An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries
Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and accurate state of charge (SOC) estimation is of paramount importance for the EV battery management system. Though a number of methods have been proposed, the SOC estimation for Lithium-ion batteries, such as LiFePo4 batte...
Saved in:
Published in | Journal of power sources Vol. 283; pp. 24 - 36 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and accurate state of charge (SOC) estimation is of paramount importance for the EV battery management system. Though a number of methods have been proposed, the SOC estimation for Lithium-ion batteries, such as LiFePo4 battery, however, faces two key challenges: the flat open circuit voltage (OCV) vs SOC relationship for some SOC ranges and the hysteresis effect. To address these problems, an integrated approach for real-time model-based SOC estimation of Lithium-ion batteries is proposed in this paper. Firstly, an auto-regression model is adopted to reproduce the battery terminal behaviour, combined with a non-linear complementary model to capture the hysteresis effect. The model parameters, including linear parameters and non-linear parameters, are optimized off-line using a hybrid optimization method that combines a meta-heuristic method (i.e., the teaching learning based optimization method) and the least square method. Secondly, using the trained model, two real-time model-based SOC estimation methods are presented, one based on the real-time battery OCV regression model achieved through weighted recursive least square method, and the other based on the state estimation using the extended Kalman filter method (EKF). To tackle the problem caused by the flat OCV-vs-SOC segments when the OCV-based SOC estimation method is adopted, a method combining the coulombic counting and the OCV-based method is proposed. Finally, modelling results and SOC estimation results are presented and analysed using the data collected from LiFePo4 battery cell. The results confirmed the effectiveness of the proposed approach, in particular the joint-EKF method.
•An auto-regression battery model is built considering hysteresis nonlinearity.•A hybrid model training method combining TLBO and least square is proposed.•WRLS and joint-EKF approaches are used for real-time model-based SOC estimation.•Flat OCV problem is tackled by combining WRLS method with coulomb counting. |
---|---|
AbstractList | Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and accurate state of charge (SOC) estimation is of paramount importance for the EV battery management system. Though a number of methods have been proposed, the SOC estimation for Lithium-ion batteries, such as LiFePo4 battery, however, faces two key challenges: the flat open circuit voltage (OCV) vs SOC relationship for some SOC ranges and the hysteresis effect. To address these problems, an integrated approach for real-time model-based SOC estimation of Lithium-ion batteries is proposed in this paper. Firstly, an auto-regression model is adopted to reproduce the battery terminal behaviour, combined with a non-linear complementary model to capture the hysteresis effect. The model parameters, including linear parameters and non-linear parameters, are optimized off-line using a hybrid optimization method that combines a meta-heuristic method (i.e., the teaching learning based optimization method) and the least square method. Secondly, using the trained model, two real-time model-based SOC estimation methods are presented, one based on the real-time battery OCV regression model achieved through weighted recursive least square method, and the other based on the state estimation using the extended Kalman filter method (EKF). To tackle the problem caused by the flat OCV-vs-SOC segments when the OCV-based SOC estimation method is adopted, a method combining the coulombic counting and the OCV-based method is proposed. Finally, modelling results and SOC estimation results are presented and analysed using the data collected from LiFePo4 battery cell. The results confirmed the effectiveness of the proposed approach, in particular the joint-EKF method.
