A general framework for predictive tensor modeling with domain knowledge
In many real applications such as virtual metrology in semiconductor manufacturing, face recognition, and gait recognition in computer vision, the input data is naturally expressed as tensors or multi-dimensional arrays. Furthermore, in addition to the known label information, domain knowledge can o...
Saved in:
Published in | Data mining and knowledge discovery Vol. 29; no. 6; pp. 1709 - 1732 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In many real applications such as virtual metrology in semiconductor manufacturing, face recognition, and gait recognition in computer vision, the input data is naturally expressed as tensors or multi-dimensional arrays. Furthermore, in addition to the known label information, domain knowledge can often be obtained from various sources, e.g., multiple domain experts. To address such problems, in this paper, we propose a general optimization framework for dealing with tensor inputs while taking into consideration domain knowledge. To be specific, our framework is based on a linear model, and we obtain the weight tensor in a hierarchical way—first approximate it by a low-rank tensor, and then estimate the low-rank approximation using the domain knowledge from various sources. This is motivated by wafer quality prediction in semiconductor manufacturing. We also propose an effective algorithm named
H-MOTE
for solving this framework, which is guaranteed to converge. For each iteration, the time complexity of
H-MOTE
is linear with respect to the number of examples as well as the size of the weight tensor. Therefore,
H-MOTE
is scalable to large-scale problems. Experimental results show that
H-MOTE
outperforms state-of-the-art techniques on both synthetic and real data sets. |
---|---|
AbstractList | In many real applications such as virtual metrology in semiconductor manufacturing, face recognition, and gait recognition in computer vision, the input data is naturally expressed as tensors or multi-dimensional arrays. Furthermore, in addition to the known label information, domain knowledge can often be obtained from various sources, e.g., multiple domain experts. To address such problems, in this paper, we propose a general optimization framework for dealing with tensor inputs while taking into consideration domain knowledge. To be specific, our framework is based on a linear model, and we obtain the weight tensor in a hierarchical way—first approximate it by a low-rank tensor, and then estimate the low-rank approximation using the domain knowledge from various sources. This is motivated by wafer quality prediction in semiconductor manufacturing. We also propose an effective algorithm named
H-MOTE
for solving this framework, which is guaranteed to converge. For each iteration, the time complexity of
H-MOTE
is linear with respect to the number of examples as well as the size of the weight tensor. Therefore,
H-MOTE
is scalable to large-scale problems. Experimental results show that
H-MOTE
outperforms state-of-the-art techniques on both synthetic and real data sets. In many real applications such as virtual metrology in semiconductor manufacturing, face recognition, and gait recognition in computer vision, the input data is naturally expressed as tensors or multi-dimensional arrays. Furthermore, in addition to the known label information, domain knowledge can often be obtained from various sources, e.g., multiple domain experts. To address such problems, in this paper, we propose a general optimization framework for dealing with tensor inputs while taking into consideration domain knowledge. To be specific, our framework is based on a linear model, and we obtain the weight tensor in a hierarchical way--first approximate it by a low-rank tensor, and then estimate the low-rank approximation using the domain knowledge from various sources. This is motivated by wafer quality prediction in semiconductor manufacturing. We also propose an effective algorithm named H-MOTE for solving this framework, which is guaranteed to converge. For each iteration, the time complexity of H-MOTE is linear with respect to the number of examples as well as the size of the weight tensor. Therefore, H-MOTE is scalable to large-scale problems. Experimental results show that H-MOTE outperforms state-of-the-art techniques on both synthetic and real data sets. |
Author | He, Jingrui Zhu, Yada Lawrence, Richard D. |
Author_xml | – sequence: 1 givenname: Yada surname: Zhu fullname: Zhu, Yada email: yzhu@us.ibm.com organization: IBM T.J. Watson Research Center – sequence: 2 givenname: Jingrui surname: He fullname: He, Jingrui organization: CIDSE, Arizona State University – sequence: 3 givenname: Richard D. surname: Lawrence fullname: Lawrence, Richard D. organization: IBM T.J. Watson Research Center |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8LXrys5mOTzR5LUSsUvCh4C7vJbE27m9Rka_Hfm1IPIuhphuF5hpd3gkbOO0DokuAbgnF5GwkWROaYFDlmFc3lCRoTXrK85OJ1lHYmi5xLgs_QJMY1xphThsdoMctW4CDUXdaGuoe9D5us9SHbBjBWD_YDsgFcTJfeG-isW2V7O7xlxve1ddnG-X0HZgXn6LStuwgX33OKXu7vnueLfPn08DifLXNdkGrIpRZNS6AVRlTaSM1EIww3BrBoDNcFNkK3smraRhNTMsmokSWmmgsBpWk0m6Lr499t8O87iIPqbdTQdbUDv4uKlJzxglFeJfTqF7r2u-BSukQRQTGjFU1UeaR08DEGaJW2Qz1Y74ZQ204RrA4Nq2PDKjWsDg0rmUzyy9wG29fh81-HHp2YWLeC8CPTn9IXsGiQYg |
CitedBy_id | crossref_primary_10_3390_pr9020305 crossref_primary_10_1016_j_future_2018_02_039 |
Cites_doi | 10.1109/TSM.2008.2001219 10.1016/S0167-6377(99)00074-7 10.1016/j.jprocont.2008.04.014 10.1007/978-1-4757-3264-1 10.1109/ASMC.2009.5155972 10.1109/IJCNN.2008.4633981 10.1126/science.290.5500.2323 10.1109/TPAMI.2007.1096 10.1137/07070111X 10.1016/j.eswa.2010.08.040 10.1109/TSMCB.2007.911536 10.1109/TSMCB.2010.2056366 |
ContentType | Journal Article |
Copyright | The Author(s) 2014 The Author(s) 2015 |
Copyright_xml | – notice: The Author(s) 2014 – notice: The Author(s) 2015 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10618-014-0392-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 1732 |
ExternalDocumentID | 3817419771 10_1007_s10618_014_0392_8 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PUEGO Q9U |
ID | FETCH-LOGICAL-c419t-8c6bf1ef6d69cd8c36b6d5dde06bd5c40d6cf89bfbc1d73832d8702c566e7dbc3 |
IEDL.DBID | U2A |
ISSN | 1384-5810 |
IngestDate | Thu Jul 10 23:39:11 EDT 2025 Sat Aug 23 14:10:08 EDT 2025 Tue Jul 01 00:40:30 EDT 2025 Thu Apr 24 22:56:00 EDT 2025 Fri Feb 21 02:33:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Virtual metrology Algorithms Tensor Wafer quality Data mining Semiconductor manufacturing Classifier design and evaluation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-8c6bf1ef6d69cd8c36b6d5dde06bd5c40d6cf89bfbc1d73832d8702c566e7dbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1716203292 |
PQPubID | 43030 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_1753543259 proquest_journals_1716203292 crossref_citationtrail_10_1007_s10618_014_0392_8 crossref_primary_10_1007_s10618_014_0392_8 springer_journals_10_1007_s10618_014_0392_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2015 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | WangQChenFXuWTracking by third-order tensor representation.IEEE Trans Syst Man Cybern20114138539610.1109/TSMCB.2010.2056366 Zhu Y, He J, Lawrence RD (2012) Hierarchical modeling with tensor inputs. In: AAAI Conference on Artificial Intelligence, pp. 1233–1239 Tao D, Sun J, Shen J, Wu X, Li X, Maybank SJ, Faloutsos C (2008) Bayesian tensor analysis. In: IJCNN, pp. 1402–1409 WassermanLAll of statistics2009New YorkSpringer HochreiterSObermayerKClassification, regression, and feature selection on matrix data. Technical Report2004BerlinTechnische Universitat GrippoLSciandroneMOn the convergence of the block nonlinear Gauss–Seidel method under convex constraintsOper Res Lett2000263127136174683310.1016/S0167-6377(99)00074-70955.90128 Tao D, Li X, Hu W, Maybank S, Wu X (2005) Supervised tensor learning. In: ICDM, IEEE Computer Society, pp. 450–457 KhanAAMoyneJRtilburyDMVirtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squaresJ Process Control20081896197410.1016/j.jprocont.2008.04.014 MitchellTMMachine Learning1997New YorkMcGraw-Hill0913.68167 RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingSCIENCE20002902323232610.1126/science.290.5500.2323 KangPKimDLeeH-JDohSChoSVirtual metrology for run-to-run control in semiconductor manufacturingExpert Syst Appl2011382508252210.1016/j.eswa.2010.08.040 SunJTaoDPapadimitriouSYuPSFaloutsosCIncremental tensor analysis: Theory and applicationsTKDD2008231110.1145/1409620.1409621 Platt JC (1999) Advances in kernel methods. MIT Press, Cambridge, MA. TaoDLiXWuXMaybankSJGeneral tensor discriminant analysis and gabor features for gait recognitionIEEE Trans Pattern Anal Mach Intell200729101700171510.1109/TPAMI.2007.1096 BishopCMPattern recognition and machine learning (Information Science and Statistics)2006SecaucusSpringer SuY-CLinT-HChengF-TWuW-MAccuracy and real-time considerations for implementing various virtual metrology algorithmsIEEE Trans Semicond Manuf200821342643410.1109/TSM.2008.2001219 He X, Cai D, Niyogi P (2005) Tensor subspace analysis. MIT Press, In: NIPS Chang Y-J, Kang Y, Hsu C-L, Chang C-T, Chan TY (2006) Virtual metrology technique for semiconductor manufacturing. In: IJCNN LiXLinSYanSXuDDiscriminant locally linear embedding with high-order tensor dataIEEE Trans Syst Man Cybern200838234235210.1109/TSMCB.2007.914706 Dai G, Yeung D-Y (2006) Tensor embedding methods. In: AAAI Lynn S, Ringwood J, Ragnoli E, McLoone S, MacGearailt N (2009) Virtual metrology for plasma etch using tool variables. In: Advanced Semiconductor Manufacturing Conference VapnikVNThe nature of statistical learning theory2000New YorkSpringer10.1007/978-1-4757-3264-10934.62009 KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev2009513455500253505610.1137/07070111X1173.65029 CaiDHeXHanJLearning with tensor representation. Technical Report2006ChampaignUniversity of Illinois at Urbana Tao D, Li X, Maybank SJ, Wu X (2006) Human carrying status in visual surveillance. In: CVPR, pp. 1670–1677 392_CR21 VN Vapnik (392_CR22) 2000 392_CR25 L Grippo (392_CR5) 2000; 26 S Hochreiter (392_CR7) 2004 D Tao (392_CR20) 2007; 29 Y-C Su (392_CR16) 2008; 21 392_CR19 TM Mitchell (392_CR13) 1997 392_CR18 392_CR12 L Wasserman (392_CR24) 2009 P Kang (392_CR8) 2011; 38 392_CR14 ST Roweis (392_CR15) 2000; 290 AA Khan (392_CR9) 2008; 18 J Sun (392_CR17) 2008; 2 D Cai (392_CR2) 2006 TG Kolda (392_CR10) 2009; 51 CM Bishop (392_CR1) 2006 392_CR6 Q Wang (392_CR23) 2011; 41 X Li (392_CR11) 2008; 38 392_CR4 392_CR3 |
References_xml | – reference: KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev2009513455500253505610.1137/07070111X1173.65029 – reference: Lynn S, Ringwood J, Ragnoli E, McLoone S, MacGearailt N (2009) Virtual metrology for plasma etch using tool variables. In: Advanced Semiconductor Manufacturing Conference – reference: Tao D, Sun J, Shen J, Wu X, Li X, Maybank SJ, Faloutsos C (2008) Bayesian tensor analysis. In: IJCNN, pp. 1402–1409 – reference: RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingSCIENCE20002902323232610.1126/science.290.5500.2323 – reference: He X, Cai D, Niyogi P (2005) Tensor subspace analysis. MIT Press, In: NIPS – reference: LiXLinSYanSXuDDiscriminant locally linear embedding with high-order tensor dataIEEE Trans Syst Man Cybern200838234235210.1109/TSMCB.2007.914706 – reference: Dai G, Yeung D-Y (2006) Tensor embedding methods. In: AAAI – reference: Tao D, Li X, Hu W, Maybank S, Wu X (2005) Supervised tensor learning. In: ICDM, IEEE Computer Society, pp. 450–457 – reference: KhanAAMoyneJRtilburyDMVirtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squaresJ Process Control20081896197410.1016/j.jprocont.2008.04.014 – reference: MitchellTMMachine Learning1997New YorkMcGraw-Hill0913.68167 – reference: VapnikVNThe nature of statistical learning theory2000New YorkSpringer10.1007/978-1-4757-3264-10934.62009 – reference: Tao D, Li X, Maybank SJ, Wu X (2006) Human carrying status in visual surveillance. In: CVPR, pp. 1670–1677 – reference: SunJTaoDPapadimitriouSYuPSFaloutsosCIncremental tensor analysis: Theory and applicationsTKDD2008231110.1145/1409620.1409621 – reference: Platt JC (1999) Advances in kernel methods. MIT Press, Cambridge, MA. – reference: SuY-CLinT-HChengF-TWuW-MAccuracy and real-time considerations for implementing various virtual metrology algorithmsIEEE Trans Semicond Manuf200821342643410.1109/TSM.2008.2001219 – reference: WassermanLAll of statistics2009New YorkSpringer – reference: HochreiterSObermayerKClassification, regression, and feature selection on matrix data. Technical Report2004BerlinTechnische Universitat – reference: KangPKimDLeeH-JDohSChoSVirtual metrology for run-to-run control in semiconductor manufacturingExpert Syst Appl2011382508252210.1016/j.eswa.2010.08.040 – reference: CaiDHeXHanJLearning with tensor representation. Technical Report2006ChampaignUniversity of Illinois at Urbana – reference: GrippoLSciandroneMOn the convergence of the block nonlinear Gauss–Seidel method under convex constraintsOper Res Lett2000263127136174683310.1016/S0167-6377(99)00074-70955.90128 – reference: TaoDLiXWuXMaybankSJGeneral tensor discriminant analysis and gabor features for gait recognitionIEEE Trans Pattern Anal Mach Intell200729101700171510.1109/TPAMI.2007.1096 – reference: WangQChenFXuWTracking by third-order tensor representation.IEEE Trans Syst Man Cybern20114138539610.1109/TSMCB.2010.2056366 – reference: Zhu Y, He J, Lawrence RD (2012) Hierarchical modeling with tensor inputs. In: AAAI Conference on Artificial Intelligence, pp. 1233–1239 – reference: BishopCMPattern recognition and machine learning (Information Science and Statistics)2006SecaucusSpringer – reference: Chang Y-J, Kang Y, Hsu C-L, Chang C-T, Chan TY (2006) Virtual metrology technique for semiconductor manufacturing. In: IJCNN – volume: 21 start-page: 426 issue: 3 year: 2008 ident: 392_CR16 publication-title: IEEE Trans Semicond Manuf doi: 10.1109/TSM.2008.2001219 – volume-title: Machine Learning year: 1997 ident: 392_CR13 – volume: 26 start-page: 127 issue: 3 year: 2000 ident: 392_CR5 publication-title: Oper Res Lett doi: 10.1016/S0167-6377(99)00074-7 – volume: 18 start-page: 961 year: 2008 ident: 392_CR9 publication-title: J Process Control doi: 10.1016/j.jprocont.2008.04.014 – volume-title: The nature of statistical learning theory year: 2000 ident: 392_CR22 doi: 10.1007/978-1-4757-3264-1 – ident: 392_CR12 doi: 10.1109/ASMC.2009.5155972 – ident: 392_CR4 – volume-title: Pattern recognition and machine learning (Information Science and Statistics) year: 2006 ident: 392_CR1 – ident: 392_CR6 – volume-title: Classification, regression, and feature selection on matrix data. Technical Report year: 2004 ident: 392_CR7 – ident: 392_CR19 – volume-title: All of statistics year: 2009 ident: 392_CR24 – ident: 392_CR25 – volume: 2 start-page: 11 issue: 3 year: 2008 ident: 392_CR17 publication-title: TKDD – ident: 392_CR21 doi: 10.1109/IJCNN.2008.4633981 – volume: 290 start-page: 2323 year: 2000 ident: 392_CR15 publication-title: SCIENCE doi: 10.1126/science.290.5500.2323 – volume: 29 start-page: 1700 issue: 10 year: 2007 ident: 392_CR20 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.1096 – volume: 51 start-page: 455 issue: 3 year: 2009 ident: 392_CR10 publication-title: SIAM Rev doi: 10.1137/07070111X – volume: 38 start-page: 2508 year: 2011 ident: 392_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.08.040 – volume: 38 start-page: 342 issue: 2 year: 2008 ident: 392_CR11 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMCB.2007.911536 – volume-title: Learning with tensor representation. Technical Report year: 2006 ident: 392_CR2 – ident: 392_CR14 – volume: 41 start-page: 385 year: 2011 ident: 392_CR23 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMCB.2010.2056366 – ident: 392_CR18 – ident: 392_CR3 |
SSID | ssj0005230 |
Score | 2.1175725 |
Snippet | In many real applications such as virtual metrology in semiconductor manufacturing, face recognition, and gait recognition in computer vision, the input data... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1709 |
SubjectTerms | Algorithms Approximation Arrays Art techniques Artificial Intelligence Chemistry and Earth Sciences Computer Science Computer vision Data mining Data Mining and Knowledge Discovery Data processing Datasets Fault diagnosis Information Storage and Retrieval Knowledge Manufacturing Mathematical analysis Mathematical models Optimization Physics Process controls Semiconductors Statistics for Engineering Subject specialists Tensors Variables |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60Xrz4FqtVInhSgtluNps9SRWlCIqIgreleYmg21rr_3emm21V0Ou-AjM7ky_z-gCOlC_QA9CxJEsCl154rrVR3IVQeFHkRgQKDdzcqv6jvH7KnmLA7SOWVTY-ceqo3dBSjPyUxroQ23fRPRu9c2KNouxqpNBYhCV0wVq3YOn88vbu_luRR1r3CWvJM53M8pp185xKqJBLcoEggeufO9Mcbv7KkE43nqs1WImIkfVqFa_Dgq82YLVhY2DRODeh32PP9QxpFpqKK4aQlI3GlIwht8aoXB2vTOlvcDFGUVjmhm-Dl4rNomtb8Hh1-XDR55EngVuZFBOurTIh8UE5VVCrf6qMchn6LaGMy6wUTtmgCxOMTVyOR9KuQyvtWkRyPnfGptvQqoaV3wEmXVA5gg5F_bV5MAMlZEC9CelSa82gDaKRUWnjEHHisngt5-OPSawlirUksZa6DcezV0b1BI3_Hu40gi-jMX2Uc9W34XB2G82AchuDyg8_6ZkszWSKh7k2nDQK-_aJvxbc_X_BPVhGhJTVzYcdaE3Gn34fUcjEHMRf7QvE69nH priority: 102 providerName: ProQuest |
Title | A general framework for predictive tensor modeling with domain knowledge |
URI | https://link.springer.com/article/10.1007/s10618-014-0392-8 https://www.proquest.com/docview/1716203292 https://www.proquest.com/docview/1753543259 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxtBEB-qoeBLtbZiNIYVfFIW9nK7e3uPsSSGlopIA_p0ZL-KoBcx8f_vzH3EtKjQp4O7vV2Y2Zmd2fnNDMCJDjlqAHJLVBK5DCJwY6zmPsY8iDyzItLVwM9LPZnK7zfqpsnjXrRo9zYkWWnqtWQ3nRDwSnKBhzo3G9BR6LoTjms6GK7hOtI6NdhIrkyyCmW-NsXfh9GLhflPULQ6a8Y78KkxEtmw5upn-BDKXdhuGzCwRh534WOF33SLLzAZst91AWkWW7gVQ3uUPT5RJIZ0GiOsOr6pet_gsoyuYJmfP8zuSra6WvsK0_Ho17cJb5okcCeTfMmN0zYmIWqvc8rzT7XVXqHSEtp65aTw2kWT22hd4jP0RwceRXTg0IwLmbcu3YPNcl6GfWDSR52hxaEpuTaLdqaFjMg0IX3qnJ11QbTUKlxTQZwaWdwXL7WPicAFErggAhemC6erXx7r8hnvDe61LCgaSVoUVM6Hurzngy4crz6jDFBgY1aG-TONUamSKXpyXThrWbc2xVsLHvzX6EPYQmtJ1YmIPdhcPj2HI7RIlrYPG2Z80YfO8OL2xwif56PLq-t-tS__ALCc3Ak |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOJQLLbQVoSksElyKVl3b67V9qKoICAGSnILEzc2-EBI4AYKq_il-IzOxnVAkuHG19yHNzs5-8wbYVS5DCUBqSRx4Lp1wPE214tb7zIks0cKTaaDXV51zeXoRXyzAY50LQ2GVtUycCmo7MmQj_0llXajbdxb-Ht9y6hpF3tW6hUbJFmfu319U2e5_nRzi-e6FYftocNDhVVcBbmSQTXhqlPaB88qqjBLjI6WVjfGWC6VtbKSwyvg0016bwCaowIUWeTo0iHtcYrWJcN1FWJYRvuSUmd4-fhZSEpVZyankcRrMvKhlqp4KKGxMcoGQhKf_v4NzcPvCHzt95tqfYLXCp6xVMtQaLLhiHT7WvR9YJQo-Q6fFLsuK1czX8V0MATAb35Hrh4Qoo-B4_DJttoObMbL5Mju6GV4VbGbL-wLn70K_r7BUjAq3AUxarxKEOIqyeROvh0pIj1wipI2M0cMGiJpGualKllPnjOt8XmyZyJojWXMia5424Mdsyris1_HW4GZN-Ly6uvf5nNEasDP7jZeOPCnDwo0eaEwcxTJC1bEB-_WBPVvitQ03395wGz50Br1u3j3pn32DFcRmcZn22ISlyd2D-474Z6K3pkzH4M97c_kTS5gX6g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FVEJcWh5FDQ2wSHChWmVtr9f2oaoCSZQSiCJEpdxM9lVVAie0iar-NX4dM7GdFCR669WPXWn229lvdl4Ab5XLUAOQWRIHnksnHE9Trbj1PnMiS7TwdDXwZayGZ_LTNJ424HedC0NhlbVOXCtqOzd0R96hsi7U7TsLO74Ki5j0BieLX5w6SJGntW6nUUJk5G6u0Xy7Oj7t4Vq_C8NB_9vHIa86DHAjg2zJU6O0D5xXVmWUJB8prWyMO14obWMjhVXGp5n22gQ2QWMutIjv0CAHconVJsJxH8BOQlZRE3Y-9MeTr7cCTKIyRzmVPE6DjU-1TNxTAQWRSS6QoPD071NxS3X_8c6uD73BY9it2CrrlvB6Ag1XPIW9uhMEqxTDMxh22XlZv5r5OtqLIR1mi0tyBJFKZRQqj0_WrXdwMkY3wMzOf84uCra52duHs3uR4HNoFvPCHQCT1qsECY-i3N7E65kS0iNmhLSRMXrWAlHLKDdVAXPqo_Ej35ZeJrHmKNacxJqnLXi_-WVRVu-46-N2Lfi82shX-RZ2LXizeY1bkPwqs8LNV_RNHMUyQkOyBUf1gt0a4n8Tvrh7wtfwEBGefz4djw7hERK1uMyBbENzeblyL5EMLfWrCnUMvt830P8A47UdfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+framework+for+predictive+tensor+modeling+with+domain+knowledge&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Zhu%2C+Yada&rft.au=He%2C+Jingrui&rft.au=Lawrence%2C+Richard+D.&rft.date=2015-11-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=29&rft.issue=6&rft.spage=1709&rft.epage=1732&rft_id=info:doi/10.1007%2Fs10618-014-0392-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_014_0392_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |