Extended formulations, nonnegative factorizations, and randomized communication protocols
An extended formulation of a polyhedron P is a linear description of a polyhedron Q together with a linear map π such that π ( Q ) = P . These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis’ factorization...
Saved in:
Published in | Mathematical programming Vol. 153; no. 1; pp. 75 - 94 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An extended formulation of a polyhedron
P
is a linear description of a polyhedron
Q
together with a linear map
π
such that
π
(
Q
)
=
P
. These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis’ factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441–466,
1991
) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of
P
equals the nonnegative rank of its slack matrix
S
. Moreover, Yannakakis also shows that the nonnegative rank of
S
is at most
2
c
, where
c
is the complexity of any
deterministic
protocol computing
S
. In this paper, we show that the latter result can be strengthened when we allow protocols to be
randomized
. In particular, we prove that the base-
2
logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation. Using Yannakakis’ factorization theorem, this implies that the base-
2
logarithm of the smallest size of an extended formulation of a polytope
P
equals the minimum complexity of a randomized communication protocol computing the slack matrix of
P
in expectation. We show that allowing randomization in the protocol can be crucial for obtaining small extended formulations. Specifically, we prove that for the spanning tree and perfect matching polytopes, small variance in the protocol forces large size in the extended formulation. |
---|---|
AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: Lifts of convex sets in optimization An extended formulation of a polyhedron ... is a linear description of a polyhedron ... together with a linear map ... such that ... These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis' factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441-466, 1991 ) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of ... equals the nonnegative rank of its slack matrix ... Moreover, Yannakakis also shows that the nonnegative rank of ... is at most ..., where ... is the complexity of any deterministic protocol computing ... In this paper, we show that the latter result can be strengthened when we allow protocols to be randomized. In particular, we prove that the base-... logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation. Using Yannakakis' factorization theorem, this implies that the base-... logarithm of the smallest size of an extended formulation of a polytope ... equals the minimum complexity of a randomized communication protocol computing the slack matrix of ... in expectation. We show that allowing randomization in the protocol can be crucial for obtaining small extended formulations. Specifically, we prove that for the spanning tree and perfect matching polytopes, small variance in the protocol forces large size in the extended formulation. (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).An extended formulation of a polyhedron ... is a linear description of a polyhedron ... together with a linear map ... such that ... These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis' factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441-466, 1991) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of ... equals the nonnegative rank of its slack matrix ... Moreover, Yannakakis also shows that the nonnegative rank of ... is at most ..., where ... is the complexity of any deterministic protocol computing ... In this paper, we show that the latter result can be strengthened when we allow protocols to be randomized. In particular, we prove that the base-... logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation. Using Yannakakis' factorization theorem, this implies that the base-... logarithm of the smallest size of an extended formulation of a polytope ... equals the minimum complexity of a randomized communication protocol computing the slack matrix of ... in expectation. We show that allowing randomization in the protocol can be crucial for obtaining small extended formulations. Specifically, we prove that for the spanning tree and perfect matching polytopes, small variance in the protocol forces large size in the extended formulation. An extended formulation of a polyhedron P is a linear description of a polyhedron Q together with a linear map π such that π ( Q ) = P . These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis’ factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441–466, 1991 ) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of P equals the nonnegative rank of its slack matrix S . Moreover, Yannakakis also shows that the nonnegative rank of S is at most 2 c , where c is the complexity of any deterministic protocol computing S . In this paper, we show that the latter result can be strengthened when we allow protocols to be randomized . In particular, we prove that the base- 2 logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation. Using Yannakakis’ factorization theorem, this implies that the base- 2 logarithm of the smallest size of an extended formulation of a polytope P equals the minimum complexity of a randomized communication protocol computing the slack matrix of P in expectation. We show that allowing randomization in the protocol can be crucial for obtaining small extended formulations. Specifically, we prove that for the spanning tree and perfect matching polytopes, small variance in the protocol forces large size in the extended formulation. |
Author | Faenza, Yuri Fiorini, Samuel Grappe, Roland Tiwary, Hans Raj |
Author_xml | – sequence: 1 givenname: Yuri surname: Faenza fullname: Faenza, Yuri organization: Institut de mathématiques d’analyse et applications, EPFL – sequence: 2 givenname: Samuel surname: Fiorini fullname: Fiorini, Samuel organization: Département de Mathématique, Université libre de Bruxelles – sequence: 3 givenname: Roland surname: Grappe fullname: Grappe, Roland organization: Laboratoire d’Informatique de Paris-Nord, UMR CNRS 7030, Institut Galilée, Université Paris-Nord – sequence: 4 givenname: Hans Raj surname: Tiwary fullname: Tiwary, Hans Raj email: hansraj@kam.mff.cuni.cz organization: Department of Applied Mathematics (KAM), Institute of Theoretical Computer Science (ITI), Charles University |
BookMark | eNp9kE1r3DAQhkVJoJuPH9CboZcc4mTGkkb2MSxpGwjkkhxyElpZDl5saSvZIc2vjzbbQlhoLhrEvB_Dc8QOfPCOsW8IFwigLhMCgioBRQlKypJ_YQsUnEpBgg7YAqCSpSSEr-wopTUAIK_rBXu8fpmcb11bdCGO82CmPvh0XuR4757y79kVnbFTiP3rv53xbRHzE8b-NRttGMfZ9_Z9XWximIINQzphh50Zkjv9O4_Zw4_r--Wv8vbu583y6ra0ApupVMSxrkitGkS0SJ2pSRnetJUUXKwsycYJ4grrlZINEGHbGkdIxuIKJPBjdrbLzc2_Z5cmPfbJumEw3oU5aVRUQVMR8iz9viddhzn6fF1W5fqahKyyCncqG0NK0XV6E_vRxD8aQW9h6x1snWHrLWy9TVZ7HttP70CmaPrhU2e1c6bc4p9c_HDTf01vgTKU4Q |
CODEN | MHPGA4 |
CitedBy_id | crossref_primary_10_1007_s00454_018_9988_x crossref_primary_10_1007_s10208_018_09410_y crossref_primary_10_1016_j_orl_2021_11_006 crossref_primary_10_1016_j_orl_2022_01_011 crossref_primary_10_1137_16M109884X crossref_primary_10_1002_net_21849 crossref_primary_10_1080_10556788_2020_1769619 crossref_primary_10_1007_s10107_023_01994_w crossref_primary_10_1007_s00224_019_09951_x crossref_primary_10_1007_s10107_015_0936_8 crossref_primary_10_1007_s10107_020_01535_9 |
Cites_doi | 10.1016/j.endm.2010.05.130 10.1016/0022-0000(91)90024-Y 10.1016/0304-3975(95)00005-4 10.1145/1855118.1855133 10.1016/0304-3975(92)90260-M 10.1002/net.10010 10.1007/s10288-010-0122-z 10.1016/S0065-2458(08)60342-3 10.1137/0405044 10.1016/0095-8956(75)90041-6 10.1016/0012-365X(75)90058-8 10.1007/978-3-642-78240-4 10.1137/1.9781611973099.102 10.6028/jres.069B.013 10.1007/BF01584082 10.1016/0024-3795(93)90224-C 10.1145/2090236.2090241 10.1016/j.disc.2012.09.015 10.1007/3-540-45841-7_24 10.1016/0167-6377(91)90028-N 10.1007/s10107-012-0574-3 10.1145/2213977.2213988 10.1007/978-3-642-13036-6_11 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014 Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014 – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s10107-014-0755-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM global Computing Database Science Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1436-4646 |
EndPage | 94 |
ExternalDocumentID | 3804436461 10_1007_s10107_014_0755_3 |
GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c419t-76318267b9111c16fa867a39d25434bc659e463718b7590661ddae616ac1b0503 |
IEDL.DBID | BENPR |
ISSN | 0025-5610 |
IngestDate | Thu Jul 10 17:18:44 EDT 2025 Fri Jul 25 19:43:05 EDT 2025 Thu Apr 24 23:13:04 EDT 2025 Tue Jul 01 02:15:09 EDT 2025 Fri Feb 21 02:32:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 52B05 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-76318267b9111c16fa867a39d25434bc659e463718b7590661ddae616ac1b0503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1711186452 |
PQPubID | 25307 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_1762092613 proquest_journals_1711186452 crossref_primary_10_1007_s10107_014_0755_3 crossref_citationtrail_10_1007_s10107_014_0755_3 springer_journals_10_1007_s10107_014_0755_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Publication of the Mathematical Optimization Society |
PublicationTitle | Mathematical programming |
PublicationTitleAbbrev | Math. Program |
PublicationYear | 2015 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Fiorini, Kaibel, Pashkovich, Theis (CR9) 2013; 313 Richard (CR19) 1991; 10 Kushilevitz, Nisan (CR16) 1997 Edmonds (CR5) 1965; 69B Galluccio, Gentile, Ventura (CR10) 2010; 36 CR14 Kalyanasundaram, Schnitger (CR15) 1992; 5 CR12 Williams (CR25) 2002; 39 Edmonds (CR6) 1971; 1 Faenza, Oriolo, Stauffer, Rabani (CR7) 2012 Wolsey (CR26) 2011; 85 Thomason (CR23) 2001 Chvátal (CR2) 1975; 18 CR8 Cohen, Rothblum (CR3) 1993; 190 Kaibel (CR13) 2011; 85 CR27 Lovász (CR18) 1975; 13 CR21 Chattopadhyay, Pitassi (CR1) 2010; 41 Schrijver (CR22) 2003 Yannakakis (CR24) 1991; 43 Grötschel, Lovász, Schrijver (CR11) 1993 Ziegler (CR28) 1995 Conforti, Cornuéjols, Zambelli (CR4) 2010; 8 Razborov (CR20) 1992; 106 Krause (CR17) 1996; 156 755_CR21 A Schrijver (755_CR22) 2003 755_CR27 M Conforti (755_CR4) 2010; 8 A Galluccio (755_CR10) 2010; 36 L Lovász (755_CR18) 1975; 13 J Edmonds (755_CR6) 1971; 1 LA Wolsey (755_CR26) 2011; 85 M Krause (755_CR17) 1996; 156 V Kaibel (755_CR13) 2011; 85 V Chvátal (755_CR2) 1975; 18 GM Ziegler (755_CR28) 1995 E Kushilevitz (755_CR16) 1997 755_CR19 A Chattopadhyay (755_CR1) 2010; 41 M Grötschel (755_CR11) 1993 755_CR14 755_CR12 A Thomason (755_CR23) 2001 J Edmonds (755_CR5) 1965; 69B Y Faenza (755_CR7) 2012 M Yannakakis (755_CR24) 1991; 43 JC Williams (755_CR25) 2002; 39 AA Razborov (755_CR20) 1992; 106 755_CR9 JE Cohen (755_CR3) 1993; 190 B Kalyanasundaram (755_CR15) 1992; 5 755_CR8 |
References_xml | – volume: 85 start-page: 7 year: 2011 end-page: 9 ident: CR26 article-title: Using extended formulations in practice publication-title: Optima – volume: 36 start-page: 1025 year: 2010 end-page: 1032 ident: CR10 article-title: The stable set polytope of claw-free graphs with large stability number publication-title: Electron. Notes Discrete Math. doi: 10.1016/j.endm.2010.05.130 – volume: 85 start-page: 2 year: 2011 end-page: 7 ident: CR13 publication-title: Extended formulations in combinatorial optimization. Optima – volume: 43 start-page: 441 issue: 3 year: 1991 end-page: 466 ident: CR24 article-title: Expressing combinatorial optimization problems by linear programs publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(91)90024-Y – volume: 156 start-page: 99 issue: 1&2 year: 1996 end-page: 117 ident: CR17 article-title: Geometric arguments yield better bounds for threshold circuits and distributed computing publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(95)00005-4 – ident: CR14 – year: 2001 ident: CR23 publication-title: The extremal function for complete minors. Journal of Combinatorial Theory. Series B, Volume 81, Number 2 – ident: CR12 – volume: 41 start-page: 59 issue: 3 year: 2010 end-page: 85 ident: CR1 article-title: The story of set disjointness publication-title: SIGACT News doi: 10.1145/1855118.1855133 – volume: 106 start-page: 385 issue: 2 year: 1992 end-page: 390 ident: CR20 article-title: On the distributional complexity of disjointness publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(92)90260-M – volume: 39 start-page: 53 issue: 1 year: 2002 end-page: 60 ident: CR25 article-title: A linear-size zero–one programming model for the minimum spanning tree problem in planar graphs publication-title: Networks doi: 10.1002/net.10010 – volume: 8 start-page: 1 issue: 1 year: 2010 end-page: 48 ident: CR4 article-title: Extended formulations in combinatorial optimization publication-title: 4OR doi: 10.1007/s10288-010-0122-z – ident: CR8 – year: 1997 ident: CR16 publication-title: Communication Complexity doi: 10.1016/S0065-2458(08)60342-3 – volume: 5 start-page: 545 issue: 4 year: 1992 end-page: 557 ident: CR15 article-title: The probabilistic communication complexity of set intersection publication-title: SIAM J. Discr. Math. doi: 10.1137/0405044 – volume: 18 start-page: 138 year: 1975 end-page: 154 ident: CR2 article-title: On certain polytopes associated with graphs publication-title: J. Comb. Theory B doi: 10.1016/0095-8956(75)90041-6 – ident: CR27 – year: 1995 ident: CR28 publication-title: Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics – volume: 13 start-page: 383 issue: 4 year: 1975 end-page: 390 ident: CR18 article-title: On the ratio of optimal integral and fractional covers publication-title: Discrete Math. doi: 10.1016/0012-365X(75)90058-8 – volume: 313 start-page: 67 issue: 1 year: 2013 end-page: 83 ident: CR9 article-title: Combinatorial bounds on nonnegative rank and extended formulations publication-title: Discret. Math. – ident: CR21 – year: 1993 ident: CR11 publication-title: Geometric algorithms and combinatorial optimization, volume 2 of Algorithms and Combinatorics. doi: 10.1007/978-3-642-78240-4 – year: 2003 ident: CR22 publication-title: Combinatorial optimization. Polyhedra and efficiency. Vol. A and B, Volume 24 of Algorithms and Combinatorics – start-page: 1298 year: 2012 end-page: 1308 ident: CR7 article-title: Separating stable sets in claw-free graphs via Padberg-Rao and compact linear programs publication-title: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012) doi: 10.1137/1.9781611973099.102 – volume: 10 start-page: 119 issue: 3 year: 1991 end-page: 128 ident: CR19 article-title: Using separation algorithms to generate mixed integer model reformulations publication-title: Oper. Res. Lett. – volume: 69B start-page: 125 year: 1965 end-page: 130 ident: CR5 article-title: Maximum matching and a polyhedron with 0, 1 vertices publication-title: J. Res. Nat. Bur. Stand. doi: 10.6028/jres.069B.013 – volume: 1 start-page: 127 year: 1971 end-page: 136 ident: CR6 article-title: Matroids and the greedy algorithm publication-title: Math. Program. doi: 10.1007/BF01584082 – volume: 190 start-page: 149 year: 1993 end-page: 168 ident: CR3 article-title: Nonnegative ranks, decompositions, and factorizations of nonnegative matrices publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(93)90224-C – volume-title: Combinatorial optimization. Polyhedra and efficiency. Vol. A and B, Volume 24 of Algorithms and Combinatorics year: 2003 ident: 755_CR22 – volume: 1 start-page: 127 year: 1971 ident: 755_CR6 publication-title: Math. Program. doi: 10.1007/BF01584082 – volume: 106 start-page: 385 issue: 2 year: 1992 ident: 755_CR20 publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(92)90260-M – volume: 85 start-page: 7 year: 2011 ident: 755_CR26 publication-title: Optima – volume: 13 start-page: 383 issue: 4 year: 1975 ident: 755_CR18 publication-title: Discrete Math. doi: 10.1016/0012-365X(75)90058-8 – ident: 755_CR27 doi: 10.1145/2090236.2090241 – volume-title: Geometric algorithms and combinatorial optimization, volume 2 of Algorithms and Combinatorics. year: 1993 ident: 755_CR11 doi: 10.1007/978-3-642-78240-4 – volume: 156 start-page: 99 issue: 1&2 year: 1996 ident: 755_CR17 publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(95)00005-4 – ident: 755_CR9 doi: 10.1016/j.disc.2012.09.015 – volume: 5 start-page: 545 issue: 4 year: 1992 ident: 755_CR15 publication-title: SIAM J. Discr. Math. doi: 10.1137/0405044 – volume-title: Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics year: 1995 ident: 755_CR28 – ident: 755_CR12 doi: 10.1007/3-540-45841-7_24 – volume: 85 start-page: 2 year: 2011 ident: 755_CR13 publication-title: Extended formulations in combinatorial optimization. Optima – ident: 755_CR19 doi: 10.1016/0167-6377(91)90028-N – volume: 69B start-page: 125 year: 1965 ident: 755_CR5 publication-title: J. Res. Nat. Bur. Stand. doi: 10.6028/jres.069B.013 – volume: 36 start-page: 1025 year: 2010 ident: 755_CR10 publication-title: Electron. Notes Discrete Math. doi: 10.1016/j.endm.2010.05.130 – volume: 190 start-page: 149 year: 1993 ident: 755_CR3 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(93)90224-C – ident: 755_CR21 doi: 10.1007/s10107-012-0574-3 – volume: 18 start-page: 138 year: 1975 ident: 755_CR2 publication-title: J. Comb. Theory B doi: 10.1016/0095-8956(75)90041-6 – volume: 8 start-page: 1 issue: 1 year: 2010 ident: 755_CR4 publication-title: 4OR doi: 10.1007/s10288-010-0122-z – volume-title: The extremal function for complete minors. Journal of Combinatorial Theory. Series B, Volume 81, Number 2 year: 2001 ident: 755_CR23 – start-page: 1298 volume-title: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012) year: 2012 ident: 755_CR7 doi: 10.1137/1.9781611973099.102 – volume: 43 start-page: 441 issue: 3 year: 1991 ident: 755_CR24 publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(91)90024-Y – ident: 755_CR8 doi: 10.1145/2213977.2213988 – volume-title: Communication Complexity year: 1997 ident: 755_CR16 doi: 10.1016/S0065-2458(08)60342-3 – ident: 755_CR14 doi: 10.1007/978-3-642-13036-6_11 – volume: 41 start-page: 59 issue: 3 year: 2010 ident: 755_CR1 publication-title: SIGACT News doi: 10.1145/1855118.1855133 – volume: 39 start-page: 53 issue: 1 year: 2002 ident: 755_CR25 publication-title: Networks doi: 10.1002/net.10010 |
SSID | ssj0001388 |
Score | 2.2895315 |
Snippet | An extended formulation of a polyhedron
P
is a linear description of a polyhedron
Q
together with a linear map
π
such that
π
(
Q
)
=
P
. These objects are of... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: Lifts of convex sets in optimization An extended... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).An extended formulation of a polyhedron ... is a linear description of a polyhedron... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 75 |
SubjectTerms | Algorithms Calculus of Variations and Optimal Control; Optimization Combinatorics Communication Complexity Computation Factorization Full Length Paper Geometry Graphs Logarithms Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical models Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Optimization algorithms Polyhedra Polyhedrons Polytopes Protocol Studies Theorems Theoretical |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3oQP3E6JYInXaBp89Eeh2wMYZ4czFNJ2k4E7cRuF_9632ubrooKHkuTtHlJ3kfee79HyBWXWnsy9ZgxkWBCGMGMnBvmGxGAPeJrbfAecnKvxlNxN5OzOo-7cNHuziVZcupWshsvwyQFAzEnWbBJtiSa7rCJp_6gYb88CENXpxWVA-fK_GmIr8JorWF-c4qWsma0R3ZrJZEOqlXdJxtZfkB2WtCB8DRp8FaLQ_I4rO-yKeqgdUWuok9zDGN5KrG9aVVZx6Vd9qnJUwqCKl28Pn9Ax6SdKUIRvmEBe6Q4ItPR8OF2zOqiCSwRPFoy4BdoMmiLXCzham5CpU0QpZj1LmyiZJQJFYBIslpGoHDwNDWZ4sok3CI4zDHpwM9lJ4Rm3tyGc8-3fmiFtYi8n_gy01gCkBsbdonnqBcnNaI4FrZ4iddYyEjwGAgeI8HjoEuumy5vFZzGX417bkni-mQVMdcwrxDdsV1y2byGM4GODpNnixW2Ub4XgW0IQ9y4pWwN8dsHT__V-oxsg_Ykq8i-Huks31fZOWgoS3tR7shPHjLbHQ priority: 102 providerName: Springer Nature |
Title | Extended formulations, nonnegative factorizations, and randomized communication protocols |
URI | https://link.springer.com/article/10.1007/s10107-014-0755-3 https://www.proquest.com/docview/1711186452 https://www.proquest.com/docview/1762092613 |
Volume | 153 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_UveiD-InzY1TwSQ02bdKkT7LppiiKiAN9KknbiaDbtPPFv967Nd2moE-lNB_lktxd7uN3AAdcKuXLzGfGxIIJYQQzsmdYYESI95FAKUN2yJvb6LIrrh7lozO4FS6ssuKJY0adDVKykZ9whadSkxvudPjOqGoUeVddCY15qCEL1nj5qrXat3f3E17MQ62roq2kKVR-zTJ5jo_DLgVDsSlZ-FMyTdXNXx7SseDprMCy0xi9ZrnEqzCX99dgaQZHEN9uJuCrxTo8tZ1h2yOF1JXnKo69PsW0PI-Bvr2yzE6Vg3nsmX7modTKBm8vX9gxnU0b8QjLYYAbptiAbqf9cHbJXAUFlgoejxgyD7o_KEssLeVRz-hImTDOKAVe2DSScS6iEOWTVTJG7YNnmckjHpmUW0KK2YQF_Ll8C7zc71nd8wMbaCusJRj-NJC5onqA3FhdB7-iXpI6eHGqcvGaTIGRieAJEjwhgidhHQ4nXYYltsZ_jXerJUncMSuS6aaow_7kMx4Q8nqYfj74pDZR4Md4UcQhjqqlnBnirwm3_59wBxZRd5JlXN8uLIw-PvM91E9GtgHzunPRgFqzdd7q0PPi6brdcFsTv3aD5jePmuTZ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOBQOqLSgbnm5UnsBLOLEjpMDqhCwXQrLCSQ4BTvxVkjtLiWLEPwofiMzSby7RSo3jlFiOxrPy56ZbwC-CqV1oIqAG5NKLqWR3Kie4aGREZ5HQq0N3UN2T-POufx5oS6m4MnXwlBapdeJlaIuBjndke8IjVKZUBju-81fTl2jKLrqW2jUbHHsHu7xyFbuHh3g_n4Lw_bh2X6HN10FeC5FOuQoUORTa0tinou4Z5JYmygtqCxc2jxWqZNxhDrbapWiRRZFYVwsYpMLS-gpOO80zMooSkmikvaPkeYXUZL4FrHkl_goal2qJ6okT8nRSCse_WsHx87ti3hsZeba72Gh8U_ZXs1QizDl-h9gfgK1EJ-6I6jX8iNcHjbX6Izc36YZWLnN-pRB86uCFWd1Ux9f8bnNTL9gaCOLwZ_rRxyYTxapMEKOGCB7lktw_iaUXYYZ_Dn3CZgLejbpBaENEyutJdD_PFROU_dBYWzSgsBTL8sbMHPqqfE7G8MwE8EzJHhGBM-iFmyOhtzUSB6vfbzqtyRrhLrMxizYgi-j1yiOFGMxfTe4o2_iMEjxWIpTbPmtnJjifwt-fn3BDXjXOeueZCdHp8crMIdem6ozCldhZnh759bQMxra9YodGVy9Nf8_A9ykGL0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcYDCgSJ1i0pk2a9jgB03hs4sCkcaqSPhASdBPtLvx67L42ECBxrJqkrZPaX2L7MyFnTEhpitCkSnmccq44VSJW1FLchv2IJaXCc8jB0OmP-O1YjMs6p2kV7V65JIucBmRpSrLONIw7C4lvLA-Z5BRMnqD2MlkBbcxwWY-sbq2Kme26Vc1WBAqVW_OnIb4apjna_OYgze1Ob5NslIDR6BYzvEWWomSbrC_QCMLVoOZeTXfI03V5rm0gHi2rc6VtI8GQluec59soquxUKZhtQyWhAUYrnLy9fEDHYDFrxEAqhwmsl3SXjHrXj5d9WhZQoAFnXkZBd-D2QWrUaAFzYuU6UtleiBnwXAeO8CLu2GCetBQegA8WhipymKMCppEoZo804OWifWJEZqzd2LS05WquNbLwB5aIJJYDZEq7TWJW0vODkl0ci1y8-nNeZBS4DwL3UeC-3STndZdpQa3xV-NWNSV--ZelPpPwXS66ZpvktL4N_wc6PVQSTWbYxrFMD_aJMMRFNZULQ_z2wIN_tT4hqw9XPf_-Znh3SNYAVIki4K9FGtn7LDoC4JLp43xxfgKWPOJM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+formulations%2C+nonnegative+factorizations%2C+and+randomized+communication+protocols&rft.jtitle=Mathematical+programming&rft.au=Faenza%2C+Yuri&rft.au=Fiorini%2C+Samuel&rft.au=Grappe%2C+Roland&rft.au=Tiwary%2C+Hans+Raj&rft.date=2015-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=153&rft.issue=1&rft.spage=75&rft_id=info:doi/10.1007%2Fs10107-014-0755-3&rft.externalDocID=3804436461 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |