A general framework for predictive tensor modeling with domain knowledge

In many real applications such as virtual metrology in semiconductor manufacturing, face recognition, and gait recognition in computer vision, the input data is naturally expressed as tensors or multi-dimensional arrays. Furthermore, in addition to the known label information, domain knowledge can o...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 29; no. 6; pp. 1709 - 1732
Main Authors Zhu, Yada, He, Jingrui, Lawrence, Richard D.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In many real applications such as virtual metrology in semiconductor manufacturing, face recognition, and gait recognition in computer vision, the input data is naturally expressed as tensors or multi-dimensional arrays. Furthermore, in addition to the known label information, domain knowledge can often be obtained from various sources, e.g., multiple domain experts. To address such problems, in this paper, we propose a general optimization framework for dealing with tensor inputs while taking into consideration domain knowledge. To be specific, our framework is based on a linear model, and we obtain the weight tensor in a hierarchical way—first approximate it by a low-rank tensor, and then estimate the low-rank approximation using the domain knowledge from various sources. This is motivated by wafer quality prediction in semiconductor manufacturing. We also propose an effective algorithm named H-MOTE for solving this framework, which is guaranteed to converge. For each iteration, the time complexity of H-MOTE is linear with respect to the number of examples as well as the size of the weight tensor. Therefore, H-MOTE is scalable to large-scale problems. Experimental results show that H-MOTE outperforms state-of-the-art techniques on both synthetic and real data sets.
AbstractList In many real applications such as virtual metrology in semiconductor manufacturing, face recognition, and gait recognition in computer vision, the input data is naturally expressed as tensors or multi-dimensional arrays. Furthermore, in addition to the known label information, domain knowledge can often be obtained from various sources, e.g., multiple domain experts. To address such problems, in this paper, we propose a general optimization framework for dealing with tensor inputs while taking into consideration domain knowledge. To be specific, our framework is based on a linear model, and we obtain the weight tensor in a hierarchical way—first approximate it by a low-rank tensor, and then estimate the low-rank approximation using the domain knowledge from various sources. This is motivated by wafer quality prediction in semiconductor manufacturing. We also propose an effective algorithm named H-MOTE for solving this framework, which is guaranteed to converge. For each iteration, the time complexity of H-MOTE is linear with respect to the number of examples as well as the size of the weight tensor. Therefore, H-MOTE is scalable to large-scale problems. Experimental results show that H-MOTE outperforms state-of-the-art techniques on both synthetic and real data sets.
In many real applications such as virtual metrology in semiconductor manufacturing, face recognition, and gait recognition in computer vision, the input data is naturally expressed as tensors or multi-dimensional arrays. Furthermore, in addition to the known label information, domain knowledge can often be obtained from various sources, e.g., multiple domain experts. To address such problems, in this paper, we propose a general optimization framework for dealing with tensor inputs while taking into consideration domain knowledge. To be specific, our framework is based on a linear model, and we obtain the weight tensor in a hierarchical way--first approximate it by a low-rank tensor, and then estimate the low-rank approximation using the domain knowledge from various sources. This is motivated by wafer quality prediction in semiconductor manufacturing. We also propose an effective algorithm named H-MOTE for solving this framework, which is guaranteed to converge. For each iteration, the time complexity of H-MOTE is linear with respect to the number of examples as well as the size of the weight tensor. Therefore, H-MOTE is scalable to large-scale problems. Experimental results show that H-MOTE outperforms state-of-the-art techniques on both synthetic and real data sets.
Author He, Jingrui
Zhu, Yada
Lawrence, Richard D.
Author_xml – sequence: 1
  givenname: Yada
  surname: Zhu
  fullname: Zhu, Yada
  email: yzhu@us.ibm.com
  organization: IBM T.J. Watson Research Center
– sequence: 2
  givenname: Jingrui
  surname: He
  fullname: He, Jingrui
  organization: CIDSE, Arizona State University
– sequence: 3
  givenname: Richard D.
  surname: Lawrence
  fullname: Lawrence, Richard D.
  organization: IBM T.J. Watson Research Center
BookMark eNp9kE1LAzEQhoNUsK3-AG8LXrys5mOTzR5LUSsUvCh4C7vJbE27m9Rka_Hfm1IPIuhphuF5hpd3gkbOO0DokuAbgnF5GwkWROaYFDlmFc3lCRoTXrK85OJ1lHYmi5xLgs_QJMY1xphThsdoMctW4CDUXdaGuoe9D5us9SHbBjBWD_YDsgFcTJfeG-isW2V7O7xlxve1ddnG-X0HZgXn6LStuwgX33OKXu7vnueLfPn08DifLXNdkGrIpRZNS6AVRlTaSM1EIww3BrBoDNcFNkK3smraRhNTMsmokSWmmgsBpWk0m6Lr499t8O87iIPqbdTQdbUDv4uKlJzxglFeJfTqF7r2u-BSukQRQTGjFU1UeaR08DEGaJW2Qz1Y74ZQ204RrA4Nq2PDKjWsDg0rmUzyy9wG29fh81-HHp2YWLeC8CPTn9IXsGiQYg
CitedBy_id crossref_primary_10_3390_pr9020305
crossref_primary_10_1016_j_future_2018_02_039
Cites_doi 10.1109/TSM.2008.2001219
10.1016/S0167-6377(99)00074-7
10.1016/j.jprocont.2008.04.014
10.1007/978-1-4757-3264-1
10.1109/ASMC.2009.5155972
10.1109/IJCNN.2008.4633981
10.1126/science.290.5500.2323
10.1109/TPAMI.2007.1096
10.1137/07070111X
10.1016/j.eswa.2010.08.040
10.1109/TSMCB.2007.911536
10.1109/TSMCB.2010.2056366
ContentType Journal Article
Copyright The Author(s) 2014
The Author(s) 2015
Copyright_xml – notice: The Author(s) 2014
– notice: The Author(s) 2015
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-014-0392-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 1732
ExternalDocumentID 3817419771
10_1007_s10618_014_0392_8
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
Q9U
ID FETCH-LOGICAL-c419t-8c6bf1ef6d69cd8c36b6d5dde06bd5c40d6cf89bfbc1d73832d8702c566e7dbc3
IEDL.DBID U2A
ISSN 1384-5810
IngestDate Thu Jul 10 23:39:11 EDT 2025
Sat Aug 23 14:10:08 EDT 2025
Tue Jul 01 00:40:30 EDT 2025
Thu Apr 24 22:56:00 EDT 2025
Fri Feb 21 02:33:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Virtual metrology
Algorithms
Tensor
Wafer quality
Data mining
Semiconductor manufacturing
Classifier design and evaluation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-8c6bf1ef6d69cd8c36b6d5dde06bd5c40d6cf89bfbc1d73832d8702c566e7dbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1716203292
PQPubID 43030
PageCount 24
ParticipantIDs proquest_miscellaneous_1753543259
proquest_journals_1716203292
crossref_citationtrail_10_1007_s10618_014_0392_8
crossref_primary_10_1007_s10618_014_0392_8
springer_journals_10_1007_s10618_014_0392_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2015
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References WangQChenFXuWTracking by third-order tensor representation.IEEE Trans Syst Man Cybern20114138539610.1109/TSMCB.2010.2056366
Zhu Y, He J, Lawrence RD (2012) Hierarchical modeling with tensor inputs. In: AAAI Conference on Artificial Intelligence, pp. 1233–1239
Tao D, Sun J, Shen J, Wu X, Li X, Maybank SJ, Faloutsos C (2008) Bayesian tensor analysis. In: IJCNN, pp. 1402–1409
WassermanLAll of statistics2009New YorkSpringer
HochreiterSObermayerKClassification, regression, and feature selection on matrix data. Technical Report2004BerlinTechnische Universitat
GrippoLSciandroneMOn the convergence of the block nonlinear Gauss–Seidel method under convex constraintsOper Res Lett2000263127136174683310.1016/S0167-6377(99)00074-70955.90128
Tao D, Li X, Hu W, Maybank S, Wu X (2005) Supervised tensor learning. In: ICDM, IEEE Computer Society, pp. 450–457
KhanAAMoyneJRtilburyDMVirtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squaresJ Process Control20081896197410.1016/j.jprocont.2008.04.014
MitchellTMMachine Learning1997New YorkMcGraw-Hill0913.68167
RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingSCIENCE20002902323232610.1126/science.290.5500.2323
KangPKimDLeeH-JDohSChoSVirtual metrology for run-to-run control in semiconductor manufacturingExpert Syst Appl2011382508252210.1016/j.eswa.2010.08.040
SunJTaoDPapadimitriouSYuPSFaloutsosCIncremental tensor analysis: Theory and applicationsTKDD2008231110.1145/1409620.1409621
Platt JC (1999) Advances in kernel methods. MIT Press, Cambridge, MA.
TaoDLiXWuXMaybankSJGeneral tensor discriminant analysis and gabor features for gait recognitionIEEE Trans Pattern Anal Mach Intell200729101700171510.1109/TPAMI.2007.1096
BishopCMPattern recognition and machine learning (Information Science and Statistics)2006SecaucusSpringer
SuY-CLinT-HChengF-TWuW-MAccuracy and real-time considerations for implementing various virtual metrology algorithmsIEEE Trans Semicond Manuf200821342643410.1109/TSM.2008.2001219
He X, Cai D, Niyogi P (2005) Tensor subspace analysis. MIT Press, In: NIPS
Chang Y-J, Kang Y, Hsu C-L, Chang C-T, Chan TY (2006) Virtual metrology technique for semiconductor manufacturing. In: IJCNN
LiXLinSYanSXuDDiscriminant locally linear embedding with high-order tensor dataIEEE Trans Syst Man Cybern200838234235210.1109/TSMCB.2007.914706
Dai G, Yeung D-Y (2006) Tensor embedding methods. In: AAAI
Lynn S, Ringwood J, Ragnoli E, McLoone S, MacGearailt N (2009) Virtual metrology for plasma etch using tool variables. In: Advanced Semiconductor Manufacturing Conference
VapnikVNThe nature of statistical learning theory2000New YorkSpringer10.1007/978-1-4757-3264-10934.62009
KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev2009513455500253505610.1137/07070111X1173.65029
CaiDHeXHanJLearning with tensor representation. Technical Report2006ChampaignUniversity of Illinois at Urbana
Tao D, Li X, Maybank SJ, Wu X (2006) Human carrying status in visual surveillance. In: CVPR, pp. 1670–1677
392_CR21
VN Vapnik (392_CR22) 2000
392_CR25
L Grippo (392_CR5) 2000; 26
S Hochreiter (392_CR7) 2004
D Tao (392_CR20) 2007; 29
Y-C Su (392_CR16) 2008; 21
392_CR19
TM Mitchell (392_CR13) 1997
392_CR18
392_CR12
L Wasserman (392_CR24) 2009
P Kang (392_CR8) 2011; 38
392_CR14
ST Roweis (392_CR15) 2000; 290
AA Khan (392_CR9) 2008; 18
J Sun (392_CR17) 2008; 2
D Cai (392_CR2) 2006
TG Kolda (392_CR10) 2009; 51
CM Bishop (392_CR1) 2006
392_CR6
Q Wang (392_CR23) 2011; 41
X Li (392_CR11) 2008; 38
392_CR4
392_CR3
References_xml – reference: KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev2009513455500253505610.1137/07070111X1173.65029
– reference: Lynn S, Ringwood J, Ragnoli E, McLoone S, MacGearailt N (2009) Virtual metrology for plasma etch using tool variables. In: Advanced Semiconductor Manufacturing Conference
– reference: Tao D, Sun J, Shen J, Wu X, Li X, Maybank SJ, Faloutsos C (2008) Bayesian tensor analysis. In: IJCNN, pp. 1402–1409
– reference: RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingSCIENCE20002902323232610.1126/science.290.5500.2323
– reference: He X, Cai D, Niyogi P (2005) Tensor subspace analysis. MIT Press, In: NIPS
– reference: LiXLinSYanSXuDDiscriminant locally linear embedding with high-order tensor dataIEEE Trans Syst Man Cybern200838234235210.1109/TSMCB.2007.914706
– reference: Dai G, Yeung D-Y (2006) Tensor embedding methods. In: AAAI
– reference: Tao D, Li X, Hu W, Maybank S, Wu X (2005) Supervised tensor learning. In: ICDM, IEEE Computer Society, pp. 450–457
– reference: KhanAAMoyneJRtilburyDMVirtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squaresJ Process Control20081896197410.1016/j.jprocont.2008.04.014
– reference: MitchellTMMachine Learning1997New YorkMcGraw-Hill0913.68167
– reference: VapnikVNThe nature of statistical learning theory2000New YorkSpringer10.1007/978-1-4757-3264-10934.62009
– reference: Tao D, Li X, Maybank SJ, Wu X (2006) Human carrying status in visual surveillance. In: CVPR, pp. 1670–1677
– reference: SunJTaoDPapadimitriouSYuPSFaloutsosCIncremental tensor analysis: Theory and applicationsTKDD2008231110.1145/1409620.1409621
– reference: Platt JC (1999) Advances in kernel methods. MIT Press, Cambridge, MA.
– reference: SuY-CLinT-HChengF-TWuW-MAccuracy and real-time considerations for implementing various virtual metrology algorithmsIEEE Trans Semicond Manuf200821342643410.1109/TSM.2008.2001219
– reference: WassermanLAll of statistics2009New YorkSpringer
– reference: HochreiterSObermayerKClassification, regression, and feature selection on matrix data. Technical Report2004BerlinTechnische Universitat
– reference: KangPKimDLeeH-JDohSChoSVirtual metrology for run-to-run control in semiconductor manufacturingExpert Syst Appl2011382508252210.1016/j.eswa.2010.08.040
– reference: CaiDHeXHanJLearning with tensor representation. Technical Report2006ChampaignUniversity of Illinois at Urbana
– reference: GrippoLSciandroneMOn the convergence of the block nonlinear Gauss–Seidel method under convex constraintsOper Res Lett2000263127136174683310.1016/S0167-6377(99)00074-70955.90128
– reference: TaoDLiXWuXMaybankSJGeneral tensor discriminant analysis and gabor features for gait recognitionIEEE Trans Pattern Anal Mach Intell200729101700171510.1109/TPAMI.2007.1096
– reference: WangQChenFXuWTracking by third-order tensor representation.IEEE Trans Syst Man Cybern20114138539610.1109/TSMCB.2010.2056366
– reference: Zhu Y, He J, Lawrence RD (2012) Hierarchical modeling with tensor inputs. In: AAAI Conference on Artificial Intelligence, pp. 1233–1239
– reference: BishopCMPattern recognition and machine learning (Information Science and Statistics)2006SecaucusSpringer
– reference: Chang Y-J, Kang Y, Hsu C-L, Chang C-T, Chan TY (2006) Virtual metrology technique for semiconductor manufacturing. In: IJCNN
– volume: 21
  start-page: 426
  issue: 3
  year: 2008
  ident: 392_CR16
  publication-title: IEEE Trans Semicond Manuf
  doi: 10.1109/TSM.2008.2001219
– volume-title: Machine Learning
  year: 1997
  ident: 392_CR13
– volume: 26
  start-page: 127
  issue: 3
  year: 2000
  ident: 392_CR5
  publication-title: Oper Res Lett
  doi: 10.1016/S0167-6377(99)00074-7
– volume: 18
  start-page: 961
  year: 2008
  ident: 392_CR9
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2008.04.014
– volume-title: The nature of statistical learning theory
  year: 2000
  ident: 392_CR22
  doi: 10.1007/978-1-4757-3264-1
– ident: 392_CR12
  doi: 10.1109/ASMC.2009.5155972
– ident: 392_CR4
– volume-title: Pattern recognition and machine learning (Information Science and Statistics)
  year: 2006
  ident: 392_CR1
– ident: 392_CR6
– volume-title: Classification, regression, and feature selection on matrix data. Technical Report
  year: 2004
  ident: 392_CR7
– ident: 392_CR19
– volume-title: All of statistics
  year: 2009
  ident: 392_CR24
– ident: 392_CR25
– volume: 2
  start-page: 11
  issue: 3
  year: 2008
  ident: 392_CR17
  publication-title: TKDD
– ident: 392_CR21
  doi: 10.1109/IJCNN.2008.4633981
– volume: 290
  start-page: 2323
  year: 2000
  ident: 392_CR15
  publication-title: SCIENCE
  doi: 10.1126/science.290.5500.2323
– volume: 29
  start-page: 1700
  issue: 10
  year: 2007
  ident: 392_CR20
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.1096
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 392_CR10
  publication-title: SIAM Rev
  doi: 10.1137/07070111X
– volume: 38
  start-page: 2508
  year: 2011
  ident: 392_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.08.040
– volume: 38
  start-page: 342
  issue: 2
  year: 2008
  ident: 392_CR11
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMCB.2007.911536
– volume-title: Learning with tensor representation. Technical Report
  year: 2006
  ident: 392_CR2
– ident: 392_CR14
– volume: 41
  start-page: 385
  year: 2011
  ident: 392_CR23
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMCB.2010.2056366
– ident: 392_CR18
– ident: 392_CR3
SSID ssj0005230
Score 2.1175725
Snippet In many real applications such as virtual metrology in semiconductor manufacturing, face recognition, and gait recognition in computer vision, the input data...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1709
SubjectTerms Algorithms
Approximation
Arrays
Art techniques
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Computer vision
Data mining
Data Mining and Knowledge Discovery
Data processing
Datasets
Fault diagnosis
Information Storage and Retrieval
Knowledge
Manufacturing
Mathematical analysis
Mathematical models
Optimization
Physics
Process controls
Semiconductors
Statistics for Engineering
Subject specialists
Tensors
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60Xrz4FqtVInhSgtluNps9SRWlCIqIgreleYmg21rr_3emm21V0Ou-AjM7ky_z-gCOlC_QA9CxJEsCl154rrVR3IVQeFHkRgQKDdzcqv6jvH7KnmLA7SOWVTY-ceqo3dBSjPyUxroQ23fRPRu9c2KNouxqpNBYhCV0wVq3YOn88vbu_luRR1r3CWvJM53M8pp185xKqJBLcoEggeufO9Mcbv7KkE43nqs1WImIkfVqFa_Dgq82YLVhY2DRODeh32PP9QxpFpqKK4aQlI3GlIwht8aoXB2vTOlvcDFGUVjmhm-Dl4rNomtb8Hh1-XDR55EngVuZFBOurTIh8UE5VVCrf6qMchn6LaGMy6wUTtmgCxOMTVyOR9KuQyvtWkRyPnfGptvQqoaV3wEmXVA5gg5F_bV5MAMlZEC9CelSa82gDaKRUWnjEHHisngt5-OPSawlirUksZa6DcezV0b1BI3_Hu40gi-jMX2Uc9W34XB2G82AchuDyg8_6ZkszWSKh7k2nDQK-_aJvxbc_X_BPVhGhJTVzYcdaE3Gn34fUcjEHMRf7QvE69nH
  priority: 102
  providerName: ProQuest
Title A general framework for predictive tensor modeling with domain knowledge
URI https://link.springer.com/article/10.1007/s10618-014-0392-8
https://www.proquest.com/docview/1716203292
https://www.proquest.com/docview/1753543259
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxtBEB-qoeBLtbZiNIYVfFIW9nK7e3uPsSSGlopIA_p0ZL-KoBcx8f_vzH3EtKjQp4O7vV2Y2Zmd2fnNDMCJDjlqAHJLVBK5DCJwY6zmPsY8iDyzItLVwM9LPZnK7zfqpsnjXrRo9zYkWWnqtWQ3nRDwSnKBhzo3G9BR6LoTjms6GK7hOtI6NdhIrkyyCmW-NsXfh9GLhflPULQ6a8Y78KkxEtmw5upn-BDKXdhuGzCwRh534WOF33SLLzAZst91AWkWW7gVQ3uUPT5RJIZ0GiOsOr6pet_gsoyuYJmfP8zuSra6WvsK0_Ho17cJb5okcCeTfMmN0zYmIWqvc8rzT7XVXqHSEtp65aTw2kWT22hd4jP0RwceRXTg0IwLmbcu3YPNcl6GfWDSR52hxaEpuTaLdqaFjMg0IX3qnJ11QbTUKlxTQZwaWdwXL7WPicAFErggAhemC6erXx7r8hnvDe61LCgaSVoUVM6Hurzngy4crz6jDFBgY1aG-TONUamSKXpyXThrWbc2xVsLHvzX6EPYQmtJ1YmIPdhcPj2HI7RIlrYPG2Z80YfO8OL2xwif56PLq-t-tS__ALCc3Ak
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOJQLLbQVoSksElyKVl3b67V9qKoICAGSnILEzc2-EBI4AYKq_il-IzOxnVAkuHG19yHNzs5-8wbYVS5DCUBqSRx4Lp1wPE214tb7zIks0cKTaaDXV51zeXoRXyzAY50LQ2GVtUycCmo7MmQj_0llXajbdxb-Ht9y6hpF3tW6hUbJFmfu319U2e5_nRzi-e6FYftocNDhVVcBbmSQTXhqlPaB88qqjBLjI6WVjfGWC6VtbKSwyvg0016bwCaowIUWeTo0iHtcYrWJcN1FWJYRvuSUmd4-fhZSEpVZyankcRrMvKhlqp4KKGxMcoGQhKf_v4NzcPvCHzt95tqfYLXCp6xVMtQaLLhiHT7WvR9YJQo-Q6fFLsuK1czX8V0MATAb35Hrh4Qoo-B4_DJttoObMbL5Mju6GV4VbGbL-wLn70K_r7BUjAq3AUxarxKEOIqyeROvh0pIj1wipI2M0cMGiJpGualKllPnjOt8XmyZyJojWXMia5424Mdsyris1_HW4GZN-Ly6uvf5nNEasDP7jZeOPCnDwo0eaEwcxTJC1bEB-_WBPVvitQ03395wGz50Br1u3j3pn32DFcRmcZn22ISlyd2D-474Z6K3pkzH4M97c_kTS5gX6g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FVEJcWh5FDQ2wSHChWmVtr9f2oaoCSZQSiCJEpdxM9lVVAie0iar-NX4dM7GdFCR669WPXWn229lvdl4Ab5XLUAOQWRIHnksnHE9Trbj1PnMiS7TwdDXwZayGZ_LTNJ424HedC0NhlbVOXCtqOzd0R96hsi7U7TsLO74Ki5j0BieLX5w6SJGntW6nUUJk5G6u0Xy7Oj7t4Vq_C8NB_9vHIa86DHAjg2zJU6O0D5xXVmWUJB8prWyMO14obWMjhVXGp5n22gQ2QWMutIjv0CAHconVJsJxH8BOQlZRE3Y-9MeTr7cCTKIyRzmVPE6DjU-1TNxTAQWRSS6QoPD071NxS3X_8c6uD73BY9it2CrrlvB6Ag1XPIW9uhMEqxTDMxh22XlZv5r5OtqLIR1mi0tyBJFKZRQqj0_WrXdwMkY3wMzOf84uCra52duHs3uR4HNoFvPCHQCT1qsECY-i3N7E65kS0iNmhLSRMXrWAlHLKDdVAXPqo_Ej35ZeJrHmKNacxJqnLXi_-WVRVu-46-N2Lfi82shX-RZ2LXizeY1bkPwqs8LNV_RNHMUyQkOyBUf1gt0a4n8Tvrh7wtfwEBGefz4djw7hERK1uMyBbENzeblyL5EMLfWrCnUMvt830P8A47UdfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+framework+for+predictive+tensor+modeling+with+domain+knowledge&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Zhu%2C+Yada&rft.au=He%2C+Jingrui&rft.au=Lawrence%2C+Richard+D.&rft.date=2015-11-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=29&rft.issue=6&rft.spage=1709&rft.epage=1732&rft_id=info:doi/10.1007%2Fs10618-014-0392-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_014_0392_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon