmFq0kQFbuJID7G4kRmVGdUqylRiyzesV5SFecd4YBIdergYucI1hggSI_wjIqwUFjuM-kx0kol1y19OZTQWcbdR7S6GMGMSZtwIs8--b7ssG_KOXY3dTtzxPxoYw7ns6va1U40YM5OWW1RhynodAzghepZh6O1oA8Aa-XSnO9sEge-GUvTZ20b3tncDxaelVvH-_wb_hT0Zz68u48vzycUH9tSh_TpU7EZ8ZL1qVZtPAFxV8rmdUH8B0akmDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pristimerin+isolated+from+Salacia+crassifolia+%28Mart.+Ex.+Schult.%29+G.+Don.+%28Celastraceae%29+roots+as+a+potential+antibacterial+agent+against+Staphylococcus+aureus&rft.jtitle=Journal+of+ethnopharmacology&rft.au=Nizer%2C+Waleska+Stephanie+da+Cruz&rft.au=Ferraz%2C+Ariane+Coelho&rft.au=Moraes%2C+Tha%C3%ADs+de+F%C3%A1tima+Silva&rft.au=Lima%2C+William+Gustavo&rft.date=2021-02-10&rft.eissn=1872-7573&rft.volume=266&rft.spage=113423&rft_id=info:doi/10.1016%2Fj.jep.2020.113423&rft_id=info%3Apmid%2F33007390&rft.externalDocID=33007390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-8741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-8741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-8741&client=summon