The construction of double type II heterostructure from CdS and Ni-MOF-74 with two structures and enhanced mechanism of photocatalytic water splitting
Visible light-driven hydrogen production by water splitting has attracted much attention because of its advantages of low cost, relative safety, and environmental friendliness. In this paper, a series of Ni-MOF-74 materials, Ni-MOF-74(X), with different morphologies and structures were synthesized b...
Saved in:
Published in | Journal of materials science Vol. 57; no. 10; pp. 5768 - 5787 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Visible light-driven hydrogen production by water splitting has attracted much attention because of its advantages of low cost, relative safety, and environmental friendliness. In this paper, a series of Ni-MOF-74 materials, Ni-MOF-74(X), with different morphologies and structures were synthesized by controlling the amount (X mL) of added water. Then, various CdS/Ni-MOF-74 composites were prepared by simple mechanical mixing of Ni-MOF-74(X) and CdS nanoparticles. The morphology and structures of CdS, Ni-MOF-74(X), and CdS/Ni-MOF-74(X) were analyzed by SEM, TEM, XRD, FT-IR, BET, and XPS. The optical properties of the composites were analyzed by UV–visible DRS, PL, TRPL, and photoelectrochemical experiments. The results show that Ni-MOF-74 is formed with a Ni
3
(OH)
2
(H
2
O)
2
(tp)
2
structure (tp: terephthalate) at low water amounts and with a [Ni
3
(OH)
2
(H
2
O)
4
(tp)
2
]·2H
2
O structure when sufficient water was present to promote its formation. Mixed structures of Ni-MOF-74 containing Ni
3
(OH)
2
(H
2
O)
2
(tp)
2
and [Ni
3
(OH)
2
(H
2
O)
4
(tp)
2
]·2H
2
O are formed when the water amount is between 5 and 40 mL. The CdS/Ni-MOF-74(15) composite has the best photocatalytic hydrogen evolution performance under visible light irradiation, and the maximum produced hydrogen amount is 3117.9 μmol after 3 h, which is 12.8 times that of pure CdS nanoparticles. The composite of CdS and Ni-MOF-74 with a mixed structure exhibits better photocatalytic hydrogen production performance than the composite based on Ni-MOF-74 with a single structure. As an explanation for the superior activity, a double type II heterostructure is formed by CdS and Ni-MOF-74 with two structures. The photogenerated electrons in the conduction band (CB) of CdS spontaneously transfer to the CB of Ni-MOF-74, which is beneficial to the improvement in the separation of photogenerated carriers in hydrogen evolution. |
---|---|
AbstractList | Visible light-driven hydrogen production by water splitting has attracted much attention because of its advantages of low cost, relative safety, and environmental friendliness. In this paper, a series of Ni-MOF-74 materials, Ni-MOF-74(X), with different morphologies and structures were synthesized by controlling the amount (X mL) of added water. Then, various CdS/Ni-MOF-74 composites were prepared by simple mechanical mixing of Ni-MOF-74(X) and CdS nanoparticles. The morphology and structures of CdS, Ni-MOF-74(X), and CdS/Ni-MOF-74(X) were analyzed by SEM, TEM, XRD, FT-IR, BET, and XPS. The optical properties of the composites were analyzed by UV–visible DRS, PL, TRPL, and photoelectrochemical experiments. The results show that Ni-MOF-74 is formed with a Ni3(OH)2(H2O)2(tp)2 structure (tp: terephthalate) at low water amounts and with a [Ni3(OH)2(H2O)4(tp)2]·2H2O structure when sufficient water was present to promote its formation. Mixed structures of Ni-MOF-74 containing Ni3(OH)2(H2O)2(tp)2 and [Ni3(OH)2(H2O)4(tp)2]·2H2O are formed when the water amount is between 5 and 40 mL. The CdS/Ni-MOF-74(15) composite has the best photocatalytic hydrogen evolution performance under visible light irradiation, and the maximum produced hydrogen amount is 3117.9 μmol after 3 h, which is 12.8 times that of pure CdS nanoparticles. The composite of CdS and Ni-MOF-74 with a mixed structure exhibits better photocatalytic hydrogen production performance than the composite based on Ni-MOF-74 with a single structure. As an explanation for the superior activity, a double type II heterostructure is formed by CdS and Ni-MOF-74 with two structures. The photogenerated electrons in the conduction band (CB) of CdS spontaneously transfer to the CB of Ni-MOF-74, which is beneficial to the improvement in the separation of photogenerated carriers in hydrogen evolution. Visible light-driven hydrogen production by water splitting has attracted much attention because of its advantages of low cost, relative safety, and environmental friendliness. In this paper, a series of Ni-MOF-74 materials, Ni-MOF-74(X), with different morphologies and structures were synthesized by controlling the amount (X mL) of added water. Then, various CdS/Ni-MOF-74 composites were prepared by simple mechanical mixing of Ni-MOF-74(X) and CdS nanoparticles. The morphology and structures of CdS, Ni-MOF-74(X), and CdS/Ni-MOF-74(X) were analyzed by SEM, TEM, XRD, FT-IR, BET, and XPS. The optical properties of the composites were analyzed by UV–visible DRS, PL, TRPL, and photoelectrochemical experiments. The results show that Ni-MOF-74 is formed with a Ni₃(OH)₂(H₂O)₂(tp)₂ structure (tp: terephthalate) at low water amounts and with a [Ni₃(OH)₂(H₂O)₄(tp)₂]·2H₂O structure when sufficient water was present to promote its formation. Mixed structures of Ni-MOF-74 containing Ni₃(OH)₂(H₂O)₂(tp)₂ and [Ni₃(OH)₂(H₂O)₄(tp)₂]·2H₂O are formed when the water amount is between 5 and 40 mL. The CdS/Ni-MOF-74(15) composite has the best photocatalytic hydrogen evolution performance under visible light irradiation, and the maximum produced hydrogen amount is 3117.9 μmol after 3 h, which is 12.8 times that of pure CdS nanoparticles. The composite of CdS and Ni-MOF-74 with a mixed structure exhibits better photocatalytic hydrogen production performance than the composite based on Ni-MOF-74 with a single structure. As an explanation for the superior activity, a double type II heterostructure is formed by CdS and Ni-MOF-74 with two structures. The photogenerated electrons in the conduction band (CB) of CdS spontaneously transfer to the CB of Ni-MOF-74, which is beneficial to the improvement in the separation of photogenerated carriers in hydrogen evolution. Visible light-driven hydrogen production by water splitting has attracted much attention because of its advantages of low cost, relative safety, and environmental friendliness. In this paper, a series of Ni-MOF-74 materials, Ni-MOF-74(X), with different morphologies and structures were synthesized by controlling the amount (X mL) of added water. Then, various CdS/Ni-MOF-74 composites were prepared by simple mechanical mixing of Ni-MOF-74(X) and CdS nanoparticles. The morphology and structures of CdS, Ni-MOF-74(X), and CdS/Ni-MOF-74(X) were analyzed by SEM, TEM, XRD, FT-IR, BET, and XPS. The optical properties of the composites were analyzed by UV-visible DRS, PL, TRPL, and photoelectrochemical experiments. The results show that Ni-MOF-74 is formed with a Ni.sub.3(OH).sub.2(H.sub.2O).sub.2(tp).sub.2 structure (tp: terephthalate) at low water amounts and with a [Ni.sub.3(OH).sub.2(H.sub.2O).sub.4(tp).sub.2]·2H.sub.2O structure when sufficient water was present to promote its formation. Mixed structures of Ni-MOF-74 containing Ni.sub.3(OH).sub.2(H.sub.2O).sub.2(tp).sub.2 and [Ni.sub.3(OH).sub.2(H.sub.2O).sub.4(tp).sub.2]·2H.sub.2O are formed when the water amount is between 5 and 40 mL. The CdS/Ni-MOF-74(15) composite has the best photocatalytic hydrogen evolution performance under visible light irradiation, and the maximum produced hydrogen amount is 3117.9 [mu]mol after 3 h, which is 12.8 times that of pure CdS nanoparticles. The composite of CdS and Ni-MOF-74 with a mixed structure exhibits better photocatalytic hydrogen production performance than the composite based on Ni-MOF-74 with a single structure. As an explanation for the superior activity, a double type II heterostructure is formed by CdS and Ni-MOF-74 with two structures. The photogenerated electrons in the conduction band (CB) of CdS spontaneously transfer to the CB of Ni-MOF-74, which is beneficial to the improvement in the separation of photogenerated carriers in hydrogen evolution. Visible light-driven hydrogen production by water splitting has attracted much attention because of its advantages of low cost, relative safety, and environmental friendliness. In this paper, a series of Ni-MOF-74 materials, Ni-MOF-74(X), with different morphologies and structures were synthesized by controlling the amount (X mL) of added water. Then, various CdS/Ni-MOF-74 composites were prepared by simple mechanical mixing of Ni-MOF-74(X) and CdS nanoparticles. The morphology and structures of CdS, Ni-MOF-74(X), and CdS/Ni-MOF-74(X) were analyzed by SEM, TEM, XRD, FT-IR, BET, and XPS. The optical properties of the composites were analyzed by UV–visible DRS, PL, TRPL, and photoelectrochemical experiments. The results show that Ni-MOF-74 is formed with a Ni 3 (OH) 2 (H 2 O) 2 (tp) 2 structure (tp: terephthalate) at low water amounts and with a [Ni 3 (OH) 2 (H 2 O) 4 (tp) 2 ]·2H 2 O structure when sufficient water was present to promote its formation. Mixed structures of Ni-MOF-74 containing Ni 3 (OH) 2 (H 2 O) 2 (tp) 2 and [Ni 3 (OH) 2 (H 2 O) 4 (tp) 2 ]·2H 2 O are formed when the water amount is between 5 and 40 mL. The CdS/Ni-MOF-74(15) composite has the best photocatalytic hydrogen evolution performance under visible light irradiation, and the maximum produced hydrogen amount is 3117.9 μmol after 3 h, which is 12.8 times that of pure CdS nanoparticles. The composite of CdS and Ni-MOF-74 with a mixed structure exhibits better photocatalytic hydrogen production performance than the composite based on Ni-MOF-74 with a single structure. As an explanation for the superior activity, a double type II heterostructure is formed by CdS and Ni-MOF-74 with two structures. The photogenerated electrons in the conduction band (CB) of CdS spontaneously transfer to the CB of Ni-MOF-74, which is beneficial to the improvement in the separation of photogenerated carriers in hydrogen evolution. |
Audience | Academic |
Author | Wang, Hong-xia Wang, Jian Li, Hao-tian Zhang, Wang-gang Liu, Yi-ming Niu, Lu |
Author_xml | – sequence: 1 givenname: Lu surname: Niu fullname: Niu, Lu organization: College of Materials Science and Engineering, Taiyuan University of Technology – sequence: 2 givenname: Wang-gang surname: Zhang fullname: Zhang, Wang-gang organization: College of Materials Science and Engineering, Taiyuan University of Technology – sequence: 3 givenname: Hao-tian surname: Li fullname: Li, Hao-tian organization: College of Materials Science and Engineering, Taiyuan University of Technology – sequence: 4 givenname: Hong-xia surname: Wang fullname: Wang, Hong-xia organization: College of Materials Science and Engineering, Taiyuan University of Technology – sequence: 5 givenname: Jian surname: Wang fullname: Wang, Jian email: wangjian@tyut.edu.cn organization: College of Materials Science and Engineering, Taiyuan University of Technology – sequence: 6 givenname: Yi-ming orcidid: 0000-0002-8766-9318 surname: Liu fullname: Liu, Yi-ming email: liuym812@163.com organization: College of Materials Science and Engineering, Taiyuan University of Technology, Shanxi Academy of Analytical Sciences |
BookMark | eNp9ksFu3CAQQK0qlbpJ-wM9IfXSi1MwYOxjtGraldLm0PSMWBiviWxwAWu1P5LvLY6rRo2qiANoeG8GNHNenDnvoCjeE3xJMBafIsENpyWuqhILTFiJXxUbwgUtWYPpWbHBy1XFavKmOI_xHmPMRUU2xcNdD0h7F1OYdbLeId8h4-f9ACidJkC7HeohQfArMQdAXfAj2pofSDmDvtvy2-11KRg62tSjdPToLxkfCXC9choMGkHnk43jUmPqffJaJTWcktXoqHINFKfBpmTd4W3xulNDhHd_9ovi5_Xnu-3X8ub2y257dVNqRtpUNq0RBlPSClOTFlrOBRFs39aKGgqca6LrqoauJoyqHNgbxtua84owI8he0Ivi45p3Cv7XDDHJ0UYNw6Ac-DnKqmZNQ7ngJKMfnqH3fg4uvy5TtMl1W06fqIMaQFrX-RSUXpLKq7qtWSsoW6jL_1B5GRht7gZ0Nsf_EZpV0LkRMUAntU1q6VcW7SAJlsscyHUOZG62fJwDibNaPVOnYEcVTi9LdJViht0BwtNnX7B-A_7Bxi8 |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_142530 crossref_primary_10_1016_j_inoche_2025_114026 crossref_primary_10_1016_j_colsurfa_2023_132831 crossref_primary_10_1039_D2DT04030A crossref_primary_10_1016_S1872_5813_24_60493_7 crossref_primary_10_1016_j_dyepig_2023_111607 crossref_primary_10_1002_chem_202301952 crossref_primary_10_1016_j_jechem_2023_12_029 crossref_primary_10_1016_j_surfin_2024_104959 crossref_primary_10_1016_j_fuel_2023_127525 crossref_primary_10_1016_j_seppur_2024_128576 crossref_primary_10_1021_acscatal_4c05193 crossref_primary_10_1016_j_jcis_2023_07_210 crossref_primary_10_1016_j_jcrysgro_2025_128125 crossref_primary_10_1016_j_jcis_2024_05_083 |
Cites_doi | 10.1039/C9RA06359E 10.1002/anie.201301709 10.1016/j.solidstatesciences.2007.04.003 10.1016/j.envres.2021.111054 10.1039/c1jm10407a 10.1007/s10854-015-3910-6 10.1021/ie2020608 10.1039/C8DT02294A 10.1016/j.apcatb.2017.09.024 10.1016/j.catcom.2016.03.013 10.1016/j.ccr.2020.213488 10.1039/C9NR09183A 10.1016/j.apcatb.2018.11.018 10.1007/s12274-014-0690-x 10.1002/adma.201300244 10.1002/adma.201802981 10.1016/j.apsusc.2016.07.030 10.1039/c3cc46342g 10.1021/acsami.6b02687 10.1016/j.apcatb.2016.02.017 10.1016/j.apcatb.2019.118249 10.1039/C8NR03846E 10.1039/c3cc41362d 10.1016/j.jclepro.2017.11.208 10.1021/acssuschemeng.7b00787 10.1021/acsami.6b08851 10.1016/j.apsusc.2020.146356 10.1039/D0DT00271B 10.1002/adma.201902868 10.1016/j.apcatb.2018.02.006 10.1039/C8CY00380G 10.1039/C5TA02438B 10.1038/440295a 10.1016/j.nanoen.2017.03.035 10.1039/D1NJ01711J 10.1002/er.5807 10.1016/j.apcatb.2019.117997 10.1039/C4CS00103F 10.1016/j.molcata.2013.06.017 10.1016/j.ijhydene.2019.05.233 10.1039/C6TA03178A 10.1016/j.jcis.2021.06.111 10.1039/D1RA00625H 10.1021/ic402106v 10.1002/ejic.202000729 10.1039/C9CP01180C 10.1021/acs.inorgchem.5b01278 10.1016/j.jssc.2020.121497 10.1016/j.cap.2016.07.009 10.1021/ja2025454 10.1126/science.1230444 10.1021/jacs.6b11878 10.1016/j.jcis.2017.11.030 10.1039/C7CY01102D 10.1016/j.jssc.2019.03.040 10.1002/adma.200901920 10.1021/acs.cgd.0c01274 10.1016/j.apcatb.2018.06.040 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 COPYRIGHT 2022 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: COPYRIGHT 2022 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 |
DOI | 10.1007/s10853-022-07014-0 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Materials Science Collection AGRICOLA |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-4803 |
EndPage | 5787 |
ExternalDocumentID | A696497343 10_1007_s10853_022_07014_0 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 22075197 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -4Y -58 -5G -BR -EM -XW -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29K 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D-I D1I DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IFM IGS IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P9N PDBOC PF- PKN PT4 PT5 PTHSS QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z91 Z92 ZE2 ZMTXR ZY4 ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 |
ID | FETCH-LOGICAL-c419t-89d7d03197d619e9557174b96a3d3e55c1c626ef6143a3e5bd459655214d71b73 |
IEDL.DBID | U2A |
ISSN | 0022-2461 |
IngestDate | Fri Jul 11 09:36:47 EDT 2025 Fri Jul 25 11:09:53 EDT 2025 Tue Jun 17 22:10:42 EDT 2025 Tue Jun 10 21:03:55 EDT 2025 Tue Jul 01 01:40:13 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Fri Feb 21 02:47:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-89d7d03197d619e9557174b96a3d3e55c1c626ef6143a3e5bd459655214d71b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8766-9318 |
PQID | 2638174953 |
PQPubID | 2043599 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2648835751 proquest_journals_2638174953 gale_infotracmisc_A696497343 gale_infotracacademiconefile_A696497343 crossref_citationtrail_10_1007_s10853_022_07014_0 crossref_primary_10_1007_s10853_022_07014_0 springer_journals_10_1007_s10853_022_07014_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220300 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220300 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science |
PublicationTitleAbbrev | J Mater Sci |
PublicationYear | 2022 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Wen, Xie, Chen, Li (CR5) 2017; 391 Zhang, Wang, Ma, Ma, Jin (CR17) 2018; 47 Jin, Gong, Li (CR46) 2021; 603 Furukawa, Cordova, O'Keeffe, Yaghi (CR26) 2013; 341 Ali, Pervaiz, Noor, Rabi, Zahra, Yang (CR21) 2020; 45 Xiong, Liu, Wang, Liang, Wu, Wu (CR43) 2015; 3 Huang, Tao, Ye, Yao, Li (CR58) 2018; 237 Xu, Zhao, Xu, Shi, Zhang (CR13) 2013; 49 Wu, Zhu, Deng, Xiang, Tan, Tang, Zou, Xu, Zhou (CR31) 2019; 9 Huang, Gu, Su, Xu, Liu, Zhu (CR28) 2020; 289 Wang, Wang, Jin, Liu, Li, Wu, Chen, Wang, Yang, Su (CR55) 2016; 188 Ke, Wang, Zhu (CR23) 2015; 8 Low, Dai, Tong, Jiang, Yu (CR44) 2019; 31 Huang, Gao, Xiong, Devaraji, Chen, Li, Mao (CR16) 2021; 11 Wang, Ge, Feng, Jiang, Wang, Li, Lin, Zhu (CR30) 2021; 21 Saleh (CR36) 2018; 172 Bie, Zhu, Xu, Zhang, Yu (CR50) 2019; 31 Maity, Das, Santra, Sen, Chattopadhyay (CR53) 2016; 16 Hao, Zhou, Cui, Wang, Wang, Zou (CR2) 2018; 229 Li, Wang, Xu, Zhang, Bando, Golberg, Ma, Zhai (CR6) 2013; 25 Jia, Sun, Zhang, Zhang, Hu, Liu, Fan (CR51) 2020; 261 Zhang, Lin (CR20) 2014; 43 Carton, Mesbah, Mazet, Porcher, François (CR39) 2007; 9 Che, Cheng, Yao, Tang, Liu, Su, Huang, Liu, Liu, Hu, Pan, Sun, Wei (CR49) 2017; 139 Hu, Gao, Yu, Wang, Ning, Xu, Lou (CR10) 2013; 52 Ismail, Bahnemann (CR54) 2011; 21 Liu, Ma, Liu, Shang, Zhu, Tan, Xiong, Pan (CR14) 2018; 513 Liang, Chen, Wang, Li (CR19) 2020; 424 Li, Zhu, Yu, Wang, Liu, Yang, Li, Zhou (CR25) 2021; 197 Zhen, Ning, Yang, Wu, Li, Lu (CR41) 2018; 221 Ranjbar, Taher, Sam (CR29) 2015; 27 Liu, Hai, Gong (CR34) 2020; 2020 Patel, Pathan (CR35) 2011; 51 Zhang, Jin (CR47) 2019; 21 Jiang, Wang, Wang, Chen, Zhang (CR37) 2016; 8 Maeda, Teramura, Lu, Takata, Saito, Inoue, Domen (CR1) 2006; 440 Li, Guo, Yu, Ran, Zhang, Yan, Gong (CR4) 2011; 133 Jin, Wang, Yuan, Han (CR22) 2019; 44 Kong, Dong, Jiang, Wang, Zhang, Zhao (CR45) 2016; 4 Cao, Yang, Zhang, Xu (CR48) 2019; 258 Wang, Tian, Sun, Zhu, Li, Mu, Zhao (CR52) 2018; 10 Fan, Jin, Wang, Yang, Liu, Hu, Lu, Bi (CR57) 2018; 8 Yin, Li, Jiang, Zhang, Zhang, Wan, Hu (CR8) 2016; 8 Pan, Peng, Xin, You, Men, Zhang, Duan, Cui, Sun, Song (CR40) 2017; 5 Jiang, Wang, Wang, Chen, Zhang (CR27) 2016; 80 Mesbah, Rabu, Sibille, Lebegue, Mazet, Malaman, Francois (CR38) 2014; 53 Peng, Wu, Baltrusaitis, Dimitrijevic, Rajh, Koodali (CR7) 2013; 49 Ning, Lu (CR9) 2020; 12 Liu, Meng, Zhang (CR42) 2017; 7 Meng, Sheng, Tang, Sun, Dong, Zhang (CR56) 2019; 244 Guo, Liang, Liu, Hu, Wang, An, Cui (CR24) 2020; 522 Cao, Liu, Chu, Wu, Ye, Cai, Chang, Wang, Gong, Liu (CR11) 2010; 22 Singh, Pal (CR12) 2013; 378 Sun, Sun, Deng, Li (CR32) 2015; 54 Wang, Hu, Nguyen, Zhang, Schmuki, Bi (CR3) 2017; 35 Fan, Xiong, Liu, Tang, He, Hu (CR15) 2021; 45 Li, Li, Jin (CR18) 2020; 49 Zhang, Hao, Jian, Jin (CR33) 2019; 274 R Singh (7014_CR12) 2013; 378 Y Xu (7014_CR13) 2013; 49 T Zhang (7014_CR20) 2014; 43 C Huang (7014_CR28) 2020; 289 L Kong (7014_CR45) 2016; 4 A Carton (7014_CR39) 2007; 9 M Ranjbar (7014_CR29) 2015; 27 Y Hu (7014_CR10) 2013; 52 L Huang (7014_CR16) 2021; 11 M Ali (7014_CR21) 2020; 45 J Wen (7014_CR5) 2017; 391 J Xiong (7014_CR43) 2015; 3 Z Jin (7014_CR46) 2021; 603 R Cao (7014_CR48) 2019; 258 TA Saleh (7014_CR36) 2018; 172 Q Li (7014_CR4) 2011; 133 Q Liang (7014_CR19) 2020; 424 A Mesbah (7014_CR38) 2014; 53 F Ke (7014_CR23) 2015; 8 S Li (7014_CR25) 2021; 197 XL Yin (7014_CR8) 2016; 8 L Zhang (7014_CR33) 2019; 274 W Che (7014_CR49) 2017; 139 Y Zhang (7014_CR17) 2018; 47 H Jiang (7014_CR37) 2016; 8 Z Wang (7014_CR30) 2021; 21 Y Zhang (7014_CR47) 2019; 21 M Li (7014_CR18) 2020; 49 W Wu (7014_CR31) 2019; 9 D Sun (7014_CR32) 2015; 54 J Jia (7014_CR51) 2020; 261 H Li (7014_CR6) 2013; 25 K Maeda (7014_CR1) 2006; 440 X-B Meng (7014_CR56) 2019; 244 J Low (7014_CR44) 2019; 31 Y Liu (7014_CR14) 2018; 513 Q-Z Huang (7014_CR58) 2018; 237 C Wang (7014_CR55) 2016; 188 X Ning (7014_CR9) 2020; 12 J Guo (7014_CR24) 2020; 522 H Jiang (7014_CR27) 2016; 80 H Liu (7014_CR42) 2017; 7 R Peng (7014_CR7) 2013; 49 Z Jin (7014_CR22) 2019; 44 A Cao (7014_CR11) 2010; 22 W Zhen (7014_CR41) 2018; 221 J Fan (7014_CR15) 2021; 45 S Maity (7014_CR53) 2016; 16 XJ Wang (7014_CR52) 2018; 10 X Hao (7014_CR2) 2018; 229 L Liu (7014_CR34) 2020; 2020 Y-X Pan (7014_CR40) 2017; 5 L Wang (7014_CR3) 2017; 35 H Furukawa (7014_CR26) 2013; 341 K Fan (7014_CR57) 2018; 8 A Patel (7014_CR35) 2011; 51 AA Ismail (7014_CR54) 2011; 21 C Bie (7014_CR50) 2019; 31 |
References_xml | – volume: 31 start-page: e1902868 issue: 42 year: 2019 ident: CR50 article-title: In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO reduction publication-title: Adv Mater – volume: 2020 start-page: 4215 issue: 44 year: 2020 end-page: 4224 ident: CR34 article-title: A facile electrosynthesis of terephthalate (tp)-based metal-organic framework, Ni (OH) (H O) (tp) with superior catalytic activity for hydrogen evolution reaction publication-title: Eur J Inorg Chem – volume: 391 start-page: 72 year: 2017 end-page: 123 ident: CR5 article-title: A review on g-C 3 N 4 -based photocatalysts publication-title: Appl Surf Sci – volume: 44 start-page: 19640 issue: 36 year: 2019 end-page: 19649 ident: CR22 article-title: Inserting MOF into flaky CdS photocatalyst forming special structure and active sites for efficient hydrogen production publication-title: Int J Hydrogen Energy – volume: 139 start-page: 3021 issue: 8 year: 2017 end-page: 3026 ident: CR49 article-title: Fast photoelectron transfer in (cring)-C3N4 plane heterostructural nanosheets for overall water splitting publication-title: J Am Chem Soc – volume: 188 start-page: 351 year: 2016 end-page: 359 ident: CR55 article-title: Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres publication-title: Appl Catal B – volume: 21 start-page: 926 issue: 2 year: 2021 end-page: 934 ident: CR30 article-title: Crystal facet engineering of copper-based metal-organic frameworks with inorganic modulators publication-title: Cryst Growth Des – volume: 45 start-page: 1190 issue: 2 year: 2020 end-page: 1226 ident: CR21 article-title: Recent advancements i MOF-based catalysts for applications in electrochemical and photoelectrochemical water splitting: a review publication-title: Int J Energy Res – volume: 53 start-page: 872 issue: 2 year: 2014 end-page: 881 ident: CR38 article-title: From hydrated Ni (OH) (C H O ) (H O) to anhydrous Ni (OH) (C H O ): impact of structural transformations on magnetic properties publication-title: Inorg Chem – volume: 8 start-page: 2352 issue: 9 year: 2018 end-page: 2363 ident: CR57 article-title: Distinctive organized molecular assemble of MoS , MOF and CO O , for efficient dye-sensitized photocatalytic H2 evolution publication-title: Catal Sci Technol – volume: 289 start-page: 121497 year: 2020 ident: CR28 article-title: Controllable synthesis of Co-MOF-74 catalysts and their application in catalytic oxidation of toluene publication-title: J Solid State Chem – volume: 221 start-page: 243 year: 2018 end-page: 257 ident: CR41 article-title: The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill publication-title: Appl Catal B – volume: 274 start-page: 286 year: 2019 end-page: 294 ident: CR33 article-title: Ferrous oxalate dehydrate over CdS as Z-scheme photocatalytic hydrogen evolution publication-title: J Solid State Chem – volume: 5 start-page: 5449 issue: 6 year: 2017 end-page: 5456 ident: CR40 article-title: Enhanced visible-light-driven photocatalytic H2 evolution from water on noble-metal-free CdS-nanoparticle-dispersed Mo2C@C nanospheres publication-title: ACS Sustain Chem Eng – volume: 80 start-page: 24 year: 2016 end-page: 27 ident: CR27 article-title: Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR process publication-title: Catal Commun – volume: 27 start-page: 1449 issue: 2 year: 2015 end-page: 1456 ident: CR29 article-title: Mg-MOF-74 nanostructures: facile synthesis and characterization with aid of 2,6-pyridinedicarboxylic acid ammonium publication-title: J Mater Sci Mater Electron – volume: 261 start-page: 118249 year: 2020 ident: CR51 article-title: Inter-plane heterojunctions within 2D/2D FeSe2/g-C3N4 nanosheet semiconductors for photocatalytic hydrogen generation publication-title: Appl Catal B Environ – volume: 8 start-page: 1834 issue: 6 year: 2015 end-page: 1846 ident: CR23 article-title: Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation publication-title: Nano Res – volume: 11 start-page: 12153 issue: 20 year: 2021 end-page: 12161 ident: CR16 article-title: Two dimensional Ni2P/CdS photocatalyst for boosting hydrogen production under visible light irradiation publication-title: RSC Adv – volume: 49 start-page: 5143 issue: 16 year: 2020 end-page: 5156 ident: CR18 article-title: 0D/2D spatial structure of CdxZn1-xS/Ni-MOF-74 for efficient photocatalytic hydrogen evolution publication-title: Dalton Trans – volume: 49 start-page: 9803 issue: 84 year: 2013 end-page: 9805 ident: CR13 article-title: Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution publication-title: Chem Commun (Camb) – volume: 43 start-page: 5982 issue: 16 year: 2014 end-page: 5993 ident: CR20 article-title: Metal-organic frameworks for artificial photosynthesis and photocatalysis publication-title: Chem Soc Rev – volume: 7 start-page: 3802 issue: 17 year: 2017 end-page: 3811 ident: CR42 article-title: Self-assembled three-dimensional flowerlike Mn0.8Cd0.2S microspheres as efficient visible-light-driven photocatalysts for H2 evolution and CO reduction publication-title: Catal Sci Technol – volume: 603 start-page: 344 year: 2021 end-page: 355 ident: CR46 article-title: Visible-light-driven two dimensional metal-organic framework modified manganese cadmium sulfide for efficient photocatalytic hydrogen evolution publication-title: J Colloid Interface Sci – volume: 10 start-page: 12315 issue: 26 year: 2018 end-page: 12321 ident: CR52 article-title: Enhanced Schottky effect of a 2D–2D CoP/g-C3N4 interface for boosting photocatalytic H2 evolution publication-title: Nanoscale – volume: 8 start-page: 26817 issue: 40 year: 2016 end-page: 26826 ident: CR37 article-title: MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH publication-title: ACS Appl Mater Interfaces – volume: 12 start-page: 1213 issue: 3 year: 2020 end-page: 1223 ident: CR9 article-title: Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting publication-title: Nanoscale – volume: 52 start-page: 5636 issue: 21 year: 2013 end-page: 5639 ident: CR10 article-title: Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity publication-title: Angew Chem Int Ed Engl – volume: 258 start-page: 117997 year: 2019 ident: CR48 article-title: Engineering of Z-scheme 2D/3D architectures with Ni(OH) on 3D porous g-C3N4 for efficiently photocatalytic H2 evolution publication-title: Appl Catal B Environ – volume: 16 start-page: 1293 issue: 10 year: 2016 end-page: 1302 ident: CR53 article-title: CdS nanoparticle coated carbon nanotube through magnetron sputtering and its improved field emission performance publication-title: Curr Appl Phys – volume: 244 start-page: 340 year: 2019 end-page: 346 ident: CR56 article-title: Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst publication-title: Appl Catal B – volume: 424 start-page: 213488 year: 2020 ident: CR19 article-title: Transition metal-based metal-organic frameworks for oxygen evolution reaction publication-title: Coord Chem Rev – volume: 49 start-page: 3221 issue: 31 year: 2013 end-page: 3223 ident: CR7 article-title: Ultra-stable CdS incorporated Ti-MCM-48 mesoporous materials for efficient photocatalytic decomposition of water under visible light illumination publication-title: Chem Commun (Camb) – volume: 51 start-page: 732 issue: 2 year: 2011 end-page: 740 ident: CR35 article-title: Solvent free selective oxidation of styrene and benzyl alcohol to benzaldehyde over an eco-friendly and reusable catalyst, undecamolybdophosphate supported onto neutral alumina publication-title: Ind Eng Chem Res – volume: 229 start-page: 41 year: 2018 end-page: 51 ident: CR2 article-title: Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production publication-title: Appl Catal B – volume: 341 start-page: 1230444 issue: 6149 year: 2013 ident: CR26 article-title: The chemistry and applications of metal-organic frameworks publication-title: Science – volume: 133 start-page: 10878 issue: 28 year: 2011 end-page: 10884 ident: CR4 article-title: Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets publication-title: J Am Chem Soc – volume: 54 start-page: 8639 issue: 17 year: 2015 end-page: 8643 ident: CR32 article-title: Mixed-metal strategy on metal-organic frameworks (MOFs) for functionalities expansion: Co substitution induces aerobic oxidation of cyclohexene over inactive Ni-MOF-74 publication-title: Inorg Chem – volume: 172 start-page: 2123 year: 2018 end-page: 2132 ident: CR36 article-title: Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon publication-title: J Clean Prod – volume: 9 start-page: 31728 issue: 54 year: 2019 end-page: 31734 ident: CR31 article-title: TiO nanocrystals with the 001 and 101 facets co-exposed with MIL-100(Fe): an egg-like composite nanomaterial for efficient visible light-driven photocatalysis publication-title: RSC Adv – volume: 378 start-page: 246 year: 2013 end-page: 254 ident: CR12 article-title: Highly enhanced photocatalytic activity of Au nanorod–CdS nanorod heterocomposites publication-title: J Mol Catal A Chem – volume: 237 start-page: 689 year: 2018 end-page: 698 ident: CR58 article-title: Mn0.2Cd0.8S nanowires modified by CoP3 nanoparticles for highly efficient photocatalytic H2 evolution under visible light irradiation publication-title: Appl Catal B Environ – volume: 522 start-page: 146356 year: 2020 ident: CR24 article-title: Noble-metal-free CdS/Ni-MOF composites with highly efficient charge separation for photocatalytic H2 evolution publication-title: Appl Surf Sci – volume: 21 start-page: 8326 issue: 16 year: 2019 end-page: 8341 ident: CR47 article-title: Effective electron-hole separation over a controllably constructed WP/UiO-66/CdS heterojunction to achieve efficiently improved visible-light-driven photocatalytic hydrogen evolution publication-title: Phys Chem Chem Phys – volume: 25 start-page: 3017 issue: 22 year: 2013 end-page: 3037 ident: CR6 article-title: One-dimensional CdS nanostructures: a promising candidate for optoelectronics publication-title: Adv Mater – volume: 8 start-page: 15258 issue: 24 year: 2016 end-page: 15266 ident: CR8 article-title: MoS2/CdS nanosheets-on-nanorod heterostructure for highly efficient photocatalytic H2 generation under visible light irradiation publication-title: ACS Appl Mater Interfaces – volume: 513 start-page: 222 year: 2018 end-page: 230 ident: CR14 article-title: Facet and morphology dependent photocatalytic hydrogen evolution with CdS nanoflowers using a novel mixed solvothermal strategy publication-title: J Colloid Interface Sci – volume: 9 start-page: 465 issue: 6 year: 2007 end-page: 471 ident: CR39 article-title: Ab initio crystal structure of nickel(II) hydroxy-terephthalate by synchrotron powder diffraction and magnetic study publication-title: Solid State Sci – volume: 4 start-page: 9998 issue: 25 year: 2016 end-page: 10007 ident: CR45 article-title: Light-assisted rapid preparation of a Ni/g-C3N4 magnetic composite for robust photocatalytic H2 evolution from water publication-title: J Mater Chem A – volume: 35 start-page: 171 year: 2017 end-page: 178 ident: CR3 article-title: Plasmon-induced hole-depletion layer on hematite nanoflake photoanodes for highly efficient solar water splitting publication-title: Nano Energy – volume: 47 start-page: 11176 issue: 32 year: 2018 end-page: 11189 ident: CR17 article-title: CdS p-n heterojunction co-boosting with Co3O4 and Ni-MOF-74 for photocatalytic hydrogen evolution publication-title: Dalton Trans – volume: 197 start-page: 111054 year: 2021 ident: CR25 article-title: Simultaneous sulfamethoxazole degradation with electricity generation by microbial fuel cells using Ni-MOF-74 as cathode catalysts and quantification of antibiotic resistance genes publication-title: Environ Res – volume: 21 start-page: 11686 issue: 32 year: 2011 ident: CR54 article-title: Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms publication-title: J Mater Chem – volume: 22 start-page: 103 issue: 1 year: 2010 end-page: 106 ident: CR11 article-title: A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials publication-title: Adv Mater – volume: 31 start-page: e1802981 issue: 6 year: 2019 ident: CR44 article-title: In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO /CdS composite film photocatalyst publication-title: Adv Mater – volume: 3 start-page: 12631 issue: 24 year: 2015 end-page: 12635 ident: CR43 article-title: An efficient cocatalyst of defect-decorated MoS ultrathin nanoplates for the promotion of photocatalytic hydrogen evolution over CdS nanocrystal publication-title: J Mater Chem A – volume: 440 start-page: 295 issue: 7082 year: 2006 ident: CR1 article-title: Photocatalyst releasing hydrogen from water publication-title: Nature – volume: 45 start-page: 10315 issue: 23 year: 2021 end-page: 10324 ident: CR15 article-title: A cathodic photocorrosion-assisted strategy to construct a CdS/Pt heterojunction photocatalyst for enhanced photocatalytic hydrogen evolution publication-title: New J Chem – volume: 9 start-page: 31728 issue: 54 year: 2019 ident: 7014_CR31 publication-title: RSC Adv doi: 10.1039/C9RA06359E – volume: 52 start-page: 5636 issue: 21 year: 2013 ident: 7014_CR10 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201301709 – volume: 9 start-page: 465 issue: 6 year: 2007 ident: 7014_CR39 publication-title: Solid State Sci doi: 10.1016/j.solidstatesciences.2007.04.003 – volume: 197 start-page: 111054 year: 2021 ident: 7014_CR25 publication-title: Environ Res doi: 10.1016/j.envres.2021.111054 – volume: 21 start-page: 11686 issue: 32 year: 2011 ident: 7014_CR54 publication-title: J Mater Chem doi: 10.1039/c1jm10407a – volume: 27 start-page: 1449 issue: 2 year: 2015 ident: 7014_CR29 publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-015-3910-6 – volume: 51 start-page: 732 issue: 2 year: 2011 ident: 7014_CR35 publication-title: Ind Eng Chem Res doi: 10.1021/ie2020608 – volume: 47 start-page: 11176 issue: 32 year: 2018 ident: 7014_CR17 publication-title: Dalton Trans doi: 10.1039/C8DT02294A – volume: 221 start-page: 243 year: 2018 ident: 7014_CR41 publication-title: Appl Catal B doi: 10.1016/j.apcatb.2017.09.024 – volume: 80 start-page: 24 year: 2016 ident: 7014_CR27 publication-title: Catal Commun doi: 10.1016/j.catcom.2016.03.013 – volume: 424 start-page: 213488 year: 2020 ident: 7014_CR19 publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2020.213488 – volume: 12 start-page: 1213 issue: 3 year: 2020 ident: 7014_CR9 publication-title: Nanoscale doi: 10.1039/C9NR09183A – volume: 244 start-page: 340 year: 2019 ident: 7014_CR56 publication-title: Appl Catal B doi: 10.1016/j.apcatb.2018.11.018 – volume: 8 start-page: 1834 issue: 6 year: 2015 ident: 7014_CR23 publication-title: Nano Res doi: 10.1007/s12274-014-0690-x – volume: 25 start-page: 3017 issue: 22 year: 2013 ident: 7014_CR6 publication-title: Adv Mater doi: 10.1002/adma.201300244 – volume: 31 start-page: e1802981 issue: 6 year: 2019 ident: 7014_CR44 publication-title: Adv Mater doi: 10.1002/adma.201802981 – volume: 391 start-page: 72 year: 2017 ident: 7014_CR5 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.07.030 – volume: 49 start-page: 9803 issue: 84 year: 2013 ident: 7014_CR13 publication-title: Chem Commun (Camb) doi: 10.1039/c3cc46342g – volume: 8 start-page: 15258 issue: 24 year: 2016 ident: 7014_CR8 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b02687 – volume: 188 start-page: 351 year: 2016 ident: 7014_CR55 publication-title: Appl Catal B doi: 10.1016/j.apcatb.2016.02.017 – volume: 261 start-page: 118249 year: 2020 ident: 7014_CR51 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2019.118249 – volume: 10 start-page: 12315 issue: 26 year: 2018 ident: 7014_CR52 publication-title: Nanoscale doi: 10.1039/C8NR03846E – volume: 49 start-page: 3221 issue: 31 year: 2013 ident: 7014_CR7 publication-title: Chem Commun (Camb) doi: 10.1039/c3cc41362d – volume: 172 start-page: 2123 year: 2018 ident: 7014_CR36 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.11.208 – volume: 5 start-page: 5449 issue: 6 year: 2017 ident: 7014_CR40 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.7b00787 – volume: 8 start-page: 26817 issue: 40 year: 2016 ident: 7014_CR37 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b08851 – volume: 522 start-page: 146356 year: 2020 ident: 7014_CR24 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2020.146356 – volume: 49 start-page: 5143 issue: 16 year: 2020 ident: 7014_CR18 publication-title: Dalton Trans doi: 10.1039/D0DT00271B – volume: 31 start-page: e1902868 issue: 42 year: 2019 ident: 7014_CR50 publication-title: Adv Mater doi: 10.1002/adma.201902868 – volume: 229 start-page: 41 year: 2018 ident: 7014_CR2 publication-title: Appl Catal B doi: 10.1016/j.apcatb.2018.02.006 – volume: 8 start-page: 2352 issue: 9 year: 2018 ident: 7014_CR57 publication-title: Catal Sci Technol doi: 10.1039/C8CY00380G – volume: 3 start-page: 12631 issue: 24 year: 2015 ident: 7014_CR43 publication-title: J Mater Chem A doi: 10.1039/C5TA02438B – volume: 440 start-page: 295 issue: 7082 year: 2006 ident: 7014_CR1 publication-title: Nature doi: 10.1038/440295a – volume: 35 start-page: 171 year: 2017 ident: 7014_CR3 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.03.035 – volume: 45 start-page: 10315 issue: 23 year: 2021 ident: 7014_CR15 publication-title: New J Chem doi: 10.1039/D1NJ01711J – volume: 45 start-page: 1190 issue: 2 year: 2020 ident: 7014_CR21 publication-title: Int J Energy Res doi: 10.1002/er.5807 – volume: 258 start-page: 117997 year: 2019 ident: 7014_CR48 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2019.117997 – volume: 43 start-page: 5982 issue: 16 year: 2014 ident: 7014_CR20 publication-title: Chem Soc Rev doi: 10.1039/C4CS00103F – volume: 378 start-page: 246 year: 2013 ident: 7014_CR12 publication-title: J Mol Catal A Chem doi: 10.1016/j.molcata.2013.06.017 – volume: 44 start-page: 19640 issue: 36 year: 2019 ident: 7014_CR22 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.233 – volume: 4 start-page: 9998 issue: 25 year: 2016 ident: 7014_CR45 publication-title: J Mater Chem A doi: 10.1039/C6TA03178A – volume: 603 start-page: 344 year: 2021 ident: 7014_CR46 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2021.06.111 – volume: 11 start-page: 12153 issue: 20 year: 2021 ident: 7014_CR16 publication-title: RSC Adv doi: 10.1039/D1RA00625H – volume: 53 start-page: 872 issue: 2 year: 2014 ident: 7014_CR38 publication-title: Inorg Chem doi: 10.1021/ic402106v – volume: 2020 start-page: 4215 issue: 44 year: 2020 ident: 7014_CR34 publication-title: Eur J Inorg Chem doi: 10.1002/ejic.202000729 – volume: 21 start-page: 8326 issue: 16 year: 2019 ident: 7014_CR47 publication-title: Phys Chem Chem Phys doi: 10.1039/C9CP01180C – volume: 54 start-page: 8639 issue: 17 year: 2015 ident: 7014_CR32 publication-title: Inorg Chem doi: 10.1021/acs.inorgchem.5b01278 – volume: 289 start-page: 121497 year: 2020 ident: 7014_CR28 publication-title: J Solid State Chem doi: 10.1016/j.jssc.2020.121497 – volume: 16 start-page: 1293 issue: 10 year: 2016 ident: 7014_CR53 publication-title: Curr Appl Phys doi: 10.1016/j.cap.2016.07.009 – volume: 133 start-page: 10878 issue: 28 year: 2011 ident: 7014_CR4 publication-title: J Am Chem Soc doi: 10.1021/ja2025454 – volume: 341 start-page: 1230444 issue: 6149 year: 2013 ident: 7014_CR26 publication-title: Science doi: 10.1126/science.1230444 – volume: 139 start-page: 3021 issue: 8 year: 2017 ident: 7014_CR49 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b11878 – volume: 513 start-page: 222 year: 2018 ident: 7014_CR14 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2017.11.030 – volume: 7 start-page: 3802 issue: 17 year: 2017 ident: 7014_CR42 publication-title: Catal Sci Technol doi: 10.1039/C7CY01102D – volume: 274 start-page: 286 year: 2019 ident: 7014_CR33 publication-title: J Solid State Chem doi: 10.1016/j.jssc.2019.03.040 – volume: 22 start-page: 103 issue: 1 year: 2010 ident: 7014_CR11 publication-title: Adv Mater doi: 10.1002/adma.200901920 – volume: 21 start-page: 926 issue: 2 year: 2021 ident: 7014_CR30 publication-title: Cryst Growth Des doi: 10.1021/acs.cgd.0c01274 – volume: 237 start-page: 689 year: 2018 ident: 7014_CR58 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2018.06.040 |
SSID | ssj0005721 |
Score | 2.4493096 |
Snippet | Visible light-driven hydrogen production by water splitting has attracted much attention because of its advantages of low cost, relative safety, and... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5768 |
SubjectTerms | Analysis Characterization and Evaluation of Materials Chemical Routes to Materials Chemistry and Materials Science Classical Mechanics Composite materials Conduction bands Crystallography and Scattering Methods Heterostructures Hydrogen Hydrogen evolution Hydrogen production irradiation light Light irradiation Materials Science Morphology Nanoparticles Optical properties Photocatalysis Polymer Sciences Povidone Solid Mechanics Water splitting X ray photoelectron spectroscopy |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9B9wIPiE8RGOiQkHgAiyZx7OQJjWnVhrSCgEl7ixLbVSdtcVlaTftH9vdylzoNBbHX-JxYufN9-e5ngLdGSa3ITImMrKOQTo9FQVGAUJVMpKpSbS0n9I-n6vBEfjnNTkPCrQ1llb1O7BS19YZz5B8TxVhyXA35afFL8K1RfLoartC4CzukgvN8BDufD6bfvg9FHjqJe7xwRk4LbTOheY5MleAREvtYivGWafpbQf9zUtoZoMlDeBA8R9xbs_oR3HHNY7j_B57gE7ghpqPxAygs-hlav6rPHXKuFY-OcM71L35Nsbp0yP0luG9_YNVYnJ6J468ToSVyfhaXVx43lG1H4Zp5VzOAF457hs_aC_7GYu6XvssEXdPq8Ioc2Etsyb_tqqqfwsnk4Of-oQgXLwgj42Ip8sJqy-1N2lJ85Yoso6BP1gXxzqYuy0xsKA5yMzLtaUUPaiuzgjiexNLquNbpMxg1vnHPAes6j5nvFCelMjEqd5Y8DJVL4yo1k3UEcf_PSxNQyflyjPNywFNmPpXEp7LjUzmO4P1mzmKNyXEr9TtmZckblt5sqtB3QOtj6KtyTxVKFjqVaQS7W5S00cz2cC8MZdjobTmIZQRvNsM8k4vXGudXTENaMuUDrgg-9EI0vOL_S39x-xdfwr2kE1-uiNuFEcmDe0Uu0rJ-HfbBb9lSCm4 priority: 102 providerName: ProQuest |
Title | The construction of double type II heterostructure from CdS and Ni-MOF-74 with two structures and enhanced mechanism of photocatalytic water splitting |
URI | https://link.springer.com/article/10.1007/s10853-022-07014-0 https://www.proquest.com/docview/2638174953 https://www.proquest.com/docview/2648835751 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_B9gIPiE-RMSojIfEAlpbEsZPHdmq2gVYQUGk8WYntqpO2eFpaTfwj_L3cuUm78iXxFCm5OFbu7Luzf_czwGsjhZLopniG3pELpw54gVkAl5VIhKxSZS0t6J9O5PFUvD_LzrqisLZHu_dbkmGmvlXshq6FE_oczTQWHBP13QxzdwJyTZPhBtihkrjnCCe2tK5U5s9tbLmjXyfl33ZHg9MpH8KDLlpkw5V6H8Ed1zyG-7c4BJ_AD1Q0M35DBMv8jFm_rC8co_VVdnLC5oR58SuJ5bVjVFPCDu0XVjWWTc756ceSK8FoTZYtbjxbS7ZBwjXzgBNgl47qhM_bS_rG1dwvfFj9-Y69YzcYtF6zFmPagKR-CtNy_PXwmHeHLXAj4mLB88IqSyVNymJO5Yosw0RP1AXqy6Yuy0xsMPdxM3TnaYU3aiuyArWcxMKquFbpM9hpfOOeA6vrPCZdY26UisTI3FmMKmQujKvkTNQRxP0_16ZjIqcDMS70hkOZ9KRRTzroSR9E8Hb9ztWKh-Of0m9IlZoGKbZsqq7WAPtHdFd6KAspCpWKNIL9LUkcXGb7cW8MuhvcrU4k0RoSMDeCV-vH9CYB1hrnlySDM2NKm1oRvOuNaNPE37u-93_iL-BeEsyZUHH7sIP24V5imLSoB3A3L48GsDssR6MJXY--fRjjdTSefPo8CGPmJ6_vC18 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DTGA_CAxpcIbMNIIB7Aokkcu3lA0zQoLVvLA5u0N5PYrjppi8vSqtof4WfwG7lLk4aC2Nte47Pj5L7Pd2eAV0YKJVFN8QS1IxdOdXiKXgCXmYiEzGJlLQX0hyPZPxFfTpPTDfjV1MJQWmUjEytBbb2hGPn7SFIvOcqG3Jv-4HRrFJ2uNldoLMni0F0t0GUrPww-In5fR1Hv0_FBn9e3CnAjwnTGu6lVlmp3lEXnwaVJgh6NyFPcmI1dkpjQoJHvxqi34gwf5FYkKX5OFAqrwlzFuO4tuC1i1ORUmd773KaUqChsupNTn7a6SKcu1UPFyGkEmSwUvLOmCP9WB_-cy1bqrrcF92s7le0vCesBbLjiIdz7o3vhI_iJJMaMb1vQMj9m1s_zc8cosssGAzahbBu_hJhfOkbVLOzAfmNZYdnojA-_9rgSjKLBbLbwbAVZVhCumFQZCuzCUYXyWXlB75hO_MxXcacr3B1boLl8yUq0pqsc7sdwciMIeQKbhS_cU2B53g2JytAri0VkZNdZtGdkVxiXybHIAwibf65N3QOdruI41233ZsKTRjzpCk-6E8Db1ZzpsgPItdBvCJWaxAOubLK6ygH3R4229L5MpUhVLOIAttcgka3N-nBDDLoWK6VumSCAl6thmkmpcoXzc4JBmRzTcVoA7xoiapf4_9afXf_GF3Cnfzw80keD0eFzuBtVpEy5eNuwibThdtA4m-W7FUcw-H7TLPgbRBhDqg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIiE4IH6FocAggTjAqrG93o0PHKKWqKE0IEGk3hZ7d6NUau2ocRT1RXgOHpEZx04a_iQOvcbjzdgzuzOz-81ngJdWSa0oTImEoqOQXndESlWAUJmMpMpi7Rxv6B8N1cFIfjhOjrfgR9sLU6Pd2yPJZU8DszQV1e7UjXcvNb5RmBGMRCeXDaXoNLDKQ3-xoKJt9m6wTxZ-FUX991_3DkTzXQFhZZhWops67bh7RzsqH3yaJFTTyDwl1Vzsk8SGltJ8P6bIFWf0Q-5kktIDRaF0Osx1TONeg-uSu49pBo2i3hpUoqOw5SdnpramTefPOm-Ewl8Dwm8ns3XA69-B202mir2la92FLV_cg1uX-Avvw3dyMrTlmoQWyzG6cp6feuS9XRwMcMJ4m3IpMT_3yP0suOe-YFY4HJ6Io099oSXyfjBWixJXkrNawheTGqOAZ557lE9mZ_wf00lZlfXO0wVphwtKmM9xRvl0jeJ-AKMrMchD2C7Kwj8CzPNuyH5GdVksI6u63lFGo7rS-kyNZR5A2L5zYxsWdP4Yx6lZ8zeznQzZydR2Mp0A3qzumS45QP4p_ZpNaXiBoJFt1vQ5kH5MtWV6KlUy1bGMA9jZkKSJbTcvt85gmoVlZiLFlIoMCg7gxeoy38lgucKXc5ahVTnmA7UA3rZOtB7i76o__j_x53Dj837ffBwMD5_Azaj2bAbn7cA2uYp_StlalT-rJwjCt6uekT8B9FBEww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+construction+of+double+type+II+heterostructure+from+CdS+and+Ni-MOF-74+with+two+structures+and+enhanced+mechanism+of+photocatalytic+water+splitting&rft.jtitle=Journal+of+materials+science&rft.au=Niu%2C+Lu&rft.au=Zhang%2C+Wang-gang&rft.au=Li%2C+Hao-tian&rft.au=Wang%2C+Hong-xia&rft.date=2022-03-01&rft.pub=Springer+US&rft.issn=0022-2461&rft.eissn=1573-4803&rft.volume=57&rft.issue=10&rft.spage=5768&rft.epage=5787&rft_id=info:doi/10.1007%2Fs10853-022-07014-0&rft.externalDocID=10_1007_s10853_022_07014_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon |