An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries

Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and accurate state of charge (SOC) estimation is of paramount importance for the EV battery management system. Though a number of methods have been proposed, the SOC estimation for Lithium-ion batteries, such as LiFePo4 batte...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 283; pp. 24 - 36
Main Authors Zhang, Cheng, Li, Kang, Pei, Lei, Zhu, Chunbo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and accurate state of charge (SOC) estimation is of paramount importance for the EV battery management system. Though a number of methods have been proposed, the SOC estimation for Lithium-ion batteries, such as LiFePo4 battery, however, faces two key challenges: the flat open circuit voltage (OCV) vs SOC relationship for some SOC ranges and the hysteresis effect. To address these problems, an integrated approach for real-time model-based SOC estimation of Lithium-ion batteries is proposed in this paper. Firstly, an auto-regression model is adopted to reproduce the battery terminal behaviour, combined with a non-linear complementary model to capture the hysteresis effect. The model parameters, including linear parameters and non-linear parameters, are optimized off-line using a hybrid optimization method that combines a meta-heuristic method (i.e., the teaching learning based optimization method) and the least square method. Secondly, using the trained model, two real-time model-based SOC estimation methods are presented, one based on the real-time battery OCV regression model achieved through weighted recursive least square method, and the other based on the state estimation using the extended Kalman filter method (EKF). To tackle the problem caused by the flat OCV-vs-SOC segments when the OCV-based SOC estimation method is adopted, a method combining the coulombic counting and the OCV-based method is proposed. Finally, modelling results and SOC estimation results are presented and analysed using the data collected from LiFePo4 battery cell. The results confirmed the effectiveness of the proposed approach, in particular the joint-EKF method. •An auto-regression battery model is built considering hysteresis nonlinearity.•A hybrid model training method combining TLBO and least square is proposed.•WRLS and joint-EKF approaches are used for real-time model-based SOC estimation.•Flat OCV problem is tackled by combining WRLS method with coulomb counting.
AbstractList Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and accurate state of charge (SOC) estimation is of paramount importance for the EV battery management system. Though a number of methods have been proposed, the SOC estimation for Lithium-ion batteries, such as LiFePo4 battery, however, faces two key challenges: the flat open circuit voltage (OCV) vs SOC relationship for some SOC ranges and the hysteresis effect. To address these problems, an integrated approach for real-time model-based SOC estimation of Lithium-ion batteries is proposed in this paper. Firstly, an auto-regression model is adopted to reproduce the battery terminal behaviour, combined with a non-linear complementary model to capture the hysteresis effect. The model parameters, including linear parameters and non-linear parameters, are optimized off-line using a hybrid optimization method that combines a meta-heuristic method (i.e., the teaching learning based optimization method) and the least square method. Secondly, using the trained model, two real-time model-based SOC estimation methods are presented, one based on the real-time battery OCV regression model achieved through weighted recursive least square method, and the other based on the state estimation using the extended Kalman filter method (EKF). To tackle the problem caused by the flat OCV-vs-SOC segments when the OCV-based SOC estimation method is adopted, a method combining the coulombic counting and the OCV-based method is proposed. Finally, modelling results and SOC estimation results are presented and analysed using the data collected from LiFePo4 battery cell. The results confirmed the effectiveness of the proposed approach, in particular the joint-EKF method. •An auto-regression battery model is built considering hysteresis nonlinearity.•A hybrid model training method combining TLBO and least square is proposed.•WRLS and joint-EKF approaches are used for real-time model-based SOC estimation.•Flat OCV problem is tackled by combining WRLS method with coulomb counting.
Author Li, Kang
Pei, Lei
Zhu, Chunbo
Zhang, Cheng
Author_xml – sequence: 1
  givenname: Cheng
  surname: Zhang
  fullname: Zhang, Cheng
  organization: School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, 125 Stramillis Road, Ashby Building, Belfast BT9 5AH, UK
– sequence: 2
  givenname: Kang
  orcidid: 0000-0002-2213-5489
  surname: Li
  fullname: Li, Kang
  email: k.li@qub.ac.uk
  organization: School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, 125 Stramillis Road, Ashby Building, Belfast BT9 5AH, UK
– sequence: 3
  givenname: Lei
  surname: Pei
  fullname: Pei, Lei
  organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, 92 Xidazhi St., Harbin 150001, China
– sequence: 4
  givenname: Chunbo
  surname: Zhu
  fullname: Zhu, Chunbo
  organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, 92 Xidazhi St., Harbin 150001, China
BookMark eNqFkE1LAzEQhoNUsFX_guQPZJ3sV7rgwVL8goIXPYdsMmmzbDclSRX_vVurFy89DQPv8zLzzMhk8AMScsMh48Dr2y7rdv4z-n3IcuBVBnkGTXNGpnwuCpaLqpqQKRRizoSoigsyi7EDAM4FTIlZDNQNCddBJTRU7XbBK72h1gcaUPUsuS3SrTfYs1bFMRLTmGTeMr1RYY0U4xhRyfmBekt7lzZuv2WHtVUpYXAYr8i5VX3E6995Sd4fH96Wz2z1-vSyXKyYLnmTWN2CRm4bo7UteSWQG1Pa2mosDa9sCTnmphUWjKhMIfK6hnZuQJVala1odHFJ7o69OvgYA1qpXfo5LQXleslBHozJTv4ZkwdjEnI5Ghvx-h--C-Nr4es0eH8EcXzuw2GQUTscNBoXUCdpvDtV8Q2k_JBb
CitedBy_id crossref_primary_10_1515_ijeeps_2017_0210
crossref_primary_10_51541_nicel_1117756
crossref_primary_10_3390_en8088594
crossref_primary_10_1002_er_6186
crossref_primary_10_1016_j_ijhydene_2017_07_219
crossref_primary_10_1109_ACCESS_2018_2850743
crossref_primary_10_3390_en10010085
crossref_primary_10_1016_j_energy_2015_06_095
crossref_primary_10_1016_j_est_2020_101343
crossref_primary_10_1002_er_3705
crossref_primary_10_1016_j_est_2022_104301
crossref_primary_10_1016_j_ijepes_2017_01_013
crossref_primary_10_3390_en10060764
crossref_primary_10_1007_s11581_023_05272_9
crossref_primary_10_3233_JCM_215587
crossref_primary_10_1016_j_energy_2016_03_096
crossref_primary_10_3390_electronics9101737
crossref_primary_10_1016_j_ifacol_2019_09_150
crossref_primary_10_1016_j_est_2024_112042
crossref_primary_10_20964_2022_08_31
crossref_primary_10_3390_batteries10090314
crossref_primary_10_3390_coatings9110732
crossref_primary_10_3390_electronics13214256
crossref_primary_10_1088_1755_1315_208_1_012001
crossref_primary_10_1016_j_est_2017_01_006
crossref_primary_10_3390_en8065916
crossref_primary_10_1109_TIE_2017_2677319
crossref_primary_10_1049_iet_est_2019_0026
crossref_primary_10_1016_j_energy_2016_08_080
crossref_primary_10_1088_0957_0233_27_12_124005
crossref_primary_10_3390_su14169993
crossref_primary_10_1016_j_jpowsour_2015_09_005
crossref_primary_10_1016_j_jpowsour_2015_10_052
crossref_primary_10_1002_ese3_1630
crossref_primary_10_1016_j_apenergy_2017_05_136
crossref_primary_10_1007_s11581_024_05811_y
crossref_primary_10_1109_TIE_2016_2610398
crossref_primary_10_1002_er_4060
crossref_primary_10_1002_er_4227
crossref_primary_10_1016_j_pecs_2021_100904
crossref_primary_10_1109_ACCESS_2020_3017774
crossref_primary_10_1109_JESTIE_2021_3078253
crossref_primary_10_20964_2022_05_14
crossref_primary_10_1016_j_est_2024_115282
crossref_primary_10_1093_jigpal_jzz075
crossref_primary_10_1016_j_est_2016_09_008
crossref_primary_10_1016_j_energy_2017_10_043
crossref_primary_10_1016_j_est_2023_108707
crossref_primary_10_3390_en13102422
crossref_primary_10_1016_j_est_2022_104362
crossref_primary_10_1016_j_jpowsour_2020_229117
crossref_primary_10_3390_en17010202
crossref_primary_10_1016_j_energy_2020_119529
crossref_primary_10_1109_ACCESS_2019_2910882
crossref_primary_10_3233_JIFS_231433
crossref_primary_10_3390_en81212395
crossref_primary_10_3390_en11123444
crossref_primary_10_1587_transinf_2019EDP7015
crossref_primary_10_1016_j_apenergy_2023_121406
crossref_primary_10_3390_en11071820
crossref_primary_10_1155_2020_8840240
crossref_primary_10_3389_fenrg_2022_984107
crossref_primary_10_3390_en11051112
Cites_doi 10.1038/nmat3623
10.1016/j.jpowsour.2004.09.020
10.1016/S0378-7753(99)00079-8
10.1155/2013/953792
10.1016/j.energy.2011.03.059
10.1016/j.jpowsour.2008.08.103
10.3390/en4040582
10.1109/TCST.2009.2027023
10.1016/j.jpowsour.2004.02.032
10.1109/TIE.2011.2159691
10.1016/S0378-7753(01)00560-2
10.1016/j.jpowsour.2006.06.004
10.1016/S0378-7753(99)00351-1
10.3390/en6042007
10.3390/en6105088
10.1016/j.enconman.2009.08.015
10.1115/1.4024801
10.1016/j.enconman.2008.03.013
10.1149/1.2128096
10.1016/S0378-7753(02)00558-X
10.4061/2011/984320
10.1016/j.jpowsour.2010.10.075
10.1016/S0167-2738(00)00366-0
10.1016/j.jpowsour.2012.12.057
10.1016/j.jpowsour.2010.08.008
10.1016/j.jpowsour.2004.02.033
10.1049/iet-est.2013.0020
10.1016/j.jpowsour.2012.10.060
10.1016/j.cad.2010.12.015
10.1109/TPEL.2009.2034966
ContentType Journal Article
Copyright 2015
Copyright_xml – notice: 2015
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2015.02.099
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
EndPage 36
ExternalDocumentID 10_1016_j_jpowsour_2015_02_099
S0378775315003444
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
SSH
T9H
VH1
VOH
WUQ
ID FETCH-LOGICAL-c419t-6b0ce1f9dccf4157e1dd4f6fce4d15f402e2db7f0d75d372660b8d0a4ca4b79c3
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Tue Jul 01 04:23:15 EDT 2025
Thu Apr 24 22:56:54 EDT 2025
Fri Feb 23 02:31:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Weighted recursive least square
Teaching learning based optimization (TLBO) method
LiFePo4 battery
Real-time SOC estimation
Hysteresis effect
Extended Kalman filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-6b0ce1f9dccf4157e1dd4f6fce4d15f402e2db7f0d75d372660b8d0a4ca4b79c3
ORCID 0000-0002-2213-5489
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_jpowsour_2015_02_099
crossref_primary_10_1016_j_jpowsour_2015_02_099
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2015_02_099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of power sources
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Orsini, Dollé, Tarascon (bib21) 2000; 135
wikipedia, Electric vehicle battery (bib2) Feb. 2014
Hansen, Wang (bib33) 2005; 141
Rodrigues, Munichandraiah, Shukla (bib20) 2000; 87
Plett (bib38) 2004; 134
Buller, Thele, Karden, De Doncker (bib23) 2003; 113
Weigert, Tian, Lian (bib30) 2011; 196
Kim (bib40) 2010; 25
Lifepo4 battery temperatures test (bib13) Jun. 2014
Di Domenico, Fiengo, Stefanopoulou (bib24) 2008
Verbrugge, Koch (bib37) 2006; 153
Junping, Jingang, Lei (bib34) 2009; 50
Piller, Perrin, Jossen (bib5) 2001; 96
Chang (bib6) 2013; 2013
Smith, Rahn, Wang (bib26) 2010; 18
Pei, Lu, Zhu (bib19) 2013; 3
Ljung (bib36) 1987
Rao, Savsani, Vakharia (bib35) 2011; 43
Sun, Hu, Zou, Li (bib39) 2011; 36
Watrin, Blunier, Miraoui (bib7) 2012
Li, Klee Barillas, Guenther, Danzer (bib9) 2013; 230
Chang, Huang, Chang (bib11) 2013; 6
Moura, Chaturvedi, Krstić (bib25) 2014; 136
Klein, Chaturvedi, Christensen, Ahmed, Findeisen, Kojic (bib27) 2010
Zhu, Wang (bib17) 2011; 196
Salkind, Fennie, Singh, Atwater, Reisner (bib32) 1999; 80
(bib22) Feb. 2014
He, Qin, Sun, Shui (bib10) 2013; 6
Roscher, Bohlen, Vetter (bib16) 2011; 2011
Sasaki, Ukyo, Novák (bib18) 2013; 12
IEA (bib1) Apr. 2013
Plett (bib15) 2006; 161
He, Xiong, Fan (bib29) 2011; 4
Cao, Schofield, Emadi (bib4) 2008
Prajapati, Hess, William, Gupta, Huff, Manic, Rufus, Thakker, Govar (bib8) 2011
Lu, Han, Li, Hua, Ouyang (bib3) 2013; 226
Lee, Kim, Lee, Cho (bib12) 2008; 185
Plett (bib28) 2004; 134
Baronti, Fantechi, Fanucci, Leonardi, Roncella, Saletti, Saponara (bib14) 2011
Bo, Zhifeng, Binggang (bib31) 2008; 49
Zhang, Liu, Fang, Wang (bib41) 2012; 59
He (10.1016/j.jpowsour.2015.02.099_bib10) 2013; 6
Chang (10.1016/j.jpowsour.2015.02.099_bib11) 2013; 6
Cao (10.1016/j.jpowsour.2015.02.099_bib4) 2008
Li (10.1016/j.jpowsour.2015.02.099_bib9) 2013; 230
Kim (10.1016/j.jpowsour.2015.02.099_bib40) 2010; 25
Pei (10.1016/j.jpowsour.2015.02.099_bib19) 2013; 3
Buller (10.1016/j.jpowsour.2015.02.099_bib23) 2003; 113
Sun (10.1016/j.jpowsour.2015.02.099_bib39) 2011; 36
Prajapati (10.1016/j.jpowsour.2015.02.099_bib8) 2011
Klein (10.1016/j.jpowsour.2015.02.099_bib27) 2010
Lee (10.1016/j.jpowsour.2015.02.099_bib12) 2008; 185
Smith (10.1016/j.jpowsour.2015.02.099_bib26) 2010; 18
Zhang (10.1016/j.jpowsour.2015.02.099_bib41) 2012; 59
Plett (10.1016/j.jpowsour.2015.02.099_bib15) 2006; 161
Hansen (10.1016/j.jpowsour.2015.02.099_bib33) 2005; 141
Ljung (10.1016/j.jpowsour.2015.02.099_bib36) 1987
Roscher (10.1016/j.jpowsour.2015.02.099_bib16) 2011; 2011
(10.1016/j.jpowsour.2015.02.099_bib22) 2014
Salkind (10.1016/j.jpowsour.2015.02.099_bib32) 1999; 80
Bo (10.1016/j.jpowsour.2015.02.099_bib31) 2008; 49
Lifepo4 battery temperatures test (10.1016/j.jpowsour.2015.02.099_bib13)
Verbrugge (10.1016/j.jpowsour.2015.02.099_bib37) 2006; 153
Piller (10.1016/j.jpowsour.2015.02.099_bib5) 2001; 96
Sasaki (10.1016/j.jpowsour.2015.02.099_bib18) 2013; 12
He (10.1016/j.jpowsour.2015.02.099_bib29) 2011; 4
wikipedia, Electric vehicle battery (10.1016/j.jpowsour.2015.02.099_bib2)
Di Domenico (10.1016/j.jpowsour.2015.02.099_bib24) 2008
Watrin (10.1016/j.jpowsour.2015.02.099_bib7) 2012
Plett (10.1016/j.jpowsour.2015.02.099_bib28) 2004; 134
Plett (10.1016/j.jpowsour.2015.02.099_bib38) 2004; 134
IEA (10.1016/j.jpowsour.2015.02.099_bib1) 2013
Lu (10.1016/j.jpowsour.2015.02.099_bib3) 2013; 226
Weigert (10.1016/j.jpowsour.2015.02.099_bib30) 2011; 196
Junping (10.1016/j.jpowsour.2015.02.099_bib34) 2009; 50
Rao (10.1016/j.jpowsour.2015.02.099_bib35) 2011; 43
Rodrigues (10.1016/j.jpowsour.2015.02.099_bib20) 2000; 87
Orsini (10.1016/j.jpowsour.2015.02.099_bib21) 2000; 135
Moura (10.1016/j.jpowsour.2015.02.099_bib25) 2014; 136
Chang (10.1016/j.jpowsour.2015.02.099_bib6) 2013; 2013
Zhu (10.1016/j.jpowsour.2015.02.099_bib17) 2011; 196
Baronti (10.1016/j.jpowsour.2015.02.099_bib14) 2011
References_xml – volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: bib35
  article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
– volume: 134
  start-page: 262
  year: 2004
  end-page: 276
  ident: bib28
  article-title: Extended kalman filtering for battery management systems of lipb-based hev battery packs: part 2
  publication-title: Model. Identif. J. Power Sources
– volume: 18
  start-page: 654
  year: 2010
  end-page: 663
  ident: bib26
  article-title: Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 4
  start-page: 582
  year: 2011
  end-page: 598
  ident: bib29
  article-title: Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach
  publication-title: Energies
– volume: 3
  start-page: 112
  year: 2013
  end-page: 117
  ident: bib19
  article-title: Relaxation model of the open-circuit voltage for state-of-charge estimation in lithium-ion batteries
  publication-title: IET Electr. Syst. Transp.
– start-page: 1
  year: 2011
  end-page: 8
  ident: bib8
  article-title: A Literature Review of State-of-charge Estimation Techniques Applicable to Lithium Poly-carbon Monoflouride (li/cfx) Battery
  publication-title: 2010 India International Conference on Power Electronics (IICPE)
– year: Apr. 2013
  ident: bib1
  article-title: Global Ev Outlook
– start-page: 6618
  year: 2010
  end-page: 6623
  ident: bib27
  article-title: State estimation of a reduced electrochemical model of a lithium-ion battery
  publication-title: American Control Conference (ACC), 2010
– start-page: 1
  year: 2008
  end-page: 6
  ident: bib4
  article-title: Battery balancing methods: a comprehensive review
  publication-title: Vehicle Power and Propulsion Conference, IEEE
– volume: 50
  start-page: 3182
  year: 2009
  end-page: 3186
  ident: bib34
  article-title: An adaptive kalman filtering based state of charge combined estimator for electric vehicle battery pack
  publication-title: Energy Convers. Manage.
– volume: 59
  start-page: 1086
  year: 2012
  end-page: 1095
  ident: bib41
  article-title: Estimation of battery state of charge with observer: applied to a robot for inspecting power transmission lines
  publication-title: IEEE Trans. Ind. Electron.
– volume: 87
  start-page: 12
  year: 2000
  end-page: 20
  ident: bib20
  article-title: A review of state-of-charge indication of batteries by means of ac impedance measurements
  publication-title: J. Power Sources
– volume: 196
  start-page: 4061
  year: 2011
  end-page: 4066
  ident: bib30
  article-title: State-of-charge prediction of batteries and battery–supercapacitor hybrids using artificial neural networks
  publication-title: J. Power Sources
– volume: 80
  start-page: 293
  year: 1999
  end-page: 300
  ident: bib32
  article-title: Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology
  publication-title: J. Power Sources
– volume: 2013
  year: 2013
  ident: bib6
  article-title: The state of charge estimating methods for battery: a review
  publication-title: ISRN Appl. Math.
– volume: 161
  start-page: 1369
  year: 2006
  end-page: 1384
  ident: bib15
  article-title: Sigma-point kalman filtering for battery management systems of lipb-based hev battery packs: part 2: simultaneous state and parameter estimation
  publication-title: J. Power Sources
– volume: 49
  start-page: 2788
  year: 2008
  end-page: 2794
  ident: bib31
  article-title: State of charge estimation based on evolutionary neural network
  publication-title: Energy Convers. Manage.
– volume: 25
  start-page: 1013
  year: 2010
  end-page: 1022
  ident: bib40
  article-title: A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer
  publication-title: IEEE Trans. Power Electron.
– volume: 196
  start-page: 1442
  year: 2011
  end-page: 1448
  ident: bib17
  article-title: Strain accommodation and potential hysteresis of lifepo4 cathodes during lithium ion insertion/extraction
  publication-title: J. Power Sources
– year: 1987
  ident: bib36
  article-title: System Identification: Theory for the User
– volume: 6
  start-page: 5088
  year: 2013
  end-page: 5100
  ident: bib10
  article-title: Comparison study on the battery soc estimation with ekf and ukf algorithms
  publication-title: Energies
– start-page: 1
  year: 2011
  end-page: 5
  ident: bib14
  article-title: State-of-charge estimation enhancing of lithium batteries through a temperature-dependent cell model
  publication-title: 2011 International Conference on Applied Electronics (AE)
– volume: 12
  start-page: 569
  year: 2013
  end-page: 575
  ident: bib18
  article-title: Memory effect in a lithium-ion battery
  publication-title: Nat. Mater.
– volume: 141
  start-page: 351
  year: 2005
  end-page: 358
  ident: bib33
  article-title: Support vector based battery state of charge estimator
  publication-title: J. Power Sources
– year: Jun. 2014
  ident: bib13
– start-page: 702
  year: 2008
  end-page: 707
  ident: bib24
  article-title: Lithium-ion battery state of charge estimation with a kalman filter based on a electrochemical model
  publication-title: IEEE International Conference on Control Applications
– volume: 113
  start-page: 422
  year: 2003
  end-page: 430
  ident: bib23
  article-title: Impedance-based non-linear dynamic battery modeling for automotive applications
  publication-title: J. Power Sources
– volume: 135
  start-page: 213
  year: 2000
  end-page: 221
  ident: bib21
  article-title: Impedance study of the li/electrolyte interface upon cycling
  publication-title: Solid State Ionics
– volume: 230
  start-page: 244
  year: 2013
  end-page: 250
  ident: bib9
  article-title: A comparative study of state of charge estimation algorithms for lifepo4 batteries used in electric vehicles
  publication-title: J. Power Sources
– volume: 96
  start-page: 113
  year: 2001
  end-page: 120
  ident: bib5
  article-title: Methods for state-of-charge determination and their applications
  publication-title: J. Power Sources
– volume: 6
  start-page: 2007
  year: 2013
  end-page: 2030
  ident: bib11
  article-title: A new state of charge estimation method for lifepo4 battery packs used in robots
  publication-title: Energies
– year: Feb. 2014
  ident: bib22
  publication-title: How to Measure State-of-Charge
– volume: 2011
  year: 2011
  ident: bib16
  article-title: Ocv hysteresis in li-ion batteries including two-phase transition materials
  publication-title: Int. J. Electrochem.
– year: Feb. 2014
  ident: bib2
– volume: 134
  start-page: 277
  year: 2004
  end-page: 292
  ident: bib38
  article-title: Extended kalman filtering for battery management systems of lipb-based hev battery packs: part 3. State parameter estimation
  publication-title: J. Power sources
– volume: 226
  start-page: 272
  year: 2013
  end-page: 288
  ident: bib3
  article-title: A review on the key issues for lithium-ion battery management in electric vehicles
  publication-title: J. Power Sources
– volume: 153
  start-page: A187
  year: 2006
  end-page: A201
  ident: bib37
  article-title: Generalized recursive algorithm for adaptive multiparameter regression application to lead acid, nickel metal hydride, and lithium-ion batteries
  publication-title: J. Electrochem. Soc.
– volume: 36
  start-page: 3531
  year: 2011
  end-page: 3540
  ident: bib39
  article-title: Adaptive unscented kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
  publication-title: Energy
– volume: 136
  start-page: 011015
  year: 2014
  ident: bib25
  article-title: Adaptive partial differential equation observer for battery state-of-charge/state-of-health estimation via an electrochemical model
  publication-title: J. Dyn. Syst. Meas. Control
– start-page: 1
  year: 2012
  end-page: 6
  ident: bib7
  article-title: Review of adaptive systems for lithium batteries state-of-charge and state-of-health estimation
  publication-title: Transportation Electrification Conference and Expo (ITEC)
– volume: 185
  start-page: 1367
  year: 2008
  end-page: 1373
  ident: bib12
  article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge
  publication-title: J. Power Sources
– ident: 10.1016/j.jpowsour.2015.02.099_bib2
– start-page: 1
  year: 2012
  ident: 10.1016/j.jpowsour.2015.02.099_bib7
  article-title: Review of adaptive systems for lithium batteries state-of-charge and state-of-health estimation
– volume: 12
  start-page: 569
  issue: 6
  year: 2013
  ident: 10.1016/j.jpowsour.2015.02.099_bib18
  article-title: Memory effect in a lithium-ion battery
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3623
– start-page: 1
  year: 2008
  ident: 10.1016/j.jpowsour.2015.02.099_bib4
  article-title: Battery balancing methods: a comprehensive review
– volume: 141
  start-page: 351
  issue: 2
  year: 2005
  ident: 10.1016/j.jpowsour.2015.02.099_bib33
  article-title: Support vector based battery state of charge estimator
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.09.020
– volume: 80
  start-page: 293
  issue: 1
  year: 1999
  ident: 10.1016/j.jpowsour.2015.02.099_bib32
  article-title: Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00079-8
– volume: 2013
  year: 2013
  ident: 10.1016/j.jpowsour.2015.02.099_bib6
  article-title: The state of charge estimating methods for battery: a review
  publication-title: ISRN Appl. Math.
  doi: 10.1155/2013/953792
– volume: 36
  start-page: 3531
  issue: 5
  year: 2011
  ident: 10.1016/j.jpowsour.2015.02.099_bib39
  article-title: Adaptive unscented kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.059
– volume: 185
  start-page: 1367
  issue: 2
  year: 2008
  ident: 10.1016/j.jpowsour.2015.02.099_bib12
  article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.08.103
– volume: 4
  start-page: 582
  issue: 4
  year: 2011
  ident: 10.1016/j.jpowsour.2015.02.099_bib29
  article-title: Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach
  publication-title: Energies
  doi: 10.3390/en4040582
– start-page: 1
  year: 2011
  ident: 10.1016/j.jpowsour.2015.02.099_bib14
  article-title: State-of-charge estimation enhancing of lithium batteries through a temperature-dependent cell model
– volume: 18
  start-page: 654
  issue: 3
  year: 2010
  ident: 10.1016/j.jpowsour.2015.02.099_bib26
  article-title: Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2009.2027023
– volume: 134
  start-page: 262
  issue: 2
  year: 2004
  ident: 10.1016/j.jpowsour.2015.02.099_bib28
  article-title: Extended kalman filtering for battery management systems of lipb-based hev battery packs: part 2
  publication-title: Model. Identif. J. Power Sources
  doi: 10.1016/j.jpowsour.2004.02.032
– volume: 59
  start-page: 1086
  issue: 2
  year: 2012
  ident: 10.1016/j.jpowsour.2015.02.099_bib41
  article-title: Estimation of battery state of charge with observer: applied to a robot for inspecting power transmission lines
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2011.2159691
– ident: 10.1016/j.jpowsour.2015.02.099_bib13
– volume: 96
  start-page: 113
  issue: 1
  year: 2001
  ident: 10.1016/j.jpowsour.2015.02.099_bib5
  article-title: Methods for state-of-charge determination and their applications
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00560-2
– volume: 161
  start-page: 1369
  issue: 2
  year: 2006
  ident: 10.1016/j.jpowsour.2015.02.099_bib15
  article-title: Sigma-point kalman filtering for battery management systems of lipb-based hev battery packs: part 2: simultaneous state and parameter estimation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.06.004
– volume: 87
  start-page: 12
  issue: 1
  year: 2000
  ident: 10.1016/j.jpowsour.2015.02.099_bib20
  article-title: A review of state-of-charge indication of batteries by means of ac impedance measurements
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00351-1
– start-page: 702
  year: 2008
  ident: 10.1016/j.jpowsour.2015.02.099_bib24
  article-title: Lithium-ion battery state of charge estimation with a kalman filter based on a electrochemical model
– volume: 6
  start-page: 2007
  issue: 4
  year: 2013
  ident: 10.1016/j.jpowsour.2015.02.099_bib11
  article-title: A new state of charge estimation method for lifepo4 battery packs used in robots
  publication-title: Energies
  doi: 10.3390/en6042007
– year: 2013
  ident: 10.1016/j.jpowsour.2015.02.099_bib1
– volume: 6
  start-page: 5088
  issue: 10
  year: 2013
  ident: 10.1016/j.jpowsour.2015.02.099_bib10
  article-title: Comparison study on the battery soc estimation with ekf and ukf algorithms
  publication-title: Energies
  doi: 10.3390/en6105088
– volume: 50
  start-page: 3182
  issue: 12
  year: 2009
  ident: 10.1016/j.jpowsour.2015.02.099_bib34
  article-title: An adaptive kalman filtering based state of charge combined estimator for electric vehicle battery pack
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2009.08.015
– volume: 136
  start-page: 011015
  issue: 1
  year: 2014
  ident: 10.1016/j.jpowsour.2015.02.099_bib25
  article-title: Adaptive partial differential equation observer for battery state-of-charge/state-of-health estimation via an electrochemical model
  publication-title: J. Dyn. Syst. Meas. Control
  doi: 10.1115/1.4024801
– volume: 49
  start-page: 2788
  issue: 10
  year: 2008
  ident: 10.1016/j.jpowsour.2015.02.099_bib31
  article-title: State of charge estimation based on evolutionary neural network
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2008.03.013
– year: 1987
  ident: 10.1016/j.jpowsour.2015.02.099_bib36
– volume: 153
  start-page: A187
  issue: 1
  year: 2006
  ident: 10.1016/j.jpowsour.2015.02.099_bib37
  article-title: Generalized recursive algorithm for adaptive multiparameter regression application to lead acid, nickel metal hydride, and lithium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2128096
– volume: 113
  start-page: 422
  issue: 2
  year: 2003
  ident: 10.1016/j.jpowsour.2015.02.099_bib23
  article-title: Impedance-based non-linear dynamic battery modeling for automotive applications
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00558-X
– start-page: 1
  year: 2011
  ident: 10.1016/j.jpowsour.2015.02.099_bib8
  article-title: A Literature Review of State-of-charge Estimation Techniques Applicable to Lithium Poly-carbon Monoflouride (li/cfx) Battery
– volume: 2011
  year: 2011
  ident: 10.1016/j.jpowsour.2015.02.099_bib16
  article-title: Ocv hysteresis in li-ion batteries including two-phase transition materials
  publication-title: Int. J. Electrochem.
  doi: 10.4061/2011/984320
– volume: 196
  start-page: 4061
  issue: 8
  year: 2011
  ident: 10.1016/j.jpowsour.2015.02.099_bib30
  article-title: State-of-charge prediction of batteries and battery–supercapacitor hybrids using artificial neural networks
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.10.075
– volume: 135
  start-page: 213
  issue: 1
  year: 2000
  ident: 10.1016/j.jpowsour.2015.02.099_bib21
  article-title: Impedance study of the li/electrolyte interface upon cycling
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(00)00366-0
– start-page: 6618
  year: 2010
  ident: 10.1016/j.jpowsour.2015.02.099_bib27
  article-title: State estimation of a reduced electrochemical model of a lithium-ion battery
– volume: 230
  start-page: 244
  year: 2013
  ident: 10.1016/j.jpowsour.2015.02.099_bib9
  article-title: A comparative study of state of charge estimation algorithms for lifepo4 batteries used in electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.12.057
– year: 2014
  ident: 10.1016/j.jpowsour.2015.02.099_bib22
– volume: 196
  start-page: 1442
  issue: 3
  year: 2011
  ident: 10.1016/j.jpowsour.2015.02.099_bib17
  article-title: Strain accommodation and potential hysteresis of lifepo4 cathodes during lithium ion insertion/extraction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.08.008
– volume: 134
  start-page: 277
  issue: 2
  year: 2004
  ident: 10.1016/j.jpowsour.2015.02.099_bib38
  article-title: Extended kalman filtering for battery management systems of lipb-based hev battery packs: part 3. State parameter estimation
  publication-title: J. Power sources
  doi: 10.1016/j.jpowsour.2004.02.033
– volume: 3
  start-page: 112
  issue: 4
  year: 2013
  ident: 10.1016/j.jpowsour.2015.02.099_bib19
  article-title: Relaxation model of the open-circuit voltage for state-of-charge estimation in lithium-ion batteries
  publication-title: IET Electr. Syst. Transp.
  doi: 10.1049/iet-est.2013.0020
– volume: 226
  start-page: 272
  year: 2013
  ident: 10.1016/j.jpowsour.2015.02.099_bib3
  article-title: A review on the key issues for lithium-ion battery management in electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.060
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.jpowsour.2015.02.099_bib35
  article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 25
  start-page: 1013
  issue: 4
  year: 2010
  ident: 10.1016/j.jpowsour.2015.02.099_bib40
  article-title: A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2009.2034966
SSID ssj0001170
Score 2.45453
Snippet Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and accurate state of charge (SOC) estimation is of paramount importance for the EV...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 24
SubjectTerms Extended Kalman filter
Hysteresis effect
LiFePo4 battery
Real-time SOC estimation
Teaching learning based optimization (TLBO) method
Weighted recursive least square
Title An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries
URI https://dx.doi.org/10.1016/j.jpowsour.2015.02.099
Volume 283
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPrE-yh68bvPadLPHUixVsRct9Bayj2BLTYq0ePO3O7NJagWhBy-BDRkIM7Mz3yYz3xByF-nQhkZlTIbKMp7gnks0jntJjORRKIXGbuTncW804Y_TeNoig6YXBssq69hfxXQXres7Xq1NbzmbeS9-BM4GaBsgDfLWISco5wK9vPv1U-aBk1XcnwQ4LeHTW13C8-58WX7iR3Is8Yodd6fjgP0jQW0lneExOarRIu1XL3RCWrY4JYdbHIJnxPQLuuF8MLThCKcARikAwgXD6fHUDbxhmLIMdT1ErMyZY0myFHk2qgZGWuYUYPnbbP3OcKkc-Sacpc_JZHj_OhixenQC0zyQK9ZTvrZBLo3WOaRoYQNjeN7LteUmiHM4NKKFRO4bEZtIQJb2VWL8jOuMKyF1dEH2irKwl4QmKjI4KlZluNszkUSRNHABKwP0i22bxI2-Ul3ziuN4i0XaFJDN00bPKeo59cMU9Nwm3kZuWTFr7JSQjTnSXz6SQvjfIXv1D9lrcoCrqkDshuytPtb2FqDISnWcr3XIfv_haTT-Bjp14Y4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6sHtoeSp_UPvfQ69aYbExyFKlofVyq4G3JPkIVa6Qo_fudyUMsFHroJZCEgTC7O_Ntdub7AJ487VrXqJhHrrJchLTmQk1yL6GJhOdGgaZu5NG41ZuK15k_q0Cn7IWhssoi9ucxPYvWxZNG4c3Gej5vvDkeTjZE2whpiLdOHECN2Kn8KtTa_UFvvAvIJK6SHSbghokM9hqFF8-LdfpF_8mpysvP6DszGthfctRe3umewkkBGFk7_6YzqNjVORzv0QhegGmv2I72wbCSJpwhHmWICZecBORZpnnDKWsZlrUR8TThGVGSZUS1kfcwsjRhiMzf59sPTrcq49_E7fQlTLsvk06PF-oJXItmtOEt5WjbTCKjdYJZOrBNY0TSSrQVpuknuG-kQQoSxwS-8QJM1I4KjRMLHQsVRNq7guoqXdlrYKHyDKnFqpgWfByEnhcZvOBAI_rzbR380l9SF9TipHCxlGUN2UKWfpbkZ-m4Ev1ch8bObp2Ta_xpEZXDIX9ME4kZ4A_bm3_YPsJhbzIaymF_PLiFI3qT14vdQXXzubX3iEw26qGYed_04-Q_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+approach+for+real-time+model-based+state-of-charge+estimation+of+lithium-ion+batteries&rft.jtitle=Journal+of+power+sources&rft.au=Zhang%2C+Cheng&rft.au=Li%2C+Kang&rft.au=Pei%2C+Lei&rft.au=Zhu%2C+Chunbo&rft.date=2015-06-01&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=283&rft.spage=24&rft.epage=36&rft_id=info:doi/10.1016%2Fj.jpowsour.2015.02.099&rft.externalDocID=S0378775315003444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon