The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer
Triple-negative breast cancer (TNBC) has a poorer prognosis than other subtypes due to its strong invasion and higher risk of distant metastasis. Traditional Chinese medicine (TCM) and natural medicine have the unique advantages of multitargets and small side-effects and may be used as long-term com...
Saved in:
Published in | Journal of ethnopharmacology Vol. 264; no. NA; p. 113249 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
10.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Triple-negative breast cancer (TNBC) has a poorer prognosis than other subtypes due to its strong invasion and higher risk of distant metastasis. Traditional Chinese medicine (TCM) and natural medicine have the unique advantages of multitargets and small side-effects and may be used as long-term complementary and alternative therapies.
Aim of the review: The present article summarizes the classical signaling pathways and potential targets by the action of TCM and natural medicine (including extracts, active constituents and formulas) on TNBC and provides evidence for its clinical efficacy.
The literature information was acquired from the scientific databases PubMed, Web of Science and CNKI from January 2010 to June 2020, and it was designed to elucidate the internal mechanism and role of TCM and natural medicine in the treatment of TNBC. The search key words included “Triple negative breast cancer” or “triple negative breast carcinoma”, “TNBC” and “traditional Chinese medicine” or “Chinese herbal medicine”, “medicinal plant”, “natural plant”, and “herb”.
We described the antitumor activity of TCM and natural medicine in TNBC based on different signaling pathways. Plant medicine and herbal formulas regulated the related gene and protein expression via pathways such as PI3K/AKT/mTOR, MAPK and Wnt/β-catenin, which inhibit the growth, proliferation, migration, invasion and metastasis of TNBC cells.
The inhibitory effect of TCM and natural medicine on tumors was reflected in multiple levels and multiple pathways, providing reasonable evidence for new drug development. To make TCM and natural medicine widely and flexibly used in clinical practice, the efficacy, safety and mechanism of action need more in-depth experimental research.
[Display omitted] |
---|---|
AbstractList | Triple-negative breast cancer (TNBC) has a poorer prognosis than other subtypes due to its strong invasion and higher risk of distant metastasis. Traditional Chinese medicine (TCM) and natural medicine have the unique advantages of multitargets and small side-effects and may be used as long-term complementary and alternative therapies.ETHNOPHARMACOLOGICAL RELEVANCETriple-negative breast cancer (TNBC) has a poorer prognosis than other subtypes due to its strong invasion and higher risk of distant metastasis. Traditional Chinese medicine (TCM) and natural medicine have the unique advantages of multitargets and small side-effects and may be used as long-term complementary and alternative therapies.The present article summarizes the classical signaling pathways and potential targets by the action of TCM and natural medicine (including extracts, active constituents and formulas) on TNBC and provides evidence for its clinical efficacy.AIM OF THE REVIEWThe present article summarizes the classical signaling pathways and potential targets by the action of TCM and natural medicine (including extracts, active constituents and formulas) on TNBC and provides evidence for its clinical efficacy.The literature information was acquired from the scientific databases PubMed, Web of Science and CNKI from January 2010 to June 2020, and it was designed to elucidate the internal mechanism and role of TCM and natural medicine in the treatment of TNBC. The search key words included "Triple negative breast cancer" or "triple negative breast carcinoma", "TNBC" and "traditional Chinese medicine" or "Chinese herbal medicine", "medicinal plant", "natural plant", and "herb".METHODSThe literature information was acquired from the scientific databases PubMed, Web of Science and CNKI from January 2010 to June 2020, and it was designed to elucidate the internal mechanism and role of TCM and natural medicine in the treatment of TNBC. The search key words included "Triple negative breast cancer" or "triple negative breast carcinoma", "TNBC" and "traditional Chinese medicine" or "Chinese herbal medicine", "medicinal plant", "natural plant", and "herb".We described the antitumor activity of TCM and natural medicine in TNBC based on different signaling pathways. Plant medicine and herbal formulas regulated the related gene and protein expression via pathways such as PI3K/AKT/mTOR, MAPK and Wnt/β-catenin, which inhibit the growth, proliferation, migration, invasion and metastasis of TNBC cells.RESULTSWe described the antitumor activity of TCM and natural medicine in TNBC based on different signaling pathways. Plant medicine and herbal formulas regulated the related gene and protein expression via pathways such as PI3K/AKT/mTOR, MAPK and Wnt/β-catenin, which inhibit the growth, proliferation, migration, invasion and metastasis of TNBC cells.The inhibitory effect of TCM and natural medicine on tumors was reflected in multiple levels and multiple pathways, providing reasonable evidence for new drug development. To make TCM and natural medicine widely and flexibly used in clinical practice, the efficacy, safety and mechanism of action need more in-depth experimental research.CONCLUSIONThe inhibitory effect of TCM and natural medicine on tumors was reflected in multiple levels and multiple pathways, providing reasonable evidence for new drug development. To make TCM and natural medicine widely and flexibly used in clinical practice, the efficacy, safety and mechanism of action need more in-depth experimental research. Triple-negative breast cancer (TNBC) has a poorer prognosis than other subtypes due to its strong invasion and higher risk of distant metastasis. Traditional Chinese medicine (TCM) and natural medicine have the unique advantages of multitargets and small side-effects and may be used as long-term complementary and alternative therapies. The present article summarizes the classical signaling pathways and potential targets by the action of TCM and natural medicine (including extracts, active constituents and formulas) on TNBC and provides evidence for its clinical efficacy. The literature information was acquired from the scientific databases PubMed, Web of Science and CNKI from January 2010 to June 2020, and it was designed to elucidate the internal mechanism and role of TCM and natural medicine in the treatment of TNBC. The search key words included "Triple negative breast cancer" or "triple negative breast carcinoma", "TNBC" and "traditional Chinese medicine" or "Chinese herbal medicine", "medicinal plant", "natural plant", and "herb". We described the antitumor activity of TCM and natural medicine in TNBC based on different signaling pathways. Plant medicine and herbal formulas regulated the related gene and protein expression via pathways such as PI3K/AKT/mTOR, MAPK and Wnt/β-catenin, which inhibit the growth, proliferation, migration, invasion and metastasis of TNBC cells. The inhibitory effect of TCM and natural medicine on tumors was reflected in multiple levels and multiple pathways, providing reasonable evidence for new drug development. To make TCM and natural medicine widely and flexibly used in clinical practice, the efficacy, safety and mechanism of action need more in-depth experimental research. Triple-negative breast cancer (TNBC) has a poorer prognosis than other subtypes due to its strong invasion and higher risk of distant metastasis. Traditional Chinese medicine (TCM) and natural medicine have the unique advantages of multitargets and small side-effects and may be used as long-term complementary and alternative therapies. Aim of the review: The present article summarizes the classical signaling pathways and potential targets by the action of TCM and natural medicine (including extracts, active constituents and formulas) on TNBC and provides evidence for its clinical efficacy. The literature information was acquired from the scientific databases PubMed, Web of Science and CNKI from January 2010 to June 2020, and it was designed to elucidate the internal mechanism and role of TCM and natural medicine in the treatment of TNBC. The search key words included “Triple negative breast cancer” or “triple negative breast carcinoma”, “TNBC” and “traditional Chinese medicine” or “Chinese herbal medicine”, “medicinal plant”, “natural plant”, and “herb”. We described the antitumor activity of TCM and natural medicine in TNBC based on different signaling pathways. Plant medicine and herbal formulas regulated the related gene and protein expression via pathways such as PI3K/AKT/mTOR, MAPK and Wnt/β-catenin, which inhibit the growth, proliferation, migration, invasion and metastasis of TNBC cells. The inhibitory effect of TCM and natural medicine on tumors was reflected in multiple levels and multiple pathways, providing reasonable evidence for new drug development. To make TCM and natural medicine widely and flexibly used in clinical practice, the efficacy, safety and mechanism of action need more in-depth experimental research. [Display omitted] Ethnopharmacological relevance Triple-negative breast cancer (TNBC) has a poorer prognosis than other subtypes due to its strong invasion and higher risk of distant metastasis. Traditional Chinese medicine (TCM) and natural medicine have the unique advantages of multitargets and small side-effects and may be used as long-term complementary and alternative therapies. Aim of the review: The present article summarizes the classical signaling pathways and potential targets by the action of TCM and natural medicine (including extracts, active constituents and formulas) on TNBC and provides evidence for its clinical efficacy. Methods: The literature information was acquired from the scientific databases PubMed, Web of Science and CNKI from January 2010 to June 2020, and it was designed to elucidate the internal mechanism and role of TCM and natural medicine in the treatment of TNBC. The search key words included ''Triple negative breast cancer'' or ''triple negative breast carcinoma' Triple-negative breast cancer (TNBC) has a poorer prognosis than other subtypes due to its strong invasion and higher risk of distant metastasis. Traditional Chinese medicine (TCM) and natural medicine have the unique advantages of multitargets and small side-effects and may be used as long-term complementary and alternative therapies.Aim of the review: The present article summarizes the classical signaling pathways and potential targets by the action of TCM and natural medicine (including extracts, active constituents and formulas) on TNBC and provides evidence for its clinical efficacy.The literature information was acquired from the scientific databases PubMed, Web of Science and CNKI from January 2010 to June 2020, and it was designed to elucidate the internal mechanism and role of TCM and natural medicine in the treatment of TNBC. The search key words included “Triple negative breast cancer” or “triple negative breast carcinoma”, “TNBC” and “traditional Chinese medicine” or “Chinese herbal medicine”, “medicinal plant”, “natural plant”, and “herb”.We described the antitumor activity of TCM and natural medicine in TNBC based on different signaling pathways. Plant medicine and herbal formulas regulated the related gene and protein expression via pathways such as PI3K/AKT/mTOR, MAPK and Wnt/β-catenin, which inhibit the growth, proliferation, migration, invasion and metastasis of TNBC cells.The inhibitory effect of TCM and natural medicine on tumors was reflected in multiple levels and multiple pathways, providing reasonable evidence for new drug development. To make TCM and natural medicine widely and flexibly used in clinical practice, the efficacy, safety and mechanism of action need more in-depth experimental research. |
ArticleNumber | 113249 |
Author | Yu, Linghong Zhang, Qiuhua Yang, Zimei Zhu, Jiayan Cao, Yi Gao, Xiufei |
Author_xml | – sequence: 1 givenname: Zimei surname: Yang fullname: Yang, Zimei email: 1062837019@qq.com organization: Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310053, China – sequence: 2 givenname: Qiuhua surname: Zhang fullname: Zhang, Qiuhua email: 1509761846@qq.com organization: Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310053, China – sequence: 3 givenname: Linghong surname: Yu fullname: Yu, Linghong email: 364584316@qq.com organization: Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310053, China – sequence: 4 givenname: Jiayan surname: Zhu fullname: Zhu, Jiayan email: aa971796551@163.com organization: Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310053, China – sequence: 5 givenname: Yi surname: Cao fullname: Cao, Yi email: caoyi1965@163.com organization: The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, NO. 54 Youdian Road, Hangzhou, Zhejiang, 310006, China – sequence: 6 givenname: Xiufei surname: Gao fullname: Gao, Xiufei email: gaoxiufei@zcmu.edu.cn organization: The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, NO. 54 Youdian Road, Hangzhou, Zhejiang, 310006, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32810619$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkbtu2zAUQIkiReMk_YAuBccucvmSKKJTYbRJgQBZ0pm4oq5sGjKlknSa_H3pOsnQIc3E1zl34DkjJ2EKSMgHzpac8ebzdrnFeSmYKGcuhTJvyIK3WlS61vKELJjUbdVqxU_JWUpbxpjmir0jp1K0nDXcLMj97QZp8usAow9rOkPe_IaHRCH0NENcY050GmiO0Pvsp4LR1cYHTEh32HtXtn_ZAHkfy-PzpQ9F8vOIVcA1ZH-HtIsIKVMHwWG8IG8HGBO-f1zPyc_v325XV9X1zeWP1dfryilucqUFrwcmuQLHBsGVw3qoO9mBMtANkmkQQ8-h0YC9qRttyrvjNXLXFalBeU4-HefOcfq1x5TtzieH4wgBp32ywrR1UwZL-X-0EaptTNu-AlWyroURQhf04yO678rv2Dn6HcQH-9SgAPwIuDilFHF4Rjizh852a0tne-hsj52Lo_9xnM9wCFRK-fFF88vRxPLpdx6jTc5jKdL7iC7bfvIv2H8ARZ3CWg |
CitedBy_id | crossref_primary_10_2147_DDDT_S361955 crossref_primary_10_3892_br_2023_1665 crossref_primary_10_3892_ol_2024_14837 crossref_primary_10_1007_s11030_024_10999_2 crossref_primary_10_1080_13510002_2024_2313366 crossref_primary_10_3389_fimmu_2024_1443648 crossref_primary_10_1016_j_jep_2023_117093 crossref_primary_10_1039_D5AY00050E crossref_primary_10_3892_or_2023_8479 crossref_primary_10_1016_j_jep_2022_116041 crossref_primary_10_1142_S0192415X2450040X crossref_primary_10_1002_tox_24415 crossref_primary_10_1002_fsn3_2982 crossref_primary_10_1016_j_tice_2024_102323 crossref_primary_10_3389_fphar_2024_1401979 crossref_primary_10_3892_ol_2023_13935 crossref_primary_10_1002_prm2_12116 crossref_primary_10_3389_fonc_2022_882784 crossref_primary_10_1016_j_prmcm_2022_100132 crossref_primary_10_1093_femspd_ftae022 crossref_primary_10_3390_pr10112340 crossref_primary_10_1016_j_jpba_2024_115981 crossref_primary_10_1016_j_phymed_2023_154856 crossref_primary_10_32388_RN42KM crossref_primary_10_3389_fphar_2024_1296588 crossref_primary_10_3390_antiox10040527 crossref_primary_10_1016_j_ctmp_2024_200182 crossref_primary_10_3390_biomedicines11102742 crossref_primary_10_1016_j_jep_2022_115468 crossref_primary_10_1016_j_phymed_2022_153986 crossref_primary_10_3389_fddsv_2024_1459962 crossref_primary_10_1016_j_ctmp_2024_200185 crossref_primary_10_1007_s11033_023_08868_6 crossref_primary_10_1016_j_canlet_2023_216261 crossref_primary_10_1111_jcmm_18467 crossref_primary_10_1155_2021_4699529 crossref_primary_10_3389_fphar_2022_993022 crossref_primary_10_1155_2022_4857814 crossref_primary_10_1016_j_phyplu_2023_100482 crossref_primary_10_3389_fphar_2025_1496511 crossref_primary_10_1155_2021_2847466 crossref_primary_10_1186_s13020_021_00564_6 crossref_primary_10_3390_molecules27206787 crossref_primary_10_3389_fgene_2022_833027 crossref_primary_10_3389_fphar_2022_1090599 crossref_primary_10_1002_bmc_5451 crossref_primary_10_1002_pca_3193 crossref_primary_10_3389_fchem_2022_941367 crossref_primary_10_1111_jcmm_70032 crossref_primary_10_3390_ijms23137055 crossref_primary_10_1016_j_jtcms_2024_06_006 crossref_primary_10_1038_s41598_024_71917_y crossref_primary_10_3892_mmr_2023_13148 crossref_primary_10_3390_healthcare11152170 crossref_primary_10_32604_biocell_2023_043474 crossref_primary_10_12677_HJBM_2023_134042 crossref_primary_10_3390_biom13071105 crossref_primary_10_12677_ACM_2023_131134 crossref_primary_10_3390_ijms23052519 crossref_primary_10_62347_MYPG4066 crossref_primary_10_1002_mc_23879 crossref_primary_10_1002_jbt_70189 crossref_primary_10_2147_IJN_S499893 crossref_primary_10_1016_j_jep_2022_115044 crossref_primary_10_2174_0113862073255044231027061742 crossref_primary_10_1080_15287394_2021_2013373 crossref_primary_10_3390_molecules27123661 crossref_primary_10_1007_s12032_024_02469_4 crossref_primary_10_1016_j_ctrv_2024_102819 crossref_primary_10_2174_0122102981280184231214092958 crossref_primary_10_1155_2023_6710880 crossref_primary_10_1016_j_bioadv_2022_212783 crossref_primary_10_1007_s12032_022_01792_y crossref_primary_10_5812_ijpr_131758 crossref_primary_10_3390_ph14121318 crossref_primary_10_3389_fphar_2021_824531 crossref_primary_10_2147_JHC_S485257 crossref_primary_10_1002_slct_202303306 crossref_primary_10_4103_jcrt_jcrt_134_23 crossref_primary_10_1016_j_jep_2020_113770 crossref_primary_10_1016_j_biopha_2022_113376 crossref_primary_10_2174_0118715206293653240322041047 crossref_primary_10_1016_j_biopha_2022_114104 crossref_primary_10_1016_j_slast_2024_100122 crossref_primary_10_3389_fphar_2021_720886 crossref_primary_10_3233_THC_220644 crossref_primary_10_1155_2022_9942373 crossref_primary_10_3389_fphar_2021_761980 crossref_primary_10_1038_s41598_024_52413_9 crossref_primary_10_2147_CMAR_S503071 crossref_primary_10_1007_s43440_024_00664_8 crossref_primary_10_3390_plants11172191 crossref_primary_10_2174_1574892816666211110152119 crossref_primary_10_1007_s00432_023_05572_7 crossref_primary_10_2147_BCTT_S462296 crossref_primary_10_3389_fphar_2024_1416403 crossref_primary_10_1111_cbdd_14172 crossref_primary_10_1080_13880209_2023_2220754 crossref_primary_10_1186_s12906_024_04671_3 crossref_primary_10_3390_ijms24021168 crossref_primary_10_1093_bib_bbad346 crossref_primary_10_1016_j_tice_2025_102750 crossref_primary_10_1016_j_taap_2025_117297 crossref_primary_10_1111_1440_1681_13900 crossref_primary_10_1002_biof_2031 crossref_primary_10_1016_j_ejmech_2023_115797 crossref_primary_10_1039_D1CC00392E crossref_primary_10_1016_j_jep_2024_117837 crossref_primary_10_3389_fonc_2021_582277 crossref_primary_10_3389_fphar_2024_1355650 crossref_primary_10_1093_nar_gkab913 crossref_primary_10_1007_s00210_023_02460_2 crossref_primary_10_62347_DEPW1251 crossref_primary_10_1002_prm2_12144 crossref_primary_10_3389_fphar_2023_1197418 crossref_primary_10_1016_j_jep_2023_117271 crossref_primary_10_1016_j_jep_2021_114913 crossref_primary_10_2147_DDDT_S326328 crossref_primary_10_3390_cancers13112834 crossref_primary_10_1021_acs_analchem_3c04954 crossref_primary_10_1016_j_jep_2021_114635 crossref_primary_10_1007_s00520_024_08491_6 crossref_primary_10_1155_2022_3607053 crossref_primary_10_3390_ijms242317056 crossref_primary_10_3892_ol_2024_14499 crossref_primary_10_1021_acsomega_2c07480 crossref_primary_10_1111_1759_7714_15215 crossref_primary_10_3389_fphar_2023_1176232 crossref_primary_10_2174_0113816128289900240219104854 crossref_primary_10_1038_s41598_024_76063_z crossref_primary_10_1097_MD_0000000000034744 crossref_primary_10_1007_s11694_023_01920_w crossref_primary_10_19136_jobs_a10n27_6329 crossref_primary_10_1016_j_jep_2024_119000 crossref_primary_10_1002_ptr_8311 crossref_primary_10_3390_plants11202720 crossref_primary_10_3390_ijms23169223 |
Cites_doi | 10.1002/mc.22874 10.1016/j.bcp.2019.113752 10.1186/s12964-020-0527-z 10.1016/j.intimp.2016.10.001 10.1016/j.lfs.2019.116783 10.1016/j.biopha.2018.09.038 10.1016/j.jep.2018.12.023 10.1016/j.jep.2017.09.033 10.1155/2020/9258396 10.1016/j.drup.2015.11.003 10.1007/s00210-019-01614-5 10.1089/cbr.2018.2703 10.18632/aging.102323 10.1016/j.bbrc.2015.07.004 10.1371/journal.pone.0123781 10.1021/jf404092f 10.1371/journal.pone.0065113 10.1007/s10549-018-4697-y 10.3389/fphar.2019.01195 10.3390/ijms21030810 10.3389/fphar.2017.00731 10.1155/2019/9241769 10.1016/j.ctrv.2013.03.009 10.1038/srep21144 10.1177/1010428317706919 10.18632/oncotarget.13393 10.1016/j.biopha.2017.11.139 10.1016/j.bmcl.2017.11.013 10.1016/j.bcp.2019.05.001 10.1002/jat.2941 10.3892/br.2016.769 10.3892/or.2015.4503 10.1016/j.bmcl.2017.03.061 10.1002/ptr.6189 10.3390/ijms21072346 10.1089/dna.2018.4351 10.1016/j.etap.2014.05.002 10.3390/biom9070278 10.3390/ijms18020275 10.1371/journal.pone.0201116 10.1155/2014/628712 10.1158/0008-5472.CAN-09-3565 10.1016/j.bcp.2009.09.008 10.1007/s40265-019-01155-4 10.1002/biof.1315 10.1016/j.jep.2020.112969 10.3389/fphar.2018.01466 10.1016/j.phymed.2019.152852 10.3390/cells8090957 10.1038/srep19418 10.1016/j.biopha.2016.01.019 10.1002/stem.1752 10.3389/fonc.2020.00491 10.18632/oncotarget.26294 10.1186/s13046-019-1351-4 10.1016/j.jep.2014.12.036 10.3390/molecules24122338 10.3390/molecules24061131 10.3389/fphar.2019.01171 10.2174/1871520619666181224121004 10.1158/0008-5472.CAN-05-1069 10.3390/molecules24122273 10.1016/j.bcp.2017.06.133 10.1016/j.jep.2016.04.048 10.3892/ijo.2017.4169 10.1016/j.bcp.2018.03.023 10.1038/oncsis.2017.14 10.1002/mc.22758 10.3389/fphar.2018.00772 10.1002/cam4.2894 10.1016/j.biopha.2017.02.038 10.1007/s10549-016-3795-y 10.1371/journal.pone.0217789 10.1186/bcr3447 10.3390/cells8030218 10.1016/j.phrs.2019.02.003 10.1038/srep13013 10.1158/2159-8290.CD-18-1177 10.7150/thno.14694 10.1016/j.canlet.2018.08.003 10.1371/journal.pone.0189864 10.1016/j.biopha.2019.108922 10.1007/s10585-013-9585-6 10.3389/fonc.2019.00743 10.1186/1472-6882-13-203 10.1021/jf4012455 10.1007/s10495-014-0991-2 10.3390/molecules24203651 10.1080/14786419.2017.1396596 10.1055/s-0034-1376977 10.2174/156802612801319034 10.1089/omi.2017.0020 10.1016/j.jep.2016.05.012 10.1007/s11882-012-0300-5 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jep.2020.113249 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1872-7573 |
ExternalDocumentID | 32810619 10_1016_j_jep_2020_113249 S0378874120331317 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAWTL AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFTJW AFXIZ AGUBO AGYEJ AIEXJ AIKHN AITUG AKRWK ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SPT SSH SSP SSZ T5K TN5 ~G- ~KM .GJ 29K 53G 5VS AAQXK AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION D-I EJD FEDTE FGOYB G-2 HMT HVGLF HX~ HZ~ R2- RIG SEW WUQ ZGI CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c419t-7215f0314ac0f214ce5f5b3ba49abf307a2fd1a67aed95679e5fc15e1cb3146e3 |
IEDL.DBID | .~1 |
ISSN | 0378-8741 1872-7573 |
IngestDate | Fri Jul 11 16:22:55 EDT 2025 Fri Jul 11 05:34:18 EDT 2025 Fri Jul 11 01:22:35 EDT 2025 Thu Apr 03 07:08:49 EDT 2025 Tue Jul 01 01:35:51 EDT 2025 Thu Apr 24 22:58:38 EDT 2025 Sun Apr 06 06:54:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | NA |
Keywords | Traditional Chinese medicine Natural medicine Target Signaling pathway Triple-negative breast cancer |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-7215f0314ac0f214ce5f5b3ba49abf307a2fd1a67aed95679e5fc15e1cb3146e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 32810619 |
PQID | 2435529227 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2985621433 proquest_miscellaneous_2624869883 proquest_miscellaneous_2435529227 pubmed_primary_32810619 crossref_primary_10_1016_j_jep_2020_113249 crossref_citationtrail_10_1016_j_jep_2020_113249 elsevier_sciencedirect_doi_10_1016_j_jep_2020_113249 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-10 |
PublicationDateYYYYMMDD | 2021-01-10 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Journal of ethnopharmacology |
PublicationTitleAlternate | J Ethnopharmacol |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Darvishi, Farahmand, Eslami, Majidzadeh (bib16) 2017; 39 Costa, Han, Gradishar (bib15) 2018; 169 Adams, Phung, Yee, Seeram, Li, Chen (bib1) 2010; 70 Pohl, Brook, Agostino, Arfuso, Kumar, Dharmarajan (bib67) 2017; 6 Jiang, Xiao, Zeng, Nagabhushanam, Majeed, Xiao (bib36) 2013; 13 Jin, Qiu, Wang, Liang, Huang, Wu, Zhang, Zhang, Tian, Xu, Shi, Wu (bib38) 2019; 38 Wang, Qi, Zhang, Si, Xu, Hou, Zhou, Wang, Li, Liu, Fang, Piao, Liang (bib86) 2018; 108 Lee, Chan, Wong, Qu, Chan, Leung, Lin, Mok, Chen, Tai (bib46) 2020; 10 Raman, Fuentes Lorenzo, Stashenko, Levy, Levy, Camarillo (bib69) 2017; 51 Zhou, Xu, Ye, Liao, Du, Chen (bib108) 2014; 46 El Hasasna, Athamneh, Al Samri, Karuvantevida, Al Dhaheri, Hisaindee, Ramadan, Al Tamimi, AbuQamar, Eid, Iratni (bib18) 2015; 5 El Hasasna, Saleh, Al Samri, Athamneh, Attoub, Arafat, Benhalilou, Alyan, Viallet, Al Dhaheri, Eid, Iratni (bib19) 2016; 6 Chen, Chen, Chen, Zhang, Fu, Tao, Zhang, Hu, Shen (bib11) 2019; 166 Jang, Ko, Song, Kim (bib35) 2019; 9 Foo, Saiful Yazan, Tor, Wibowo, Ismail, Armania, Cheah, Abdullah (bib23) 2016; 187 Wang, Fan, Qu, Gao, Cheng (bib87) 2012; 12 Huang, Su, Fang, Wu, Liou (bib31) 2019; 8 Li, Gan, Zhang, Yu, Fan, Deng, Zhang, Yu, Zhang, Wang, He, Xie, Ye, Yin (bib50) 2019; 10 Yamashita, Kondo, Zhao, Li, Koike, Nemoto, Kanno (bib95) 2017; 27 Koval, Pieme, Queiroz, Ragusa, Ahmed, Blagodatski, Wolfender, Petrova, Katanaev (bib43) 2018; 435 Choi, Cho, Woo, Yun, Park, Shin, Ko (bib13) 2014 Kushwaha, Vardhan, Kapewangolo, Shuaib, Prajapati, Singh, Kumar (bib45) 2019; 234 Shieh, Chen, Lin, Lin, Chen, Chen, Ho, Way (bib74) 2013; 61 Alsamri, El Hasasna, Al Dhaheri, Eid, Attoub, Iratni (bib2) 2019; 9 Li, Ji, Fan, Li, Li, Wu, Cheng, Xu (bib49) 2019; 392 Liu, Zhu, Wang, Wei, Tao, Zhu, Sheng, Wang, Ruan, Liu, Cao, Shan, Sun, Wang, Chen, Lu (bib54) 2015; 10 Gezici, Sekeroglu (bib26) 2019; 19 Zhang, Yuan, Cui, Xiao, Jiang (bib105) 2016; 78 Sharma, Gatchie, Williams, Jain, Vishwakarma, Chaudhuri, Bharate (bib73) 2017; 27 Kim, Hahm, Arlotti, Samanta, Moura, Thorne, Shuai, Anderson, White, Lokshin, Lee, Singh (bib41) 2016; 157 Wu, Chen, Sun, Ye, Han, Qin, Liu (bib90) 2019; 232 Sun, Chang, Wang, Xu, Cao (bib80) 2019; 2019 Feng, Cao, Shen, Zhang, Gu, Guo, Tsai, Liu, Li, Zhang, Li, Wu, Liu (bib21) 2017; 8 Ortega, Fraile-Martinez, Asunsolo, Bujan, Garcia-Honduvilla, Coca (bib64) 2020; 2020 Jaglanian, Tsiani (bib34) 2020; 21 Peng, He, Xu, Yang, Hu, Hou, Liu, Li (bib65) 2019; 142 Luo, Wang, Wei, Chen, Ji (bib57) 2020; 19 Thi-Kim Nguyen, Moon, Ryu, Eum, Bach, Cho (bib84) 2019; 24 Garrido-Castro, Lin, Polyak (bib25) 2019; 9 Yuan, Jiang, Zhu, Liu, Li (bib101) 2017; 89 Saini, Loi, de Azambuja, Metzger-Filho, Saini, Ignatiadis, Dancey, Piccart-Gebhart (bib72) 2013; 39 Lou, Xu, Chen, Zhao (bib56) 2019; 24 Zheng, Han, Jiang, Pang, Li, Liu, Cao, Li (bib107) 2016; 5 Chang, Ou, Yang, Huang, Wang (bib7) 2016; 188 Yang, Huang, Xiang, Yin, Luo, Huang, Luo, Li, Li, Ren (bib96) 2014; 34 Wei, Tweardy, Zhang, Zhang, Landua, Petrovic, Bu, Roarty, Hilsenbeck, Rosen, Lewis (bib89) 2014; 32 Kang, Sp, Kim, Joung, Lee, Park, Yang (bib39) 2018; 53 Kuo, Weng, Kumar, Tseng, Tung, Wang, Wang (bib44) 2019; 18 Zeng, Yuan, Shen, Wu, Pan, Kong (bib103) 2018; 17 Messeha, Zarmouh, Mendonca, Alwagdani, Kolta, Soliman (bib62) 2018; 13 Yang, Shen, Zhou, Zhao, Wang, Zhu, Zhao (bib97) 2019; 33 Li, Cai, Sun, Qu, Zhao, Hu, Li, Qian, Yu, Kang, Wang, Zou, Gu, Xu (bib47) 2020; 260 Illiano, Sapio, Salzillo, Capasso, Caiafa, Chiosi, Spina, Naviglio (bib32) 2018; 152 Reedijk, Odorcic, Chang, Zhang, Miller, McCready, Lockwood, Egan (bib70) 2005; 65 Nedeljkovic, Damjanovic (bib63) 2019; 8 Zubair, Frieri (bib111) 2013; 13 Kim, Lee, Ro, Kang, Kim, Yoon (bib40) 2010; 79 Shrivastava, Jeengar, Thummuri, Koval, Katanaev, Marepally, Naidu (bib76) 2017; 43 Sun, Zhou, Liu, Zhang, Chen, Pan, Ma, Liu, Du, Yang, Wang (bib83) 2018; 15 Gu, Xu, Zhao, Gu, Xie (bib27) 2017; 50 Yen, Shih, Hsu, Lin, Lin, Tsai, Ho, Hou, Kuo (bib99) 2016; 35 Cao, Yang, Ye, Lin, Zeng, Li, Liang, Zhou, Li (bib6) 2018; 42 Cheon, Ko (bib12) 2020; 19 Lixiang, Qing, Zhipeng, Jian, Xiaoying, Yan, Xue, Ping, Meizhi, Hongning, Haizhou (bib55) 2019; 39 Mehta, Katta, Alimirah, Patel, Murillo, Peng, Muzzio, Mehta (bib60) 2013; 8 McCann, Hurvitz, McAndrew (bib59) 2019; 79 Thummuri, Jeengar, Shrivastava, Areti, Yerra, Yamjala, Komirishetty, Naidu, Kumar, Sistla (bib85) 2014; 38 Batool, Aziz, Tan, Mahmood (bib4) 2017; 8 Shin, Lee, Choo, Kim, Che, Jung (bib75) 2017; 18 Wu, Yue, Dong, Lam, Wong, Qiu, Lau (bib92) 2018; 9 Dou, Shang, Lei, Li, Guo, Ye, Yang, Li, Zhou, Yao, Huang (bib17) 2019; 19 Zhou, Fu, Guan, Gong, He, Huang (bib110) 2020; 172 Liao, Ye, Zhou, Sheng, Chen (bib52) 2014; 2014 Zhang, Zhou, Pei, Lin, Yuan (bib104) 2016; 6 Arzi, Farahi, Jafarzadeh, Riazi, Sadeghizadeh, Hoshyar (bib3) 2018; 37 Han, Wang, Xie, Ma, Zhang, Hu, Lin, Liu, Lu (bib29) 2015; 162 Fatima, El-Ayachi, Taotao, Lillo, Krutilina, Seagroves, Radaszkiewicz, Hutnan, Bryja, Krum, Rivas, Miranda-Carboni (bib20) 2017; 12 Song, Liu, Zhao, He, Kang, Dai, Wang, Zhang, Zan (bib78) 2015; 464 Zhou, Yue, Chan, Tsui, Fung, Sun, Pu, Lau (bib109) 2017; 142 Kong, Li, Nian, Zhou, Yang, Qiu, Chen (bib42) 2016; 6 Yue, Lopez (bib102) 2020; 21 Bolos, Mira, Martinez-Poveda, Luxan, Canamero, Martinez, Manes, de la Pompa (bib5) 2013; 15 Xie, Zhang, Zhang, Wang, Zhang, Huang, Zhou, Huang, Wang (bib93) 2019; 9 Guo, Fan, Pei (bib28) 2020; 9 Poma, Labbozzetta, D'Alessandro, Notarbartolo (bib68) 2017; 21 Liu, Wang, Zhuang, Gao, Li, Liu, Feng, Zhou, Yao, Deng, Wang, Li, Sun (bib53) 2019; 10 Sun, Zhou, Lu, Zhang, Chen, Zhao, Su (bib82) 2019; 24 Yang, Hao, Pan, Tan, Du, Xie, Hou, Deng, Wei (bib98) 2019; 11 Huang, Gu, Fang, Huang, Lin, Liou (bib30) 2019; 61 Pietro, Manuela, Monica, Maurizio, Paola (bib66) 2019; 14 Li, Sun, Liu, Sun, Li (bib51) 2019; 34 Chen, Li, Li, Li, Su, Lai, Zhou, Chen, Li, Yang, Su, Zhang (bib10) 2020; 11 Souid, Elsayed, Ebrahim, Mohyeldin, Siddique, Karoui, El Sayed, Essafi-Benkhadir (bib79) 2018; 57 Islam, Al-Sharif, Sultan, Al-Mazrou, Remmal, Aboussekhra (bib33) 2018; 57 Ferreira, Peixoto, Neves, Gaiteiro, Reis, Assaraf, Santos (bib22) 2016; 24 Li, Gong, Jiang, Lin, Zhou, Zhang, Li, Zhang, Wan, Kuang, Li (bib48) 2018; 9 Chun, Song, Kim (bib14) 2018; 32 Fultang, Illendula, Chen, Wu, Jonnalagadda, Baird, Klase, Peethambaran (bib24) 2019; 14 Rios-Fuller, Ortiz-Soto, Lacourt-Ventura, Maldonado-Martinez, Cubano, Schneider, Martinez-Montemayor (bib71) 2018; 9 Shrivastava, Kulkarni, Thummuri, Jeengar, Naidu, Alvala, Redddy, Ramakrishna (bib77) 2014; 19 Chen, Lai, Lin, Ma, Huang, Yang, Ho, Kuo, Way (bib9) 2013; 61 Ma, Qin, Li (bib58) 2020; 18 Wu, Qiu, Liu, Ge, Gao (bib91) 2018; 211 Yin, Feng, Wang, Ding (bib100) 2018; 99 Xu, Rajamanicham, Xu, Liu, Yan, Liang, Guo, Zhou, Wang (bib94) 2019; 115 Mehta, Katta, Kalra, Patel, Gupta, Alimirah, Murillo, Peng, Unni, Muzzio, Mehta (bib61) 2013; 30 Zheng, Han, Jiang, He, Li, Ding, Cao, Li (bib106) 2018; 18 Chen, Ma, Li, Liu, Fang, Zhang, Zhang, Hui, Yin (bib8) 2019; 24 Sun, Ma, Li, Yang, Xu, Sun, Yu, Cao, Yang, Yang, Zhang, Wang (bib81) 2018; 42 Wang, Sui, Tao (bib88) 2019; 20 Jiang, Lu, Li, Ji, Chen, Xue (bib37) 2017; 42 Thummuri (10.1016/j.jep.2020.113249_bib85) 2014; 38 Kuo (10.1016/j.jep.2020.113249_bib44) 2019; 18 Koval (10.1016/j.jep.2020.113249_bib43) 2018; 435 Xie (10.1016/j.jep.2020.113249_bib93) 2019; 9 Jang (10.1016/j.jep.2020.113249_bib35) 2019; 9 Li (10.1016/j.jep.2020.113249_bib50) 2019; 10 Feng (10.1016/j.jep.2020.113249_bib21) 2017; 8 Mehta (10.1016/j.jep.2020.113249_bib60) 2013; 8 Darvishi (10.1016/j.jep.2020.113249_bib16) 2017; 39 Batool (10.1016/j.jep.2020.113249_bib4) 2017; 8 Chen (10.1016/j.jep.2020.113249_bib9) 2013; 61 Yang (10.1016/j.jep.2020.113249_bib97) 2019; 33 Liu (10.1016/j.jep.2020.113249_bib53) 2019; 10 Sun (10.1016/j.jep.2020.113249_bib82) 2019; 24 Shrivastava (10.1016/j.jep.2020.113249_bib77) 2014; 19 Reedijk (10.1016/j.jep.2020.113249_bib70) 2005; 65 Lou (10.1016/j.jep.2020.113249_bib56) 2019; 24 Liu (10.1016/j.jep.2020.113249_bib54) 2015; 10 Song (10.1016/j.jep.2020.113249_bib78) 2015; 464 Zubair (10.1016/j.jep.2020.113249_bib111) 2013; 13 Li (10.1016/j.jep.2020.113249_bib51) 2019; 34 Xu (10.1016/j.jep.2020.113249_bib94) 2019; 115 Dou (10.1016/j.jep.2020.113249_bib17) 2019; 19 Fatima (10.1016/j.jep.2020.113249_bib20) 2017; 12 Shin (10.1016/j.jep.2020.113249_bib75) 2017; 18 Li (10.1016/j.jep.2020.113249_bib47) 2020; 260 Wei (10.1016/j.jep.2020.113249_bib89) 2014; 32 El Hasasna (10.1016/j.jep.2020.113249_bib19) 2016; 6 Kushwaha (10.1016/j.jep.2020.113249_bib45) 2019; 234 Garrido-Castro (10.1016/j.jep.2020.113249_bib25) 2019; 9 Lee (10.1016/j.jep.2020.113249_bib46) 2020; 10 Souid (10.1016/j.jep.2020.113249_bib79) 2018; 57 Costa (10.1016/j.jep.2020.113249_bib15) 2018; 169 Luo (10.1016/j.jep.2020.113249_bib57) 2020; 19 Sun (10.1016/j.jep.2020.113249_bib81) 2018; 42 Wu (10.1016/j.jep.2020.113249_bib90) 2019; 232 Sun (10.1016/j.jep.2020.113249_bib83) 2018; 15 Zheng (10.1016/j.jep.2020.113249_bib106) 2018; 18 Choi (10.1016/j.jep.2020.113249_bib13) 2014 Chen (10.1016/j.jep.2020.113249_bib11) 2019; 166 Guo (10.1016/j.jep.2020.113249_bib28) 2020; 9 Ferreira (10.1016/j.jep.2020.113249_bib22) 2016; 24 Mehta (10.1016/j.jep.2020.113249_bib61) 2013; 30 Sun (10.1016/j.jep.2020.113249_bib80) 2019; 2019 Zheng (10.1016/j.jep.2020.113249_bib107) 2016; 5 Gu (10.1016/j.jep.2020.113249_bib27) 2017; 50 Pietro (10.1016/j.jep.2020.113249_bib66) 2019; 14 Chang (10.1016/j.jep.2020.113249_bib7) 2016; 188 Lixiang (10.1016/j.jep.2020.113249_bib55) 2019; 39 Zeng (10.1016/j.jep.2020.113249_bib103) 2018; 17 Yin (10.1016/j.jep.2020.113249_bib100) 2018; 99 Huang (10.1016/j.jep.2020.113249_bib31) 2019; 8 Islam (10.1016/j.jep.2020.113249_bib33) 2018; 57 Shrivastava (10.1016/j.jep.2020.113249_bib76) 2017; 43 Zhang (10.1016/j.jep.2020.113249_bib105) 2016; 78 Rios-Fuller (10.1016/j.jep.2020.113249_bib71) 2018; 9 Arzi (10.1016/j.jep.2020.113249_bib3) 2018; 37 Jiang (10.1016/j.jep.2020.113249_bib36) 2013; 13 Wang (10.1016/j.jep.2020.113249_bib88) 2019; 20 Jiang (10.1016/j.jep.2020.113249_bib37) 2017; 42 Alsamri (10.1016/j.jep.2020.113249_bib2) 2019; 9 Zhou (10.1016/j.jep.2020.113249_bib109) 2017; 142 Cheon (10.1016/j.jep.2020.113249_bib12) 2020; 19 Bolos (10.1016/j.jep.2020.113249_bib5) 2013; 15 Pohl (10.1016/j.jep.2020.113249_bib67) 2017; 6 Liao (10.1016/j.jep.2020.113249_bib52) 2014; 2014 Gezici (10.1016/j.jep.2020.113249_bib26) 2019; 19 Ortega (10.1016/j.jep.2020.113249_bib64) 2020; 2020 Cao (10.1016/j.jep.2020.113249_bib6) 2018; 42 Han (10.1016/j.jep.2020.113249_bib29) 2015; 162 Saini (10.1016/j.jep.2020.113249_bib72) 2013; 39 Raman (10.1016/j.jep.2020.113249_bib69) 2017; 51 Yang (10.1016/j.jep.2020.113249_bib98) 2019; 11 Adams (10.1016/j.jep.2020.113249_bib1) 2010; 70 Li (10.1016/j.jep.2020.113249_bib49) 2019; 392 Messeha (10.1016/j.jep.2020.113249_bib62) 2018; 13 Poma (10.1016/j.jep.2020.113249_bib68) 2017; 21 Wang (10.1016/j.jep.2020.113249_bib87) 2012; 12 McCann (10.1016/j.jep.2020.113249_bib59) 2019; 79 Kim (10.1016/j.jep.2020.113249_bib41) 2016; 157 Chen (10.1016/j.jep.2020.113249_bib10) 2020; 11 Kang (10.1016/j.jep.2020.113249_bib39) 2018; 53 Yuan (10.1016/j.jep.2020.113249_bib101) 2017; 89 Nedeljkovic (10.1016/j.jep.2020.113249_bib63) 2019; 8 Yue (10.1016/j.jep.2020.113249_bib102) 2020; 21 Sharma (10.1016/j.jep.2020.113249_bib73) 2017; 27 Fultang (10.1016/j.jep.2020.113249_bib24) 2019; 14 Zhang (10.1016/j.jep.2020.113249_bib104) 2016; 6 Zhou (10.1016/j.jep.2020.113249_bib108) 2014; 46 Huang (10.1016/j.jep.2020.113249_bib30) 2019; 61 Foo (10.1016/j.jep.2020.113249_bib23) 2016; 187 Shieh (10.1016/j.jep.2020.113249_bib74) 2013; 61 Thi-Kim Nguyen (10.1016/j.jep.2020.113249_bib84) 2019; 24 Wang (10.1016/j.jep.2020.113249_bib86) 2018; 108 Chun (10.1016/j.jep.2020.113249_bib14) 2018; 32 Wu (10.1016/j.jep.2020.113249_bib91) 2018; 211 Yen (10.1016/j.jep.2020.113249_bib99) 2016; 35 Chen (10.1016/j.jep.2020.113249_bib8) 2019; 24 Yamashita (10.1016/j.jep.2020.113249_bib95) 2017; 27 Li (10.1016/j.jep.2020.113249_bib48) 2018; 9 Kong (10.1016/j.jep.2020.113249_bib42) 2016; 6 Ma (10.1016/j.jep.2020.113249_bib58) 2020; 18 Illiano (10.1016/j.jep.2020.113249_bib32) 2018; 152 Kim (10.1016/j.jep.2020.113249_bib40) 2010; 79 Yang (10.1016/j.jep.2020.113249_bib96) 2014; 34 Jin (10.1016/j.jep.2020.113249_bib38) 2019; 38 Peng (10.1016/j.jep.2020.113249_bib65) 2019; 142 Wu (10.1016/j.jep.2020.113249_bib92) 2018; 9 El Hasasna (10.1016/j.jep.2020.113249_bib18) 2015; 5 Jaglanian (10.1016/j.jep.2020.113249_bib34) 2020; 21 Zhou (10.1016/j.jep.2020.113249_bib110) 2020; 172 |
References_xml | – volume: 24 start-page: 34 year: 2016 end-page: 54 ident: bib22 article-title: Mechanisms of cisplatin resistance and targeting of cancer stem cells: adding glycosylation to the equation publication-title: Drug Resist. Updates : Rev. Comment. Antimicro. Anticanc. Chemother. – volume: 19 start-page: 273 year: 2020 end-page: 279 ident: bib57 article-title: The anti-migration and anti-invasion effects of Bruceine D in human triple-negative breast cancer MDA-MB-231 cells publication-title: Exp Ther Med – volume: 15 start-page: R54 year: 2013 ident: bib5 article-title: Notch activation stimulates migration of breast cancer cells and promotes tumor growth publication-title: Breast Cancer Res. – volume: 34 start-page: 297 year: 2019 end-page: 305 ident: bib51 article-title: Antitumor effects of ruyiping on cell growth and metastasis in breast cancer publication-title: Cancer Biother. Radiopharm. – volume: 18 year: 2019 ident: bib44 article-title: Ethanol extracts of dietary herb, Alpinia nantoensis, exhibit anticancer potential in human breast cancer cells publication-title: Integr. Canc. Ther. – volume: 9 year: 2019 ident: bib35 article-title: A sesquiterpenoid from farfarae flos induces apoptosis of MDA-MB-231 human breast cancer cells through inhibition of JAK-STAT3 signaling publication-title: Biomolecules – volume: 260 year: 2020 ident: bib47 article-title: Extracts of Cordyceps sinensis inhibit breast cancer growth through promoting M1 macrophage polarization via NF-kappaB pathway activation publication-title: J. Ethnopharmacol. – volume: 8 year: 2019 ident: bib31 article-title: Licochalcone A inhibits cellular motility by suppressing E-cadherin and MAPK signaling in breast cancer publication-title: Cells – volume: 13 start-page: 203 year: 2013 ident: bib36 article-title: Targeting beta-catenin signaling to induce apoptosis in human breast cancer cells by z-guggulsterone and Gugulipid extract of Ayurvedic medicine plant Commiphora mukul publication-title: BMC Compl. Alternative Med. – volume: 9 start-page: 176 year: 2019 end-page: 198 ident: bib25 article-title: Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment publication-title: Canc. Discov. – volume: 5 start-page: 559 year: 2016 end-page: 566 ident: bib107 article-title: Multiple effects of Xihuang pill aqueous extract on the Hs578T triple-negative breast cancer cell line publication-title: Biomed. Rep. – volume: 79 start-page: 1217 year: 2019 end-page: 1230 ident: bib59 article-title: Advances in targeted therapies for triple-negative breast cancer publication-title: Drugs – volume: 9 start-page: 2564 year: 2020 end-page: 2578 ident: bib28 article-title: Fangjihuangqi Decoction inhibits MDA-MB-231 cell invasion in vitro and decreases tumor growth and metastasis in triple-negative breast cancer xenografts tumor zebrafish model publication-title: Canc. Med. – volume: 24 year: 2019 ident: bib56 article-title: Alisol A suppresses proliferation, migration, and invasion in human breast cancer MDA-MB-231 cells publication-title: Molecules – volume: 14 year: 2019 ident: bib24 article-title: Strictinin, a novel ROR1-inhibitor, represses triple negative breast cancer survival and migration via modulation of PI3K/AKT/GSK3 beta activity publication-title: PloS One – volume: 17 start-page: 3935 year: 2018 end-page: 3943 ident: bib103 article-title: Suppression of human breast cancer cells by tectorigenin through downregulation of matrix metalloproteinases and MAPK signaling in vitro publication-title: Mol. Med. Rep. – volume: 57 start-page: 333 year: 2018 end-page: 346 ident: bib33 article-title: Eugenol potentiates cisplatin anti-cancer activity through inhibition of ALDH-positive breast cancer stem cells and the NF-B signaling pathway publication-title: Mol. Carcinog. – volume: 61 start-page: 6366 year: 2013 end-page: 6375 ident: bib74 article-title: Demethoxycurcumin inhibits energy metabolic and oncogenic signaling pathways through AMPK activation in triple-negative breast cancer cells publication-title: J. Agric. Food Chem. – volume: 78 start-page: 197 year: 2016 end-page: 203 ident: bib105 article-title: Paeoniflorin inhibits proliferation and invasion of breast cancer cells through suppressing Notch-1 signaling pathway publication-title: Biomed. Pharmacother. – volume: 11 start-page: 8347 year: 2019 end-page: 8361 ident: bib98 article-title: Gomisin M2 from Baizuan suppresses breast cancer stem cell proliferation in a zebrafish xenograft model publication-title: Aging – volume: 11 year: 2020 ident: bib10 article-title: Ethanol extract of Brucea javanica seed inhibit triple-negative breast cancer by restraining autophagy via PI3K/Akt/mTOR pathway publication-title: Front. Pharmacol. – volume: 19 start-page: 101 year: 2019 end-page: 111 ident: bib26 article-title: Current perspectives in the application of medicinal plants against cancer: novel therapeutic agents publication-title: Anticanc. Agents Med. Chem. – volume: 43 start-page: 152 year: 2017 end-page: 169 ident: bib76 article-title: Cardamonin, a chalcone, inhibits human triple negative breast cancer cell invasiveness by downregulation of Wnt/-beta-catenin signaling cascades and reversal of epithelial-mesenchymal transition publication-title: Biofactors – volume: 37 start-page: 1068 year: 2018 end-page: 1075 ident: bib3 article-title: Inhibitory effect of crocin on metastasis of triple-negative breast cancer by interfering with wnt/beta-catenin pathway in murine model publication-title: DNA Cell Biol. – volume: 13 year: 2018 ident: bib62 article-title: The inhibitory effects of plumbagin on the NF-kappa B pathway and CCL2 release in racially different triple-negative breast cancer cells publication-title: PloS One – volume: 435 start-page: 110 year: 2018 end-page: 120 ident: bib43 article-title: Tannins from Syzygium guineense suppress Wnt signaling and proliferation of Wnt-dependent tumors through a direct effect on secreted Wnts publication-title: Canc. Lett. – volume: 8 start-page: 329 year: 2017 end-page: 344 ident: bib21 article-title: Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy publication-title: Oncotarget – volume: 12 start-page: 1356 year: 2012 end-page: 1362 ident: bib87 article-title: Strategies and techniques for multi-component drug design from medicinal herbs and traditional Chinese medicine publication-title: Curr. Top. Med. Chem. – volume: 89 start-page: 227 year: 2017 end-page: 232 ident: bib101 article-title: Ginsenoside Rg3 promotes cytotoxicity of Paclitaxel through inhibiting NF-kappaB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer publication-title: Biomed. & Pharmacothr. = Biomedecine & pharmacotherapie – volume: 51 start-page: 1801 year: 2017 end-page: 1808 ident: bib69 article-title: Lippia origanoides extract induces cell cycle arrest and apoptosis and suppresses NF-kappaB signaling in triple-negative breast cancer cells publication-title: Int. J. Oncol. – volume: 115 start-page: 108922 year: 2019 ident: bib94 article-title: Schisandrin A inhibits triple negative breast cancer cells by regulating Wnt/ER stress signaling pathway publication-title: Biomed. & Pharmacothr. = Biomedecine & pharmacotherapie – volume: 34 start-page: 105 year: 2014 end-page: 112 ident: bib96 article-title: Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway publication-title: J. Appl. Toxicol. : JAT – volume: 464 start-page: 705 year: 2015 end-page: 710 ident: bib78 article-title: Sinomenine inhibits breast cancer cell invasion and migration by suppressing NF-κB activation mediated by IL-4/miR-324-5p/CUEDC2 axis publication-title: Biochem. Biophys. Res. Commun. – start-page: 492173 year: 2014 ident: bib13 article-title: Herbal extract SH003 suppresses tumor growth and metastasis of MDA-MB-231 breast cancer cells by inhibiting STAT3-IL-6 signaling publication-title: Mediat. Inflamm. – volume: 232 start-page: 145 year: 2019 end-page: 154 ident: bib90 article-title: Wenshen Zhuanggu formula mitigates breast cancer bone metastasis through the signaling crosstalk among the Jagged1/Notch, TGF-β and IL-6 signaling pathways publication-title: J. Ethnopharmacol. – volume: 32 start-page: 2571 year: 2014 end-page: 2582 ident: bib89 article-title: STAT3 signaling is activated preferentially in tumor-initiating cells in claudin-low models of human breast cancer publication-title: Stem Cells (Dayton) – volume: 234 year: 2019 ident: bib45 article-title: Bulbine frutescens phytochemical inhibits notch signaling pathway and induces apoptosis in triple negative and luminal breast cancer cells publication-title: Life Sci. – volume: 152 start-page: 104 year: 2018 end-page: 113 ident: bib32 article-title: Forskolin improves sensitivity to doxorubicin of triple negative breast cancer cells via Protein Kinase A-mediated ERK1/2 inhibition publication-title: Biochem. Pharmacol. – volume: 142 start-page: 58 year: 2017 end-page: 70 ident: bib109 article-title: Eriocalyxin B, a novel autophagy inducer, exerts anti-tumor activity through the suppression of Akt/mTOR/p70S6K signaling pathway in breast cancer publication-title: Biochem. Pharmacol. – volume: 33 start-page: 477 year: 2019 end-page: 485 ident: bib97 article-title: Precise discovery of a STAT3 inhibitor from Eupatorium lindleyanum and evaluation of its activity of anti-triple-negative breast cancer publication-title: Nat. Prod. Res. – volume: 13 start-page: 44 year: 2013 end-page: 49 ident: bib111 article-title: Role of nuclear factor-kB in breast and colorectal cancer publication-title: Curr. Allergy Asthma Rep. – volume: 27 start-page: 2608 year: 2017 end-page: 2612 ident: bib95 article-title: Picrasidine G decreases viability of MDA-MB 468 EGFR-overexpressing triple-negative breast cancer cells through inhibition of EGFR/STAT3 signaling pathway publication-title: Bioorg. Med. Chem. Lett – volume: 166 start-page: 33 year: 2019 end-page: 45 ident: bib11 article-title: Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3beta-regulated suppression of beta-catenin signaling publication-title: Biochem. Pharmacol. – volume: 2014 start-page: 628712 year: 2014 ident: bib52 article-title: Yiqi formula enhances the antitumor effects of erlotinib for treatment of triple-negative breast cancer xenografts publication-title: Evid. base Compl. Alternative Med. : eCAM – volume: 169 start-page: 397 year: 2018 end-page: 406 ident: bib15 article-title: Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review publication-title: Breast Canc. Res. Treat. – volume: 172 year: 2020 ident: bib110 article-title: 1,3-Dicaffeoylquinic acid targeting 14-3-3 tau suppresses human breast cancer cell proliferation and metastasis through IL6/JAK2/PI3K pathway publication-title: Biochem. Pharmacol. – volume: 24 year: 2019 ident: bib82 article-title: Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-β1-induced epithelial-mesenchymal transition publication-title: Molecules – volume: 53 start-page: 877 year: 2018 end-page: 885 ident: bib39 article-title: Salidroside inhibits migration, invasion and angiogenesis of MDAMB 231 TNBC cells by regulating EGFR/Jak2/STAT3 signaling via MMP2 publication-title: Int. J. Oncol. – volume: 10 start-page: 491 year: 2020 ident: bib46 article-title: Anti-cancer activity of centipeda minima extract in triple negative breast cancer via inhibition of AKT, NF-kappaB, and STAT3 signaling pathways publication-title: Front. Oncol. – volume: 21 year: 2020 ident: bib102 article-title: Understanding MAPK signaling pathways in apoptosis publication-title: Int. J. Mol. Sci. – volume: 42 start-page: 811 year: 2018 end-page: 820 ident: bib81 article-title: Anti-cancer effects of fisetin on mammary carcinoma cells via regulation of the PI3K/Akt/mTOR pathway: in vitro and in vivo studies publication-title: Int. J. Mol. Med. – volume: 10 start-page: 1171 year: 2019 ident: bib53 article-title: The modulatory properties of Astragalus membranaceus treatment on triple-negative breast cancer: an integrated pharmacological method publication-title: Front. Pharmacol. – volume: 108 start-page: 724 year: 2018 end-page: 733 ident: bib86 article-title: Saikosaponin D from Radix Bupleuri suppresses triple-negative breast cancer cell growth by targeting beta-catenin signaling publication-title: Biomed. & Pharmacothr. = Biomedecine & pharmacotherapie – volume: 24 year: 2019 ident: bib8 article-title: Piperlongumine induces apoptosis and synergizes with doxorubicin by inhibiting the JAK2-STAT3 pathway in triple-negative breast cancer publication-title: Molecules – volume: 46 start-page: 753 year: 2014 end-page: 760 ident: bib108 article-title: Formononetin inhibits migration and invasion of MDA-MB-231 and 4T1 breast cancer cells by suppressing MMP-2 and MMP-9 through PI3K/AKT signaling pathways publication-title: Horm. metabol. Res. = Hormon- und Stoffwechselforschung = Hormones et Metabol. – volume: 8 start-page: 731 year: 2017 ident: bib4 article-title: Rumex dentatus inhibits cell proliferation, arrests cell cycle, and induces apoptosis in MDA-MB-231 cells through suppression of the NF-kappaB pathway publication-title: Front. Pharmacol. – volume: 9 start-page: 1796 year: 2019 end-page: 1814 ident: bib93 article-title: Oxymatrine enhanced anti-tumor effects of Bevacizumab against triple-negative breast cancer via abating Wnt/beta-Catenin signaling pathway publication-title: Am. J. Canc. Res. – volume: 8 year: 2019 ident: bib63 article-title: Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge publication-title: Cells – volume: 32 start-page: 2501 year: 2018 end-page: 2509 ident: bib14 article-title: Sesquiterpene lactones-enriched fraction of Inula helenium L. induces apoptosis through inhibition of signal transducers and activators of transcription 3 signaling pathway in MDA-MB-231 breast cancer cells publication-title: Phytother Res. : PTR – volume: 27 start-page: 5400 year: 2017 end-page: 5403 ident: bib73 article-title: Glycyrrhiza glabra extract and quercetin reverses cisplatin resistance in triple-negative MDA-MB-468 breast cancer cells via inhibition of cytochrome P450 1B1 enzyme publication-title: Bioorg. Med. Chem. Lett – volume: 39 start-page: 935 year: 2013 end-page: 946 ident: bib72 article-title: Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer publication-title: Canc. Treat Rev. – volume: 15 start-page: 908 year: 2018 end-page: 916 ident: bib83 article-title: Inhibition of breast cancer cell survival by Xanthohumol via modulation of the Notch signaling pathway in vivo and in vitro publication-title: Oncol. Lett. – volume: 42 start-page: 195 year: 2017 end-page: 202 ident: bib37 article-title: Astragaloside IV inhibits breast cancer cell invasion by suppressing Vav3 mediated Rac1/MAPK signaling publication-title: Int. Immunopharm. – volume: 18 start-page: 2068 year: 2018 end-page: 2078 ident: bib106 article-title: Antitumor effects of Xi Huang pills on MDAMB231 cells in vitro and in vivo publication-title: Mol. Med. Rep. – volume: 99 start-page: 340 year: 2018 end-page: 345 ident: bib100 article-title: The role of curcumae rhizoma-sparganii rhizoma medicated serum in epithelial-mesenchymal transition in the triple negative breast cancer: pharmacological role of CR-SR in the TBNC publication-title: Biomed. & Pharmacothr. = Biomedecine & pharmacotherapie – volume: 9 start-page: 1466 year: 2018 ident: bib92 article-title: Actein inhibits the proliferation and adhesion of human breast cancer cells and suppresses migration in vivo publication-title: Front. Pharmacol. – volume: 70 start-page: 3594 year: 2010 end-page: 3605 ident: bib1 article-title: Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway publication-title: Canc. Res. – volume: 50 year: 2017 ident: bib27 article-title: Cantharidin suppressed breast cancer MDA-MB-231 cell growth and migration by inhibiting MAPK signaling pathway publication-title: Braz. J. Med. Biol. Res. = Revista brasileira de pesquisas medicas e biologicas – volume: 10 year: 2015 ident: bib54 article-title: Antimetastatic therapies of the polysulfide diallyl trisulfide against triple-negative breast cancer (TNBC) via suppressing MMP2/9 by blocking NF-kappaB and ERK/MAPK signaling pathways publication-title: PloS One – volume: 9 start-page: 743 year: 2019 ident: bib2 article-title: Carnosol, a natural polyphenol, inhibits migration, metastasis, and tumor growth of breast cancer via a ROS-dependent proteasome degradation of STAT3 publication-title: Front. Oncol. – volume: 6 start-page: 21144 year: 2016 ident: bib19 article-title: Rhus coriaria suppresses angiogenesis, metastasis and tumor growth of breast cancer through inhibition of STAT3, NFkappaB and nitric oxide pathways publication-title: Sci. Rep. – volume: 157 start-page: 41 year: 2016 end-page: 54 ident: bib41 article-title: Withaferin A inhibits in vivo growth of breast cancer cells accelerated by Notch2 knockdown publication-title: Breast Canc. Res. Treat. – volume: 18 year: 2017 ident: bib75 article-title: Ixeris dentata (Thunb. Ex Thunb.) Nakai extract inhibits proliferation and induces apoptosis in breast cancer cells through akt/NF-B pathways publication-title: Int. J. Mol. Sci. – volume: 42 start-page: 1625 year: 2018 end-page: 1636 ident: bib6 article-title: Quercetin3methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways publication-title: Int. J. Mol. Med. – volume: 211 start-page: 89 year: 2018 end-page: 100 ident: bib91 article-title: Rhizoma Amorphophalli inhibits TNBC cell proliferation, migration, invasion and metastasis through the PI3K/Akt/mTOR pathway publication-title: J. Ethnopharmacol. – volume: 24 year: 2019 ident: bib84 article-title: Methanol extract of aerial parts of Pavetta indica L. Enhances the cytotoxic effect of doxorubicin and induces radiation sensitization in MDA-MB-231 triple-negative breast cancer cells publication-title: Molecules – volume: 188 start-page: 111 year: 2016 end-page: 122 ident: bib7 article-title: Nelumbo nucifera Gaertn leaves extract inhibits the angiogenesis and metastasis of breast cancer cells by downregulation connective tissue growth factor (CTGF) mediated PI3K/AKT/ERK signaling publication-title: J. Ethnopharmacol. – volume: 9 start-page: 772 year: 2018 ident: bib48 article-title: Fisetin inhibited growth and metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via PTEN/Akt/GSK3β signal pathway publication-title: Front. Pharmacol. – volume: 79 start-page: 373 year: 2010 end-page: 380 ident: bib40 article-title: Jnk signaling pathway-mediated regulation of Stat3 activation is linked to the development of doxorubicin resistance in cancer cell lines publication-title: Biochem. Pharmacol. – volume: 142 start-page: 1 year: 2019 end-page: 13 ident: bib65 article-title: Ginsenoside 20(S)-protopanaxadiol inhibits triple-negative breast cancer metastasis in vivo by targeting EGFR-mediated MAPK pathway publication-title: Pharmacol. Res. – volume: 19 year: 2020 ident: bib12 article-title: A phase I study to evaluate the safety of the herbal medicine SH003 in patients with solid cancer publication-title: Integr. Canc. Ther. – volume: 65 start-page: 8530 year: 2005 end-page: 8537 ident: bib70 article-title: High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival publication-title: Canc. Res. – volume: 61 start-page: 152852 year: 2019 ident: bib30 article-title: Sophoraflavanone G from Sophora flavescens induces apoptosis in triple-negative breast cancer cells publication-title: Phytomedicine – volume: 6 year: 2017 ident: bib67 article-title: Wnt signaling in triple-negative breast cancer publication-title: Oncogenesis – volume: 21 start-page: 225 year: 2017 end-page: 231 ident: bib68 article-title: NF-kappaB is a potential molecular drug target in triple-negative breast cancers publication-title: OMICS A J. Integr. Biol. – volume: 2020 start-page: 9258396 year: 2020 ident: bib64 article-title: Signal transduction pathways in breast cancer: the important role of PI3K/Akt/mTOR publication-title: J. Oncol. – volume: 187 start-page: 195 year: 2016 end-page: 204 ident: bib23 article-title: Dillenia suffruticosa dichloromethane root extract induced apoptosis towards MDA-MB-231 triple-negative breast cancer cells publication-title: J. Ethnopharmacol. – volume: 5 year: 2015 ident: bib18 article-title: Rhus coriaria induces senescence and autophagic cell death in breast cancer cells through a mechanism involving p38 and ERK1/2 activation publication-title: Sci. Rep. – volume: 162 start-page: 39 year: 2015 end-page: 46 ident: bib29 article-title: Anti-metastatic effect and mechanisms of Wenshen Zhuanggu Formula in human breast cancer cells publication-title: J. Ethnopharmacol. – volume: 8 year: 2013 ident: bib60 article-title: Deguelin action involves c-Met and EGFR signaling pathways in triple negative breast cancer cells publication-title: PloS One – volume: 39 start-page: 826 year: 2019 end-page: 832 ident: bib55 article-title: Liuwei Dihuang pill suppresses metastasis by regulating the wnt pathway and disrupting β-catenin/T cell factor interactions in a murine model of triple-negative breast cancer publication-title: J. Tradit. Chin. Med. – volume: 6 start-page: 875 year: 2016 end-page: 886 ident: bib42 article-title: KHF16 is a leading structure from Cimicifuga foetida that suppresses breast cancer partially by inhibiting the NF-κB signaling pathway publication-title: Theranostics – volume: 6 start-page: 19418 year: 2016 ident: bib104 article-title: Dysfunction of Wntless triggers the retrograde Golgi-to-ER transport of Wingless and induces ER stress publication-title: Sci. Rep. – volume: 38 start-page: 377 year: 2019 ident: bib38 article-title: Cardamonin inhibits breast cancer growth by repressing HIF-1alpha-dependent metabolic reprogramming publication-title: J. Exp. Clin. Canc. Res. : CR (Clim. Res.) – volume: 19 start-page: 1148 year: 2014 end-page: 1164 ident: bib77 article-title: Piperlongumine, an alkaloid causes inhibition of PI3 K/Akt/mTOR signaling axis to induce caspase-dependent apoptosis in human triple-negative breast cancer cells publication-title: Apoptosis : Int. J. Prog. Cell Death – volume: 392 start-page: 593 year: 2019 end-page: 603 ident: bib49 article-title: Demethylzeylasteral (T-96) inhibits triple-negative breast cancer invasion by blocking the canonical and non-canonical TGF-beta signaling pathways publication-title: Naunyn-Schmiedeberg’s Arch. Pharmacol. – volume: 39 year: 2017 ident: bib16 article-title: NF-kappaB as the main node of resistance to receptor tyrosine kinase inhibitors in triple-negative breast cancer publication-title: Tumour Biol. : J. Int. Soc. Oncodeve. Biol. Med. – volume: 2019 start-page: 9241769 year: 2019 ident: bib80 article-title: Oroxylin A suppresses the cell proliferation, migration, and EMT via NF-κB signaling pathway in human breast cancer cells publication-title: BioMed Res. Int. – volume: 35 start-page: 1356 year: 2016 end-page: 1364 ident: bib99 article-title: Isolinderalactone enhances the inhibition of SOCS3 on STAT3 activity by decreasing miR-30c in breast cancer publication-title: Oncol. Rep. – volume: 9 start-page: 35907 year: 2018 end-page: 35921 ident: bib71 article-title: Ganoderma lucidum extract (GLE) impairs breast cancer stem cells by targeting the STAT3 pathway publication-title: Oncotarget – volume: 30 start-page: 855 year: 2013 end-page: 866 ident: bib61 article-title: Efficacy and mechanism of action of Deguelin in suppressing metastasis of 4T1 cells publication-title: Clin. Exp. Metastasis – volume: 18 start-page: 33 year: 2020 ident: bib58 article-title: Role of STAT3 signaling pathway in breast cancer publication-title: Cell Commun. Signal. : CCS – volume: 14 year: 2019 ident: bib66 article-title: Essential oil of Cyphostemma juttae (Vitaceae): chemical composition and antitumor mechanism in triple negative breast cancer cells publication-title: PloS One – volume: 20 start-page: 4515 year: 2019 end-page: 4522 ident: bib88 article-title: Gambogic acid increases the sensitivity to paclitaxel in drugresistant triplenegative breast cancer via the SHH signaling pathway publication-title: Mol. Med. Rep. – volume: 38 start-page: 58 year: 2014 end-page: 70 ident: bib85 article-title: Boswellia ovalifoliolata abrogates ROS mediated NF-κB activation, causes apoptosis and chemosensitization in Triple Negative Breast Cancer cells publication-title: Environ. Toxicol. Pharmacol. – volume: 19 year: 2019 ident: bib17 article-title: Total saponins of Bolbostemma paniculatum (maxim.) Franquet exert antitumor activity against MDA-MB-231 human breast cancer cells via inhibiting PI3K/Akt/mTOR pathway publication-title: BMC Compl. Alternative Med. – volume: 10 start-page: 1195 year: 2019 ident: bib50 article-title: Inhibition of Stat3 signaling pathway by natural product pectolinarigenin attenuates breast cancer metastasis publication-title: Front. Pharmacol. – volume: 12 year: 2017 ident: bib20 article-title: The natural compound Jatrophone interferes with Wnt/beta-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer publication-title: PloS One – volume: 57 start-page: 1507 year: 2018 end-page: 1524 ident: bib79 article-title: 13(1)-Oxophorbine protopheophorbide A from Ziziphus lotus as a novel mesenchymal-epithelial transition factor receptor inhibitory lead for the control of breast tumor growth in vitro and in vivo publication-title: Mol. Carcinog. – volume: 61 start-page: 11817 year: 2013 end-page: 11824 ident: bib9 article-title: Curcumin suppresses doxorubicin-induced epithelial-mesenchymal transition via the inhibition of TGF-β and PI3K/AKT signaling pathways in triple-negative breast cancer cells publication-title: J. Agric. Food Chem. – volume: 21 year: 2020 ident: bib34 article-title: Rosemary extract inhibits proliferation, survival, akt, and mTOR signaling in triple-negative breast cancer cells publication-title: Int. J. Mol. Sci. – volume: 57 start-page: 1507 issue: 11 year: 2018 ident: 10.1016/j.jep.2020.113249_bib79 article-title: 13(1)-Oxophorbine protopheophorbide A from Ziziphus lotus as a novel mesenchymal-epithelial transition factor receptor inhibitory lead for the control of breast tumor growth in vitro and in vivo publication-title: Mol. Carcinog. doi: 10.1002/mc.22874 – volume: 172 year: 2020 ident: 10.1016/j.jep.2020.113249_bib110 article-title: 1,3-Dicaffeoylquinic acid targeting 14-3-3 tau suppresses human breast cancer cell proliferation and metastasis through IL6/JAK2/PI3K pathway publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2019.113752 – volume: 18 start-page: 33 issue: 1 year: 2020 ident: 10.1016/j.jep.2020.113249_bib58 article-title: Role of STAT3 signaling pathway in breast cancer publication-title: Cell Commun. Signal. : CCS doi: 10.1186/s12964-020-0527-z – volume: 14 issue: 3 year: 2019 ident: 10.1016/j.jep.2020.113249_bib66 article-title: Essential oil of Cyphostemma juttae (Vitaceae): chemical composition and antitumor mechanism in triple negative breast cancer cells publication-title: PloS One – volume: 42 start-page: 195 year: 2017 ident: 10.1016/j.jep.2020.113249_bib37 article-title: Astragaloside IV inhibits breast cancer cell invasion by suppressing Vav3 mediated Rac1/MAPK signaling publication-title: Int. Immunopharm. doi: 10.1016/j.intimp.2016.10.001 – volume: 39 start-page: 826 issue: 6 year: 2019 ident: 10.1016/j.jep.2020.113249_bib55 article-title: Liuwei Dihuang pill suppresses metastasis by regulating the wnt pathway and disrupting β-catenin/T cell factor interactions in a murine model of triple-negative breast cancer publication-title: J. Tradit. Chin. Med. – volume: 234 year: 2019 ident: 10.1016/j.jep.2020.113249_bib45 article-title: Bulbine frutescens phytochemical inhibits notch signaling pathway and induces apoptosis in triple negative and luminal breast cancer cells publication-title: Life Sci. doi: 10.1016/j.lfs.2019.116783 – volume: 108 start-page: 724 year: 2018 ident: 10.1016/j.jep.2020.113249_bib86 article-title: Saikosaponin D from Radix Bupleuri suppresses triple-negative breast cancer cell growth by targeting beta-catenin signaling publication-title: Biomed. & Pharmacothr. = Biomedecine & pharmacotherapie doi: 10.1016/j.biopha.2018.09.038 – volume: 232 start-page: 145 year: 2019 ident: 10.1016/j.jep.2020.113249_bib90 article-title: Wenshen Zhuanggu formula mitigates breast cancer bone metastasis through the signaling crosstalk among the Jagged1/Notch, TGF-β and IL-6 signaling pathways publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2018.12.023 – volume: 211 start-page: 89 year: 2018 ident: 10.1016/j.jep.2020.113249_bib91 article-title: Rhizoma Amorphophalli inhibits TNBC cell proliferation, migration, invasion and metastasis through the PI3K/Akt/mTOR pathway publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2017.09.033 – volume: 2020 start-page: 9258396 year: 2020 ident: 10.1016/j.jep.2020.113249_bib64 article-title: Signal transduction pathways in breast cancer: the important role of PI3K/Akt/mTOR publication-title: J. Oncol. doi: 10.1155/2020/9258396 – volume: 24 start-page: 34 year: 2016 ident: 10.1016/j.jep.2020.113249_bib22 article-title: Mechanisms of cisplatin resistance and targeting of cancer stem cells: adding glycosylation to the equation publication-title: Drug Resist. Updates : Rev. Comment. Antimicro. Anticanc. Chemother. doi: 10.1016/j.drup.2015.11.003 – volume: 392 start-page: 593 issue: 5 year: 2019 ident: 10.1016/j.jep.2020.113249_bib49 article-title: Demethylzeylasteral (T-96) inhibits triple-negative breast cancer invasion by blocking the canonical and non-canonical TGF-beta signaling pathways publication-title: Naunyn-Schmiedeberg’s Arch. Pharmacol. doi: 10.1007/s00210-019-01614-5 – volume: 34 start-page: 297 issue: 5 year: 2019 ident: 10.1016/j.jep.2020.113249_bib51 article-title: Antitumor effects of ruyiping on cell growth and metastasis in breast cancer publication-title: Cancer Biother. Radiopharm. doi: 10.1089/cbr.2018.2703 – volume: 11 start-page: 8347 issue: 19 year: 2019 ident: 10.1016/j.jep.2020.113249_bib98 article-title: Gomisin M2 from Baizuan suppresses breast cancer stem cell proliferation in a zebrafish xenograft model publication-title: Aging doi: 10.18632/aging.102323 – start-page: 492173 year: 2014 ident: 10.1016/j.jep.2020.113249_bib13 article-title: Herbal extract SH003 suppresses tumor growth and metastasis of MDA-MB-231 breast cancer cells by inhibiting STAT3-IL-6 signaling publication-title: Mediat. Inflamm. – volume: 464 start-page: 705 issue: 3 year: 2015 ident: 10.1016/j.jep.2020.113249_bib78 article-title: Sinomenine inhibits breast cancer cell invasion and migration by suppressing NF-κB activation mediated by IL-4/miR-324-5p/CUEDC2 axis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.07.004 – volume: 10 issue: 4 year: 2015 ident: 10.1016/j.jep.2020.113249_bib54 article-title: Antimetastatic therapies of the polysulfide diallyl trisulfide against triple-negative breast cancer (TNBC) via suppressing MMP2/9 by blocking NF-kappaB and ERK/MAPK signaling pathways publication-title: PloS One doi: 10.1371/journal.pone.0123781 – volume: 61 start-page: 11817 issue: 48 year: 2013 ident: 10.1016/j.jep.2020.113249_bib9 article-title: Curcumin suppresses doxorubicin-induced epithelial-mesenchymal transition via the inhibition of TGF-β and PI3K/AKT signaling pathways in triple-negative breast cancer cells publication-title: J. Agric. Food Chem. doi: 10.1021/jf404092f – volume: 8 issue: 6 year: 2013 ident: 10.1016/j.jep.2020.113249_bib60 article-title: Deguelin action involves c-Met and EGFR signaling pathways in triple negative breast cancer cells publication-title: PloS One doi: 10.1371/journal.pone.0065113 – volume: 169 start-page: 397 issue: 3 year: 2018 ident: 10.1016/j.jep.2020.113249_bib15 article-title: Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review publication-title: Breast Canc. Res. Treat. doi: 10.1007/s10549-018-4697-y – volume: 10 start-page: 1195 year: 2019 ident: 10.1016/j.jep.2020.113249_bib50 article-title: Inhibition of Stat3 signaling pathway by natural product pectolinarigenin attenuates breast cancer metastasis publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.01195 – volume: 21 issue: 3 year: 2020 ident: 10.1016/j.jep.2020.113249_bib34 article-title: Rosemary extract inhibits proliferation, survival, akt, and mTOR signaling in triple-negative breast cancer cells publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21030810 – volume: 8 start-page: 731 year: 2017 ident: 10.1016/j.jep.2020.113249_bib4 article-title: Rumex dentatus inhibits cell proliferation, arrests cell cycle, and induces apoptosis in MDA-MB-231 cells through suppression of the NF-kappaB pathway publication-title: Front. Pharmacol. doi: 10.3389/fphar.2017.00731 – volume: 2019 start-page: 9241769 year: 2019 ident: 10.1016/j.jep.2020.113249_bib80 article-title: Oroxylin A suppresses the cell proliferation, migration, and EMT via NF-κB signaling pathway in human breast cancer cells publication-title: BioMed Res. Int. doi: 10.1155/2019/9241769 – volume: 39 start-page: 935 issue: 8 year: 2013 ident: 10.1016/j.jep.2020.113249_bib72 article-title: Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer publication-title: Canc. Treat Rev. doi: 10.1016/j.ctrv.2013.03.009 – volume: 6 start-page: 21144 year: 2016 ident: 10.1016/j.jep.2020.113249_bib19 article-title: Rhus coriaria suppresses angiogenesis, metastasis and tumor growth of breast cancer through inhibition of STAT3, NFkappaB and nitric oxide pathways publication-title: Sci. Rep. doi: 10.1038/srep21144 – volume: 39 issue: 6 year: 2017 ident: 10.1016/j.jep.2020.113249_bib16 article-title: NF-kappaB as the main node of resistance to receptor tyrosine kinase inhibitors in triple-negative breast cancer publication-title: Tumour Biol. : J. Int. Soc. Oncodeve. Biol. Med. doi: 10.1177/1010428317706919 – volume: 8 start-page: 329 issue: 1 year: 2017 ident: 10.1016/j.jep.2020.113249_bib21 article-title: Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy publication-title: Oncotarget doi: 10.18632/oncotarget.13393 – volume: 99 start-page: 340 year: 2018 ident: 10.1016/j.jep.2020.113249_bib100 article-title: The role of curcumae rhizoma-sparganii rhizoma medicated serum in epithelial-mesenchymal transition in the triple negative breast cancer: pharmacological role of CR-SR in the TBNC publication-title: Biomed. & Pharmacothr. = Biomedecine & pharmacotherapie doi: 10.1016/j.biopha.2017.11.139 – volume: 17 start-page: 3935 issue: 3 year: 2018 ident: 10.1016/j.jep.2020.113249_bib103 article-title: Suppression of human breast cancer cells by tectorigenin through downregulation of matrix metalloproteinases and MAPK signaling in vitro publication-title: Mol. Med. Rep. – volume: 27 start-page: 5400 issue: 24 year: 2017 ident: 10.1016/j.jep.2020.113249_bib73 article-title: Glycyrrhiza glabra extract and quercetin reverses cisplatin resistance in triple-negative MDA-MB-468 breast cancer cells via inhibition of cytochrome P450 1B1 enzyme publication-title: Bioorg. Med. Chem. Lett doi: 10.1016/j.bmcl.2017.11.013 – volume: 166 start-page: 33 year: 2019 ident: 10.1016/j.jep.2020.113249_bib11 article-title: Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3beta-regulated suppression of beta-catenin signaling publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2019.05.001 – volume: 34 start-page: 105 issue: 1 year: 2014 ident: 10.1016/j.jep.2020.113249_bib96 article-title: Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway publication-title: J. Appl. Toxicol. : JAT doi: 10.1002/jat.2941 – volume: 5 start-page: 559 issue: 5 year: 2016 ident: 10.1016/j.jep.2020.113249_bib107 article-title: Multiple effects of Xihuang pill aqueous extract on the Hs578T triple-negative breast cancer cell line publication-title: Biomed. Rep. doi: 10.3892/br.2016.769 – volume: 18 start-page: 2068 issue: 2 year: 2018 ident: 10.1016/j.jep.2020.113249_bib106 article-title: Antitumor effects of Xi Huang pills on MDAMB231 cells in vitro and in vivo publication-title: Mol. Med. Rep. – volume: 35 start-page: 1356 issue: 3 year: 2016 ident: 10.1016/j.jep.2020.113249_bib99 article-title: Isolinderalactone enhances the inhibition of SOCS3 on STAT3 activity by decreasing miR-30c in breast cancer publication-title: Oncol. Rep. doi: 10.3892/or.2015.4503 – volume: 27 start-page: 2608 issue: 11 year: 2017 ident: 10.1016/j.jep.2020.113249_bib95 article-title: Picrasidine G decreases viability of MDA-MB 468 EGFR-overexpressing triple-negative breast cancer cells through inhibition of EGFR/STAT3 signaling pathway publication-title: Bioorg. Med. Chem. Lett doi: 10.1016/j.bmcl.2017.03.061 – volume: 32 start-page: 2501 issue: 12 year: 2018 ident: 10.1016/j.jep.2020.113249_bib14 article-title: Sesquiterpene lactones-enriched fraction of Inula helenium L. induces apoptosis through inhibition of signal transducers and activators of transcription 3 signaling pathway in MDA-MB-231 breast cancer cells publication-title: Phytother Res. : PTR doi: 10.1002/ptr.6189 – volume: 21 issue: 7 year: 2020 ident: 10.1016/j.jep.2020.113249_bib102 article-title: Understanding MAPK signaling pathways in apoptosis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21072346 – volume: 37 start-page: 1068 issue: 12 year: 2018 ident: 10.1016/j.jep.2020.113249_bib3 article-title: Inhibitory effect of crocin on metastasis of triple-negative breast cancer by interfering with wnt/beta-catenin pathway in murine model publication-title: DNA Cell Biol. doi: 10.1089/dna.2018.4351 – volume: 38 start-page: 58 issue: 1 year: 2014 ident: 10.1016/j.jep.2020.113249_bib85 article-title: Boswellia ovalifoliolata abrogates ROS mediated NF-κB activation, causes apoptosis and chemosensitization in Triple Negative Breast Cancer cells publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2014.05.002 – volume: 9 issue: 7 year: 2019 ident: 10.1016/j.jep.2020.113249_bib35 article-title: A sesquiterpenoid from farfarae flos induces apoptosis of MDA-MB-231 human breast cancer cells through inhibition of JAK-STAT3 signaling publication-title: Biomolecules doi: 10.3390/biom9070278 – volume: 42 start-page: 1625 issue: 3 year: 2018 ident: 10.1016/j.jep.2020.113249_bib6 article-title: Quercetin3methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways publication-title: Int. J. Mol. Med. – volume: 18 issue: 2 year: 2017 ident: 10.1016/j.jep.2020.113249_bib75 article-title: Ixeris dentata (Thunb. Ex Thunb.) Nakai extract inhibits proliferation and induces apoptosis in breast cancer cells through akt/NF-B pathways publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18020275 – volume: 13 issue: 7 year: 2018 ident: 10.1016/j.jep.2020.113249_bib62 article-title: The inhibitory effects of plumbagin on the NF-kappa B pathway and CCL2 release in racially different triple-negative breast cancer cells publication-title: PloS One doi: 10.1371/journal.pone.0201116 – volume: 2014 start-page: 628712 year: 2014 ident: 10.1016/j.jep.2020.113249_bib52 article-title: Yiqi formula enhances the antitumor effects of erlotinib for treatment of triple-negative breast cancer xenografts publication-title: Evid. base Compl. Alternative Med. : eCAM doi: 10.1155/2014/628712 – volume: 70 start-page: 3594 issue: 9 year: 2010 ident: 10.1016/j.jep.2020.113249_bib1 article-title: Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-09-3565 – volume: 79 start-page: 373 issue: 3 year: 2010 ident: 10.1016/j.jep.2020.113249_bib40 article-title: Jnk signaling pathway-mediated regulation of Stat3 activation is linked to the development of doxorubicin resistance in cancer cell lines publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2009.09.008 – volume: 79 start-page: 1217 issue: 11 year: 2019 ident: 10.1016/j.jep.2020.113249_bib59 article-title: Advances in targeted therapies for triple-negative breast cancer publication-title: Drugs doi: 10.1007/s40265-019-01155-4 – volume: 43 start-page: 152 issue: 2 year: 2017 ident: 10.1016/j.jep.2020.113249_bib76 article-title: Cardamonin, a chalcone, inhibits human triple negative breast cancer cell invasiveness by downregulation of Wnt/-beta-catenin signaling cascades and reversal of epithelial-mesenchymal transition publication-title: Biofactors doi: 10.1002/biof.1315 – volume: 260 year: 2020 ident: 10.1016/j.jep.2020.113249_bib47 article-title: Extracts of Cordyceps sinensis inhibit breast cancer growth through promoting M1 macrophage polarization via NF-kappaB pathway activation publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2020.112969 – volume: 9 start-page: 1466 year: 2018 ident: 10.1016/j.jep.2020.113249_bib92 article-title: Actein inhibits the proliferation and adhesion of human breast cancer cells and suppresses migration in vivo publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.01466 – volume: 61 start-page: 152852 year: 2019 ident: 10.1016/j.jep.2020.113249_bib30 article-title: Sophoraflavanone G from Sophora flavescens induces apoptosis in triple-negative breast cancer cells publication-title: Phytomedicine doi: 10.1016/j.phymed.2019.152852 – volume: 8 issue: 9 year: 2019 ident: 10.1016/j.jep.2020.113249_bib63 article-title: Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge publication-title: Cells doi: 10.3390/cells8090957 – volume: 53 start-page: 877 issue: 2 year: 2018 ident: 10.1016/j.jep.2020.113249_bib39 article-title: Salidroside inhibits migration, invasion and angiogenesis of MDAMB 231 TNBC cells by regulating EGFR/Jak2/STAT3 signaling via MMP2 publication-title: Int. J. Oncol. – volume: 6 start-page: 19418 year: 2016 ident: 10.1016/j.jep.2020.113249_bib104 article-title: Dysfunction of Wntless triggers the retrograde Golgi-to-ER transport of Wingless and induces ER stress publication-title: Sci. Rep. doi: 10.1038/srep19418 – volume: 19 year: 2020 ident: 10.1016/j.jep.2020.113249_bib12 article-title: A phase I study to evaluate the safety of the herbal medicine SH003 in patients with solid cancer publication-title: Integr. Canc. Ther. – volume: 78 start-page: 197 year: 2016 ident: 10.1016/j.jep.2020.113249_bib105 article-title: Paeoniflorin inhibits proliferation and invasion of breast cancer cells through suppressing Notch-1 signaling pathway publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2016.01.019 – volume: 32 start-page: 2571 issue: 10 year: 2014 ident: 10.1016/j.jep.2020.113249_bib89 article-title: STAT3 signaling is activated preferentially in tumor-initiating cells in claudin-low models of human breast cancer publication-title: Stem Cells (Dayton) doi: 10.1002/stem.1752 – volume: 10 start-page: 491 year: 2020 ident: 10.1016/j.jep.2020.113249_bib46 article-title: Anti-cancer activity of centipeda minima extract in triple negative breast cancer via inhibition of AKT, NF-kappaB, and STAT3 signaling pathways publication-title: Front. Oncol. doi: 10.3389/fonc.2020.00491 – volume: 9 start-page: 35907 issue: 89 year: 2018 ident: 10.1016/j.jep.2020.113249_bib71 article-title: Ganoderma lucidum extract (GLE) impairs breast cancer stem cells by targeting the STAT3 pathway publication-title: Oncotarget doi: 10.18632/oncotarget.26294 – volume: 38 start-page: 377 issue: 1 year: 2019 ident: 10.1016/j.jep.2020.113249_bib38 article-title: Cardamonin inhibits breast cancer growth by repressing HIF-1alpha-dependent metabolic reprogramming publication-title: J. Exp. Clin. Canc. Res. : CR (Clim. Res.) doi: 10.1186/s13046-019-1351-4 – volume: 162 start-page: 39 year: 2015 ident: 10.1016/j.jep.2020.113249_bib29 article-title: Anti-metastatic effect and mechanisms of Wenshen Zhuanggu Formula in human breast cancer cells publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2014.12.036 – volume: 24 issue: 12 year: 2019 ident: 10.1016/j.jep.2020.113249_bib8 article-title: Piperlongumine induces apoptosis and synergizes with doxorubicin by inhibiting the JAK2-STAT3 pathway in triple-negative breast cancer publication-title: Molecules doi: 10.3390/molecules24122338 – volume: 24 issue: 6 year: 2019 ident: 10.1016/j.jep.2020.113249_bib82 article-title: Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-β1-induced epithelial-mesenchymal transition publication-title: Molecules doi: 10.3390/molecules24061131 – volume: 10 start-page: 1171 year: 2019 ident: 10.1016/j.jep.2020.113249_bib53 article-title: The modulatory properties of Astragalus membranaceus treatment on triple-negative breast cancer: an integrated pharmacological method publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.01171 – volume: 19 start-page: 101 issue: 1 year: 2019 ident: 10.1016/j.jep.2020.113249_bib26 article-title: Current perspectives in the application of medicinal plants against cancer: novel therapeutic agents publication-title: Anticanc. Agents Med. Chem. doi: 10.2174/1871520619666181224121004 – volume: 65 start-page: 8530 issue: 18 year: 2005 ident: 10.1016/j.jep.2020.113249_bib70 article-title: High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-05-1069 – volume: 24 issue: 12 year: 2019 ident: 10.1016/j.jep.2020.113249_bib84 article-title: Methanol extract of aerial parts of Pavetta indica L. Enhances the cytotoxic effect of doxorubicin and induces radiation sensitization in MDA-MB-231 triple-negative breast cancer cells publication-title: Molecules doi: 10.3390/molecules24122273 – volume: 19 issue: 1 year: 2019 ident: 10.1016/j.jep.2020.113249_bib17 article-title: Total saponins of Bolbostemma paniculatum (maxim.) Franquet exert antitumor activity against MDA-MB-231 human breast cancer cells via inhibiting PI3K/Akt/mTOR pathway publication-title: BMC Compl. Alternative Med. – volume: 9 start-page: 1796 issue: 8 year: 2019 ident: 10.1016/j.jep.2020.113249_bib93 article-title: Oxymatrine enhanced anti-tumor effects of Bevacizumab against triple-negative breast cancer via abating Wnt/beta-Catenin signaling pathway publication-title: Am. J. Canc. Res. – volume: 142 start-page: 58 year: 2017 ident: 10.1016/j.jep.2020.113249_bib109 article-title: Eriocalyxin B, a novel autophagy inducer, exerts anti-tumor activity through the suppression of Akt/mTOR/p70S6K signaling pathway in breast cancer publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2017.06.133 – volume: 187 start-page: 195 year: 2016 ident: 10.1016/j.jep.2020.113249_bib23 article-title: Dillenia suffruticosa dichloromethane root extract induced apoptosis towards MDA-MB-231 triple-negative breast cancer cells publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2016.04.048 – volume: 51 start-page: 1801 issue: 6 year: 2017 ident: 10.1016/j.jep.2020.113249_bib69 article-title: Lippia origanoides extract induces cell cycle arrest and apoptosis and suppresses NF-kappaB signaling in triple-negative breast cancer cells publication-title: Int. J. Oncol. doi: 10.3892/ijo.2017.4169 – volume: 152 start-page: 104 year: 2018 ident: 10.1016/j.jep.2020.113249_bib32 article-title: Forskolin improves sensitivity to doxorubicin of triple negative breast cancer cells via Protein Kinase A-mediated ERK1/2 inhibition publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2018.03.023 – volume: 6 issue: 4 year: 2017 ident: 10.1016/j.jep.2020.113249_bib67 article-title: Wnt signaling in triple-negative breast cancer publication-title: Oncogenesis doi: 10.1038/oncsis.2017.14 – volume: 15 start-page: 908 issue: 1 year: 2018 ident: 10.1016/j.jep.2020.113249_bib83 article-title: Inhibition of breast cancer cell survival by Xanthohumol via modulation of the Notch signaling pathway in vivo and in vitro publication-title: Oncol. Lett. – volume: 57 start-page: 333 issue: 3 year: 2018 ident: 10.1016/j.jep.2020.113249_bib33 article-title: Eugenol potentiates cisplatin anti-cancer activity through inhibition of ALDH-positive breast cancer stem cells and the NF-B signaling pathway publication-title: Mol. Carcinog. doi: 10.1002/mc.22758 – volume: 9 start-page: 772 year: 2018 ident: 10.1016/j.jep.2020.113249_bib48 article-title: Fisetin inhibited growth and metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via PTEN/Akt/GSK3β signal pathway publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00772 – volume: 50 issue: 7 year: 2017 ident: 10.1016/j.jep.2020.113249_bib27 article-title: Cantharidin suppressed breast cancer MDA-MB-231 cell growth and migration by inhibiting MAPK signaling pathway publication-title: Braz. J. Med. Biol. Res. = Revista brasileira de pesquisas medicas e biologicas – volume: 9 start-page: 2564 issue: 7 year: 2020 ident: 10.1016/j.jep.2020.113249_bib28 article-title: Fangjihuangqi Decoction inhibits MDA-MB-231 cell invasion in vitro and decreases tumor growth and metastasis in triple-negative breast cancer xenografts tumor zebrafish model publication-title: Canc. Med. doi: 10.1002/cam4.2894 – volume: 89 start-page: 227 year: 2017 ident: 10.1016/j.jep.2020.113249_bib101 article-title: Ginsenoside Rg3 promotes cytotoxicity of Paclitaxel through inhibiting NF-kappaB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer publication-title: Biomed. & Pharmacothr. = Biomedecine & pharmacotherapie doi: 10.1016/j.biopha.2017.02.038 – volume: 157 start-page: 41 issue: 1 year: 2016 ident: 10.1016/j.jep.2020.113249_bib41 article-title: Withaferin A inhibits in vivo growth of breast cancer cells accelerated by Notch2 knockdown publication-title: Breast Canc. Res. Treat. doi: 10.1007/s10549-016-3795-y – volume: 14 issue: 5 year: 2019 ident: 10.1016/j.jep.2020.113249_bib24 article-title: Strictinin, a novel ROR1-inhibitor, represses triple negative breast cancer survival and migration via modulation of PI3K/AKT/GSK3 beta activity publication-title: PloS One doi: 10.1371/journal.pone.0217789 – volume: 15 start-page: R54 issue: 4 year: 2013 ident: 10.1016/j.jep.2020.113249_bib5 article-title: Notch activation stimulates migration of breast cancer cells and promotes tumor growth publication-title: Breast Cancer Res. doi: 10.1186/bcr3447 – volume: 8 issue: 3 year: 2019 ident: 10.1016/j.jep.2020.113249_bib31 article-title: Licochalcone A inhibits cellular motility by suppressing E-cadherin and MAPK signaling in breast cancer publication-title: Cells doi: 10.3390/cells8030218 – volume: 142 start-page: 1 year: 2019 ident: 10.1016/j.jep.2020.113249_bib65 article-title: Ginsenoside 20(S)-protopanaxadiol inhibits triple-negative breast cancer metastasis in vivo by targeting EGFR-mediated MAPK pathway publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2019.02.003 – volume: 5 year: 2015 ident: 10.1016/j.jep.2020.113249_bib18 article-title: Rhus coriaria induces senescence and autophagic cell death in breast cancer cells through a mechanism involving p38 and ERK1/2 activation publication-title: Sci. Rep. doi: 10.1038/srep13013 – volume: 9 start-page: 176 issue: 2 year: 2019 ident: 10.1016/j.jep.2020.113249_bib25 article-title: Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment publication-title: Canc. Discov. doi: 10.1158/2159-8290.CD-18-1177 – volume: 6 start-page: 875 issue: 6 year: 2016 ident: 10.1016/j.jep.2020.113249_bib42 article-title: KHF16 is a leading structure from Cimicifuga foetida that suppresses breast cancer partially by inhibiting the NF-κB signaling pathway publication-title: Theranostics doi: 10.7150/thno.14694 – volume: 435 start-page: 110 year: 2018 ident: 10.1016/j.jep.2020.113249_bib43 article-title: Tannins from Syzygium guineense suppress Wnt signaling and proliferation of Wnt-dependent tumors through a direct effect on secreted Wnts publication-title: Canc. Lett. doi: 10.1016/j.canlet.2018.08.003 – volume: 12 issue: 12 year: 2017 ident: 10.1016/j.jep.2020.113249_bib20 article-title: The natural compound Jatrophone interferes with Wnt/beta-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer publication-title: PloS One doi: 10.1371/journal.pone.0189864 – volume: 42 start-page: 811 issue: 2 year: 2018 ident: 10.1016/j.jep.2020.113249_bib81 article-title: Anti-cancer effects of fisetin on mammary carcinoma cells via regulation of the PI3K/Akt/mTOR pathway: in vitro and in vivo studies publication-title: Int. J. Mol. Med. – volume: 115 start-page: 108922 year: 2019 ident: 10.1016/j.jep.2020.113249_bib94 article-title: Schisandrin A inhibits triple negative breast cancer cells by regulating Wnt/ER stress signaling pathway publication-title: Biomed. & Pharmacothr. = Biomedecine & pharmacotherapie doi: 10.1016/j.biopha.2019.108922 – volume: 18 year: 2019 ident: 10.1016/j.jep.2020.113249_bib44 article-title: Ethanol extracts of dietary herb, Alpinia nantoensis, exhibit anticancer potential in human breast cancer cells publication-title: Integr. Canc. Ther. – volume: 30 start-page: 855 issue: 7 year: 2013 ident: 10.1016/j.jep.2020.113249_bib61 article-title: Efficacy and mechanism of action of Deguelin in suppressing metastasis of 4T1 cells publication-title: Clin. Exp. Metastasis doi: 10.1007/s10585-013-9585-6 – volume: 9 start-page: 743 year: 2019 ident: 10.1016/j.jep.2020.113249_bib2 article-title: Carnosol, a natural polyphenol, inhibits migration, metastasis, and tumor growth of breast cancer via a ROS-dependent proteasome degradation of STAT3 publication-title: Front. Oncol. doi: 10.3389/fonc.2019.00743 – volume: 13 start-page: 203 year: 2013 ident: 10.1016/j.jep.2020.113249_bib36 article-title: Targeting beta-catenin signaling to induce apoptosis in human breast cancer cells by z-guggulsterone and Gugulipid extract of Ayurvedic medicine plant Commiphora mukul publication-title: BMC Compl. Alternative Med. doi: 10.1186/1472-6882-13-203 – volume: 61 start-page: 6366 issue: 26 year: 2013 ident: 10.1016/j.jep.2020.113249_bib74 article-title: Demethoxycurcumin inhibits energy metabolic and oncogenic signaling pathways through AMPK activation in triple-negative breast cancer cells publication-title: J. Agric. Food Chem. doi: 10.1021/jf4012455 – volume: 19 start-page: 1148 issue: 7 year: 2014 ident: 10.1016/j.jep.2020.113249_bib77 article-title: Piperlongumine, an alkaloid causes inhibition of PI3 K/Akt/mTOR signaling axis to induce caspase-dependent apoptosis in human triple-negative breast cancer cells publication-title: Apoptosis : Int. J. Prog. Cell Death doi: 10.1007/s10495-014-0991-2 – volume: 24 issue: 20 year: 2019 ident: 10.1016/j.jep.2020.113249_bib56 article-title: Alisol A suppresses proliferation, migration, and invasion in human breast cancer MDA-MB-231 cells publication-title: Molecules doi: 10.3390/molecules24203651 – volume: 33 start-page: 477 issue: 4 year: 2019 ident: 10.1016/j.jep.2020.113249_bib97 article-title: Precise discovery of a STAT3 inhibitor from Eupatorium lindleyanum and evaluation of its activity of anti-triple-negative breast cancer publication-title: Nat. Prod. Res. doi: 10.1080/14786419.2017.1396596 – volume: 11 year: 2020 ident: 10.1016/j.jep.2020.113249_bib10 article-title: Ethanol extract of Brucea javanica seed inhibit triple-negative breast cancer by restraining autophagy via PI3K/Akt/mTOR pathway publication-title: Front. Pharmacol. – volume: 46 start-page: 753 issue: 11 year: 2014 ident: 10.1016/j.jep.2020.113249_bib108 article-title: Formononetin inhibits migration and invasion of MDA-MB-231 and 4T1 breast cancer cells by suppressing MMP-2 and MMP-9 through PI3K/AKT signaling pathways publication-title: Horm. metabol. Res. = Hormon- und Stoffwechselforschung = Hormones et Metabol. doi: 10.1055/s-0034-1376977 – volume: 12 start-page: 1356 issue: 12 year: 2012 ident: 10.1016/j.jep.2020.113249_bib87 article-title: Strategies and techniques for multi-component drug design from medicinal herbs and traditional Chinese medicine publication-title: Curr. Top. Med. Chem. doi: 10.2174/156802612801319034 – volume: 21 start-page: 225 issue: 4 year: 2017 ident: 10.1016/j.jep.2020.113249_bib68 article-title: NF-kappaB is a potential molecular drug target in triple-negative breast cancers publication-title: OMICS A J. Integr. Biol. doi: 10.1089/omi.2017.0020 – volume: 20 start-page: 4515 issue: 5 year: 2019 ident: 10.1016/j.jep.2020.113249_bib88 article-title: Gambogic acid increases the sensitivity to paclitaxel in drugresistant triplenegative breast cancer via the SHH signaling pathway publication-title: Mol. Med. Rep. – volume: 188 start-page: 111 year: 2016 ident: 10.1016/j.jep.2020.113249_bib7 article-title: Nelumbo nucifera Gaertn leaves extract inhibits the angiogenesis and metastasis of breast cancer cells by downregulation connective tissue growth factor (CTGF) mediated PI3K/AKT/ERK signaling publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2016.05.012 – volume: 13 start-page: 44 issue: 1 year: 2013 ident: 10.1016/j.jep.2020.113249_bib111 article-title: Role of nuclear factor-kB in breast and colorectal cancer publication-title: Curr. Allergy Asthma Rep. doi: 10.1007/s11882-012-0300-5 – volume: 19 start-page: 273 issue: 1 year: 2020 ident: 10.1016/j.jep.2020.113249_bib57 article-title: The anti-migration and anti-invasion effects of Bruceine D in human triple-negative breast cancer MDA-MB-231 cells publication-title: Exp Ther Med |
SSID | ssj0007140 |
Score | 2.6565034 |
SecondaryResourceType | review_article |
Snippet | Triple-negative breast cancer (TNBC) has a poorer prognosis than other subtypes due to its strong invasion and higher risk of distant metastasis. Traditional... Ethnopharmacological relevance Triple-negative breast cancer (TNBC) has a poorer prognosis than other subtypes due to its strong invasion and higher risk of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113249 |
SubjectTerms | adverse effects Animals antineoplastic activity Antineoplastic Agents, Phytogenic - administration & dosage Antineoplastic Agents, Phytogenic - metabolism beta catenin Biological Products - administration & dosage Biological Products - metabolism breast neoplasms Cell Line, Tumor Drug Delivery Systems - methods Drug Delivery Systems - trends drug development Female genes herbal medicines Humans mechanism of action Medicine, Chinese Traditional - methods Medicine, Chinese Traditional - trends metastasis mitogen-activated protein kinase Natural medicine Oriental traditional medicine phosphatidylinositol 3-kinase prognosis protein synthesis signal transduction Signal Transduction - drug effects Signal Transduction - physiology Signaling pathway Target Traditional Chinese medicine Triple Negative Breast Neoplasms - drug therapy Triple Negative Breast Neoplasms - genetics Triple Negative Breast Neoplasms - metabolism Triple-negative breast cancer |
Title | The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer |
URI | https://dx.doi.org/10.1016/j.jep.2020.113249 https://www.ncbi.nlm.nih.gov/pubmed/32810619 https://www.proquest.com/docview/2435529227 https://www.proquest.com/docview/2624869883 https://www.proquest.com/docview/2985621433 |
Volume | 264 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvfRS-m7aNKhQcihR13rZ1jGEhm1LQ6AJ5GYkWSobgjesHZq95LdnxrJ3CaR76NUagawZzejxzTeEfNbKG7CUghmrDVNeemZMlMw64XRd6jx4vO_4dZJPz9WPC32xRY7GXBiEVQ6-P_n03lsPXybDbE6uZ7PJ7wyp0CEgikxKDmEQM9hVgVb-9W4N8yhSUiQKM5QeXzZ7jNdlQMpK0Vc2EUin-Xhs-tfes49Bx8_Js2HzSA_T-F6QrdC8JPuniX16eUDP1slU7QHdp6drXurlK3ILzRTxGhZT0CnWIv5rly21TU0TILyl80i7ha1n6YaQYnXt0AY6vsD3sj0XKDSuPs4a6IQX9qwJf3oiceoQ695Rjza1eE3Oj7-dHU3ZUHiBecVNx-BUqCPy2lufRcGVDzpqJ51VxroIXsGKWHObFzbUcL4qDLR7rgP3DjrlQb4h2828Ce8I1aasI3dcBhsU99YarV104EVUTza3Q7Jxyis_sJJjcYyraoSfXVagpQq1VCUt7ZAvqy7XiZJjk7Aa9Vg9sKsKQsambp9GnVew3vARxTZhftNWAvaXWhghig0yuVBlbspSbpAxsBBgbiXIvE1GtfobKUo8qZv3_zf4D-SpQORNhmDFXbLdLW7CR9g6dW6vXxt75Mnh95_Tk3u-Rhjd |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tBeSvpOm7YqlBxKxFov2zqGkLBpkiXQDeQmJFkOG4o3rB3a_fed8WNDodlDr9YMyJrRzEia-YaQr1oFA5qSMeO0YSrIwIwpJXNeeF3kOo0B7zsupunkSn2_1tdb5GiohcG0yt72dza9tdb9l3G_muO7-Xz8I0EodHCIIpGSgxt8QrYRnUqPyPbh6dlkujbIWVcXifQMGYbHzTbN6zYiaqVom5sIRNT8t3t6LPxs3dDJDnnex4_0sJviC7IVq5dk_7IDoF4d0NlDPVV9QPfp5QM09eoV-Q3DFFM2HFahU2xH_MutauqqgnY54TVdlLRZumLeXRJSbLAd60iHR_iWtoUDhcH1x3kFTHhnz6p402KJU4_p7g0NqFbL1-Tq5Hh2NGF97wUWFDcNg4OhLhHa3oWkFFyFqEvtpXfKOF-CYXCiLLhLMxcLOGJlBsYD15EHD0xplG_IqFpU8R2h2uRFyT2X0UXFg3NGa196MCSqxZvbJcmw5Db0wOTYH-OnHTLQbi1IyaKUbCelXfJtzXLXoXJsIlaDHO1fqmXBa2xi-zLI3MKWw3cUV8XFfW0FhJhaGCGyDTSpUHlq8lxuoDGwF2BtJdC87ZRq_TdS5HhYN-__b_KfydPJ7OLcnp9Ozz6QZwITcRLMXdwjo2Z5Hz9CJNX4T_1O-QNMZxuO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+signaling+pathways+and+targets+of+traditional+Chinese+medicine+and+natural+medicine+in+triple-negative+breast+cancer&rft.jtitle=Journal+of+ethnopharmacology&rft.au=Yang%2C+Zimei&rft.au=Zhang%2C+Qiuhua&rft.au=Yu%2C+Linghong&rft.au=Zhu%2C+Jiayan&rft.date=2021-01-10&rft.issn=1872-7573&rft.eissn=1872-7573&rft.volume=264&rft.spage=113249&rft_id=info:doi/10.1016%2Fj.jep.2020.113249&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-8741&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-8741&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-8741&client=summon |