The effect of flow and mass transport in thrombogenesis

The paper presents a mathematical analysis of the contributions of flow and mass transport to a single reactive event at a blood vessel wall. The intent is to prepare the ground for a comprehensive study of the intertwining of these contributions with the reaction network of the coagulation cascade....

Full description

Saved in:
Bibliographic Details
Published inAnnals of biomedical engineering Vol. 18; no. 6; p. 685
Main Author Basmadjian, D
Format Journal Article
LanguageEnglish
Published United States 01.11.1990
Subjects
Online AccessGet more information

Cover

Loading…
Abstract The paper presents a mathematical analysis of the contributions of flow and mass transport to a single reactive event at a blood vessel wall. The intent is to prepare the ground for a comprehensive study of the intertwining of these contributions with the reaction network of the coagulation cascade. We show that in all vessels with local mural activity, or in "large" vessels (d greater than 0.1 mm) with global reactivity, events at the tubular wall can be rigorously described by algebraic equations under steady conditions, or by ordinary differential forms (ODEs) during transient conditions. This opens up important ways for analyzing the combined roles of flow, transport, and coagulation reactions in thrombosis, a task hitherto considered to be completely intractable. We report extensively on the dependence of transport coefficient kL and mural coagulant concentration Cw on flow, vessel geometry, and reaction kinetics. It is shown that for protein transport, kL varies only weakly with shear rate gamma in large vessels, and not at all in the smaller tubes (d less than 10(-2) mm). For a typical protein, kL approximately 10(-3) cm s-1 within a factor of 3 in most geometries, irrespective of the mural reaction kinetics. Significant reductions in kL (1/10-1/1,000) leading to high-coagulant accumulation are seen mainly in stagnant zones vicinal to abrupt expansions and in small elliptical tubules. This is in accord with known physical observations. More unexpected are the dramatic increases in accumulation which can come about through the intervention of an autocatalytic reaction step, with Cw rising sharply toward infinity as the ratio of reaction to transport coefficient approaches unity. Such self-catalyzed reactions have the ability to act as powerful amplifiers of an otherwise modest influence of flow and transport on coagulant concentration. The paper considers as well the effect on mass transport of transient conditions occasioned by coagulation initiation or pulsatile flow. During initiation, instantaneous flux varies with diffusivity and bulk concentration, favouring the early adsorption/consumption of proteins with the highest abundance and mobility. This is akin to the 'Vroman effect' seen in narrow, stagnant spaces. The effect of flow pulsatility on kL has the potential, after prolonged cycling, of bringing about segregation or accumulation of proteins, with consequences for the coagulation process.
AbstractList The paper presents a mathematical analysis of the contributions of flow and mass transport to a single reactive event at a blood vessel wall. The intent is to prepare the ground for a comprehensive study of the intertwining of these contributions with the reaction network of the coagulation cascade. We show that in all vessels with local mural activity, or in "large" vessels (d greater than 0.1 mm) with global reactivity, events at the tubular wall can be rigorously described by algebraic equations under steady conditions, or by ordinary differential forms (ODEs) during transient conditions. This opens up important ways for analyzing the combined roles of flow, transport, and coagulation reactions in thrombosis, a task hitherto considered to be completely intractable. We report extensively on the dependence of transport coefficient kL and mural coagulant concentration Cw on flow, vessel geometry, and reaction kinetics. It is shown that for protein transport, kL varies only weakly with shear rate gamma in large vessels, and not at all in the smaller tubes (d less than 10(-2) mm). For a typical protein, kL approximately 10(-3) cm s-1 within a factor of 3 in most geometries, irrespective of the mural reaction kinetics. Significant reductions in kL (1/10-1/1,000) leading to high-coagulant accumulation are seen mainly in stagnant zones vicinal to abrupt expansions and in small elliptical tubules. This is in accord with known physical observations. More unexpected are the dramatic increases in accumulation which can come about through the intervention of an autocatalytic reaction step, with Cw rising sharply toward infinity as the ratio of reaction to transport coefficient approaches unity. Such self-catalyzed reactions have the ability to act as powerful amplifiers of an otherwise modest influence of flow and transport on coagulant concentration. The paper considers as well the effect on mass transport of transient conditions occasioned by coagulation initiation or pulsatile flow. During initiation, instantaneous flux varies with diffusivity and bulk concentration, favouring the early adsorption/consumption of proteins with the highest abundance and mobility. This is akin to the 'Vroman effect' seen in narrow, stagnant spaces. The effect of flow pulsatility on kL has the potential, after prolonged cycling, of bringing about segregation or accumulation of proteins, with consequences for the coagulation process.
Author Basmadjian, D
Author_xml – sequence: 1
  givenname: D
  surname: Basmadjian
  fullname: Basmadjian, D
  organization: Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/2281887$$D View this record in MEDLINE/PubMed
BookMark eNotj71OwzAURj0Ulf4t7Eh-gcC14zjXI6qAIlViKXNlJ_fSoMaO4iDE21OJDp_OdnS-pZjFFEmIOwUPCqB-DAy6tGiqaiYWAA4K66y5FcucvwCUwrKai7nWqBDrhagPJ5LETM0kE0s-px_pYyt7n7OcRh_zkMZJdlFOpzH1IX1SpNzltbhhf860uXIlPl6eD9tdsX9_fds-7YvGKDcVlpU3xoEBhxobdNiGUoWqYktsWRMyltq36Igvc6SgbvWlODjWpqn1Stz_e4fv0FN7HMau9-Pv8XpA_wFwA0X_
CitedBy_id crossref_primary_10_1111_j_1365_2516_2008_01848_x
crossref_primary_10_1016_j_apples_2022_100103
crossref_primary_10_1088_0031_9155_40_4_001
crossref_primary_10_1063_1_2163993
crossref_primary_10_1002_jbm_820260509
crossref_primary_10_1007_s10237_016_0853_7
crossref_primary_10_1115_1_1517062
crossref_primary_10_1137_S0036139998343769
crossref_primary_10_1007_BF02648048
crossref_primary_10_1016_0021_9290_95_00064_X
crossref_primary_10_1016_j_bpj_2009_08_004
crossref_primary_10_20538_1682_0363_2022_2_122_128
crossref_primary_10_1163_156856293X00122
crossref_primary_10_1016_S0017_9310_01_00039_4
crossref_primary_10_1007_BF00121186
crossref_primary_10_3389_fcvm_2019_00141
crossref_primary_10_1002_jbm_b_31413
crossref_primary_10_1007_s10439_010_0016_4
crossref_primary_10_1115_1_4033986
crossref_primary_10_3390_mi10070429
crossref_primary_10_1021_ie0503545
crossref_primary_10_1115_1_2899571
crossref_primary_10_1002_bit_10127
crossref_primary_10_1016_S0021_9290_02_00434_7
crossref_primary_10_1080_10739680802651477
crossref_primary_10_1016_j_thromres_2015_07_025
crossref_primary_10_1205_fbp_05020
crossref_primary_10_4244_EIJV11SVA8
crossref_primary_10_1007_s10439_005_2951_z
crossref_primary_10_1007_BF02368242
crossref_primary_10_1016_j_jbiomech_2014_01_006
crossref_primary_10_1098_rsif_2007_1202
crossref_primary_10_3389_fphys_2018_00306
crossref_primary_10_1115_1_2796080
crossref_primary_10_1161_ATVBAHA_108_173930
crossref_primary_10_1163_156856200744255
crossref_primary_10_1016_S0142_9612_97_80002_6
crossref_primary_10_1007_s00285_007_0093_7
crossref_primary_10_1053_beha_2001_0133
crossref_primary_10_1161_01_ATV_18_5_708
crossref_primary_10_1097_MAT_0b013e3180a5e8ab
crossref_primary_10_3389_fphy_2022_886193
crossref_primary_10_1098_rsta_2008_0097
crossref_primary_10_1002_jbm_a_30023
crossref_primary_10_1016_j_jcin_2015_06_015
crossref_primary_10_1111_jth_13220
crossref_primary_10_1007_BF02390376
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1007/bf02368455
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Engineering
ExternalDocumentID 2281887
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6J9
6NX
78A
7X7
85S
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEOY
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAQLM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
CGR
COF
CS3
CSCUP
CUY
CVF
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
ECM
EIF
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
L7B
LAK
LK8
LLZTM
M1P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPM
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UKR
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8N
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZY4
~EX
~KM
ID FETCH-LOGICAL-c419t-6f1a4490409828c898db31b55f6ef6f2e8f832ad89ef89e9e107d2696b9f24c72
ISSN 0090-6964
IngestDate Wed Oct 16 00:48:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c419t-6f1a4490409828c898db31b55f6ef6f2e8f832ad89ef89e9e107d2696b9f24c72
PMID 2281887
ParticipantIDs pubmed_primary_2281887
PublicationCentury 1900
PublicationDate 1990-11-00
PublicationDateYYYYMMDD 1990-11-01
PublicationDate_xml – month: 11
  year: 1990
  text: 1990-11-00
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Annals of biomedical engineering
PublicationTitleAlternate Ann Biomed Eng
PublicationYear 1990
SSID ssj0011835
Score 1.5696921
SecondaryResourceType review_article
Snippet The paper presents a mathematical analysis of the contributions of flow and mass transport to a single reactive event at a blood vessel wall. The intent is to...
SourceID pubmed
SourceType Index Database
StartPage 685
SubjectTerms Biomechanical Phenomena
Blood Coagulation - physiology
Blood Vessels - physiology
Hemodynamics - physiology
Humans
Models, Cardiovascular
Pulsatile Flow - physiology
Regional Blood Flow
Thrombosis - physiopathology
Title The effect of flow and mass transport in thrombogenesis
URI https://www.ncbi.nlm.nih.gov/pubmed/2281887
Volume 18
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5OUeZBdDr8TQ5eK2uXpslR_MEQttMGu42kSWRi2-F28q_3pQlrt6moh5aSlLLmK1_ee3vvewjdEMZDqcA7YdyGbqSAK9h3AxFHzGgFHkIZuugPaG9EnsfxuGr3V1aXLORt-vFlXcl_UIUxwNVWyf4B2eVDYQCuAV84A8Jw_jXGLiHD2nzmrXDpvRkYxLb3g1Mtd5mM70UmixdLbNN53SCtBJRdIX6Jma5ECqtI5zwT6nXq4qUPVbAghI3GV83VCBDGKHfC4ZsEuMZm1HXT2WBZl1ghjVWfZyReuQlWaJaV6x1ZoSm3m_44uaZ37WcaqJEwS1wDG37xfwsB_7iWFP4tanqz1a9pol3_jDVXoTQZhofowNv6-M4Bd4S2dN5C-zUFyBba6_vchmOUAJrYoYkLgy2aGNDEFk28RBNPc7yK5gkaPT0O73uBb2sRpCTki4CaUBDCgT05uLsp40zJbijj2FBtqIk0M0CzQjGuDRxcg4euInhdyU1E0iRqo-28yPUpwoKHhgnZUSLqEKUoU2GUqJRSJkw37nbOUNstwGTmtEsmfmXOv5u4QM3qu7lEOwa-QX0FdtdCXpdYfAK1Xipm
link.rule.ids 783
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+flow+and+mass+transport+in+thrombogenesis&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Basmadjian%2C+D&rft.date=1990-11-01&rft.issn=0090-6964&rft.volume=18&rft.issue=6&rft.spage=685&rft_id=info:doi/10.1007%2Fbf02368455&rft_id=info%3Apmid%2F2281887&rft_id=info%3Apmid%2F2281887&rft.externalDocID=2281887
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon