Pristimerin isolated from Salacia crassifolia (Mart. Ex. Schult.) G. Don. (Celastraceae) roots as a potential antibacterial agent against Staphylococcus aureus
Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-infla...
Saved in:
Published in | Journal of ethnopharmacology Vol. 266; no. NA; p. 113423 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
10.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent.
This study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria.
First, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus. Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS.
HER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195–25 μg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus. Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested.
Overall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus.
[Display omitted]
•The hexane extract of roots of Salacia crassifolia and pristimerin are promising anti-Gram-positive agents.•The hexane extract of roots of Salacia crassifolia and pristimerin disrupt cell membranes of Gram-positive bacteria.•The hexane extract of roots of Salacia crassifolia and pristimerin showed antibiofilm effect against Staphylococcus aureus.•The combination of the extract of roots of Salacia crassifolia and pristimerin with antibiotics produced a synergic effect. |
---|---|
AbstractList | Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent.
This study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria.
First, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus. Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS.
HER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195-25 μg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus. Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested.
Overall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus. Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent.ETHNOPHARMACOLOGICAL RELEVANCEPristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent.This study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria.AIM OF THE STUDYThis study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria.First, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus. Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS.MATERIALS AND METHODSFirst, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus. Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS.HER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195-25 μg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus. Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested.RESULTSHER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195-25 μg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus. Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested.Overall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus.CONCLUSIONSOverall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus. Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent.This study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria.First, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus. Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS.HER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195–25 μg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus. Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested.Overall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus. Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent. This study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria. First, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus. Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS. HER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195–25 μg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus. Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested. Overall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus. [Display omitted] •The hexane extract of roots of Salacia crassifolia and pristimerin are promising anti-Gram-positive agents.•The hexane extract of roots of Salacia crassifolia and pristimerin disrupt cell membranes of Gram-positive bacteria.•The hexane extract of roots of Salacia crassifolia and pristimerin showed antibiofilm effect against Staphylococcus aureus.•The combination of the extract of roots of Salacia crassifolia and pristimerin with antibiotics produced a synergic effect. Ethnopharmacological relevance Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent. Aim of the study This study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria. Materials and methods First, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus . Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS. Results: HER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195-25 μg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus . Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested. Conclusions: Overall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus. Graphical abstract Image 1. Highlights: The hexane extract of roots of Salacia crassifolia and pristimerin are promising anti-Gram-positive agents. The hexane extract of roots of Salacia crassifolia and pristimerin disrupt cell membranes of Gram-positive bacteria. The hexane extract of roots of Salacia crassifolia and pristimerin showed antibiofilm effect against Staphylococcus aureus . The combination of the extract of roots of Salacia crassifolia and pristimerin with antibiotics produced a synergic effect. |
ArticleNumber | 113423 |
Author | Lima, William Gustavo Duarte, Lucienir Pains Abrahão, Jonatas Santos Nizer, Waleska Stephanie da Cruz Santos, Josana Pereira dos Ferraz, Ariane Coelho Vieira-Filho, Sidney Augusto Moraes, Thaís de Fátima Silva Andrade, Ana Claúdia dos Santos Pereira de Brito Magalhães, Cintia Lopes Ferreira, Jaqueline Maria Siqueira Magalhães, José Carlos de Rodrigues, Rodrigo Araújo Lima |
Author_xml | – sequence: 1 givenname: Waleska Stephanie da Cruz orcidid: 0000-0002-5134-719X surname: Nizer fullname: Nizer, Waleska Stephanie da Cruz email: waleskaob@gmail.com organization: Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, MG, Brazil – sequence: 2 givenname: Ariane Coelho surname: Ferraz fullname: Ferraz, Ariane Coelho email: arianecferraz@gmail.com organization: Institute of Exact and Biological Sciences, Biological Science Research Nucleus, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil – sequence: 3 givenname: Thaís de Fátima Silva surname: Moraes fullname: Moraes, Thaís de Fátima Silva email: thais.moraes00@hotmail.com organization: Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil – sequence: 4 givenname: William Gustavo surname: Lima fullname: Lima, William Gustavo email: williamgustavo_1992@hotmail.com organization: Laboratory of Medical Microbiology, Campus Centro Oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, MG, Brazil – sequence: 5 givenname: Josana Pereira dos surname: Santos fullname: Santos, Josana Pereira dos email: josanaitinga@hotmail.com organization: Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil – sequence: 6 givenname: Lucienir Pains surname: Duarte fullname: Duarte, Lucienir Pains email: lucienir@gmail.com organization: Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil – sequence: 7 givenname: Jaqueline Maria Siqueira surname: Ferreira fullname: Ferreira, Jaqueline Maria Siqueira email: jackmaria4@gmail.com organization: Laboratory of Medical Microbiology, Campus Centro Oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, MG, Brazil – sequence: 8 givenname: Cintia Lopes surname: de Brito Magalhães fullname: de Brito Magalhães, Cintia Lopes email: cintia.magalhaes@gmail.com organization: Institute of Exact and Biological Sciences, Biological Science Research Nucleus, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil – sequence: 9 givenname: Sidney Augusto surname: Vieira-Filho fullname: Vieira-Filho, Sidney Augusto email: bibo@ef.ufop.br organization: Department of Pharmacy, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil – sequence: 10 givenname: Ana Claúdia dos Santos Pereira surname: Andrade fullname: Andrade, Ana Claúdia dos Santos Pereira email: anaclaudiaandrade29@gmail.com organization: Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil – sequence: 11 givenname: Rodrigo Araújo Lima surname: Rodrigues fullname: Rodrigues, Rodrigo Araújo Lima email: rodriguesral07@gmail.com organization: Institute of Exact and Biological Sciences, Biological Science Research Nucleus, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil – sequence: 12 givenname: Jonatas Santos surname: Abrahão fullname: Abrahão, Jonatas Santos email: jonatas.abrahao@gmail.com organization: Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil – sequence: 13 givenname: José Carlos de surname: Magalhães fullname: Magalhães, José Carlos de email: josecarlos@ufsj.edu.br organization: Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, MG, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33007390$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks-OFCEQxolZ4_7RB_BiOM4epoUGGjqezLiuJms0GT2TGrraZcI0I9DGfRpfVSaze_GwmhCqiny_qqT4zsnJFCck5CVnDWe8e71ttrhvWtbWmgvZiifkjBvdLrXS4oScMaHN0mjJT8l5zlvGmOaSPSOnQtRU9OyM_P6SfC5-h8lP1OcYoOBAxxR3dA0BnAfqEuTsxxhqvvgEqTT06ldD1-52DqW5pNcNfRenhi5WGCCXBA4BL2mKsWQK9dB9LDgVD4FCDRtwpY47VN_rc73BT7nQdYH97V2ILjo3V2xOOOfn5OkIIeOL-3hBvr2_-rr6sLz5fP1x9fZm6STvy9IgtC2TfWe4UB3nXcdqVKCk5sAZKC7MgMMGtNy0QsmuRzEK0ykH_QgbLi7I4th3n-KPGXOxO58dhgATxjnbVimtO2kE-x8p7zvV9d2_pVIayYQxqkpf3UvnzQ4Hu09-B-nOPnxVFeijwKWYc8LROl-g-DjVlftgObMHU9itraawB1PYoykqyf8iH5o_xrw5MliX_tNjstl5nBwOPqErdoj-EfoPWivNVw |
CitedBy_id | crossref_primary_10_1016_j_phymed_2023_154973 crossref_primary_10_1016_j_tiv_2024_105867 crossref_primary_10_1080_14786419_2021_2023865 crossref_primary_10_3389_fonc_2021_671548 crossref_primary_10_2147_DDDT_S460093 crossref_primary_10_3390_molecules26133891 crossref_primary_10_5586_aa_169582 crossref_primary_10_2174_0122103155298189240415092518 crossref_primary_10_3390_molecules27238210 crossref_primary_10_3390_molecules28093873 crossref_primary_10_1016_j_jinorgbio_2023_112201 crossref_primary_10_3390_metabo12090839 crossref_primary_10_1016_j_sajb_2024_07_057 crossref_primary_10_1016_j_mtcomm_2024_110228 crossref_primary_10_3390_foods10030591 crossref_primary_10_1002_advs_202413174 crossref_primary_10_1080_14786419_2024_2309554 |
Cites_doi | 10.1055/s-2006-957581 10.1155/2019/7431439 10.3390/molecules18011053 10.1039/C9MD00044E 10.1007/s10096-018-3223-9 10.1016/j.sajb.2017.11.010 10.3390/molecules23061494 10.5301/ijao.5000027 10.4103/jpnr.JPNR_8_18 10.1016/j.jep.2010.04.025 10.1055/s-2005-864096 10.1016/j.biopha.2018.12.076 10.1080/02681218980000501 10.1016/j.phrs.2017.11.027 10.1016/S0167-7012(03)00034-4 10.1007/s12272-013-0054-1 10.1007/s11908-004-0042-1 10.1016/j.bcp.2016.09.025 10.1038/s41579-018-0147-4 10.1089/mdr.2018.0016 10.1186/s12906-016-1371-y 10.3390/molecules24132471 10.1016/j.phymed.2012.05.013 10.1111/jam.13301 10.1017/ice.2017.177 10.1016/j.bcp.2016.12.002 10.2165/00003495-199652030-00005 10.1128/mBio.00198-12 10.1016/0022-1759(83)90303-4 10.1007/s12088-016-0625-1 10.1055/s-0030-1250500 10.1590/0037-8682-0452-2016 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jep.2020.113423 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1872-7573 |
ExternalDocumentID | 33007390 10_1016_j_jep_2020_113423 S0378874120333080 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAWTL AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFTJW AFXIZ AGUBO AGYEJ AIEXJ AIKHN AITUG AKRWK ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SPT SSH SSP SSZ T5K TN5 ~G- ~KM .GJ 29K 53G 5VS AAQXK AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION D-I EJD FEDTE FGOYB G-2 HMT HVGLF HX~ HZ~ R2- RIG SEW WUQ ZGI CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c419t-8ea22049681356116603565a5471a10a5138dedba74b235469e3f3865ca9fab13 |
IEDL.DBID | .~1 |
ISSN | 0378-8741 1872-7573 |
IngestDate | Tue Aug 05 11:27:16 EDT 2025 Thu Jul 10 17:31:48 EDT 2025 Fri Jul 11 12:13:58 EDT 2025 Mon Jul 21 05:36:49 EDT 2025 Tue Jul 01 03:08:56 EDT 2025 Thu Apr 24 22:57:13 EDT 2025 Sun Apr 06 06:54:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | NA |
Keywords | CLSI FIC CI MIC FICI Pristimerin Anti-staphylococcal MTT ATCC MBC S. aureus biofilm HER PASS ANOVA OD SI Synergic effect MRSA Salacia crassifolia Antibacterial activity MH TEM WHO |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-8ea22049681356116603565a5471a10a5138dedba74b235469e3f3865ca9fab13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5134-719X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0378874120333080 |
PMID | 33007390 |
PQID | 2448403885 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2557764830 proquest_miscellaneous_2551965696 proquest_miscellaneous_2448403885 pubmed_primary_33007390 crossref_citationtrail_10_1016_j_jep_2020_113423 crossref_primary_10_1016_j_jep_2020_113423 elsevier_sciencedirect_doi_10_1016_j_jep_2020_113423 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-10 |
PublicationDateYYYYMMDD | 2021-02-10 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Journal of ethnopharmacology |
PublicationTitleAlternate | J Ethnopharmacol |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mohr (bib28) 2016 Craft, Nguyen, Berg, Townsend (bib9) 2019; 10 González, Alvarenga, Bazzocchi, Ravelo, Moujir (bib18) 1998; 64 Akbari, Hakemi-Vala, Pashaie, Bevalian, Hashemi, Pooshang Bagheri (bib3) 2019; 25 Alder, Eisenstein (bib4) 2004; 6 Carvalho, Carollo, de Magalhães, Palumbo, Boaretto, e Sá, Ferraz, Lima, Siqueira, Ferreira (bib6) 2018; 114 Dos Santos, Leite, da Costa Siqueira, Regasini, Martinez, Nogueira, Galuppo, Stolf, Pereira, Cicarelli, Furlan, Graminha (bib13) 2013; 18 Pitts, Hamilton, Zelver, Stewart (bib31) 2003; 54 Romero, Vivacqua, Abdulhamid, Baigori, Slanis, Allori, Tereschuk (bib33) 2016; 49 De Zoysa, Rathnayake, Hewawasam, Wijayaratne (bib12) 2019 Santos, Oliveira, Vieira-Filho, Pereira, de Souza, Gouveia, Sabino, Evangelista, Takahashi, Moura, Almeida, Duarte (bib36) 2020; 43 Borgers, Van De Ven, Van Cutsem (bib5) 1989; 27 Guimarães, Meireles, Lemos, Guimarães, Endringer, Fronza, Scherer (bib19) 2019; 24 Sant, Tupe, Ramana, Deshpande (bib35) 2016; 121 Mokoka, McGaw, Mdee, Bagla, Iwalewa, Eloff (bib29) 2013; 13 Fields, Lee, McConnell (bib16) 2017; 134 Acree, Morgan, David (bib2) 2017; 38 Cevatemre, Erkısa, Aztopal, Karakas, Alper, Tsimplouli, Sereti, Dimas, Armutak, Gurevin (bib7) 2018; 129 López, de León, Moujir (bib23) 2011; 77 Tavares (bib38) 2014 Mosmann (bib30) 1983; 65 Sharma, Dhasmana, Dubey, Kumar, Gangwal, Gupta, Singh (bib37) 2017; 57 Gonçalves, Braga, de Oliveira, Santiago, Carvalho, Cabral, Santiago, Sousa, Barros, do Nascimento, Nagao-Dias (bib17) 2012; 19 Kaplan, Izano, Gopal, Karwacki, Kim, Bose, Bayles, Horswill (bib21) 2012; 3 Kim, Park, Kim (bib22) 2013; 36 Rodrigues, Duarte, Silva, Silva, Mercadante-Simões, Takahashi, Matildes, Fonseca, Gomes, Vieira Filho (bib32) 2015; 38 World Health Organization WHO (bib41) 2017 Cruz, Ferraz, Lima, Moraes, Ferreira, Ferreira, de Brito Magalhães, Duarte, Vieira Filho, de Magalhães (bib10) 2018; 9 Li, Yan, Sun, Liu, Su, Chen, Zhang (bib25) 2019; 10 Lima, Alves-Nascimento, Andrade, Vieira, de Azambuja Ribeiro, Thomé, dos Santos, Ferreira, Soares (bib27) 2019; 111 Turner, Sharma-Kuinkel, Maskarinec, Eichenberger, Shah, Carugati, Holland, Fowler (bib39) 2019; 17 Voukeng, Beng, Kuete (bib40) 2016; 16 Devi, Nisha, Sakthivel, Pandian (bib11) 2010; 130 Fernandes, Martens (bib15) 2017; 133 Kaplan (bib20) 2011; 34 Rybak, McGrath (bib34) 1996; 52 Abdallah (bib1) 2011; 1 Clinical and Laboratory Standards Institute CLSI (bib8) 2012; 32 Espindola, Dusi, Demarque, Braz-Filho, Yan, Bokesch, Gustafson, Beutler (bib14) 2018; 23 León, Beltrán, Moujir (bib24) 2005; 71 Lima, Alves, Cruz, Paiva (bib26) 2018; 37 Guimarães (10.1016/j.jep.2020.113423_bib19) 2019; 24 Kaplan (10.1016/j.jep.2020.113423_bib21) 2012; 3 Mohr (10.1016/j.jep.2020.113423_bib28) 2016 Rybak (10.1016/j.jep.2020.113423_bib34) 1996; 52 Acree (10.1016/j.jep.2020.113423_bib2) 2017; 38 Dos Santos (10.1016/j.jep.2020.113423_bib13) 2013; 18 Fields (10.1016/j.jep.2020.113423_bib16) 2017; 134 Craft (10.1016/j.jep.2020.113423_bib9) 2019; 10 Tavares (10.1016/j.jep.2020.113423_bib38) 2014 Pitts (10.1016/j.jep.2020.113423_bib31) 2003; 54 Clinical and Laboratory Standards Institute CLSI (10.1016/j.jep.2020.113423_bib8) 2012; 32 González (10.1016/j.jep.2020.113423_bib18) 1998; 64 Kaplan (10.1016/j.jep.2020.113423_bib20) 2011; 34 Lima (10.1016/j.jep.2020.113423_bib27) 2019; 111 Devi (10.1016/j.jep.2020.113423_bib11) 2010; 130 World Health Organization WHO (10.1016/j.jep.2020.113423_bib41) 2017 Sharma (10.1016/j.jep.2020.113423_bib37) 2017; 57 Voukeng (10.1016/j.jep.2020.113423_bib40) 2016; 16 Kim (10.1016/j.jep.2020.113423_bib22) 2013; 36 Santos (10.1016/j.jep.2020.113423_bib36) 2020; 43 Alder (10.1016/j.jep.2020.113423_bib4) 2004; 6 Romero (10.1016/j.jep.2020.113423_bib33) 2016; 49 Espindola (10.1016/j.jep.2020.113423_bib14) 2018; 23 López (10.1016/j.jep.2020.113423_bib23) 2011; 77 Mosmann (10.1016/j.jep.2020.113423_bib30) 1983; 65 León (10.1016/j.jep.2020.113423_bib24) 2005; 71 Abdallah (10.1016/j.jep.2020.113423_bib1) 2011; 1 Borgers (10.1016/j.jep.2020.113423_bib5) 1989; 27 Carvalho (10.1016/j.jep.2020.113423_bib6) 2018; 114 Mokoka (10.1016/j.jep.2020.113423_bib29) 2013; 13 Akbari (10.1016/j.jep.2020.113423_bib3) 2019; 25 De Zoysa (10.1016/j.jep.2020.113423_bib12) 2019 Li (10.1016/j.jep.2020.113423_bib25) 2019; 10 Sant (10.1016/j.jep.2020.113423_bib35) 2016; 121 Rodrigues (10.1016/j.jep.2020.113423_bib32) 2015; 38 Lima (10.1016/j.jep.2020.113423_bib26) 2018; 37 Turner (10.1016/j.jep.2020.113423_bib39) 2019; 17 Cevatemre (10.1016/j.jep.2020.113423_bib7) 2018; 129 Fernandes (10.1016/j.jep.2020.113423_bib15) 2017; 133 Gonçalves (10.1016/j.jep.2020.113423_bib17) 2012; 19 Cruz (10.1016/j.jep.2020.113423_bib10) 2018; 9 |
References_xml | – volume: 77 start-page: 726 year: 2011 end-page: 729 ident: bib23 article-title: Antibacterial properties of phenolic triterpenoids against publication-title: Planta Med. – volume: 49 start-page: 703 year: 2016 end-page: 712 ident: bib33 article-title: Biofilm inhibition activity of traditional medicinal plants from Northwestern Argentina against native pathogen and environmental microorganisms publication-title: Rev. Soc. Bras. Med. Trop. – volume: 18 start-page: 1053 year: 2013 end-page: 1062 ident: bib13 article-title: Antiprotozoal activity of quinonemethide triterpenes from publication-title: Molecules – volume: 57 start-page: 1 year: 2017 end-page: 10 ident: bib37 article-title: Bacterial virulence factors: secreted for survival publication-title: Indian J. Microbiol. – volume: 27 start-page: 381 year: 1989 end-page: 389 ident: bib5 article-title: Structural degeneration of publication-title: J. Med. Vet. Mycol. – volume: 114 start-page: 181 year: 2018 end-page: 187 ident: bib6 article-title: Antibacterial and antifungal activities of phenolic compound-enriched ethyl acetate fraction from publication-title: South Afr. J. Bot. – volume: 129 start-page: 500 year: 2018 end-page: 514 ident: bib7 article-title: A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autopaghy in breast cancer publication-title: Pharmacol. Res. – volume: 38 start-page: 1226 year: 2017 end-page: 1234 ident: bib2 article-title: infections in chicago, 2006-2014: increase in CA MSSA and decrease in MRSA incidence publication-title: Infect. Control Hosp. Epidemiol. – volume: 6 start-page: 251 year: 2004 end-page: 253 ident: bib4 article-title: The advance of bactericidal drugs in the treatment of infection publication-title: Curr. Infect. Dis. Rep. – volume: 9 start-page: 21 year: 2018 end-page: 26 ident: bib10 article-title: Evaluation of the activity of publication-title: J. Pharm. Negat. Results – volume: 19 start-page: 962 year: 2012 end-page: 968 ident: bib17 article-title: Effect of subinihibitory and inhibitory concentrations of publication-title: Phytomedicine – volume: 10 start-page: 1231 year: 2019 end-page: 1241 ident: bib9 article-title: Methicillin-resistant publication-title: Med. Chem. Comm. – volume: 25 start-page: 193 year: 2019 end-page: 202 ident: bib3 article-title: Highly synergistic effects of melittin with conventional antibiotics against multidrug-resistant isolates of publication-title: Microb. Drug Resist. – start-page: 237 year: 2016 end-page: 272 ident: bib28 article-title: History of antibiotics research publication-title: How to Overcome the Antibiotic Crisis – volume: 17 start-page: 203 year: 2019 end-page: 218 ident: bib39 article-title: Methicillin-resistant publication-title: Nat. Rev. Microbiol. – volume: 64 start-page: 769 year: 1998 end-page: 771 ident: bib18 article-title: A new bioactive norquinone-methide triterpene from publication-title: Planta Med. – volume: 36 start-page: 495 year: 2013 end-page: 500 ident: bib22 article-title: Anti-inflammatory effect of pristimerin on lipopolysaccharide-induced inflammatory responses in murine macrophages publication-title: Arch. Pharm. Res. – volume: 1 start-page: 16 year: 2011 end-page: 20 ident: bib1 article-title: Plants: an alternative source for antimicrobials publication-title: J. Appl. Pharmaceut. Sci. – volume: 71 start-page: 313 year: 2005 end-page: 319 ident: bib24 article-title: Antimicrobial activity of 6-oxophenolic triterpenoids. Mode of action against publication-title: Planta Med. – volume: 111 start-page: 270 year: 2019 end-page: 281 ident: bib27 article-title: Are the Statins promising antifungal agents against invasive candidiasis? publication-title: Biomed. Pharmacother. – volume: 37 start-page: 1009 year: 2018 end-page: 1019 ident: bib26 article-title: Chromosomally encoded and plasmid-mediated polymyxins resistance in publication-title: Eur. J. Clin. Microbiol. Infect. Dis. – year: 2019 ident: bib12 article-title: Determination of publication-title: Internet J. Microbiol. – volume: 3 start-page: e00198 year: 2012 end-page: e00212 ident: bib21 article-title: Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in publication-title: MBio – volume: 65 start-page: 55 year: 1983 end-page: 63 ident: bib30 article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays publication-title: J. Immunol. Methods – year: 2017 ident: bib41 article-title: WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed – volume: 34 start-page: 737 year: 2011 end-page: 751 ident: bib20 article-title: Antibiotic-induced biofilm formation publication-title: Int. J. Artif. Organs – volume: 43 start-page: 558 year: 2020 end-page: 567 ident: bib36 article-title: Phytochemical and biological studies of constituents from roots of publication-title: Quim. Nova – volume: 130 start-page: 107 year: 2010 end-page: 115 ident: bib11 article-title: Eugenol (an essential oil of clove) acts as an antibacterial agent against publication-title: J. Ethnopharmacol. – volume: 10 start-page: 1 year: 2019 end-page: 10 ident: bib25 article-title: Anti-cancer effects of pristimerin and the mechanisms: a critical review publication-title: Front. Pharmacol. – volume: 133 start-page: 152 year: 2017 end-page: 163 ident: bib15 article-title: Antibiotics in late clinical development publication-title: Biochem. Pharmacol. – volume: 134 start-page: 74 year: 2017 end-page: 86 ident: bib16 article-title: Using bacterial genomes and essential genes for the development of new antibiotics publication-title: Biochem. Pharmacol. – volume: 38 start-page: 237 year: 2015 end-page: 242 ident: bib32 article-title: (Celastraceae): chemical constituents and antimicrobial activity publication-title: Quim. Nova – volume: 16 start-page: 388 year: 2016 end-page: 396 ident: bib40 article-title: Antibacterial activity of six medicinal Cameroonian plants against Gram-positive and Gram-negative multidrug-resistant phenotypes publication-title: BMC Compl. Alternative Med. – volume: 121 start-page: 1498 year: 2016 end-page: 1510 ident: bib35 article-title: Fungal cell membrane - promising drug target for antifungal therapy publication-title: J. Appl. Microbiol. – year: 2014 ident: bib38 article-title: Antibióticos e quimioterápicos para o clínico – volume: 54 start-page: 269 year: 2003 end-page: 276 ident: bib31 article-title: A microtiter-plate screening method for biofilm disinfection and removal publication-title: J. Microbiol. Methods – volume: 52 start-page: 390 year: 1996 end-page: 405 ident: bib34 article-title: Combination antimicrobial therapy for bacterial infections publication-title: Drugs – volume: 13 start-page: 11 year: 2013 ident: bib29 article-title: Antimicrobial activity and cytotoxicity of triterpenes isolated from leaves of publication-title: BMC Compl. Alternative Med. – volume: 23 start-page: 1494 year: 2018 ident: bib14 article-title: Cytotoxic triterpenes from publication-title: Molecules – volume: 24 start-page: 2471 year: 2019 end-page: 2482 ident: bib19 article-title: Antibacterial activity of terpenes and terpenoids present in essential oils publication-title: Molecules – volume: 32 start-page: 1 year: 2012 end-page: 68 ident: bib8 publication-title: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard – volume: 64 start-page: 769 year: 1998 ident: 10.1016/j.jep.2020.113423_bib18 article-title: A new bioactive norquinone-methide triterpene from Maytenus scutioides publication-title: Planta Med. doi: 10.1055/s-2006-957581 – year: 2019 ident: 10.1016/j.jep.2020.113423_bib12 article-title: Determination of in vitro antimicrobial activity of five Sri Lankan medicinal plants against selected human pathogenic bacteria publication-title: Internet J. Microbiol. doi: 10.1155/2019/7431439 – volume: 18 start-page: 1053 year: 2013 ident: 10.1016/j.jep.2020.113423_bib13 article-title: Antiprotozoal activity of quinonemethide triterpenes from Maytenus ilicifolia (Celastraceae) publication-title: Molecules doi: 10.3390/molecules18011053 – volume: 10 start-page: 1231 year: 2019 ident: 10.1016/j.jep.2020.113423_bib9 article-title: Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype publication-title: Med. Chem. Comm. doi: 10.1039/C9MD00044E – volume: 37 start-page: 1009 year: 2018 ident: 10.1016/j.jep.2020.113423_bib26 article-title: Chromosomally encoded and plasmid-mediated polymyxins resistance in Acinetobacter baumannii: a huge public health threat publication-title: Eur. J. Clin. Microbiol. Infect. Dis. doi: 10.1007/s10096-018-3223-9 – volume: 114 start-page: 181 year: 2018 ident: 10.1016/j.jep.2020.113423_bib6 article-title: Antibacterial and antifungal activities of phenolic compound-enriched ethyl acetate fraction from Cochlospermum regium (mart. Et. Schr.) Pilger roots: mechanisms of action and synergism with tannin and gallic acid publication-title: South Afr. J. Bot. doi: 10.1016/j.sajb.2017.11.010 – volume: 13 start-page: 11 year: 2013 ident: 10.1016/j.jep.2020.113423_bib29 article-title: Antimicrobial activity and cytotoxicity of triterpenes isolated from leaves of Maytenus undata (Celastraceae) publication-title: BMC Compl. Alternative Med. – volume: 23 start-page: 1494 year: 2018 ident: 10.1016/j.jep.2020.113423_bib14 article-title: Cytotoxic triterpenes from Salacia crassifolia and metabolite profiling of Celastraceae species publication-title: Molecules doi: 10.3390/molecules23061494 – volume: 34 start-page: 737 year: 2011 ident: 10.1016/j.jep.2020.113423_bib20 article-title: Antibiotic-induced biofilm formation publication-title: Int. J. Artif. Organs doi: 10.5301/ijao.5000027 – volume: 38 start-page: 237 year: 2015 ident: 10.1016/j.jep.2020.113423_bib32 article-title: Salacia crassifólia (Celastraceae): chemical constituents and antimicrobial activity publication-title: Quim. Nova – volume: 9 start-page: 21 year: 2018 ident: 10.1016/j.jep.2020.113423_bib10 article-title: Evaluation of the activity of Tontelea micrantha extracts against bacteria, Candida and Mayaro virus publication-title: J. Pharm. Negat. Results doi: 10.4103/jpnr.JPNR_8_18 – volume: 130 start-page: 107 year: 2010 ident: 10.1016/j.jep.2020.113423_bib11 article-title: Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2010.04.025 – volume: 71 start-page: 313 year: 2005 ident: 10.1016/j.jep.2020.113423_bib24 article-title: Antimicrobial activity of 6-oxophenolic triterpenoids. Mode of action against Bacillus subtilis publication-title: Planta Med. doi: 10.1055/s-2005-864096 – volume: 43 start-page: 558 year: 2020 ident: 10.1016/j.jep.2020.113423_bib36 article-title: Phytochemical and biological studies of constituents from roots of Salacia crassifolia (Celastraceae) publication-title: Quim. Nova – volume: 111 start-page: 270 year: 2019 ident: 10.1016/j.jep.2020.113423_bib27 article-title: Are the Statins promising antifungal agents against invasive candidiasis? publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.12.076 – volume: 27 start-page: 381 year: 1989 ident: 10.1016/j.jep.2020.113423_bib5 article-title: Structural degeneration of Aspergillus fumigatus after exposure to saperconazole publication-title: J. Med. Vet. Mycol. doi: 10.1080/02681218980000501 – volume: 129 start-page: 500 year: 2018 ident: 10.1016/j.jep.2020.113423_bib7 article-title: A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autopaghy in breast cancer publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2017.11.027 – volume: 54 start-page: 269 year: 2003 ident: 10.1016/j.jep.2020.113423_bib31 article-title: A microtiter-plate screening method for biofilm disinfection and removal publication-title: J. Microbiol. Methods doi: 10.1016/S0167-7012(03)00034-4 – volume: 1 start-page: 16 year: 2011 ident: 10.1016/j.jep.2020.113423_bib1 article-title: Plants: an alternative source for antimicrobials publication-title: J. Appl. Pharmaceut. Sci. – volume: 36 start-page: 495 year: 2013 ident: 10.1016/j.jep.2020.113423_bib22 article-title: Anti-inflammatory effect of pristimerin on lipopolysaccharide-induced inflammatory responses in murine macrophages publication-title: Arch. Pharm. Res. doi: 10.1007/s12272-013-0054-1 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.jep.2020.113423_bib25 article-title: Anti-cancer effects of pristimerin and the mechanisms: a critical review publication-title: Front. Pharmacol. – start-page: 237 year: 2016 ident: 10.1016/j.jep.2020.113423_bib28 article-title: History of antibiotics research – volume: 6 start-page: 251 year: 2004 ident: 10.1016/j.jep.2020.113423_bib4 article-title: The advance of bactericidal drugs in the treatment of infection publication-title: Curr. Infect. Dis. Rep. doi: 10.1007/s11908-004-0042-1 – volume: 133 start-page: 152 year: 2017 ident: 10.1016/j.jep.2020.113423_bib15 article-title: Antibiotics in late clinical development publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2016.09.025 – volume: 17 start-page: 203 year: 2019 ident: 10.1016/j.jep.2020.113423_bib39 article-title: Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0147-4 – volume: 25 start-page: 193 year: 2019 ident: 10.1016/j.jep.2020.113423_bib3 article-title: Highly synergistic effects of melittin with conventional antibiotics against multidrug-resistant isolates of Acinetobacter baumannii and Pseudomonas aeruginosa publication-title: Microb. Drug Resist. doi: 10.1089/mdr.2018.0016 – volume: 16 start-page: 388 year: 2016 ident: 10.1016/j.jep.2020.113423_bib40 article-title: Antibacterial activity of six medicinal Cameroonian plants against Gram-positive and Gram-negative multidrug-resistant phenotypes publication-title: BMC Compl. Alternative Med. doi: 10.1186/s12906-016-1371-y – volume: 24 start-page: 2471 year: 2019 ident: 10.1016/j.jep.2020.113423_bib19 article-title: Antibacterial activity of terpenes and terpenoids present in essential oils publication-title: Molecules doi: 10.3390/molecules24132471 – volume: 19 start-page: 962 year: 2012 ident: 10.1016/j.jep.2020.113423_bib17 article-title: Effect of subinihibitory and inhibitory concentrations of Plectranthus amboinicus (Lour.) Spreng essential oil on Klebsiella pneumoniae publication-title: Phytomedicine doi: 10.1016/j.phymed.2012.05.013 – volume: 121 start-page: 1498 year: 2016 ident: 10.1016/j.jep.2020.113423_bib35 article-title: Fungal cell membrane - promising drug target for antifungal therapy publication-title: J. Appl. Microbiol. doi: 10.1111/jam.13301 – volume: 38 start-page: 1226 year: 2017 ident: 10.1016/j.jep.2020.113423_bib2 article-title: S. aureus infections in chicago, 2006-2014: increase in CA MSSA and decrease in MRSA incidence publication-title: Infect. Control Hosp. Epidemiol. doi: 10.1017/ice.2017.177 – volume: 134 start-page: 74 year: 2017 ident: 10.1016/j.jep.2020.113423_bib16 article-title: Using bacterial genomes and essential genes for the development of new antibiotics publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2016.12.002 – volume: 52 start-page: 390 year: 1996 ident: 10.1016/j.jep.2020.113423_bib34 article-title: Combination antimicrobial therapy for bacterial infections publication-title: Drugs doi: 10.2165/00003495-199652030-00005 – volume: 3 start-page: e00198 issue: 4 year: 2012 ident: 10.1016/j.jep.2020.113423_bib21 article-title: Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus publication-title: MBio doi: 10.1128/mBio.00198-12 – volume: 65 start-page: 55 year: 1983 ident: 10.1016/j.jep.2020.113423_bib30 article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays publication-title: J. Immunol. Methods doi: 10.1016/0022-1759(83)90303-4 – volume: 57 start-page: 1 year: 2017 ident: 10.1016/j.jep.2020.113423_bib37 article-title: Bacterial virulence factors: secreted for survival publication-title: Indian J. Microbiol. doi: 10.1007/s12088-016-0625-1 – volume: 77 start-page: 726 year: 2011 ident: 10.1016/j.jep.2020.113423_bib23 article-title: Antibacterial properties of phenolic triterpenoids against Staphylococcus epidermidis publication-title: Planta Med. doi: 10.1055/s-0030-1250500 – volume: 32 start-page: 1 year: 2012 ident: 10.1016/j.jep.2020.113423_bib8 – year: 2014 ident: 10.1016/j.jep.2020.113423_bib38 – volume: 49 start-page: 703 year: 2016 ident: 10.1016/j.jep.2020.113423_bib33 article-title: Biofilm inhibition activity of traditional medicinal plants from Northwestern Argentina against native pathogen and environmental microorganisms publication-title: Rev. Soc. Bras. Med. Trop. doi: 10.1590/0037-8682-0452-2016 – year: 2017 ident: 10.1016/j.jep.2020.113423_bib41 |
SSID | ssj0007140 |
Score | 2.4413974 |
Snippet | Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and... Ethnopharmacological relevance Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113423 |
SubjectTerms | Animals Anti-Bacterial Agents - isolation & purification Anti-Bacterial Agents - pharmacology Anti-staphylococcal Antibacterial activity antibacterial properties antibiotics biofilm Biofilms - drug effects Chlorocebus aethiops computer simulation computer software cytotoxicity dose response gentian violet Gram-Positive Bacteria - drug effects hexane mechanism of action membrane permeability Microbial Sensitivity Tests minimum inhibitory concentration Plant Roots Pristimerin S. aureus biofilm Salacia Salacia - chemistry Salacia crassifolia Staphylococcal Infections - drug therapy Staphylococcus aureus Staphylococcus aureus - drug effects Synergic effect synergism traditional medicine transmission electron microscopy Triterpenes - isolation & purification Triterpenes - pharmacology triterpenoids Vero Cells |
Title | Pristimerin isolated from Salacia crassifolia (Mart. Ex. Schult.) G. Don. (Celastraceae) roots as a potential antibacterial agent against Staphylococcus aureus |
URI | https://dx.doi.org/10.1016/j.jep.2020.113423 https://www.ncbi.nlm.nih.gov/pubmed/33007390 https://www.proquest.com/docview/2448403885 https://www.proquest.com/docview/2551965696 https://www.proquest.com/docview/2557764830 |
Volume | 266 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5Ceuml9F33EbZQQlIie6VdvY7BTeq2NBicQG5itVoRBSMZW4Lm0r_Sv9pv9IjpIT4UjGyJXbPSzO58o535hrFPJnZzLw9zJwgFva3KcidVYYZT1xA9XCpTeqH_8yKYXanv1_71HpsOuTAUVtmv_d2a3q7W_ZVJ_zQnq6KYLARRocMgekLCKY_Ib1cqJC0f_96GeYRdUiQ1dqj1sLPZxnjdWqKs9NrKJsqTD9mmh7Bna4POn7InPXjkp934nrE9Wz5nh_OOffruhF9uk6k2J_yQz7e81Hcv2J95O6Fpi6bkBXQOMDPjlF_CF3qpISRu1sDSRV4t8fuIGAbG_OzXmC_MTbOsx8f865h_gdryo6kF6q7X2lhtjznQd73hGh--qmqKP8IoIbIi7big6YxSuHDUBfAoB8SFeGFHK2MadGvWttm8ZFfnZ5fTmdPXZ3CMcuPaiaz2PHgYQeRKwDA3CAS-fe3D4GlXaN-VUWazVIcq9aQPR9zKnGqMGh3nOnXlK7ZfVqV9w3hoUxP5uBgroawldsQY_wj3KsNyHcUjJgbJJKYnL6caGstkiFK7TSDMhISZdMIcsc_3XVYdc8euxmoQd_KP-iWwLLu6fRxUI8G0pL0WXdqq2SRATXCdZRT5O9oArcYB3enONmEYqEiKEXvd6d793UDraZ9VvP2_wb9jjz0K0KHqNuI926_Xjf0AhFWnB-0UOmCPTr_9mF38BebcI1s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6Cc2gvpe-6zy2UkJTIXmn1PAY3qdMkxmAHchOr1YooGMnYEjS_pn-131iSQw_xoWBkS-yalWZ25hvtzjeMfdORnTlZkFl-IOhtVZpZiRukOLU10cMlMqEX-lcTf3zt_rrxbvbYqMuFoW2Vre1vbPrGWrdXhu3THC7zfDgTRIUOh-gIiaA8RNy-T-xUXo_tn5xfjCdbgxw0eZHU3qIO3eLmZpvXnSHWSmdT3MR15GPu6TH4uXFDZ8_ZsxY_8pNmiC_YnilesoNpQ0B9f8znD_lU62N-wKcP1NT3r9if6WZO0ypNwXOoHZBmyinFhM_UQkFOXK8Ap_OsXOD3IZEMDPjp7wGf6dt6UQ2O-M8B_wHN5YcjA-BdrZQ2yhxxAPBqzRU-fFlWtAUJo4TU8qShg6YzyuLCUeWApBwoFxKGKy21rtGtXpl6_Zpdn53OR2OrLdFgadeOKis0ynEQZPihLYHEbN8X-PYU5GArWyjPlmFq0kQFbuJID7G4kRmVGdUqylRiyzesV5SFecd4YBIdergYucI1hggSI_wjIqwUFjuM-kx0kol1y19OZTQWcbdR7S6GMGMSZtwIs8--b7ssG_KOXY3dTtzxPxoYw7ns6va1U40YM5OWW1RhynodAzghepZh6O1oA8Aa-XSnO9sEge-GUvTZ20b3tncDxaelVvH-_wb_hT0Zz68u48vzycUH9tSh_TpU7EZ8ZL1qVZtPAFxV8rmdUH8B0akmDA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pristimerin+isolated+from+Salacia+crassifolia+%28Mart.+Ex.+Schult.%29+G.+Don.+%28Celastraceae%29+roots+as+a+potential+antibacterial+agent+against+Staphylococcus+aureus&rft.jtitle=Journal+of+ethnopharmacology&rft.au=Nizer%2C+Waleska+Stephanie+da+Cruz&rft.au=Ferraz%2C+Ariane+Coelho&rft.au=Moraes%2C+Tha%C3%ADs+de+F%C3%A1tima+Silva&rft.au=Lima%2C+William+Gustavo&rft.date=2021-02-10&rft.eissn=1872-7573&rft.volume=266&rft.spage=113423&rft_id=info:doi/10.1016%2Fj.jep.2020.113423&rft_id=info%3Apmid%2F33007390&rft.externalDocID=33007390 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-8741&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-8741&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-8741&client=summon |