•An auto-regression battery model is built considering hysteresis nonlinearity.•A hybrid model training method combining TLBO and least square is proposed.•WRLS and joint-EKF approaches are used for real-time model-based SOC estimation.•Flat OCV problem is tackled by combining WRLS method with coulomb counting. |
Author | Li, Kang Pei, Lei Zhu, Chunbo Zhang, Cheng |
Author_xml | – sequence: 1 givenname: Cheng surname: Zhang fullname: Zhang, Cheng organization: School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, 125 Stramillis Road, Ashby Building, Belfast BT9 5AH, UK – sequence: 2 givenname: Kang orcidid: 0000-0002-2213-5489 surname: Li fullname: Li, Kang email: k.li@qub.ac.uk organization: School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, 125 Stramillis Road, Ashby Building, Belfast BT9 5AH, UK – sequence: 3 givenname: Lei surname: Pei fullname: Pei, Lei organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, 92 Xidazhi St., Harbin 150001, China – sequence: 4 givenname: Chunbo surname: Zhu fullname: Zhu, Chunbo organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, 92 Xidazhi St., Harbin 150001, China |
BookMark | eNqFkE1LAzEQhoNUsFX_guQPZJ3sV7rgwVL8goIXPYdsMmmzbDclSRX_vVurFy89DQPv8zLzzMhk8AMScsMh48Dr2y7rdv4z-n3IcuBVBnkGTXNGpnwuCpaLqpqQKRRizoSoigsyi7EDAM4FTIlZDNQNCddBJTRU7XbBK72h1gcaUPUsuS3SrTfYs1bFMRLTmGTeMr1RYY0U4xhRyfmBekt7lzZuv2WHtVUpYXAYr8i5VX3E6995Sd4fH96Wz2z1-vSyXKyYLnmTWN2CRm4bo7UteSWQG1Pa2mosDa9sCTnmphUWjKhMIfK6hnZuQJVala1odHFJ7o69OvgYA1qpXfo5LQXleslBHozJTv4ZkwdjEnI5Ghvx-h--C-Nr4es0eH8EcXzuw2GQUTscNBoXUCdpvDtV8Q2k_JBb |
CitedBy_id | crossref_primary_10_1515_ijeeps_2017_0210 crossref_primary_10_51541_nicel_1117756 crossref_primary_10_3390_en8088594 crossref_primary_10_1002_er_6186 crossref_primary_10_1016_j_ijhydene_2017_07_219 crossref_primary_10_1109_ACCESS_2018_2850743 crossref_primary_10_3390_en10010085 crossref_primary_10_1016_j_energy_2015_06_095 crossref_primary_10_1016_j_est_2020_101343 crossref_primary_10_1002_er_3705 crossref_primary_10_1016_j_est_2022_104301 crossref_primary_10_1016_j_ijepes_2017_01_013 crossref_primary_10_3390_en10060764 crossref_primary_10_1007_s11581_023_05272_9 crossref_primary_10_3233_JCM_215587 crossref_primary_10_1016_j_energy_2016_03_096 crossref_primary_10_3390_electronics9101737 crossref_primary_10_1016_j_ifacol_2019_09_150 crossref_primary_10_1016_j_est_2024_112042 crossref_primary_10_20964_2022_08_31 crossref_primary_10_3390_batteries10090314 crossref_primary_10_3390_coatings9110732 crossref_primary_10_3390_electronics13214256 crossref_primary_10_1088_1755_1315_208_1_012001 crossref_primary_10_1016_j_est_2017_01_006 crossref_primary_10_3390_en8065916 crossref_primary_10_1109_TIE_2017_2677319 crossref_primary_10_1049_iet_est_2019_0026 crossref_primary_10_1016_j_energy_2016_08_080 crossref_primary_10_1088_0957_0233_27_12_124005 crossref_primary_10_3390_su14169993 crossref_primary_10_1016_j_jpowsour_2015_09_005 crossref_primary_10_1016_j_jpowsour_2015_10_052 crossref_primary_10_1002_ese3_1630 crossref_primary_10_1016_j_apenergy_2017_05_136 crossref_primary_10_1007_s11581_024_05811_y crossref_primary_10_1109_TIE_2016_2610398 crossref_primary_10_1002_er_4060 crossref_primary_10_1002_er_4227 crossref_primary_10_1016_j_pecs_2021_100904 crossref_primary_10_1109_ACCESS_2020_3017774 crossref_primary_10_1109_JESTIE_2021_3078253 crossref_primary_10_20964_2022_05_14 crossref_primary_10_1016_j_est_2024_115282 crossref_primary_10_1093_jigpal_jzz075 crossref_primary_10_1016_j_est_2016_09_008 crossref_primary_10_1016_j_energy_2017_10_043 crossref_primary_10_1016_j_est_2023_108707 crossref_primary_10_3390_en13102422 crossref_primary_10_1016_j_est_2022_104362 crossref_primary_10_1016_j_jpowsour_2020_229117 crossref_primary_10_3390_en17010202 crossref_primary_10_1016_j_energy_2020_119529 crossref_primary_10_1109_ACCESS_2019_2910882 crossref_primary_10_3233_JIFS_231433 crossref_primary_10_3390_en81212395 crossref_primary_10_3390_en11123444 crossref_primary_10_1587_transinf_2019EDP7015 crossref_primary_10_1016_j_apenergy_2023_121406 crossref_primary_10_3390_en11071820 crossref_primary_10_1155_2020_8840240 crossref_primary_10_3389_fenrg_2022_984107 crossref_primary_10_3390_en11051112 |
Cites_doi | 10.1038/nmat3623 10.1016/j.jpowsour.2004.09.020 10.1016/S0378-7753(99)00079-8 10.1155/2013/953792 10.1016/j.energy.2011.03.059 10.1016/j.jpowsour.2008.08.103 10.3390/en4040582 10.1109/TCST.2009.2027023 10.1016/j.jpowsour.2004.02.032 10.1109/TIE.2011.2159691 10.1016/S0378-7753(01)00560-2 10.1016/j.jpowsour.2006.06.004 10.1016/S0378-7753(99)00351-1 10.3390/en6042007 10.3390/en6105088 10.1016/j.enconman.2009.08.015 10.1115/1.4024801 10.1016/j.enconman.2008.03.013 10.1149/1.2128096 10.1016/S0378-7753(02)00558-X 10.4061/2011/984320 10.1016/j.jpowsour.2010.10.075 10.1016/S0167-2738(00)00366-0 10.1016/j.jpowsour.2012.12.057 10.1016/j.jpowsour.2010.08.008 10.1016/j.jpowsour.2004.02.033 10.1049/iet-est.2013.0020 10.1016/j.jpowsour.2012.10.060 10.1016/j.cad.2010.12.015 10.1109/TPEL.2009.2034966 |
ContentType | Journal Article |
Copyright | 2015 |
Copyright_xml | – notice: 2015 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpowsour.2015.02.099 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2755 |
EndPage | 36 |
ExternalDocumentID | 10_1016_j_jpowsour_2015_02_099 S0378775315003444 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW SSH T9H VH1 VOH WUQ |
ID | FETCH-LOGICAL-c419t-6b0ce1f9dccf4157e1dd4f6fce4d15f402e2db7f0d75d372660b8d0a4ca4b79c3 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Tue Jul 01 04:23:15 EDT 2025 Thu Apr 24 22:56:54 EDT 2025 Fri Feb 23 02:31:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Weighted recursive least square Teaching learning based optimization (TLBO) method LiFePo4 battery Real-time SOC estimation Hysteresis effect Extended Kalman filter |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-6b0ce1f9dccf4157e1dd4f6fce4d15f402e2db7f0d75d372660b8d0a4ca4b79c3 |
ORCID | 0000-0002-2213-5489 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jpowsour_2015_02_099 crossref_primary_10_1016_j_jpowsour_2015_02_099 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2015_02_099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of power sources |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Orsini, Dollé, Tarascon (bib21) 2000; 135 wikipedia, Electric vehicle battery (bib2) Feb. 2014 Hansen, Wang (bib33) 2005; 141 Rodrigues, Munichandraiah, Shukla (bib20) 2000; 87 Plett (bib38) 2004; 134 Buller, Thele, Karden, De Doncker (bib23) 2003; 113 Weigert, Tian, Lian (bib30) 2011; 196 Kim (bib40) 2010; 25 Lifepo4 battery temperatures test (bib13) Jun. 2014 Di Domenico, Fiengo, Stefanopoulou (bib24) 2008 Verbrugge, Koch (bib37) 2006; 153 Junping, Jingang, Lei (bib34) 2009; 50 Piller, Perrin, Jossen (bib5) 2001; 96 Chang (bib6) 2013; 2013 Smith, Rahn, Wang (bib26) 2010; 18 Pei, Lu, Zhu (bib19) 2013; 3 Ljung (bib36) 1987 Rao, Savsani, Vakharia (bib35) 2011; 43 Sun, Hu, Zou, Li (bib39) 2011; 36 Watrin, Blunier, Miraoui (bib7) 2012 Li, Klee Barillas, Guenther, Danzer (bib9) 2013; 230 Chang, Huang, Chang (bib11) 2013; 6 Moura, Chaturvedi, Krstić (bib25) 2014; 136 Klein, Chaturvedi, Christensen, Ahmed, Findeisen, Kojic (bib27) 2010 Zhu, Wang (bib17) 2011; 196 Salkind, Fennie, Singh, Atwater, Reisner (bib32) 1999; 80 (bib22) Feb. 2014 He, Qin, Sun, Shui (bib10) 2013; 6 Roscher, Bohlen, Vetter (bib16) 2011; 2011 Sasaki, Ukyo, Novák (bib18) 2013; 12 IEA (bib1) Apr. 2013 Plett (bib15) 2006; 161 He, Xiong, Fan (bib29) 2011; 4 Cao, Schofield, Emadi (bib4) 2008 Prajapati, Hess, William, Gupta, Huff, Manic, Rufus, Thakker, Govar (bib8) 2011 Lu, Han, Li, Hua, Ouyang (bib3) 2013; 226 Lee, Kim, Lee, Cho (bib12) 2008; 185 Plett (bib28) 2004; 134 Baronti, Fantechi, Fanucci, Leonardi, Roncella, Saletti, Saponara (bib14) 2011 Bo, Zhifeng, Binggang (bib31) 2008; 49 Zhang, Liu, Fang, Wang (bib41) 2012; 59 He (10.1016/j.jpowsour.2015.02.099_bib10) 2013; 6 Chang (10.1016/j.jpowsour.2015.02.099_bib11) 2013; 6 Cao (10.1016/j.jpowsour.2015.02.099_bib4) 2008 Li (10.1016/j.jpowsour.2015.02.099_bib9) 2013; 230 Kim (10.1016/j.jpowsour.2015.02.099_bib40) 2010; 25 Pei (10.1016/j.jpowsour.2015.02.099_bib19) 2013; 3 Buller (10.1016/j.jpowsour.2015.02.099_bib23) 2003; 113 Sun (10.1016/j.jpowsour.2015.02.099_bib39) 2011; 36 Prajapati (10.1016/j.jpowsour.2015.02.099_bib8) 2011 Klein (10.1016/j.jpowsour.2015.02.099_bib27) 2010 Lee (10.1016/j.jpowsour.2015.02.099_bib12) 2008; 185 Smith (10.1016/j.jpowsour.2015.02.099_bib26) 2010; 18 Zhang (10.1016/j.jpowsour.2015.02.099_bib41) 2012; 59 Plett (10.1016/j.jpowsour.2015.02.099_bib15) 2006; 161 Hansen (10.1016/j.jpowsour.2015.02.099_bib33) 2005; 141 Ljung (10.1016/j.jpowsour.2015.02.099_bib36) 1987 Roscher (10.1016/j.jpowsour.2015.02.099_bib16) 2011; 2011 (10.1016/j.jpowsour.2015.02.099_bib22) 2014 Salkind (10.1016/j.jpowsour.2015.02.099_bib32) 1999; 80 Bo (10.1016/j.jpowsour.2015.02.099_bib31) 2008; 49 Lifepo4 battery temperatures test (10.1016/j.jpowsour.2015.02.099_bib13) Verbrugge (10.1016/j.jpowsour.2015.02.099_bib37) 2006; 153 Piller (10.1016/j.jpowsour.2015.02.099_bib5) 2001; 96 Sasaki (10.1016/j.jpowsour.2015.02.099_bib18) 2013; 12 He (10.1016/j.jpowsour.2015.02.099_bib29) 2011; 4 wikipedia, Electric vehicle battery (10.1016/j.jpowsour.2015.02.099_bib2) Di Domenico (10.1016/j.jpowsour.2015.02.099_bib24) 2008 Watrin (10.1016/j.jpowsour.2015.02.099_bib7) 2012 Plett (10.1016/j.jpowsour.2015.02.099_bib28) 2004; 134 Plett (10.1016/j.jpowsour.2015.02.099_bib38) 2004; 134 IEA (10.1016/j.jpowsour.2015.02.099_bib1) 2013 Lu (10.1016/j.jpowsour.2015.02.099_bib3) 2013; 226 Weigert (10.1016/j.jpowsour.2015.02.099_bib30) 2011; 196 Junping (10.1016/j.jpowsour.2015.02.099_bib34) 2009; 50 Rao (10.1016/j.jpowsour.2015.02.099_bib35) 2011; 43 Rodrigues (10.1016/j.jpowsour.2015.02.099_bib20) 2000; 87 Orsini (10.1016/j.jpowsour.2015.02.099_bib21) 2000; 135 Moura (10.1016/j.jpowsour.2015.02.099_bib25) 2014; 136 Chang (10.1016/j.jpowsour.2015.02.099_bib6) 2013; 2013 Zhu (10.1016/j.jpowsour.2015.02.099_bib17) 2011; 196 Baronti (10.1016/j.jpowsour.2015.02.099_bib14) 2011 |
References_xml | – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: bib35 article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. – volume: 134 start-page: 262 year: 2004 end-page: 276 ident: bib28 article-title: Extended kalman filtering for battery management systems of lipb-based hev battery packs: part 2 publication-title: Model. Identif. J. Power Sources – volume: 18 start-page: 654 year: 2010 end-page: 663 ident: bib26 article-title: Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries publication-title: IEEE Trans. Control Syst. Technol. – volume: 4 start-page: 582 year: 2011 end-page: 598 ident: bib29 article-title: Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach publication-title: Energies – volume: 3 start-page: 112 year: 2013 end-page: 117 ident: bib19 article-title: Relaxation model of the open-circuit voltage for state-of-charge estimation in lithium-ion batteries publication-title: IET Electr. Syst. Transp. – start-page: 1 year: 2011 end-page: 8 ident: bib8 article-title: A Literature Review of State-of-charge Estimation Techniques Applicable to Lithium Poly-carbon Monoflouride (li/cfx) Battery publication-title: 2010 India International Conference on Power Electronics (IICPE) – year: Apr. 2013 ident: bib1 article-title: Global Ev Outlook – start-page: 6618 year: 2010 end-page: 6623 ident: bib27 article-title: State estimation of a reduced electrochemical model of a lithium-ion battery publication-title: American Control Conference (ACC), 2010 – start-page: 1 year: 2008 end-page: 6 ident: bib4 article-title: Battery balancing methods: a comprehensive review publication-title: Vehicle Power and Propulsion Conference, IEEE – volume: 50 start-page: 3182 year: 2009 end-page: 3186 ident: bib34 article-title: An adaptive kalman filtering based state of charge combined estimator for electric vehicle battery pack publication-title: Energy Convers. Manage. – volume: 59 start-page: 1086 year: 2012 end-page: 1095 ident: bib41 article-title: Estimation of battery state of charge with observer: applied to a robot for inspecting power transmission lines publication-title: IEEE Trans. Ind. Electron. – volume: 87 start-page: 12 year: 2000 end-page: 20 ident: bib20 article-title: A review of state-of-charge indication of batteries by means of ac impedance measurements publication-title: J. Power Sources – volume: 196 start-page: 4061 year: 2011 end-page: 4066 ident: bib30 article-title: State-of-charge prediction of batteries and battery–supercapacitor hybrids using artificial neural networks publication-title: J. Power Sources – volume: 80 start-page: 293 year: 1999 end-page: 300 ident: bib32 article-title: Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology publication-title: J. Power Sources – volume: 2013 year: 2013 ident: bib6 article-title: The state of charge estimating methods for battery: a review publication-title: ISRN Appl. Math. – volume: 161 start-page: 1369 year: 2006 end-page: 1384 ident: bib15 article-title: Sigma-point kalman filtering for battery management systems of lipb-based hev battery packs: part 2: simultaneous state and parameter estimation publication-title: J. Power Sources – volume: 49 start-page: 2788 year: 2008 end-page: 2794 ident: bib31 article-title: State of charge estimation based on evolutionary neural network publication-title: Energy Convers. Manage. – volume: 25 start-page: 1013 year: 2010 end-page: 1022 ident: bib40 article-title: A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer publication-title: IEEE Trans. Power Electron. – volume: 196 start-page: 1442 year: 2011 end-page: 1448 ident: bib17 article-title: Strain accommodation and potential hysteresis of lifepo4 cathodes during lithium ion insertion/extraction publication-title: J. Power Sources – year: 1987 ident: bib36 article-title: System Identification: Theory for the User – volume: 6 start-page: 5088 year: 2013 end-page: 5100 ident: bib10 article-title: Comparison study on the battery soc estimation with ekf and ukf algorithms publication-title: Energies – start-page: 1 year: 2011 end-page: 5 ident: bib14 article-title: State-of-charge estimation enhancing of lithium batteries through a temperature-dependent cell model publication-title: 2011 International Conference on Applied Electronics (AE) – volume: 12 start-page: 569 year: 2013 end-page: 575 ident: bib18 article-title: Memory effect in a lithium-ion battery publication-title: Nat. Mater. – volume: 141 start-page: 351 year: 2005 end-page: 358 ident: bib33 article-title: Support vector based battery state of charge estimator publication-title: J. Power Sources – year: Jun. 2014 ident: bib13 – start-page: 702 year: 2008 end-page: 707 ident: bib24 article-title: Lithium-ion battery state of charge estimation with a kalman filter based on a electrochemical model publication-title: IEEE International Conference on Control Applications – volume: 113 start-page: 422 year: 2003 end-page: 430 ident: bib23 article-title: Impedance-based non-linear dynamic battery modeling for automotive applications publication-title: J. Power Sources – volume: 135 start-page: 213 year: 2000 end-page: 221 ident: bib21 article-title: Impedance study of the li/electrolyte interface upon cycling publication-title: Solid State Ionics – volume: 230 start-page: 244 year: 2013 end-page: 250 ident: bib9 article-title: A comparative study of state of charge estimation algorithms for lifepo4 batteries used in electric vehicles publication-title: J. Power Sources – volume: 96 start-page: 113 year: 2001 end-page: 120 ident: bib5 article-title: Methods for state-of-charge determination and their applications publication-title: J. Power Sources – volume: 6 start-page: 2007 year: 2013 end-page: 2030 ident: bib11 article-title: A new state of charge estimation method for lifepo4 battery packs used in robots publication-title: Energies – year: Feb. 2014 ident: bib22 publication-title: How to Measure State-of-Charge – volume: 2011 year: 2011 ident: bib16 article-title: Ocv hysteresis in li-ion batteries including two-phase transition materials publication-title: Int. J. Electrochem. – year: Feb. 2014 ident: bib2 – volume: 134 start-page: 277 year: 2004 end-page: 292 ident: bib38 article-title: Extended kalman filtering for battery management systems of lipb-based hev battery packs: part 3. State parameter estimation publication-title: J. Power sources – volume: 226 start-page: 272 year: 2013 end-page: 288 ident: bib3 article-title: A review on the key issues for lithium-ion battery management in electric vehicles publication-title: J. Power Sources – volume: 153 start-page: A187 year: 2006 end-page: A201 ident: bib37 article-title: Generalized recursive algorithm for adaptive multiparameter regression application to lead acid, nickel metal hydride, and lithium-ion batteries publication-title: J. Electrochem. Soc. – volume: 36 start-page: 3531 year: 2011 end-page: 3540 ident: bib39 article-title: Adaptive unscented kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles publication-title: Energy – volume: 136 start-page: 011015 year: 2014 ident: bib25 article-title: Adaptive partial differential equation observer for battery state-of-charge/state-of-health estimation via an electrochemical model publication-title: J. Dyn. Syst. Meas. Control – start-page: 1 year: 2012 end-page: 6 ident: bib7 article-title: Review of adaptive systems for lithium batteries state-of-charge and state-of-health estimation publication-title: Transportation Electrification Conference and Expo (ITEC) – volume: 185 start-page: 1367 year: 2008 end-page: 1373 ident: bib12 article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge publication-title: J. Power Sources – ident: 10.1016/j.jpowsour.2015.02.099_bib2 – start-page: 1 year: 2012 ident: 10.1016/j.jpowsour.2015.02.099_bib7 article-title: Review of adaptive systems for lithium batteries state-of-charge and state-of-health estimation – volume: 12 start-page: 569 issue: 6 year: 2013 ident: 10.1016/j.jpowsour.2015.02.099_bib18 article-title: Memory effect in a lithium-ion battery publication-title: Nat. Mater. doi: 10.1038/nmat3623 – start-page: 1 year: 2008 ident: 10.1016/j.jpowsour.2015.02.099_bib4 article-title: Battery balancing methods: a comprehensive review – volume: 141 start-page: 351 issue: 2 year: 2005 ident: 10.1016/j.jpowsour.2015.02.099_bib33 article-title: Support vector based battery state of charge estimator publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.09.020 – volume: 80 start-page: 293 issue: 1 year: 1999 ident: 10.1016/j.jpowsour.2015.02.099_bib32 article-title: Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00079-8 – volume: 2013 year: 2013 ident: 10.1016/j.jpowsour.2015.02.099_bib6 article-title: The state of charge estimating methods for battery: a review publication-title: ISRN Appl. Math. doi: 10.1155/2013/953792 – volume: 36 start-page: 3531 issue: 5 year: 2011 ident: 10.1016/j.jpowsour.2015.02.099_bib39 article-title: Adaptive unscented kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles publication-title: Energy doi: 10.1016/j.energy.2011.03.059 – volume: 185 start-page: 1367 issue: 2 year: 2008 ident: 10.1016/j.jpowsour.2015.02.099_bib12 article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.08.103 – volume: 4 start-page: 582 issue: 4 year: 2011 ident: 10.1016/j.jpowsour.2015.02.099_bib29 article-title: Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach publication-title: Energies doi: 10.3390/en4040582 – start-page: 1 year: 2011 ident: 10.1016/j.jpowsour.2015.02.099_bib14 article-title: State-of-charge estimation enhancing of lithium batteries through a temperature-dependent cell model – volume: 18 start-page: 654 issue: 3 year: 2010 ident: 10.1016/j.jpowsour.2015.02.099_bib26 article-title: Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2009.2027023 – volume: 134 start-page: 262 issue: 2 year: 2004 ident: 10.1016/j.jpowsour.2015.02.099_bib28 article-title: Extended kalman filtering for battery management systems of lipb-based hev battery packs: part 2 publication-title: Model. Identif. J. Power Sources doi: 10.1016/j.jpowsour.2004.02.032 – volume: 59 start-page: 1086 issue: 2 year: 2012 ident: 10.1016/j.jpowsour.2015.02.099_bib41 article-title: Estimation of battery state of charge with observer: applied to a robot for inspecting power transmission lines publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2011.2159691 – ident: 10.1016/j.jpowsour.2015.02.099_bib13 – volume: 96 start-page: 113 issue: 1 year: 2001 ident: 10.1016/j.jpowsour.2015.02.099_bib5 article-title: Methods for state-of-charge determination and their applications publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00560-2 – volume: 161 start-page: 1369 issue: 2 year: 2006 ident: 10.1016/j.jpowsour.2015.02.099_bib15 article-title: Sigma-point kalman filtering for battery management systems of lipb-based hev battery packs: part 2: simultaneous state and parameter estimation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.06.004 – volume: 87 start-page: 12 issue: 1 year: 2000 ident: 10.1016/j.jpowsour.2015.02.099_bib20 article-title: A review of state-of-charge indication of batteries by means of ac impedance measurements publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00351-1 – start-page: 702 year: 2008 ident: 10.1016/j.jpowsour.2015.02.099_bib24 article-title: Lithium-ion battery state of charge estimation with a kalman filter based on a electrochemical model – volume: 6 start-page: 2007 issue: 4 year: 2013 ident: 10.1016/j.jpowsour.2015.02.099_bib11 article-title: A new state of charge estimation method for lifepo4 battery packs used in robots publication-title: Energies doi: 10.3390/en6042007 – year: 2013 ident: 10.1016/j.jpowsour.2015.02.099_bib1 – volume: 6 start-page: 5088 issue: 10 year: 2013 ident: 10.1016/j.jpowsour.2015.02.099_bib10 article-title: Comparison study on the battery soc estimation with ekf and ukf algorithms publication-title: Energies doi: 10.3390/en6105088 – volume: 50 start-page: 3182 issue: 12 year: 2009 ident: 10.1016/j.jpowsour.2015.02.099_bib34 article-title: An adaptive kalman filtering based state of charge combined estimator for electric vehicle battery pack publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2009.08.015 – volume: 136 start-page: 011015 issue: 1 year: 2014 ident: 10.1016/j.jpowsour.2015.02.099_bib25 article-title: Adaptive partial differential equation observer for battery state-of-charge/state-of-health estimation via an electrochemical model publication-title: J. Dyn. Syst. Meas. Control doi: 10.1115/1.4024801 – volume: 49 start-page: 2788 issue: 10 year: 2008 ident: 10.1016/j.jpowsour.2015.02.099_bib31 article-title: State of charge estimation based on evolutionary neural network publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2008.03.013 – year: 1987 ident: 10.1016/j.jpowsour.2015.02.099_bib36 – volume: 153 start-page: A187 issue: 1 year: 2006 ident: 10.1016/j.jpowsour.2015.02.099_bib37 article-title: Generalized recursive algorithm for adaptive multiparameter regression application to lead acid, nickel metal hydride, and lithium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.2128096 – volume: 113 start-page: 422 issue: 2 year: 2003 ident: 10.1016/j.jpowsour.2015.02.099_bib23 article-title: Impedance-based non-linear dynamic battery modeling for automotive applications publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00558-X – start-page: 1 year: 2011 ident: 10.1016/j.jpowsour.2015.02.099_bib8 article-title: A Literature Review of State-of-charge Estimation Techniques Applicable to Lithium Poly-carbon Monoflouride (li/cfx) Battery – volume: 2011 year: 2011 ident: 10.1016/j.jpowsour.2015.02.099_bib16 article-title: Ocv hysteresis in li-ion batteries including two-phase transition materials publication-title: Int. J. Electrochem. doi: 10.4061/2011/984320 – volume: 196 start-page: 4061 issue: 8 year: 2011 ident: 10.1016/j.jpowsour.2015.02.099_bib30 article-title: State-of-charge prediction of batteries and battery–supercapacitor hybrids using artificial neural networks publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.10.075 – volume: 135 start-page: 213 issue: 1 year: 2000 ident: 10.1016/j.jpowsour.2015.02.099_bib21 article-title: Impedance study of the li/electrolyte interface upon cycling publication-title: Solid State Ionics doi: 10.1016/S0167-2738(00)00366-0 – start-page: 6618 year: 2010 ident: 10.1016/j.jpowsour.2015.02.099_bib27 article-title: State estimation of a reduced electrochemical model of a lithium-ion battery – volume: 230 start-page: 244 year: 2013 ident: 10.1016/j.jpowsour.2015.02.099_bib9 article-title: A comparative study of state of charge estimation algorithms for lifepo4 batteries used in electric vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.12.057 – year: 2014 ident: 10.1016/j.jpowsour.2015.02.099_bib22 – volume: 196 start-page: 1442 issue: 3 year: 2011 ident: 10.1016/j.jpowsour.2015.02.099_bib17 article-title: Strain accommodation and potential hysteresis of lifepo4 cathodes during lithium ion insertion/extraction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.08.008 – volume: 134 start-page: 277 issue: 2 year: 2004 ident: 10.1016/j.jpowsour.2015.02.099_bib38 article-title: Extended kalman filtering for battery management systems of lipb-based hev battery packs: part 3. State parameter estimation publication-title: J. Power sources doi: 10.1016/j.jpowsour.2004.02.033 – volume: 3 start-page: 112 issue: 4 year: 2013 ident: 10.1016/j.jpowsour.2015.02.099_bib19 article-title: Relaxation model of the open-circuit voltage for state-of-charge estimation in lithium-ion batteries publication-title: IET Electr. Syst. Transp. doi: 10.1049/iet-est.2013.0020 – volume: 226 start-page: 272 year: 2013 ident: 10.1016/j.jpowsour.2015.02.099_bib3 article-title: A review on the key issues for lithium-ion battery management in electric vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.10.060 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.jpowsour.2015.02.099_bib35 article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 25 start-page: 1013 issue: 4 year: 2010 ident: 10.1016/j.jpowsour.2015.02.099_bib40 article-title: A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2009.2034966 |
SSID | ssj0001170 |
Score | 2.45453 |
Snippet | Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and accurate state of charge (SOC) estimation is of paramount importance for the EV... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 24 |
SubjectTerms | Extended Kalman filter Hysteresis effect LiFePo4 battery Real-time SOC estimation Teaching learning based optimization (TLBO) method Weighted recursive least square |
Title | An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries |
URI | https://dx.doi.org/10.1016/j.jpowsour.2015.02.099 |
Volume | 283 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPrE-yh68bvPadLPHUixVsRct9Bayj2BLTYq0ePO3O7NJagWhBy-BDRkIM7Mz3yYz3xByF-nQhkZlTIbKMp7gnks0jntJjORRKIXGbuTncW804Y_TeNoig6YXBssq69hfxXQXres7Xq1NbzmbeS9-BM4GaBsgDfLWISco5wK9vPv1U-aBk1XcnwQ4LeHTW13C8-58WX7iR3Is8Yodd6fjgP0jQW0lneExOarRIu1XL3RCWrY4JYdbHIJnxPQLuuF8MLThCKcARikAwgXD6fHUDbxhmLIMdT1ErMyZY0myFHk2qgZGWuYUYPnbbP3OcKkc-Sacpc_JZHj_OhixenQC0zyQK9ZTvrZBLo3WOaRoYQNjeN7LteUmiHM4NKKFRO4bEZtIQJb2VWL8jOuMKyF1dEH2irKwl4QmKjI4KlZluNszkUSRNHABKwP0i22bxI2-Ul3ziuN4i0XaFJDN00bPKeo59cMU9Nwm3kZuWTFr7JSQjTnSXz6SQvjfIXv1D9lrcoCrqkDshuytPtb2FqDISnWcr3XIfv_haTT-Bjp14Y4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6sHtoeSp_UPvfQ69aYbExyFKlofVyq4G3JPkIVa6Qo_fudyUMsFHroJZCEgTC7O_Ntdub7AJ487VrXqJhHrrJchLTmQk1yL6GJhOdGgaZu5NG41ZuK15k_q0Cn7IWhssoi9ucxPYvWxZNG4c3Gej5vvDkeTjZE2whpiLdOHECN2Kn8KtTa_UFvvAvIJK6SHSbghokM9hqFF8-LdfpF_8mpysvP6DszGthfctRe3umewkkBGFk7_6YzqNjVORzv0QhegGmv2I72wbCSJpwhHmWICZecBORZpnnDKWsZlrUR8TThGVGSZUS1kfcwsjRhiMzf59sPTrcq49_E7fQlTLsvk06PF-oJXItmtOEt5WjbTCKjdYJZOrBNY0TSSrQVpuknuG-kQQoSxwS-8QJM1I4KjRMLHQsVRNq7guoqXdlrYKHyDKnFqpgWfByEnhcZvOBAI_rzbR380l9SF9TipHCxlGUN2UKWfpbkZ-m4Ev1ch8bObp2Ta_xpEZXDIX9ME4kZ4A_bm3_YPsJhbzIaymF_PLiFI3qT14vdQXXzubX3iEw26qGYed_04-Q_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+approach+for+real-time+model-based+state-of-charge+estimation+of+lithium-ion+batteries&rft.jtitle=Journal+of+power+sources&rft.au=Zhang%2C+Cheng&rft.au=Li%2C+Kang&rft.au=Pei%2C+Lei&rft.au=Zhu%2C+Chunbo&rft.date=2015-06-01&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=283&rft.spage=24&rft.epage=36&rft_id=info:doi/10.1016%2Fj.jpowsour.2015.02.099&rft.externalDocID=S0378775315003444 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |