The construction of double type II heterostructure from CdS and Ni-MOF-74 with two structures and enhanced mechanism of photocatalytic water splitting

Visible light-driven hydrogen production by water splitting has attracted much attention because of its advantages of low cost, relative safety, and environmental friendliness. In this paper, a series of Ni-MOF-74 materials, Ni-MOF-74(X), with different morphologies and structures were synthesized b...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science Vol. 57; no. 10; pp. 5768 - 5787
Main Authors Niu, Lu, Zhang, Wang-gang, Li, Hao-tian, Wang, Hong-xia, Wang, Jian, Liu, Yi-ming
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Visible light-driven hydrogen production by water splitting has attracted much attention because of its advantages of low cost, relative safety, and environmental friendliness. In this paper, a series of Ni-MOF-74 materials, Ni-MOF-74(X), with different morphologies and structures were synthesized by controlling the amount (X mL) of added water. Then, various CdS/Ni-MOF-74 composites were prepared by simple mechanical mixing of Ni-MOF-74(X) and CdS nanoparticles. The morphology and structures of CdS, Ni-MOF-74(X), and CdS/Ni-MOF-74(X) were analyzed by SEM, TEM, XRD, FT-IR, BET, and XPS. The optical properties of the composites were analyzed by UV–visible DRS, PL, TRPL, and photoelectrochemical experiments. The results show that Ni-MOF-74 is formed with a Ni 3 (OH) 2 (H 2 O) 2 (tp) 2 structure (tp: terephthalate) at low water amounts and with a [Ni 3 (OH) 2 (H 2 O) 4 (tp) 2 ]·2H 2 O structure when sufficient water was present to promote its formation. Mixed structures of Ni-MOF-74 containing Ni 3 (OH) 2 (H 2 O) 2 (tp) 2 and [Ni 3 (OH) 2 (H 2 O) 4 (tp) 2 ]·2H 2 O are formed when the water amount is between 5 and 40 mL. The CdS/Ni-MOF-74(15) composite has the best photocatalytic hydrogen evolution performance under visible light irradiation, and the maximum produced hydrogen amount is 3117.9 μmol after 3 h, which is 12.8 times that of pure CdS nanoparticles. The composite of CdS and Ni-MOF-74 with a mixed structure exhibits better photocatalytic hydrogen production performance than the composite based on Ni-MOF-74 with a single structure. As an explanation for the superior activity, a double type II heterostructure is formed by CdS and Ni-MOF-74 with two structures. The photogenerated electrons in the conduction band (CB) of CdS spontaneously transfer to the CB of Ni-MOF-74, which is beneficial to the improvement in the separation of photogenerated carriers in hydrogen evolution.
AbstractList Visible light-driven hydrogen production by water splitting has attracted much attention because of its advantages of low cost, relative safety, and environmental friendliness. In this paper, a series of Ni-MOF-74 materials, Ni-MOF-74(X), with different morphologies and structures were synthesized by controlling the amount (X mL) of added water. Then, various CdS/Ni-MOF-74 composites were prepared by simple mechanical mixing of Ni-MOF-74(X) and CdS nanoparticles. The morphology and structures of CdS, Ni-MOF-74(X), and CdS/Ni-MOF-74(X) were analyzed by SEM, TEM, XRD, FT-IR, BET, and XPS. The optical properties of the composites were analyzed by UV–visible DRS, PL, TRPL, and photoelectrochemical experiments. The results show that Ni-MOF-74 is formed with a Ni3(OH)2(H2O)2(tp)2 structure (tp: terephthalate) at low water amounts and with a [Ni3(OH)2(H2O)4(tp)2]·2H2O structure when sufficient water was present to promote its formation. Mixed structures of Ni-MOF-74 containing Ni3(OH)2(H2O)2(tp)2 and [Ni3(OH)2(H2O)4(tp)2]·2H2O are formed when the water amount is between 5 and 40 mL. The CdS/Ni-MOF-74(15) composite has the best photocatalytic hydrogen evolution performance under visible light irradiation, and the maximum produced hydrogen amount is 3117.9 μmol after 3 h, which is 12.8 times that of pure CdS nanoparticles. The composite of CdS and Ni-MOF-74 with a mixed structure exhibits better photocatalytic hydrogen production performance than the composite based on Ni-MOF-74 with a single structure. As an explanation for the superior activity, a double type II heterostructure is formed by CdS and Ni-MOF-74 with two structures. The photogenerated electrons in the conduction band (CB) of CdS spontaneously transfer to the CB of Ni-MOF-74, which is beneficial to the improvement in the separation of photogenerated carriers in hydrogen evolution.
Visible light-driven hydrogen production by water splitting has attracted much attention because of its advantages of low cost, relative safety, and environmental friendliness. In this paper, a series of Ni-MOF-74 materials, Ni-MOF-74(X), with different morphologies and structures were synthesized by controlling the amount (X mL) of added water. Then, various CdS/Ni-MOF-74 composites were prepared by simple mechanical mixing of Ni-MOF-74(X) and CdS nanoparticles. The morphology and structures of CdS, Ni-MOF-74(X), and CdS/Ni-MOF-74(X) were analyzed by SEM, TEM, XRD, FT-IR, BET, and XPS. The optical properties of the composites were analyzed by UV–visible DRS, PL, TRPL, and photoelectrochemical experiments. The results show that Ni-MOF-74 is formed with a Ni₃(OH)₂(H₂O)₂(tp)₂ structure (tp: terephthalate) at low water amounts and with a [Ni₃(OH)₂(H₂O)₄(tp)₂]·2H₂O structure when sufficient water was present to promote its formation. Mixed structures of Ni-MOF-74 containing Ni₃(OH)₂(H₂O)₂(tp)₂ and [Ni₃(OH)₂(H₂O)₄(tp)₂]·2H₂O are formed when the water amount is between 5 and 40 mL. The CdS/Ni-MOF-74(15) composite has the best photocatalytic hydrogen evolution performance under visible light irradiation, and the maximum produced hydrogen amount is 3117.9 μmol after 3 h, which is 12.8 times that of pure CdS nanoparticles. The composite of CdS and Ni-MOF-74 with a mixed structure exhibits better photocatalytic hydrogen production performance than the composite based on Ni-MOF-74 with a single structure. As an explanation for the superior activity, a double type II heterostructure is formed by CdS and Ni-MOF-74 with two structures. The photogenerated electrons in the conduction band (CB) of CdS spontaneously transfer to the CB of Ni-MOF-74, which is beneficial to the improvement in the separation of photogenerated carriers in hydrogen evolution.
Visible light-driven hydrogen production by water splitting has attracted much attention because of its advantages of low cost, relative safety, and environmental friendliness. In this paper, a series of Ni-MOF-74 materials, Ni-MOF-74(X), with different morphologies and structures were synthesized by controlling the amount (X mL) of added water. Then, various CdS/Ni-MOF-74 composites were prepared by simple mechanical mixing of Ni-MOF-74(X) and CdS nanoparticles. The morphology and structures of CdS, Ni-MOF-74(X), and CdS/Ni-MOF-74(X) were analyzed by SEM, TEM, XRD, FT-IR, BET, and XPS. The optical properties of the composites were analyzed by UV-visible DRS, PL, TRPL, and photoelectrochemical experiments. The results show that Ni-MOF-74 is formed with a Ni.sub.3(OH).sub.2(H.sub.2O).sub.2(tp).sub.2 structure (tp: terephthalate) at low water amounts and with a [Ni.sub.3(OH).sub.2(H.sub.2O).sub.4(tp).sub.2]·2H.sub.2O structure when sufficient water was present to promote its formation. Mixed structures of Ni-MOF-74 containing Ni.sub.3(OH).sub.2(H.sub.2O).sub.2(tp).sub.2 and [Ni.sub.3(OH).sub.2(H.sub.2O).sub.4(tp).sub.2]·2H.sub.2O are formed when the water amount is between 5 and 40 mL. The CdS/Ni-MOF-74(15) composite has the best photocatalytic hydrogen evolution performance under visible light irradiation, and the maximum produced hydrogen amount is 3117.9 [mu]mol after 3 h, which is 12.8 times that of pure CdS nanoparticles. The composite of CdS and Ni-MOF-74 with a mixed structure exhibits better photocatalytic hydrogen production performance than the composite based on Ni-MOF-74 with a single structure. As an explanation for the superior activity, a double type II heterostructure is formed by CdS and Ni-MOF-74 with two structures. The photogenerated electrons in the conduction band (CB) of CdS spontaneously transfer to the CB of Ni-MOF-74, which is beneficial to the improvement in the separation of photogenerated carriers in hydrogen evolution.
Visible light-driven hydrogen production by water splitting has attracted much attention because of its advantages of low cost, relative safety, and environmental friendliness. In this paper, a series of Ni-MOF-74 materials, Ni-MOF-74(X), with different morphologies and structures were synthesized by controlling the amount (X mL) of added water. Then, various CdS/Ni-MOF-74 composites were prepared by simple mechanical mixing of Ni-MOF-74(X) and CdS nanoparticles. The morphology and structures of CdS, Ni-MOF-74(X), and CdS/Ni-MOF-74(X) were analyzed by SEM, TEM, XRD, FT-IR, BET, and XPS. The optical properties of the composites were analyzed by UV–visible DRS, PL, TRPL, and photoelectrochemical experiments. The results show that Ni-MOF-74 is formed with a Ni 3 (OH) 2 (H 2 O) 2 (tp) 2 structure (tp: terephthalate) at low water amounts and with a [Ni 3 (OH) 2 (H 2 O) 4 (tp) 2 ]·2H 2 O structure when sufficient water was present to promote its formation. Mixed structures of Ni-MOF-74 containing Ni 3 (OH) 2 (H 2 O) 2 (tp) 2 and [Ni 3 (OH) 2 (H 2 O) 4 (tp) 2 ]·2H 2 O are formed when the water amount is between 5 and 40 mL. The CdS/Ni-MOF-74(15) composite has the best photocatalytic hydrogen evolution performance under visible light irradiation, and the maximum produced hydrogen amount is 3117.9 μmol after 3 h, which is 12.8 times that of pure CdS nanoparticles. The composite of CdS and Ni-MOF-74 with a mixed structure exhibits better photocatalytic hydrogen production performance than the composite based on Ni-MOF-74 with a single structure. As an explanation for the superior activity, a double type II heterostructure is formed by CdS and Ni-MOF-74 with two structures. The photogenerated electrons in the conduction band (CB) of CdS spontaneously transfer to the CB of Ni-MOF-74, which is beneficial to the improvement in the separation of photogenerated carriers in hydrogen evolution.
Audience Academic
Author Wang, Hong-xia
Wang, Jian
Li, Hao-tian
Zhang, Wang-gang
Liu, Yi-ming
Niu, Lu
Author_xml – sequence: 1
  givenname: Lu
  surname: Niu
  fullname: Niu, Lu
  organization: College of Materials Science and Engineering, Taiyuan University of Technology
– sequence: 2
  givenname: Wang-gang
  surname: Zhang
  fullname: Zhang, Wang-gang
  organization: College of Materials Science and Engineering, Taiyuan University of Technology
– sequence: 3
  givenname: Hao-tian
  surname: Li
  fullname: Li, Hao-tian
  organization: College of Materials Science and Engineering, Taiyuan University of Technology
– sequence: 4
  givenname: Hong-xia
  surname: Wang
  fullname: Wang, Hong-xia
  organization: College of Materials Science and Engineering, Taiyuan University of Technology
– sequence: 5
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  email: wangjian@tyut.edu.cn
  organization: College of Materials Science and Engineering, Taiyuan University of Technology
– sequence: 6
  givenname: Yi-ming
  orcidid: 0000-0002-8766-9318
  surname: Liu
  fullname: Liu, Yi-ming
  email: liuym812@163.com
  organization: College of Materials Science and Engineering, Taiyuan University of Technology, Shanxi Academy of Analytical Sciences
BookMark eNp9ksFu3CAQQK0qlbpJ-wM9IfXSi1MwYOxjtGraldLm0PSMWBiviWxwAWu1P5LvLY6rRo2qiANoeG8GNHNenDnvoCjeE3xJMBafIsENpyWuqhILTFiJXxUbwgUtWYPpWbHBy1XFavKmOI_xHmPMRUU2xcNdD0h7F1OYdbLeId8h4-f9ACidJkC7HeohQfArMQdAXfAj2pofSDmDvtvy2-11KRg62tSjdPToLxkfCXC9choMGkHnk43jUmPqffJaJTWcktXoqHINFKfBpmTd4W3xulNDhHd_9ovi5_Xnu-3X8ub2y257dVNqRtpUNq0RBlPSClOTFlrOBRFs39aKGgqca6LrqoauJoyqHNgbxtua84owI8he0Ivi45p3Cv7XDDHJ0UYNw6Ac-DnKqmZNQ7ngJKMfnqH3fg4uvy5TtMl1W06fqIMaQFrX-RSUXpLKq7qtWSsoW6jL_1B5GRht7gZ0Nsf_EZpV0LkRMUAntU1q6VcW7SAJlsscyHUOZG62fJwDibNaPVOnYEcVTi9LdJViht0BwtNnX7B-A_7Bxi8
CitedBy_id crossref_primary_10_1016_j_cej_2023_142530
crossref_primary_10_1016_j_inoche_2025_114026
crossref_primary_10_1016_j_colsurfa_2023_132831
crossref_primary_10_1039_D2DT04030A
crossref_primary_10_1016_S1872_5813_24_60493_7
crossref_primary_10_1016_j_dyepig_2023_111607
crossref_primary_10_1002_chem_202301952
crossref_primary_10_1016_j_jechem_2023_12_029
crossref_primary_10_1016_j_surfin_2024_104959
crossref_primary_10_1016_j_fuel_2023_127525
crossref_primary_10_1016_j_seppur_2024_128576
crossref_primary_10_1021_acscatal_4c05193
crossref_primary_10_1016_j_jcis_2023_07_210
crossref_primary_10_1016_j_jcrysgro_2025_128125
crossref_primary_10_1016_j_jcis_2024_05_083
Cites_doi 10.1039/C9RA06359E
10.1002/anie.201301709
10.1016/j.solidstatesciences.2007.04.003
10.1016/j.envres.2021.111054
10.1039/c1jm10407a
10.1007/s10854-015-3910-6
10.1021/ie2020608
10.1039/C8DT02294A
10.1016/j.apcatb.2017.09.024
10.1016/j.catcom.2016.03.013
10.1016/j.ccr.2020.213488
10.1039/C9NR09183A
10.1016/j.apcatb.2018.11.018
10.1007/s12274-014-0690-x
10.1002/adma.201300244
10.1002/adma.201802981
10.1016/j.apsusc.2016.07.030
10.1039/c3cc46342g
10.1021/acsami.6b02687
10.1016/j.apcatb.2016.02.017
10.1016/j.apcatb.2019.118249
10.1039/C8NR03846E
10.1039/c3cc41362d
10.1016/j.jclepro.2017.11.208
10.1021/acssuschemeng.7b00787
10.1021/acsami.6b08851
10.1016/j.apsusc.2020.146356
10.1039/D0DT00271B
10.1002/adma.201902868
10.1016/j.apcatb.2018.02.006
10.1039/C8CY00380G
10.1039/C5TA02438B
10.1038/440295a
10.1016/j.nanoen.2017.03.035
10.1039/D1NJ01711J
10.1002/er.5807
10.1016/j.apcatb.2019.117997
10.1039/C4CS00103F
10.1016/j.molcata.2013.06.017
10.1016/j.ijhydene.2019.05.233
10.1039/C6TA03178A
10.1016/j.jcis.2021.06.111
10.1039/D1RA00625H
10.1021/ic402106v
10.1002/ejic.202000729
10.1039/C9CP01180C
10.1021/acs.inorgchem.5b01278
10.1016/j.jssc.2020.121497
10.1016/j.cap.2016.07.009
10.1021/ja2025454
10.1126/science.1230444
10.1021/jacs.6b11878
10.1016/j.jcis.2017.11.030
10.1039/C7CY01102D
10.1016/j.jssc.2019.03.040
10.1002/adma.200901920
10.1021/acs.cgd.0c01274
10.1016/j.apcatb.2018.06.040
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2022 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOI 10.1007/s10853-022-07014-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Materials Science Collection
AGRICOLA


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-4803
EndPage 5787
ExternalDocumentID A696497343
10_1007_s10853_022_07014_0
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 22075197
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Y
-58
-5G
-BR
-EM
-XW
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
29K
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDEX
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IFM
IGS
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9N
PDBOC
PF-
PKN
PT4
PT5
PTHSS
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z91
Z92
ZE2
ZMTXR
ZY4
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c419t-89d7d03197d619e9557174b96a3d3e55c1c626ef6143a3e5bd459655214d71b73
IEDL.DBID U2A
ISSN 0022-2461
IngestDate Fri Jul 11 09:36:47 EDT 2025
Fri Jul 25 11:09:53 EDT 2025
Tue Jun 17 22:10:42 EDT 2025
Tue Jun 10 21:03:55 EDT 2025
Tue Jul 01 01:40:13 EDT 2025
Thu Apr 24 23:00:09 EDT 2025
Fri Feb 21 02:47:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-89d7d03197d619e9557174b96a3d3e55c1c626ef6143a3e5bd459655214d71b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8766-9318
PQID 2638174953
PQPubID 2043599
PageCount 20
ParticipantIDs proquest_miscellaneous_2648835751
proquest_journals_2638174953
gale_infotracmisc_A696497343
gale_infotracacademiconefile_A696497343
crossref_citationtrail_10_1007_s10853_022_07014_0
crossref_primary_10_1007_s10853_022_07014_0
springer_journals_10_1007_s10853_022_07014_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220300
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science
PublicationTitleAbbrev J Mater Sci
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Wen, Xie, Chen, Li (CR5) 2017; 391
Zhang, Wang, Ma, Ma, Jin (CR17) 2018; 47
Jin, Gong, Li (CR46) 2021; 603
Furukawa, Cordova, O'Keeffe, Yaghi (CR26) 2013; 341
Ali, Pervaiz, Noor, Rabi, Zahra, Yang (CR21) 2020; 45
Xiong, Liu, Wang, Liang, Wu, Wu (CR43) 2015; 3
Huang, Tao, Ye, Yao, Li (CR58) 2018; 237
Xu, Zhao, Xu, Shi, Zhang (CR13) 2013; 49
Wu, Zhu, Deng, Xiang, Tan, Tang, Zou, Xu, Zhou (CR31) 2019; 9
Huang, Gu, Su, Xu, Liu, Zhu (CR28) 2020; 289
Wang, Wang, Jin, Liu, Li, Wu, Chen, Wang, Yang, Su (CR55) 2016; 188
Ke, Wang, Zhu (CR23) 2015; 8
Low, Dai, Tong, Jiang, Yu (CR44) 2019; 31
Huang, Gao, Xiong, Devaraji, Chen, Li, Mao (CR16) 2021; 11
Wang, Ge, Feng, Jiang, Wang, Li, Lin, Zhu (CR30) 2021; 21
Saleh (CR36) 2018; 172
Bie, Zhu, Xu, Zhang, Yu (CR50) 2019; 31
Maity, Das, Santra, Sen, Chattopadhyay (CR53) 2016; 16
Hao, Zhou, Cui, Wang, Wang, Zou (CR2) 2018; 229
Li, Wang, Xu, Zhang, Bando, Golberg, Ma, Zhai (CR6) 2013; 25
Jia, Sun, Zhang, Zhang, Hu, Liu, Fan (CR51) 2020; 261
Zhang, Lin (CR20) 2014; 43
Carton, Mesbah, Mazet, Porcher, François (CR39) 2007; 9
Che, Cheng, Yao, Tang, Liu, Su, Huang, Liu, Liu, Hu, Pan, Sun, Wei (CR49) 2017; 139
Hu, Gao, Yu, Wang, Ning, Xu, Lou (CR10) 2013; 52
Ismail, Bahnemann (CR54) 2011; 21
Liu, Ma, Liu, Shang, Zhu, Tan, Xiong, Pan (CR14) 2018; 513
Liang, Chen, Wang, Li (CR19) 2020; 424
Li, Zhu, Yu, Wang, Liu, Yang, Li, Zhou (CR25) 2021; 197
Zhen, Ning, Yang, Wu, Li, Lu (CR41) 2018; 221
Ranjbar, Taher, Sam (CR29) 2015; 27
Liu, Hai, Gong (CR34) 2020; 2020
Patel, Pathan (CR35) 2011; 51
Zhang, Jin (CR47) 2019; 21
Jiang, Wang, Wang, Chen, Zhang (CR37) 2016; 8
Maeda, Teramura, Lu, Takata, Saito, Inoue, Domen (CR1) 2006; 440
Li, Guo, Yu, Ran, Zhang, Yan, Gong (CR4) 2011; 133
Jin, Wang, Yuan, Han (CR22) 2019; 44
Kong, Dong, Jiang, Wang, Zhang, Zhao (CR45) 2016; 4
Cao, Yang, Zhang, Xu (CR48) 2019; 258
Wang, Tian, Sun, Zhu, Li, Mu, Zhao (CR52) 2018; 10
Fan, Jin, Wang, Yang, Liu, Hu, Lu, Bi (CR57) 2018; 8
Yin, Li, Jiang, Zhang, Zhang, Wan, Hu (CR8) 2016; 8
Pan, Peng, Xin, You, Men, Zhang, Duan, Cui, Sun, Song (CR40) 2017; 5
Jiang, Wang, Wang, Chen, Zhang (CR27) 2016; 80
Mesbah, Rabu, Sibille, Lebegue, Mazet, Malaman, Francois (CR38) 2014; 53
Peng, Wu, Baltrusaitis, Dimitrijevic, Rajh, Koodali (CR7) 2013; 49
Ning, Lu (CR9) 2020; 12
Liu, Meng, Zhang (CR42) 2017; 7
Meng, Sheng, Tang, Sun, Dong, Zhang (CR56) 2019; 244
Guo, Liang, Liu, Hu, Wang, An, Cui (CR24) 2020; 522
Cao, Liu, Chu, Wu, Ye, Cai, Chang, Wang, Gong, Liu (CR11) 2010; 22
Singh, Pal (CR12) 2013; 378
Sun, Sun, Deng, Li (CR32) 2015; 54
Wang, Hu, Nguyen, Zhang, Schmuki, Bi (CR3) 2017; 35
Fan, Xiong, Liu, Tang, He, Hu (CR15) 2021; 45
Li, Li, Jin (CR18) 2020; 49
Zhang, Hao, Jian, Jin (CR33) 2019; 274
R Singh (7014_CR12) 2013; 378
Y Xu (7014_CR13) 2013; 49
T Zhang (7014_CR20) 2014; 43
C Huang (7014_CR28) 2020; 289
L Kong (7014_CR45) 2016; 4
A Carton (7014_CR39) 2007; 9
M Ranjbar (7014_CR29) 2015; 27
Y Hu (7014_CR10) 2013; 52
L Huang (7014_CR16) 2021; 11
M Ali (7014_CR21) 2020; 45
J Wen (7014_CR5) 2017; 391
J Xiong (7014_CR43) 2015; 3
Z Jin (7014_CR46) 2021; 603
R Cao (7014_CR48) 2019; 258
TA Saleh (7014_CR36) 2018; 172
Q Li (7014_CR4) 2011; 133
Q Liang (7014_CR19) 2020; 424
A Mesbah (7014_CR38) 2014; 53
F Ke (7014_CR23) 2015; 8
S Li (7014_CR25) 2021; 197
XL Yin (7014_CR8) 2016; 8
L Zhang (7014_CR33) 2019; 274
W Che (7014_CR49) 2017; 139
Y Zhang (7014_CR17) 2018; 47
H Jiang (7014_CR37) 2016; 8
Z Wang (7014_CR30) 2021; 21
Y Zhang (7014_CR47) 2019; 21
M Li (7014_CR18) 2020; 49
W Wu (7014_CR31) 2019; 9
D Sun (7014_CR32) 2015; 54
J Jia (7014_CR51) 2020; 261
H Li (7014_CR6) 2013; 25
K Maeda (7014_CR1) 2006; 440
X-B Meng (7014_CR56) 2019; 244
J Low (7014_CR44) 2019; 31
Y Liu (7014_CR14) 2018; 513
Q-Z Huang (7014_CR58) 2018; 237
C Wang (7014_CR55) 2016; 188
X Ning (7014_CR9) 2020; 12
J Guo (7014_CR24) 2020; 522
H Jiang (7014_CR27) 2016; 80
H Liu (7014_CR42) 2017; 7
R Peng (7014_CR7) 2013; 49
Z Jin (7014_CR22) 2019; 44
A Cao (7014_CR11) 2010; 22
W Zhen (7014_CR41) 2018; 221
J Fan (7014_CR15) 2021; 45
S Maity (7014_CR53) 2016; 16
XJ Wang (7014_CR52) 2018; 10
X Hao (7014_CR2) 2018; 229
L Liu (7014_CR34) 2020; 2020
Y-X Pan (7014_CR40) 2017; 5
L Wang (7014_CR3) 2017; 35
H Furukawa (7014_CR26) 2013; 341
K Fan (7014_CR57) 2018; 8
A Patel (7014_CR35) 2011; 51
AA Ismail (7014_CR54) 2011; 21
C Bie (7014_CR50) 2019; 31
References_xml – volume: 31
  start-page: e1902868
  issue: 42
  year: 2019
  ident: CR50
  article-title: In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO reduction
  publication-title: Adv Mater
– volume: 2020
  start-page: 4215
  issue: 44
  year: 2020
  end-page: 4224
  ident: CR34
  article-title: A facile electrosynthesis of terephthalate (tp)-based metal-organic framework, Ni (OH) (H O) (tp) with superior catalytic activity for hydrogen evolution reaction
  publication-title: Eur J Inorg Chem
– volume: 391
  start-page: 72
  year: 2017
  end-page: 123
  ident: CR5
  article-title: A review on g-C 3 N 4 -based photocatalysts
  publication-title: Appl Surf Sci
– volume: 44
  start-page: 19640
  issue: 36
  year: 2019
  end-page: 19649
  ident: CR22
  article-title: Inserting MOF into flaky CdS photocatalyst forming special structure and active sites for efficient hydrogen production
  publication-title: Int J Hydrogen Energy
– volume: 139
  start-page: 3021
  issue: 8
  year: 2017
  end-page: 3026
  ident: CR49
  article-title: Fast photoelectron transfer in (cring)-C3N4 plane heterostructural nanosheets for overall water splitting
  publication-title: J Am Chem Soc
– volume: 188
  start-page: 351
  year: 2016
  end-page: 359
  ident: CR55
  article-title: Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres
  publication-title: Appl Catal B
– volume: 21
  start-page: 926
  issue: 2
  year: 2021
  end-page: 934
  ident: CR30
  article-title: Crystal facet engineering of copper-based metal-organic frameworks with inorganic modulators
  publication-title: Cryst Growth Des
– volume: 45
  start-page: 1190
  issue: 2
  year: 2020
  end-page: 1226
  ident: CR21
  article-title: Recent advancements i MOF-based catalysts for applications in electrochemical and photoelectrochemical water splitting: a review
  publication-title: Int J Energy Res
– volume: 53
  start-page: 872
  issue: 2
  year: 2014
  end-page: 881
  ident: CR38
  article-title: From hydrated Ni (OH) (C H O ) (H O) to anhydrous Ni (OH) (C H O ): impact of structural transformations on magnetic properties
  publication-title: Inorg Chem
– volume: 8
  start-page: 2352
  issue: 9
  year: 2018
  end-page: 2363
  ident: CR57
  article-title: Distinctive organized molecular assemble of MoS , MOF and CO O , for efficient dye-sensitized photocatalytic H2 evolution
  publication-title: Catal Sci Technol
– volume: 289
  start-page: 121497
  year: 2020
  ident: CR28
  article-title: Controllable synthesis of Co-MOF-74 catalysts and their application in catalytic oxidation of toluene
  publication-title: J Solid State Chem
– volume: 221
  start-page: 243
  year: 2018
  end-page: 257
  ident: CR41
  article-title: The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill
  publication-title: Appl Catal B
– volume: 274
  start-page: 286
  year: 2019
  end-page: 294
  ident: CR33
  article-title: Ferrous oxalate dehydrate over CdS as Z-scheme photocatalytic hydrogen evolution
  publication-title: J Solid State Chem
– volume: 5
  start-page: 5449
  issue: 6
  year: 2017
  end-page: 5456
  ident: CR40
  article-title: Enhanced visible-light-driven photocatalytic H2 evolution from water on noble-metal-free CdS-nanoparticle-dispersed Mo2C@C nanospheres
  publication-title: ACS Sustain Chem Eng
– volume: 80
  start-page: 24
  year: 2016
  end-page: 27
  ident: CR27
  article-title: Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR process
  publication-title: Catal Commun
– volume: 27
  start-page: 1449
  issue: 2
  year: 2015
  end-page: 1456
  ident: CR29
  article-title: Mg-MOF-74 nanostructures: facile synthesis and characterization with aid of 2,6-pyridinedicarboxylic acid ammonium
  publication-title: J Mater Sci Mater Electron
– volume: 261
  start-page: 118249
  year: 2020
  ident: CR51
  article-title: Inter-plane heterojunctions within 2D/2D FeSe2/g-C3N4 nanosheet semiconductors for photocatalytic hydrogen generation
  publication-title: Appl Catal B Environ
– volume: 8
  start-page: 1834
  issue: 6
  year: 2015
  end-page: 1846
  ident: CR23
  article-title: Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation
  publication-title: Nano Res
– volume: 11
  start-page: 12153
  issue: 20
  year: 2021
  end-page: 12161
  ident: CR16
  article-title: Two dimensional Ni2P/CdS photocatalyst for boosting hydrogen production under visible light irradiation
  publication-title: RSC Adv
– volume: 49
  start-page: 5143
  issue: 16
  year: 2020
  end-page: 5156
  ident: CR18
  article-title: 0D/2D spatial structure of CdxZn1-xS/Ni-MOF-74 for efficient photocatalytic hydrogen evolution
  publication-title: Dalton Trans
– volume: 49
  start-page: 9803
  issue: 84
  year: 2013
  end-page: 9805
  ident: CR13
  article-title: Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution
  publication-title: Chem Commun (Camb)
– volume: 43
  start-page: 5982
  issue: 16
  year: 2014
  end-page: 5993
  ident: CR20
  article-title: Metal-organic frameworks for artificial photosynthesis and photocatalysis
  publication-title: Chem Soc Rev
– volume: 7
  start-page: 3802
  issue: 17
  year: 2017
  end-page: 3811
  ident: CR42
  article-title: Self-assembled three-dimensional flowerlike Mn0.8Cd0.2S microspheres as efficient visible-light-driven photocatalysts for H2 evolution and CO reduction
  publication-title: Catal Sci Technol
– volume: 603
  start-page: 344
  year: 2021
  end-page: 355
  ident: CR46
  article-title: Visible-light-driven two dimensional metal-organic framework modified manganese cadmium sulfide for efficient photocatalytic hydrogen evolution
  publication-title: J Colloid Interface Sci
– volume: 10
  start-page: 12315
  issue: 26
  year: 2018
  end-page: 12321
  ident: CR52
  article-title: Enhanced Schottky effect of a 2D–2D CoP/g-C3N4 interface for boosting photocatalytic H2 evolution
  publication-title: Nanoscale
– volume: 8
  start-page: 26817
  issue: 40
  year: 2016
  end-page: 26826
  ident: CR37
  article-title: MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH
  publication-title: ACS Appl Mater Interfaces
– volume: 12
  start-page: 1213
  issue: 3
  year: 2020
  end-page: 1223
  ident: CR9
  article-title: Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting
  publication-title: Nanoscale
– volume: 52
  start-page: 5636
  issue: 21
  year: 2013
  end-page: 5639
  ident: CR10
  article-title: Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity
  publication-title: Angew Chem Int Ed Engl
– volume: 258
  start-page: 117997
  year: 2019
  ident: CR48
  article-title: Engineering of Z-scheme 2D/3D architectures with Ni(OH) on 3D porous g-C3N4 for efficiently photocatalytic H2 evolution
  publication-title: Appl Catal B Environ
– volume: 16
  start-page: 1293
  issue: 10
  year: 2016
  end-page: 1302
  ident: CR53
  article-title: CdS nanoparticle coated carbon nanotube through magnetron sputtering and its improved field emission performance
  publication-title: Curr Appl Phys
– volume: 244
  start-page: 340
  year: 2019
  end-page: 346
  ident: CR56
  article-title: Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst
  publication-title: Appl Catal B
– volume: 424
  start-page: 213488
  year: 2020
  ident: CR19
  article-title: Transition metal-based metal-organic frameworks for oxygen evolution reaction
  publication-title: Coord Chem Rev
– volume: 49
  start-page: 3221
  issue: 31
  year: 2013
  end-page: 3223
  ident: CR7
  article-title: Ultra-stable CdS incorporated Ti-MCM-48 mesoporous materials for efficient photocatalytic decomposition of water under visible light illumination
  publication-title: Chem Commun (Camb)
– volume: 51
  start-page: 732
  issue: 2
  year: 2011
  end-page: 740
  ident: CR35
  article-title: Solvent free selective oxidation of styrene and benzyl alcohol to benzaldehyde over an eco-friendly and reusable catalyst, undecamolybdophosphate supported onto neutral alumina
  publication-title: Ind Eng Chem Res
– volume: 229
  start-page: 41
  year: 2018
  end-page: 51
  ident: CR2
  article-title: Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production
  publication-title: Appl Catal B
– volume: 341
  start-page: 1230444
  issue: 6149
  year: 2013
  ident: CR26
  article-title: The chemistry and applications of metal-organic frameworks
  publication-title: Science
– volume: 133
  start-page: 10878
  issue: 28
  year: 2011
  end-page: 10884
  ident: CR4
  article-title: Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets
  publication-title: J Am Chem Soc
– volume: 54
  start-page: 8639
  issue: 17
  year: 2015
  end-page: 8643
  ident: CR32
  article-title: Mixed-metal strategy on metal-organic frameworks (MOFs) for functionalities expansion: Co substitution induces aerobic oxidation of cyclohexene over inactive Ni-MOF-74
  publication-title: Inorg Chem
– volume: 172
  start-page: 2123
  year: 2018
  end-page: 2132
  ident: CR36
  article-title: Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon
  publication-title: J Clean Prod
– volume: 9
  start-page: 31728
  issue: 54
  year: 2019
  end-page: 31734
  ident: CR31
  article-title: TiO nanocrystals with the 001 and 101 facets co-exposed with MIL-100(Fe): an egg-like composite nanomaterial for efficient visible light-driven photocatalysis
  publication-title: RSC Adv
– volume: 378
  start-page: 246
  year: 2013
  end-page: 254
  ident: CR12
  article-title: Highly enhanced photocatalytic activity of Au nanorod–CdS nanorod heterocomposites
  publication-title: J Mol Catal A Chem
– volume: 237
  start-page: 689
  year: 2018
  end-page: 698
  ident: CR58
  article-title: Mn0.2Cd0.8S nanowires modified by CoP3 nanoparticles for highly efficient photocatalytic H2 evolution under visible light irradiation
  publication-title: Appl Catal B Environ
– volume: 522
  start-page: 146356
  year: 2020
  ident: CR24
  article-title: Noble-metal-free CdS/Ni-MOF composites with highly efficient charge separation for photocatalytic H2 evolution
  publication-title: Appl Surf Sci
– volume: 21
  start-page: 8326
  issue: 16
  year: 2019
  end-page: 8341
  ident: CR47
  article-title: Effective electron-hole separation over a controllably constructed WP/UiO-66/CdS heterojunction to achieve efficiently improved visible-light-driven photocatalytic hydrogen evolution
  publication-title: Phys Chem Chem Phys
– volume: 25
  start-page: 3017
  issue: 22
  year: 2013
  end-page: 3037
  ident: CR6
  article-title: One-dimensional CdS nanostructures: a promising candidate for optoelectronics
  publication-title: Adv Mater
– volume: 8
  start-page: 15258
  issue: 24
  year: 2016
  end-page: 15266
  ident: CR8
  article-title: MoS2/CdS nanosheets-on-nanorod heterostructure for highly efficient photocatalytic H2 generation under visible light irradiation
  publication-title: ACS Appl Mater Interfaces
– volume: 513
  start-page: 222
  year: 2018
  end-page: 230
  ident: CR14
  article-title: Facet and morphology dependent photocatalytic hydrogen evolution with CdS nanoflowers using a novel mixed solvothermal strategy
  publication-title: J Colloid Interface Sci
– volume: 9
  start-page: 465
  issue: 6
  year: 2007
  end-page: 471
  ident: CR39
  article-title: Ab initio crystal structure of nickel(II) hydroxy-terephthalate by synchrotron powder diffraction and magnetic study
  publication-title: Solid State Sci
– volume: 4
  start-page: 9998
  issue: 25
  year: 2016
  end-page: 10007
  ident: CR45
  article-title: Light-assisted rapid preparation of a Ni/g-C3N4 magnetic composite for robust photocatalytic H2 evolution from water
  publication-title: J Mater Chem A
– volume: 35
  start-page: 171
  year: 2017
  end-page: 178
  ident: CR3
  article-title: Plasmon-induced hole-depletion layer on hematite nanoflake photoanodes for highly efficient solar water splitting
  publication-title: Nano Energy
– volume: 47
  start-page: 11176
  issue: 32
  year: 2018
  end-page: 11189
  ident: CR17
  article-title: CdS p-n heterojunction co-boosting with Co3O4 and Ni-MOF-74 for photocatalytic hydrogen evolution
  publication-title: Dalton Trans
– volume: 197
  start-page: 111054
  year: 2021
  ident: CR25
  article-title: Simultaneous sulfamethoxazole degradation with electricity generation by microbial fuel cells using Ni-MOF-74 as cathode catalysts and quantification of antibiotic resistance genes
  publication-title: Environ Res
– volume: 21
  start-page: 11686
  issue: 32
  year: 2011
  ident: CR54
  article-title: Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms
  publication-title: J Mater Chem
– volume: 22
  start-page: 103
  issue: 1
  year: 2010
  end-page: 106
  ident: CR11
  article-title: A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials
  publication-title: Adv Mater
– volume: 31
  start-page: e1802981
  issue: 6
  year: 2019
  ident: CR44
  article-title: In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO /CdS composite film photocatalyst
  publication-title: Adv Mater
– volume: 3
  start-page: 12631
  issue: 24
  year: 2015
  end-page: 12635
  ident: CR43
  article-title: An efficient cocatalyst of defect-decorated MoS ultrathin nanoplates for the promotion of photocatalytic hydrogen evolution over CdS nanocrystal
  publication-title: J Mater Chem A
– volume: 440
  start-page: 295
  issue: 7082
  year: 2006
  ident: CR1
  article-title: Photocatalyst releasing hydrogen from water
  publication-title: Nature
– volume: 45
  start-page: 10315
  issue: 23
  year: 2021
  end-page: 10324
  ident: CR15
  article-title: A cathodic photocorrosion-assisted strategy to construct a CdS/Pt heterojunction photocatalyst for enhanced photocatalytic hydrogen evolution
  publication-title: New J Chem
– volume: 9
  start-page: 31728
  issue: 54
  year: 2019
  ident: 7014_CR31
  publication-title: RSC Adv
  doi: 10.1039/C9RA06359E
– volume: 52
  start-page: 5636
  issue: 21
  year: 2013
  ident: 7014_CR10
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201301709
– volume: 9
  start-page: 465
  issue: 6
  year: 2007
  ident: 7014_CR39
  publication-title: Solid State Sci
  doi: 10.1016/j.solidstatesciences.2007.04.003
– volume: 197
  start-page: 111054
  year: 2021
  ident: 7014_CR25
  publication-title: Environ Res
  doi: 10.1016/j.envres.2021.111054
– volume: 21
  start-page: 11686
  issue: 32
  year: 2011
  ident: 7014_CR54
  publication-title: J Mater Chem
  doi: 10.1039/c1jm10407a
– volume: 27
  start-page: 1449
  issue: 2
  year: 2015
  ident: 7014_CR29
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-015-3910-6
– volume: 51
  start-page: 732
  issue: 2
  year: 2011
  ident: 7014_CR35
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie2020608
– volume: 47
  start-page: 11176
  issue: 32
  year: 2018
  ident: 7014_CR17
  publication-title: Dalton Trans
  doi: 10.1039/C8DT02294A
– volume: 221
  start-page: 243
  year: 2018
  ident: 7014_CR41
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2017.09.024
– volume: 80
  start-page: 24
  year: 2016
  ident: 7014_CR27
  publication-title: Catal Commun
  doi: 10.1016/j.catcom.2016.03.013
– volume: 424
  start-page: 213488
  year: 2020
  ident: 7014_CR19
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2020.213488
– volume: 12
  start-page: 1213
  issue: 3
  year: 2020
  ident: 7014_CR9
  publication-title: Nanoscale
  doi: 10.1039/C9NR09183A
– volume: 244
  start-page: 340
  year: 2019
  ident: 7014_CR56
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2018.11.018
– volume: 8
  start-page: 1834
  issue: 6
  year: 2015
  ident: 7014_CR23
  publication-title: Nano Res
  doi: 10.1007/s12274-014-0690-x
– volume: 25
  start-page: 3017
  issue: 22
  year: 2013
  ident: 7014_CR6
  publication-title: Adv Mater
  doi: 10.1002/adma.201300244
– volume: 31
  start-page: e1802981
  issue: 6
  year: 2019
  ident: 7014_CR44
  publication-title: Adv Mater
  doi: 10.1002/adma.201802981
– volume: 391
  start-page: 72
  year: 2017
  ident: 7014_CR5
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2016.07.030
– volume: 49
  start-page: 9803
  issue: 84
  year: 2013
  ident: 7014_CR13
  publication-title: Chem Commun (Camb)
  doi: 10.1039/c3cc46342g
– volume: 8
  start-page: 15258
  issue: 24
  year: 2016
  ident: 7014_CR8
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b02687
– volume: 188
  start-page: 351
  year: 2016
  ident: 7014_CR55
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2016.02.017
– volume: 261
  start-page: 118249
  year: 2020
  ident: 7014_CR51
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2019.118249
– volume: 10
  start-page: 12315
  issue: 26
  year: 2018
  ident: 7014_CR52
  publication-title: Nanoscale
  doi: 10.1039/C8NR03846E
– volume: 49
  start-page: 3221
  issue: 31
  year: 2013
  ident: 7014_CR7
  publication-title: Chem Commun (Camb)
  doi: 10.1039/c3cc41362d
– volume: 172
  start-page: 2123
  year: 2018
  ident: 7014_CR36
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.11.208
– volume: 5
  start-page: 5449
  issue: 6
  year: 2017
  ident: 7014_CR40
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.7b00787
– volume: 8
  start-page: 26817
  issue: 40
  year: 2016
  ident: 7014_CR37
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b08851
– volume: 522
  start-page: 146356
  year: 2020
  ident: 7014_CR24
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2020.146356
– volume: 49
  start-page: 5143
  issue: 16
  year: 2020
  ident: 7014_CR18
  publication-title: Dalton Trans
  doi: 10.1039/D0DT00271B
– volume: 31
  start-page: e1902868
  issue: 42
  year: 2019
  ident: 7014_CR50
  publication-title: Adv Mater
  doi: 10.1002/adma.201902868
– volume: 229
  start-page: 41
  year: 2018
  ident: 7014_CR2
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2018.02.006
– volume: 8
  start-page: 2352
  issue: 9
  year: 2018
  ident: 7014_CR57
  publication-title: Catal Sci Technol
  doi: 10.1039/C8CY00380G
– volume: 3
  start-page: 12631
  issue: 24
  year: 2015
  ident: 7014_CR43
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA02438B
– volume: 440
  start-page: 295
  issue: 7082
  year: 2006
  ident: 7014_CR1
  publication-title: Nature
  doi: 10.1038/440295a
– volume: 35
  start-page: 171
  year: 2017
  ident: 7014_CR3
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.03.035
– volume: 45
  start-page: 10315
  issue: 23
  year: 2021
  ident: 7014_CR15
  publication-title: New J Chem
  doi: 10.1039/D1NJ01711J
– volume: 45
  start-page: 1190
  issue: 2
  year: 2020
  ident: 7014_CR21
  publication-title: Int J Energy Res
  doi: 10.1002/er.5807
– volume: 258
  start-page: 117997
  year: 2019
  ident: 7014_CR48
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2019.117997
– volume: 43
  start-page: 5982
  issue: 16
  year: 2014
  ident: 7014_CR20
  publication-title: Chem Soc Rev
  doi: 10.1039/C4CS00103F
– volume: 378
  start-page: 246
  year: 2013
  ident: 7014_CR12
  publication-title: J Mol Catal A Chem
  doi: 10.1016/j.molcata.2013.06.017
– volume: 44
  start-page: 19640
  issue: 36
  year: 2019
  ident: 7014_CR22
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.233
– volume: 4
  start-page: 9998
  issue: 25
  year: 2016
  ident: 7014_CR45
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA03178A
– volume: 603
  start-page: 344
  year: 2021
  ident: 7014_CR46
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.06.111
– volume: 11
  start-page: 12153
  issue: 20
  year: 2021
  ident: 7014_CR16
  publication-title: RSC Adv
  doi: 10.1039/D1RA00625H
– volume: 53
  start-page: 872
  issue: 2
  year: 2014
  ident: 7014_CR38
  publication-title: Inorg Chem
  doi: 10.1021/ic402106v
– volume: 2020
  start-page: 4215
  issue: 44
  year: 2020
  ident: 7014_CR34
  publication-title: Eur J Inorg Chem
  doi: 10.1002/ejic.202000729
– volume: 21
  start-page: 8326
  issue: 16
  year: 2019
  ident: 7014_CR47
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C9CP01180C
– volume: 54
  start-page: 8639
  issue: 17
  year: 2015
  ident: 7014_CR32
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.5b01278
– volume: 289
  start-page: 121497
  year: 2020
  ident: 7014_CR28
  publication-title: J Solid State Chem
  doi: 10.1016/j.jssc.2020.121497
– volume: 16
  start-page: 1293
  issue: 10
  year: 2016
  ident: 7014_CR53
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2016.07.009
– volume: 133
  start-page: 10878
  issue: 28
  year: 2011
  ident: 7014_CR4
  publication-title: J Am Chem Soc
  doi: 10.1021/ja2025454
– volume: 341
  start-page: 1230444
  issue: 6149
  year: 2013
  ident: 7014_CR26
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 139
  start-page: 3021
  issue: 8
  year: 2017
  ident: 7014_CR49
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b11878
– volume: 513
  start-page: 222
  year: 2018
  ident: 7014_CR14
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2017.11.030
– volume: 7
  start-page: 3802
  issue: 17
  year: 2017
  ident: 7014_CR42
  publication-title: Catal Sci Technol
  doi: 10.1039/C7CY01102D
– volume: 274
  start-page: 286
  year: 2019
  ident: 7014_CR33
  publication-title: J Solid State Chem
  doi: 10.1016/j.jssc.2019.03.040
– volume: 22
  start-page: 103
  issue: 1
  year: 2010
  ident: 7014_CR11
  publication-title: Adv Mater
  doi: 10.1002/adma.200901920
– volume: 21
  start-page: 926
  issue: 2
  year: 2021
  ident: 7014_CR30
  publication-title: Cryst Growth Des
  doi: 10.1021/acs.cgd.0c01274
– volume: 237
  start-page: 689
  year: 2018
  ident: 7014_CR58
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2018.06.040
SSID ssj0005721
Score 2.4493096
Snippet Visible light-driven hydrogen production by water splitting has attracted much attention because of its advantages of low cost, relative safety, and...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5768
SubjectTerms Analysis
Characterization and Evaluation of Materials
Chemical Routes to Materials
Chemistry and Materials Science
Classical Mechanics
Composite materials
Conduction bands
Crystallography and Scattering Methods
Heterostructures
Hydrogen
Hydrogen evolution
Hydrogen production
irradiation
light
Light irradiation
Materials Science
Morphology
Nanoparticles
Optical properties
Photocatalysis
Polymer Sciences
Povidone
Solid Mechanics
Water splitting
X ray photoelectron spectroscopy
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9B9wIPiE8RGOiQkHgAiyZx7OQJjWnVhrSCgEl7ixLbVSdtcVlaTftH9vdylzoNBbHX-JxYufN9-e5ngLdGSa3ITImMrKOQTo9FQVGAUJVMpKpSbS0n9I-n6vBEfjnNTkPCrQ1llb1O7BS19YZz5B8TxVhyXA35afFL8K1RfLoartC4CzukgvN8BDufD6bfvg9FHjqJe7xwRk4LbTOheY5MleAREvtYivGWafpbQf9zUtoZoMlDeBA8R9xbs_oR3HHNY7j_B57gE7ghpqPxAygs-hlav6rPHXKuFY-OcM71L35Nsbp0yP0luG9_YNVYnJ6J468ToSVyfhaXVx43lG1H4Zp5VzOAF457hs_aC_7GYu6XvssEXdPq8Ioc2Etsyb_tqqqfwsnk4Of-oQgXLwgj42Ip8sJqy-1N2lJ85Yoso6BP1gXxzqYuy0xsKA5yMzLtaUUPaiuzgjiexNLquNbpMxg1vnHPAes6j5nvFCelMjEqd5Y8DJVL4yo1k3UEcf_PSxNQyflyjPNywFNmPpXEp7LjUzmO4P1mzmKNyXEr9TtmZckblt5sqtB3QOtj6KtyTxVKFjqVaQS7W5S00cz2cC8MZdjobTmIZQRvNsM8k4vXGudXTENaMuUDrgg-9EI0vOL_S39x-xdfwr2kE1-uiNuFEcmDe0Uu0rJ-HfbBb9lSCm4
  priority: 102
  providerName: ProQuest
Title The construction of double type II heterostructure from CdS and Ni-MOF-74 with two structures and enhanced mechanism of photocatalytic water splitting
URI https://link.springer.com/article/10.1007/s10853-022-07014-0
https://www.proquest.com/docview/2638174953
https://www.proquest.com/docview/2648835751
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_B9gIPiE-RMSojIfEAlpbEsZPHdmq2gVYQUGk8WYntqpO2eFpaTfwj_L3cuUm78iXxFCm5OFbu7Luzf_czwGsjhZLopniG3pELpw54gVkAl5VIhKxSZS0t6J9O5PFUvD_LzrqisLZHu_dbkmGmvlXshq6FE_oczTQWHBP13QxzdwJyTZPhBtihkrjnCCe2tK5U5s9tbLmjXyfl33ZHg9MpH8KDLlpkw5V6H8Ed1zyG-7c4BJ_AD1Q0M35DBMv8jFm_rC8co_VVdnLC5oR58SuJ5bVjVFPCDu0XVjWWTc756ceSK8FoTZYtbjxbS7ZBwjXzgBNgl47qhM_bS_rG1dwvfFj9-Y69YzcYtF6zFmPagKR-CtNy_PXwmHeHLXAj4mLB88IqSyVNymJO5Yosw0RP1AXqy6Yuy0xsMPdxM3TnaYU3aiuyArWcxMKquFbpM9hpfOOeA6vrPCZdY26UisTI3FmMKmQujKvkTNQRxP0_16ZjIqcDMS70hkOZ9KRRTzroSR9E8Hb9ztWKh-Of0m9IlZoGKbZsqq7WAPtHdFd6KAspCpWKNIL9LUkcXGb7cW8MuhvcrU4k0RoSMDeCV-vH9CYB1hrnlySDM2NKm1oRvOuNaNPE37u-93_iL-BeEsyZUHH7sIP24V5imLSoB3A3L48GsDssR6MJXY--fRjjdTSefPo8CGPmJ6_vC18
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DTGA_CAxpcIbMNIIB7Aokkcu3lA0zQoLVvLA5u0N5PYrjppi8vSqtof4WfwG7lLk4aC2Nte47Pj5L7Pd2eAV0YKJVFN8QS1IxdOdXiKXgCXmYiEzGJlLQX0hyPZPxFfTpPTDfjV1MJQWmUjEytBbb2hGPn7SFIvOcqG3Jv-4HRrFJ2uNldoLMni0F0t0GUrPww-In5fR1Hv0_FBn9e3CnAjwnTGu6lVlmp3lEXnwaVJgh6NyFPcmI1dkpjQoJHvxqi34gwf5FYkKX5OFAqrwlzFuO4tuC1i1ORUmd773KaUqChsupNTn7a6SKcu1UPFyGkEmSwUvLOmCP9WB_-cy1bqrrcF92s7le0vCesBbLjiIdz7o3vhI_iJJMaMb1vQMj9m1s_zc8cosssGAzahbBu_hJhfOkbVLOzAfmNZYdnojA-_9rgSjKLBbLbwbAVZVhCumFQZCuzCUYXyWXlB75hO_MxXcacr3B1boLl8yUq0pqsc7sdwciMIeQKbhS_cU2B53g2JytAri0VkZNdZtGdkVxiXybHIAwibf65N3QOdruI41233ZsKTRjzpCk-6E8Db1ZzpsgPItdBvCJWaxAOubLK6ygH3R4229L5MpUhVLOIAttcgka3N-nBDDLoWK6VumSCAl6thmkmpcoXzc4JBmRzTcVoA7xoiapf4_9afXf_GF3Cnfzw80keD0eFzuBtVpEy5eNuwibThdtA4m-W7FUcw-H7TLPgbRBhDqg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIiE4IH6FocAggTjAqrG93o0PHKKWqKE0IEGk3hZ7d6NUau2ocRT1RXgOHpEZx04a_iQOvcbjzdgzuzOz-81ngJdWSa0oTImEoqOQXndESlWAUJmMpMpi7Rxv6B8N1cFIfjhOjrfgR9sLU6Pd2yPJZU8DszQV1e7UjXcvNb5RmBGMRCeXDaXoNLDKQ3-xoKJt9m6wTxZ-FUX991_3DkTzXQFhZZhWops67bh7RzsqH3yaJFTTyDwl1Vzsk8SGltJ8P6bIFWf0Q-5kktIDRaF0Osx1TONeg-uSu49pBo2i3hpUoqOw5SdnpramTefPOm-Ewl8Dwm8ns3XA69-B202mir2la92FLV_cg1uX-Avvw3dyMrTlmoQWyzG6cp6feuS9XRwMcMJ4m3IpMT_3yP0suOe-YFY4HJ6Io099oSXyfjBWixJXkrNawheTGqOAZ557lE9mZ_wf00lZlfXO0wVphwtKmM9xRvl0jeJ-AKMrMchD2C7Kwj8CzPNuyH5GdVksI6u63lFGo7rS-kyNZR5A2L5zYxsWdP4Yx6lZ8zeznQzZydR2Mp0A3qzumS45QP4p_ZpNaXiBoJFt1vQ5kH5MtWV6KlUy1bGMA9jZkKSJbTcvt85gmoVlZiLFlIoMCg7gxeoy38lgucKXc5ahVTnmA7UA3rZOtB7i76o__j_x53Dj837ffBwMD5_Azaj2bAbn7cA2uYp_StlalT-rJwjCt6uekT8B9FBEww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+construction+of+double+type+II+heterostructure+from+CdS+and+Ni-MOF-74+with+two+structures+and+enhanced+mechanism+of+photocatalytic+water+splitting&rft.jtitle=Journal+of+materials+science&rft.au=Niu%2C+Lu&rft.au=Zhang%2C+Wang-gang&rft.au=Li%2C+Hao-tian&rft.au=Wang%2C+Hong-xia&rft.date=2022-03-01&rft.pub=Springer+US&rft.issn=0022-2461&rft.eissn=1573-4803&rft.volume=57&rft.issue=10&rft.spage=5768&rft.epage=5787&rft_id=info:doi/10.1007%2Fs10853-022-07014-0&rft.externalDocID=10_1007_s10853_022_07014_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon