Extended formulations, nonnegative factorizations, and randomized communication protocols

An extended formulation of a polyhedron P is a linear description of a polyhedron Q together with a linear map π such that π ( Q ) = P . These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis’ factorization...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 153; no. 1; pp. 75 - 94
Main Authors Faenza, Yuri, Fiorini, Samuel, Grappe, Roland, Tiwary, Hans Raj
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An extended formulation of a polyhedron P is a linear description of a polyhedron Q together with a linear map π such that π ( Q ) = P . These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis’ factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441–466, 1991 ) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of P equals the nonnegative rank of its slack matrix S . Moreover, Yannakakis also shows that the nonnegative rank of S is at most 2 c , where c is the complexity of any deterministic protocol computing S . In this paper, we show that the latter result can be strengthened when we allow protocols to be randomized . In particular, we prove that the base- 2 logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation. Using Yannakakis’ factorization theorem, this implies that the base- 2 logarithm of the smallest size of an extended formulation of a polytope P equals the minimum complexity of a randomized communication protocol computing the slack matrix of P in expectation. We show that allowing randomization in the protocol can be crucial for obtaining small extended formulations. Specifically, we prove that for the spanning tree and perfect matching polytopes, small variance in the protocol forces large size in the extended formulation.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: Lifts of convex sets in optimization An extended formulation of a polyhedron ... is a linear description of a polyhedron ... together with a linear map ... such that ... These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis' factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441-466, 1991 ) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of ... equals the nonnegative rank of its slack matrix ... Moreover, Yannakakis also shows that the nonnegative rank of ... is at most ..., where ... is the complexity of any deterministic protocol computing ... In this paper, we show that the latter result can be strengthened when we allow protocols to be randomized. In particular, we prove that the base-... logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation. Using Yannakakis' factorization theorem, this implies that the base-... logarithm of the smallest size of an extended formulation of a polytope ... equals the minimum complexity of a randomized communication protocol computing the slack matrix of ... in expectation. We show that allowing randomization in the protocol can be crucial for obtaining small extended formulations. Specifically, we prove that for the spanning tree and perfect matching polytopes, small variance in the protocol forces large size in the extended formulation.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).An extended formulation of a polyhedron ... is a linear description of a polyhedron ... together with a linear map ... such that ... These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis' factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441-466, 1991) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of ... equals the nonnegative rank of its slack matrix ... Moreover, Yannakakis also shows that the nonnegative rank of ... is at most ..., where ... is the complexity of any deterministic protocol computing ... In this paper, we show that the latter result can be strengthened when we allow protocols to be randomized. In particular, we prove that the base-... logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation. Using Yannakakis' factorization theorem, this implies that the base-... logarithm of the smallest size of an extended formulation of a polytope ... equals the minimum complexity of a randomized communication protocol computing the slack matrix of ... in expectation. We show that allowing randomization in the protocol can be crucial for obtaining small extended formulations. Specifically, we prove that for the spanning tree and perfect matching polytopes, small variance in the protocol forces large size in the extended formulation.
An extended formulation of a polyhedron P is a linear description of a polyhedron Q together with a linear map π such that π ( Q ) = P . These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis’ factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441–466, 1991 ) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of P equals the nonnegative rank of its slack matrix S . Moreover, Yannakakis also shows that the nonnegative rank of S is at most 2 c , where c is the complexity of any deterministic protocol computing S . In this paper, we show that the latter result can be strengthened when we allow protocols to be randomized . In particular, we prove that the base- 2 logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation. Using Yannakakis’ factorization theorem, this implies that the base- 2 logarithm of the smallest size of an extended formulation of a polytope P equals the minimum complexity of a randomized communication protocol computing the slack matrix of P in expectation. We show that allowing randomization in the protocol can be crucial for obtaining small extended formulations. Specifically, we prove that for the spanning tree and perfect matching polytopes, small variance in the protocol forces large size in the extended formulation.
Author Faenza, Yuri
Fiorini, Samuel
Grappe, Roland
Tiwary, Hans Raj
Author_xml – sequence: 1
  givenname: Yuri
  surname: Faenza
  fullname: Faenza, Yuri
  organization: Institut de mathématiques d’analyse et applications, EPFL
– sequence: 2
  givenname: Samuel
  surname: Fiorini
  fullname: Fiorini, Samuel
  organization: Département de Mathématique, Université libre de Bruxelles
– sequence: 3
  givenname: Roland
  surname: Grappe
  fullname: Grappe, Roland
  organization: Laboratoire d’Informatique de Paris-Nord, UMR CNRS 7030, Institut Galilée, Université Paris-Nord
– sequence: 4
  givenname: Hans Raj
  surname: Tiwary
  fullname: Tiwary, Hans Raj
  email: hansraj@kam.mff.cuni.cz
  organization: Department of Applied Mathematics (KAM), Institute of Theoretical Computer Science (ITI), Charles University
BookMark eNp9kE1r3DAQhkVJoJuPH9CboZcc4mTGkkb2MSxpGwjkkhxyElpZDl5saSvZIc2vjzbbQlhoLhrEvB_Dc8QOfPCOsW8IFwigLhMCgioBRQlKypJ_YQsUnEpBgg7YAqCSpSSEr-wopTUAIK_rBXu8fpmcb11bdCGO82CmPvh0XuR4757y79kVnbFTiP3rv53xbRHzE8b-NRttGMfZ9_Z9XWximIINQzphh50Zkjv9O4_Zw4_r--Wv8vbu583y6ra0ApupVMSxrkitGkS0SJ2pSRnetJUUXKwsycYJ4grrlZINEGHbGkdIxuIKJPBjdrbLzc2_Z5cmPfbJumEw3oU5aVRUQVMR8iz9viddhzn6fF1W5fqahKyyCncqG0NK0XV6E_vRxD8aQW9h6x1snWHrLWy9TVZ7HttP70CmaPrhU2e1c6bc4p9c_HDTf01vgTKU4Q
CODEN MHPGA4
CitedBy_id crossref_primary_10_1007_s00454_018_9988_x
crossref_primary_10_1007_s10208_018_09410_y
crossref_primary_10_1016_j_orl_2021_11_006
crossref_primary_10_1016_j_orl_2022_01_011
crossref_primary_10_1137_16M109884X
crossref_primary_10_1002_net_21849
crossref_primary_10_1080_10556788_2020_1769619
crossref_primary_10_1007_s10107_023_01994_w
crossref_primary_10_1007_s00224_019_09951_x
crossref_primary_10_1007_s10107_015_0936_8
crossref_primary_10_1007_s10107_020_01535_9
Cites_doi 10.1016/j.endm.2010.05.130
10.1016/0022-0000(91)90024-Y
10.1016/0304-3975(95)00005-4
10.1145/1855118.1855133
10.1016/0304-3975(92)90260-M
10.1002/net.10010
10.1007/s10288-010-0122-z
10.1016/S0065-2458(08)60342-3
10.1137/0405044
10.1016/0095-8956(75)90041-6
10.1016/0012-365X(75)90058-8
10.1007/978-3-642-78240-4
10.1137/1.9781611973099.102
10.6028/jres.069B.013
10.1007/BF01584082
10.1016/0024-3795(93)90224-C
10.1145/2090236.2090241
10.1016/j.disc.2012.09.015
10.1007/3-540-45841-7_24
10.1016/0167-6377(91)90028-N
10.1007/s10107-012-0574-3
10.1145/2213977.2213988
10.1007/978-3-642-13036-6_11
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014
Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014
– notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s10107-014-0755-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM global
Computing Database
Science Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 94
ExternalDocumentID 3804436461
10_1007_s10107_014_0755_3
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c419t-76318267b9111c16fa867a39d25434bc659e463718b7590661ddae616ac1b0503
IEDL.DBID BENPR
ISSN 0025-5610
IngestDate Thu Jul 10 17:18:44 EDT 2025
Fri Jul 25 19:43:05 EDT 2025
Thu Apr 24 23:13:04 EDT 2025
Tue Jul 01 02:15:09 EDT 2025
Fri Feb 21 02:32:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 52B05
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-76318267b9111c16fa867a39d25434bc659e463718b7590661ddae616ac1b0503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1711186452
PQPubID 25307
PageCount 20
ParticipantIDs proquest_miscellaneous_1762092613
proquest_journals_1711186452
crossref_primary_10_1007_s10107_014_0755_3
crossref_citationtrail_10_1007_s10107_014_0755_3
springer_journals_10_1007_s10107_014_0755_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Fiorini, Kaibel, Pashkovich, Theis (CR9) 2013; 313
Richard (CR19) 1991; 10
Kushilevitz, Nisan (CR16) 1997
Edmonds (CR5) 1965; 69B
Galluccio, Gentile, Ventura (CR10) 2010; 36
CR14
Kalyanasundaram, Schnitger (CR15) 1992; 5
CR12
Williams (CR25) 2002; 39
Edmonds (CR6) 1971; 1
Faenza, Oriolo, Stauffer, Rabani (CR7) 2012
Wolsey (CR26) 2011; 85
Thomason (CR23) 2001
Chvátal (CR2) 1975; 18
CR8
Cohen, Rothblum (CR3) 1993; 190
Kaibel (CR13) 2011; 85
CR27
Lovász (CR18) 1975; 13
CR21
Chattopadhyay, Pitassi (CR1) 2010; 41
Schrijver (CR22) 2003
Yannakakis (CR24) 1991; 43
Grötschel, Lovász, Schrijver (CR11) 1993
Ziegler (CR28) 1995
Conforti, Cornuéjols, Zambelli (CR4) 2010; 8
Razborov (CR20) 1992; 106
Krause (CR17) 1996; 156
755_CR21
A Schrijver (755_CR22) 2003
755_CR27
M Conforti (755_CR4) 2010; 8
A Galluccio (755_CR10) 2010; 36
L Lovász (755_CR18) 1975; 13
J Edmonds (755_CR6) 1971; 1
LA Wolsey (755_CR26) 2011; 85
M Krause (755_CR17) 1996; 156
V Kaibel (755_CR13) 2011; 85
V Chvátal (755_CR2) 1975; 18
GM Ziegler (755_CR28) 1995
E Kushilevitz (755_CR16) 1997
755_CR19
A Chattopadhyay (755_CR1) 2010; 41
M Grötschel (755_CR11) 1993
755_CR14
755_CR12
A Thomason (755_CR23) 2001
J Edmonds (755_CR5) 1965; 69B
Y Faenza (755_CR7) 2012
M Yannakakis (755_CR24) 1991; 43
JC Williams (755_CR25) 2002; 39
AA Razborov (755_CR20) 1992; 106
755_CR9
JE Cohen (755_CR3) 1993; 190
B Kalyanasundaram (755_CR15) 1992; 5
755_CR8
References_xml – volume: 85
  start-page: 7
  year: 2011
  end-page: 9
  ident: CR26
  article-title: Using extended formulations in practice
  publication-title: Optima
– volume: 36
  start-page: 1025
  year: 2010
  end-page: 1032
  ident: CR10
  article-title: The stable set polytope of claw-free graphs with large stability number
  publication-title: Electron. Notes Discrete Math.
  doi: 10.1016/j.endm.2010.05.130
– volume: 85
  start-page: 2
  year: 2011
  end-page: 7
  ident: CR13
  publication-title: Extended formulations in combinatorial optimization. Optima
– volume: 43
  start-page: 441
  issue: 3
  year: 1991
  end-page: 466
  ident: CR24
  article-title: Expressing combinatorial optimization problems by linear programs
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(91)90024-Y
– volume: 156
  start-page: 99
  issue: 1&2
  year: 1996
  end-page: 117
  ident: CR17
  article-title: Geometric arguments yield better bounds for threshold circuits and distributed computing
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(95)00005-4
– ident: CR14
– year: 2001
  ident: CR23
  publication-title: The extremal function for complete minors. Journal of Combinatorial Theory. Series B, Volume 81, Number 2
– ident: CR12
– volume: 41
  start-page: 59
  issue: 3
  year: 2010
  end-page: 85
  ident: CR1
  article-title: The story of set disjointness
  publication-title: SIGACT News
  doi: 10.1145/1855118.1855133
– volume: 106
  start-page: 385
  issue: 2
  year: 1992
  end-page: 390
  ident: CR20
  article-title: On the distributional complexity of disjointness
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(92)90260-M
– volume: 39
  start-page: 53
  issue: 1
  year: 2002
  end-page: 60
  ident: CR25
  article-title: A linear-size zero–one programming model for the minimum spanning tree problem in planar graphs
  publication-title: Networks
  doi: 10.1002/net.10010
– volume: 8
  start-page: 1
  issue: 1
  year: 2010
  end-page: 48
  ident: CR4
  article-title: Extended formulations in combinatorial optimization
  publication-title: 4OR
  doi: 10.1007/s10288-010-0122-z
– ident: CR8
– year: 1997
  ident: CR16
  publication-title: Communication Complexity
  doi: 10.1016/S0065-2458(08)60342-3
– volume: 5
  start-page: 545
  issue: 4
  year: 1992
  end-page: 557
  ident: CR15
  article-title: The probabilistic communication complexity of set intersection
  publication-title: SIAM J. Discr. Math.
  doi: 10.1137/0405044
– volume: 18
  start-page: 138
  year: 1975
  end-page: 154
  ident: CR2
  article-title: On certain polytopes associated with graphs
  publication-title: J. Comb. Theory B
  doi: 10.1016/0095-8956(75)90041-6
– ident: CR27
– year: 1995
  ident: CR28
  publication-title: Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics
– volume: 13
  start-page: 383
  issue: 4
  year: 1975
  end-page: 390
  ident: CR18
  article-title: On the ratio of optimal integral and fractional covers
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(75)90058-8
– volume: 313
  start-page: 67
  issue: 1
  year: 2013
  end-page: 83
  ident: CR9
  article-title: Combinatorial bounds on nonnegative rank and extended formulations
  publication-title: Discret. Math.
– ident: CR21
– year: 1993
  ident: CR11
  publication-title: Geometric algorithms and combinatorial optimization, volume 2 of Algorithms and Combinatorics.
  doi: 10.1007/978-3-642-78240-4
– year: 2003
  ident: CR22
  publication-title: Combinatorial optimization. Polyhedra and efficiency. Vol. A and B, Volume 24 of Algorithms and Combinatorics
– start-page: 1298
  year: 2012
  end-page: 1308
  ident: CR7
  article-title: Separating stable sets in claw-free graphs via Padberg-Rao and compact linear programs
  publication-title: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012)
  doi: 10.1137/1.9781611973099.102
– volume: 10
  start-page: 119
  issue: 3
  year: 1991
  end-page: 128
  ident: CR19
  article-title: Using separation algorithms to generate mixed integer model reformulations
  publication-title: Oper. Res. Lett.
– volume: 69B
  start-page: 125
  year: 1965
  end-page: 130
  ident: CR5
  article-title: Maximum matching and a polyhedron with 0, 1 vertices
  publication-title: J. Res. Nat. Bur. Stand.
  doi: 10.6028/jres.069B.013
– volume: 1
  start-page: 127
  year: 1971
  end-page: 136
  ident: CR6
  article-title: Matroids and the greedy algorithm
  publication-title: Math. Program.
  doi: 10.1007/BF01584082
– volume: 190
  start-page: 149
  year: 1993
  end-page: 168
  ident: CR3
  article-title: Nonnegative ranks, decompositions, and factorizations of nonnegative matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(93)90224-C
– volume-title: Combinatorial optimization. Polyhedra and efficiency. Vol. A and B, Volume 24 of Algorithms and Combinatorics
  year: 2003
  ident: 755_CR22
– volume: 1
  start-page: 127
  year: 1971
  ident: 755_CR6
  publication-title: Math. Program.
  doi: 10.1007/BF01584082
– volume: 106
  start-page: 385
  issue: 2
  year: 1992
  ident: 755_CR20
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(92)90260-M
– volume: 85
  start-page: 7
  year: 2011
  ident: 755_CR26
  publication-title: Optima
– volume: 13
  start-page: 383
  issue: 4
  year: 1975
  ident: 755_CR18
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(75)90058-8
– ident: 755_CR27
  doi: 10.1145/2090236.2090241
– volume-title: Geometric algorithms and combinatorial optimization, volume 2 of Algorithms and Combinatorics.
  year: 1993
  ident: 755_CR11
  doi: 10.1007/978-3-642-78240-4
– volume: 156
  start-page: 99
  issue: 1&2
  year: 1996
  ident: 755_CR17
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(95)00005-4
– ident: 755_CR9
  doi: 10.1016/j.disc.2012.09.015
– volume: 5
  start-page: 545
  issue: 4
  year: 1992
  ident: 755_CR15
  publication-title: SIAM J. Discr. Math.
  doi: 10.1137/0405044
– volume-title: Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics
  year: 1995
  ident: 755_CR28
– ident: 755_CR12
  doi: 10.1007/3-540-45841-7_24
– volume: 85
  start-page: 2
  year: 2011
  ident: 755_CR13
  publication-title: Extended formulations in combinatorial optimization. Optima
– ident: 755_CR19
  doi: 10.1016/0167-6377(91)90028-N
– volume: 69B
  start-page: 125
  year: 1965
  ident: 755_CR5
  publication-title: J. Res. Nat. Bur. Stand.
  doi: 10.6028/jres.069B.013
– volume: 36
  start-page: 1025
  year: 2010
  ident: 755_CR10
  publication-title: Electron. Notes Discrete Math.
  doi: 10.1016/j.endm.2010.05.130
– volume: 190
  start-page: 149
  year: 1993
  ident: 755_CR3
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(93)90224-C
– ident: 755_CR21
  doi: 10.1007/s10107-012-0574-3
– volume: 18
  start-page: 138
  year: 1975
  ident: 755_CR2
  publication-title: J. Comb. Theory B
  doi: 10.1016/0095-8956(75)90041-6
– volume: 8
  start-page: 1
  issue: 1
  year: 2010
  ident: 755_CR4
  publication-title: 4OR
  doi: 10.1007/s10288-010-0122-z
– volume-title: The extremal function for complete minors. Journal of Combinatorial Theory. Series B, Volume 81, Number 2
  year: 2001
  ident: 755_CR23
– start-page: 1298
  volume-title: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012)
  year: 2012
  ident: 755_CR7
  doi: 10.1137/1.9781611973099.102
– volume: 43
  start-page: 441
  issue: 3
  year: 1991
  ident: 755_CR24
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(91)90024-Y
– ident: 755_CR8
  doi: 10.1145/2213977.2213988
– volume-title: Communication Complexity
  year: 1997
  ident: 755_CR16
  doi: 10.1016/S0065-2458(08)60342-3
– ident: 755_CR14
  doi: 10.1007/978-3-642-13036-6_11
– volume: 41
  start-page: 59
  issue: 3
  year: 2010
  ident: 755_CR1
  publication-title: SIGACT News
  doi: 10.1145/1855118.1855133
– volume: 39
  start-page: 53
  issue: 1
  year: 2002
  ident: 755_CR25
  publication-title: Networks
  doi: 10.1002/net.10010
SSID ssj0001388
Score 2.2895315
Snippet An extended formulation of a polyhedron P is a linear description of a polyhedron Q together with a linear map π such that π ( Q ) = P . These objects are of...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: Lifts of convex sets in optimization An extended...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).An extended formulation of a polyhedron ... is a linear description of a polyhedron...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 75
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Communication
Complexity
Computation
Factorization
Full Length Paper
Geometry
Graphs
Logarithms
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical models
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Optimization algorithms
Polyhedra
Polyhedrons
Polytopes
Protocol
Studies
Theorems
Theoretical
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3oQP3E6JYInXaBp89Eeh2wMYZ4czFNJ2k4E7cRuF_9632ubrooKHkuTtHlJ3kfee79HyBWXWnsy9ZgxkWBCGMGMnBvmGxGAPeJrbfAecnKvxlNxN5OzOo-7cNHuziVZcupWshsvwyQFAzEnWbBJtiSa7rCJp_6gYb88CENXpxWVA-fK_GmIr8JorWF-c4qWsma0R3ZrJZEOqlXdJxtZfkB2WtCB8DRp8FaLQ_I4rO-yKeqgdUWuok9zDGN5KrG9aVVZx6Vd9qnJUwqCKl28Pn9Ax6SdKUIRvmEBe6Q4ItPR8OF2zOqiCSwRPFoy4BdoMmiLXCzham5CpU0QpZj1LmyiZJQJFYBIslpGoHDwNDWZ4sok3CI4zDHpwM9lJ4Rm3tyGc8-3fmiFtYi8n_gy01gCkBsbdonnqBcnNaI4FrZ4iddYyEjwGAgeI8HjoEuumy5vFZzGX417bkni-mQVMdcwrxDdsV1y2byGM4GODpNnixW2Ub4XgW0IQ9y4pWwN8dsHT__V-oxsg_Ykq8i-Huks31fZOWgoS3tR7shPHjLbHQ
  priority: 102
  providerName: Springer Nature
Title Extended formulations, nonnegative factorizations, and randomized communication protocols
URI https://link.springer.com/article/10.1007/s10107-014-0755-3
https://www.proquest.com/docview/1711186452
https://www.proquest.com/docview/1762092613
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_UveiD-InzY1TwSQ02bdKkT7LppiiKiAN9KknbiaDbtPPFv967Nd2moE-lNB_lktxd7uN3AAdcKuXLzGfGxIIJYQQzsmdYYESI95FAKUN2yJvb6LIrrh7lozO4FS6ssuKJY0adDVKykZ9whadSkxvudPjOqGoUeVddCY15qCEL1nj5qrXat3f3E17MQ62roq2kKVR-zTJ5jo_DLgVDsSlZ-FMyTdXNXx7SseDprMCy0xi9ZrnEqzCX99dgaQZHEN9uJuCrxTo8tZ1h2yOF1JXnKo69PsW0PI-Bvr2yzE6Vg3nsmX7modTKBm8vX9gxnU0b8QjLYYAbptiAbqf9cHbJXAUFlgoejxgyD7o_KEssLeVRz-hImTDOKAVe2DSScS6iEOWTVTJG7YNnmckjHpmUW0KK2YQF_Ll8C7zc71nd8wMbaCusJRj-NJC5onqA3FhdB7-iXpI6eHGqcvGaTIGRieAJEjwhgidhHQ4nXYYltsZ_jXerJUncMSuS6aaow_7kMx4Q8nqYfj74pDZR4Md4UcQhjqqlnBnirwm3_59wBxZRd5JlXN8uLIw-PvM91E9GtgHzunPRgFqzdd7q0PPi6brdcFsTv3aD5jePmuTZ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOBQOqLSgbnm5UnsBLOLEjpMDqhCwXQrLCSQ4BTvxVkjtLiWLEPwofiMzSby7RSo3jlFiOxrPy56ZbwC-CqV1oIqAG5NKLqWR3Kie4aGREZ5HQq0N3UN2T-POufx5oS6m4MnXwlBapdeJlaIuBjndke8IjVKZUBju-81fTl2jKLrqW2jUbHHsHu7xyFbuHh3g_n4Lw_bh2X6HN10FeC5FOuQoUORTa0tinou4Z5JYmygtqCxc2jxWqZNxhDrbapWiRRZFYVwsYpMLS-gpOO80zMooSkmikvaPkeYXUZL4FrHkl_goal2qJ6okT8nRSCse_WsHx87ti3hsZeba72Gh8U_ZXs1QizDl-h9gfgK1EJ-6I6jX8iNcHjbX6Izc36YZWLnN-pRB86uCFWd1Ux9f8bnNTL9gaCOLwZ_rRxyYTxapMEKOGCB7lktw_iaUXYYZ_Dn3CZgLejbpBaENEyutJdD_PFROU_dBYWzSgsBTL8sbMHPqqfE7G8MwE8EzJHhGBM-iFmyOhtzUSB6vfbzqtyRrhLrMxizYgi-j1yiOFGMxfTe4o2_iMEjxWIpTbPmtnJjifwt-fn3BDXjXOeueZCdHp8crMIdem6ozCldhZnh759bQMxra9YodGVy9Nf8_A9ykGL0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcYDCgSJ1i0pk2a9jgB03hs4sCkcaqSPhASdBPtLvx67L42ECBxrJqkrZPaX2L7MyFnTEhpitCkSnmccq44VSJW1FLchv2IJaXCc8jB0OmP-O1YjMs6p2kV7V65JIucBmRpSrLONIw7C4lvLA-Z5BRMnqD2MlkBbcxwWY-sbq2Kme26Vc1WBAqVW_OnIb4apjna_OYgze1Ob5NslIDR6BYzvEWWomSbrC_QCMLVoOZeTXfI03V5rm0gHi2rc6VtI8GQluec59soquxUKZhtQyWhAUYrnLy9fEDHYDFrxEAqhwmsl3SXjHrXj5d9WhZQoAFnXkZBd-D2QWrUaAFzYuU6UtleiBnwXAeO8CLu2GCetBQegA8WhipymKMCppEoZo804OWifWJEZqzd2LS05WquNbLwB5aIJJYDZEq7TWJW0vODkl0ci1y8-nNeZBS4DwL3UeC-3STndZdpQa3xV-NWNSV--ZelPpPwXS66ZpvktL4N_wc6PVQSTWbYxrFMD_aJMMRFNZULQ_z2wIN_tT4hqw9XPf_-Znh3SNYAVIki4K9FGtn7LDoC4JLp43xxfgKWPOJM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+formulations%2C+nonnegative+factorizations%2C+and+randomized+communication+protocols&rft.jtitle=Mathematical+programming&rft.au=Faenza%2C+Yuri&rft.au=Fiorini%2C+Samuel&rft.au=Grappe%2C+Roland&rft.au=Tiwary%2C+Hans+Raj&rft.date=2015-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=153&rft.issue=1&rft.spage=75&rft_id=info:doi/10.1007%2Fs10107-014-0755-3&rft.externalDocID=3804436461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon