Heterogeneous Aspects of Additive Manufactured Metallic Parts: A Review

Metal additive manufacturing (MAM) is an emerging technology to produce complex end-use metallic parts. To adopt MAM for manufacturing numerous engineering parts used in critical applications, a thorough understanding of the relationship between the complex thermal cycles in MAM and the unique heter...

Full description

Saved in:
Bibliographic Details
Published inMetals and materials international Vol. 27; no. 1; pp. 1 - 39
Main Authors Karthik, G. M., Kim, Hyoung Seop
Format Journal Article
LanguageEnglish
Published Seoul The Korean Institute of Metals and Materials 01.01.2021
Springer Nature B.V
대한금속·재료학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal additive manufacturing (MAM) is an emerging technology to produce complex end-use metallic parts. To adopt MAM for manufacturing numerous engineering parts used in critical applications, a thorough understanding of the relationship between the complex thermal cycles in MAM and the unique heterogeneous microstructures of MAM parts need to be established. This review article provides a comprehensive overview of the evolution of heterogeneous microstructures in MAM parts, including melt pool boundaries, heterogeneous grain structure, sub-grain cellular structure, matrix supersaturation, segregation, phase transformation, oxides formation, and texture. The evolution of residual stresses and the anisotropy in MAM parts and the post-MAM heat treatment effects on the microstructural evolution are also discussed. This review covers the microstructural aspects of most engineering materials in particular steels, high entropy alloys, aluminum alloys, titanium alloys, nickel-base superalloys, and copper alloys, with a primary focus on the parts manufactured using selective laser melting, direct energy deposition, and electron beam melting processes. Graphic Abstract
AbstractList Metal additive manufacturing (MAM) is an emerging technology to produce complex end-use metallic parts. To adopt MAMfor manufacturing numerous engineering parts used in critical applications, a thorough understanding of the relationshipbetween the complex thermal cycles in MAM and the unique heterogeneous microstructures of MAM parts need to beestablished. This review article provides a comprehensive overview of the evolution of heterogeneous microstructures inMAM parts, including melt pool boundaries, heterogeneous grain structure, sub-grain cellular structure, matrix supersaturation,segregation, phase transformation, oxides formation, and texture. The evolution of residual stresses and the anisotropyin MAM parts and the post-MAM heat treatment effects on the microstructural evolution are also discussed. This reviewcovers the microstructural aspects of most engineering materials in particular steels, high entropy alloys, aluminum alloys,titanium alloys, nickel-base superalloys, and copper alloys, with a primary focus on the parts manufactured using selectivelaser melting, direct energy deposition, and electron beam melting processes. KCI Citation Count: 0
Metal additive manufacturing (MAM) is an emerging technology to produce complex end-use metallic parts. To adopt MAM for manufacturing numerous engineering parts used in critical applications, a thorough understanding of the relationship between the complex thermal cycles in MAM and the unique heterogeneous microstructures of MAM parts need to be established. This review article provides a comprehensive overview of the evolution of heterogeneous microstructures in MAM parts, including melt pool boundaries, heterogeneous grain structure, sub-grain cellular structure, matrix supersaturation, segregation, phase transformation, oxides formation, and texture. The evolution of residual stresses and the anisotropy in MAM parts and the post-MAM heat treatment effects on the microstructural evolution are also discussed. This review covers the microstructural aspects of most engineering materials in particular steels, high entropy alloys, aluminum alloys, titanium alloys, nickel-base superalloys, and copper alloys, with a primary focus on the parts manufactured using selective laser melting, direct energy deposition, and electron beam melting processes.Graphic Abstract
Metal additive manufacturing (MAM) is an emerging technology to produce complex end-use metallic parts. To adopt MAM for manufacturing numerous engineering parts used in critical applications, a thorough understanding of the relationship between the complex thermal cycles in MAM and the unique heterogeneous microstructures of MAM parts need to be established. This review article provides a comprehensive overview of the evolution of heterogeneous microstructures in MAM parts, including melt pool boundaries, heterogeneous grain structure, sub-grain cellular structure, matrix supersaturation, segregation, phase transformation, oxides formation, and texture. The evolution of residual stresses and the anisotropy in MAM parts and the post-MAM heat treatment effects on the microstructural evolution are also discussed. This review covers the microstructural aspects of most engineering materials in particular steels, high entropy alloys, aluminum alloys, titanium alloys, nickel-base superalloys, and copper alloys, with a primary focus on the parts manufactured using selective laser melting, direct energy deposition, and electron beam melting processes. Graphic Abstract
Author Karthik, G. M.
Kim, Hyoung Seop
Author_xml – sequence: 1
  givenname: G. M.
  surname: Karthik
  fullname: Karthik, G. M.
  organization: Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)
– sequence: 2
  givenname: Hyoung Seop
  surname: Kim
  fullname: Kim, Hyoung Seop
  email: hskim@postech.ac.kr
  organization: Graduate Institute of Ferrous Technology, Pohang University of Science and Technology (POSTECH)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002671456$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kEtLxDAUhYMoOD7-gKuCKxfVm0fTxl0RX6AoouuQprdDdGzGJB3x31unguBiFpez-b7L4eyR7d73SMgRhVMKUJ5FygoBObDxQHGasy0yYwBFLqhQ22RGC1XlSjK-S_ZifAWQlFM2I9c3mDD4Ofboh5jVcYk2xcx3Wd22LrkVZvemHzpj0xCwze4xmcXC2ezRhBTPszp7wpXDzwOy05lFxMPf3CcvV5fPFzf53cP17UV9l1tBVcplKW3DSoZt0UJLFTemY2VbKgFdw2UjSy6rpkS0RQNGdWihLRrRgGUVUCH5PjmZ_vah02_WaW_cOudevwVdPz3faiUF58BH9nhil8F_DBiTfvVD6Md6momyksBBVCNVTZQNPsaAnbYumeR8n4JxC01B_0ysp4n1OLFeT6zZqLJ_6jK4dxO-Nkt8kuII93MMf602WN-6g46t
CitedBy_id crossref_primary_10_1016_j_msea_2023_145536
crossref_primary_10_1016_j_msea_2022_143632
crossref_primary_10_1007_s12540_021_01081_9
crossref_primary_10_1016_j_jallcom_2023_170602
crossref_primary_10_1016_j_msea_2024_146195
crossref_primary_10_1007_s40964_024_00592_2
crossref_primary_10_1016_j_addma_2024_104070
crossref_primary_10_1016_j_ultras_2023_107024
crossref_primary_10_1016_j_actamat_2022_118421
crossref_primary_10_1016_j_addma_2022_103146
crossref_primary_10_1007_s12540_022_01305_6
crossref_primary_10_1007_s13632_021_00721_1
crossref_primary_10_1016_j_msea_2022_143124
crossref_primary_10_1007_s12540_022_01222_8
crossref_primary_10_1016_j_addlet_2023_100172
crossref_primary_10_1007_s12540_023_01433_7
crossref_primary_10_1016_j_scriptamat_2022_115259
crossref_primary_10_1016_j_actamat_2024_119886
crossref_primary_10_1016_j_ijrmhm_2021_105730
crossref_primary_10_1016_j_msea_2022_142718
crossref_primary_10_1080_10910344_2024_2381206
crossref_primary_10_1080_21663831_2024_2371521
crossref_primary_10_1007_s12540_024_01707_8
crossref_primary_10_1080_21663831_2023_2192244
crossref_primary_10_1016_j_jmrt_2024_09_013
crossref_primary_10_1016_j_addma_2022_103370
crossref_primary_10_3390_ma16196459
crossref_primary_10_3390_met11111726
crossref_primary_10_1016_j_ijplas_2025_104262
crossref_primary_10_1016_j_jallcom_2023_171390
crossref_primary_10_1007_s40964_025_01033_4
crossref_primary_10_1016_j_actamat_2023_119224
crossref_primary_10_1080_09506608_2021_1951580
crossref_primary_10_1016_j_addma_2022_103131
crossref_primary_10_1016_j_addma_2024_104223
crossref_primary_10_1007_s41745_022_00290_4
crossref_primary_10_1007_s12540_023_01443_5
crossref_primary_10_1016_j_scriptamat_2021_114332
crossref_primary_10_1016_j_addma_2022_102744
crossref_primary_10_1016_j_scriptamat_2022_114732
crossref_primary_10_1007_s10853_021_06765_6
crossref_primary_10_1016_j_msea_2022_142729
crossref_primary_10_1016_j_mtcomm_2023_106616
crossref_primary_10_1121_10_0008972
crossref_primary_10_1007_s10853_022_07516_x
crossref_primary_10_1007_s12540_022_01179_8
crossref_primary_10_1007_s12540_022_01360_z
crossref_primary_10_3390_ma16041666
crossref_primary_10_1016_j_jallcom_2022_167492
crossref_primary_10_1088_2631_7990_acded2
crossref_primary_10_1039_D3RA01636F
crossref_primary_10_1007_s11665_023_08051_9
crossref_primary_10_1016_j_jallcom_2024_175087
crossref_primary_10_1016_j_msea_2021_141101
crossref_primary_10_1016_j_addma_2022_102990
crossref_primary_10_1016_j_ijplas_2023_103787
crossref_primary_10_1016_j_addma_2021_102314
crossref_primary_10_1007_s00170_024_14156_9
crossref_primary_10_1002_srin_202400348
crossref_primary_10_1016_j_jmrt_2023_01_218
crossref_primary_10_1016_j_jmrt_2023_11_261
crossref_primary_10_1007_s12540_021_00986_9
crossref_primary_10_1016_j_jmapro_2023_06_013
crossref_primary_10_1007_s12540_021_01038_y
crossref_primary_10_1016_j_jallcom_2022_166735
crossref_primary_10_1080_2374068X_2024_2432727
crossref_primary_10_3390_ma16216969
crossref_primary_10_1007_s12540_022_01246_0
crossref_primary_10_1016_j_actamat_2021_117426
crossref_primary_10_1007_s12540_024_01808_4
crossref_primary_10_1080_21663831_2023_2275599
crossref_primary_10_1080_21663831_2024_2305261
crossref_primary_10_1016_j_addlet_2023_100159
crossref_primary_10_1016_j_ijplas_2024_104142
crossref_primary_10_1016_j_jallcom_2023_169062
crossref_primary_10_1016_j_matlet_2021_130510
crossref_primary_10_1016_j_matdes_2022_111180
crossref_primary_10_1016_j_msea_2021_142462
crossref_primary_10_1016_j_matchemphys_2023_128840
crossref_primary_10_1007_s12540_023_01506_7
crossref_primary_10_1051_mfreview_2022033
crossref_primary_10_1134_S1061830922600757
crossref_primary_10_1016_j_jmrt_2023_11_093
crossref_primary_10_1016_j_msea_2022_143318
crossref_primary_10_3390_ma16144911
crossref_primary_10_1007_s11668_024_02032_3
crossref_primary_10_1007_s12540_023_01400_2
crossref_primary_10_1002_srin_202300574
crossref_primary_10_1007_s40516_023_00217_6
crossref_primary_10_1016_j_msea_2022_144091
crossref_primary_10_1016_j_jmrt_2023_07_276
crossref_primary_10_1007_s12540_022_01199_4
crossref_primary_10_1016_j_jmrt_2022_11_137
crossref_primary_10_1016_j_msea_2022_143164
crossref_primary_10_1038_s43246_024_00704_z
crossref_primary_10_1016_j_scriptamat_2022_115051
crossref_primary_10_1016_j_jallcom_2023_171340
crossref_primary_10_1016_j_addma_2023_103749
crossref_primary_10_1016_j_addma_2022_102914
crossref_primary_10_1016_j_msea_2022_143720
crossref_primary_10_1080_21663831_2023_2292731
crossref_primary_10_1007_s12540_024_01724_7
crossref_primary_10_1016_j_msea_2024_146833
crossref_primary_10_1007_s10853_022_07137_4
crossref_primary_10_1016_j_apsusc_2023_156364
crossref_primary_10_1016_j_msea_2023_145726
crossref_primary_10_1016_j_ijrmhm_2023_106220
crossref_primary_10_1016_j_jallcom_2022_164415
crossref_primary_10_1016_j_scriptamat_2023_115715
crossref_primary_10_1080_17452759_2025_2470923
crossref_primary_10_1007_s12540_021_01030_6
crossref_primary_10_1016_j_jmst_2021_03_028
crossref_primary_10_1016_j_pmatsci_2022_101051
crossref_primary_10_1007_s12540_021_01015_5
crossref_primary_10_1007_s12540_021_01019_1
crossref_primary_10_1016_j_matchar_2023_112838
crossref_primary_10_3390_ma15217575
crossref_primary_10_1016_j_addma_2024_104025
crossref_primary_10_1016_j_matdes_2022_111245
crossref_primary_10_1007_s12540_021_00991_y
crossref_primary_10_3390_met14091081
crossref_primary_10_1016_j_scriptamat_2023_115422
crossref_primary_10_1016_j_scriptamat_2021_114013
crossref_primary_10_1016_j_addma_2023_103516
crossref_primary_10_1016_j_jmrt_2022_10_143
crossref_primary_10_3390_coatings13091511
crossref_primary_10_1016_j_jmapro_2023_09_075
crossref_primary_10_1080_00325899_2023_2241245
crossref_primary_10_1016_j_jallcom_2023_170755
crossref_primary_10_1016_j_msea_2022_144436
crossref_primary_10_1016_j_jmrt_2023_11_060
crossref_primary_10_1016_j_msea_2024_146537
crossref_primary_10_1038_s41598_023_37060_w
crossref_primary_10_1080_02670844_2023_2191400
crossref_primary_10_1111_ffe_13967
crossref_primary_10_1016_j_jmrt_2021_02_088
crossref_primary_10_1016_j_msea_2024_146383
crossref_primary_10_1002_adem_202300615
crossref_primary_10_1016_j_intermet_2022_107726
crossref_primary_10_1016_j_msea_2023_145797
crossref_primary_10_1007_s12598_025_03237_7
crossref_primary_10_1016_j_msea_2024_147631
Cites_doi 10.1007/s12540-019-00441-w
10.1016/j.msea.2015.12.005
10.1016/j.actamat.2010.02.004
10.1016/j.ijmachtools.2017.04.008
10.1016/j.jallcom.2016.12.209
10.1016/j.jmst.2018.02.002
10.1016/j.msea.2017.08.029
10.1080/21663831.2017.1343208
10.1080/17452759.2015.1026045
10.1038/s41598-018-26136-7
10.1016/j.apmt.2017.02.004
10.1016/j.matdes.2016.03.111
10.1016/j.procir.2018.08.002
10.1016/j.msea.2013.10.023
10.1016/S1005-0302(12)60016-4
10.1007/s00170-020-05457-w
10.1016/S1359-6462(02)00335-4
10.1007/s11663-016-0892-6
10.1016/j.actamat.2014.11.028
10.1016/j.scriptamat.2017.10.021
10.1038/s41586-019-1783-1
10.1016/j.msea.2019.03.027
10.1016/j.jmatprotec.2014.06.002
10.3390/ma10010056
10.1038/nmat5021
10.1007/s11663-014-0267-9
10.1016/j.optlastec.2012.06.043
10.1016/j.matdes.2018.10.051
10.1016/j.scriptamat.2018.06.011
10.1007/s12540-017-7094-x
10.1108/13552540610707013
10.1016/j.apsusc.2005.01.039
10.1016/j.actamat.2016.07.012
10.1016/j.jallcom.2018.02.298
10.3390/met9020199
10.1007/s12540-018-00211-0
10.1016/j.msea.2016.01.019
10.1016/j.optlastec.2020.106283
10.1016/j.msea.2019.138152
10.2351/1.4828755
10.1007/s40964-017-0030-2
10.1007/s00170-016-8466-y
10.1007/s11661-014-2722-2
10.1016/j.heliyon.2019.e01186
10.1016/j.vacuum.2018.10.074
10.1080/10426914.2015.1026351
10.1016/j.matdes.2015.08.045
10.1179/026708301101509980
10.1016/S2238-7854(12)70029-7
10.1016/j.scriptamat.2011.03.024
10.1016/j.jallcom.2015.05.144
10.1080/21663831.2020.1751739
10.1007/s12540-019-00563-1
10.1016/j.matchar.2017.11.052
10.1016/S1359-6462(99)00089-5
10.1007/s11837-014-1271-x
10.1016/j.actamat.2015.06.036
10.3390/ma12010068
10.1007/s12540-019-00304-4
10.1016/j.actamat.2016.05.057
10.1007/s12540-019-00464-3
10.1016/j.actamat.2014.01.018
10.1016/j.matdes.2017.09.014
10.1007/s11661-011-0748-2
10.1016/j.msea.2018.10.083
10.1016/j.msea.2019.138633
10.3390/met9010103
10.1080/02670836.2019.1580434
10.1007/s11661-012-1560-3
10.1038/nature23894
10.1007/s00170-017-1331-9
10.1016/j.scriptamat.2012.06.014
10.1007/s11663-013-9875-z
10.1080/09506608.2015.1116649
10.1016/j.jmatprotec.2005.05.005
10.1243/03093247JSA464
10.3390/ma12060930
10.1016/j.actamat.2015.05.017
10.1007/s11661-017-4363-8
10.1016/j.ijhydene.2014.02.067
10.1016/j.matchar.2016.02.004
10.1038/s41563-019-0408-2
10.1016/j.matchar.2013.12.012
10.1016/j.actamat.2008.11.004
10.1016/j.msea.2017.04.033
10.1039/C4RA16721J
10.1016/j.vacuum.2020.109183
10.1016/j.optlastec.2019.01.009
10.1016/j.matlet.2018.04.052
10.1016/j.matdes.2018.107576
10.1080/10426914.2015.1090605
10.1016/j.optlastec.2015.07.009
10.1016/j.msea.2015.10.045
10.1016/j.jallcom.2012.07.022
10.7449/2012/Superalloys_2012_577_586
10.1016/j.msea.2015.12.101
10.1016/j.intermet.2018.01.002
10.3390/met8080643
10.1016/j.jmst.2016.03.020
10.1016/j.actamat.2011.12.032
10.1080/13621718.2019.1615189
10.1016/j.matdes.2013.08.085
10.1016/j.procir.2018.05.039
10.1016/j.jallcom.2015.01.256
10.1007/s11837-017-2711-1
10.1016/j.jallcom.2019.07.106
10.1016/j.jallcom.2015.01.249
10.1016/S0079-6425(02)00003-8
10.1016/j.msea.2018.08.046
10.1016/j.commatsci.2013.03.018
10.1007/s12540-019-00589-5
10.1016/j.actamat.2018.11.021
10.1007/s11661-014-2549-x
10.1007/s12540-019-00504-y
10.1016/j.matdes.2019.107815
10.1016/j.scriptamat.2018.09.017
10.1016/j.matchar.2018.01.015
10.1038/s41427-018-0018-5
10.3390/met8060440
10.1007/s11837-015-1764-2
10.1080/21663831.2019.1638844
10.1016/j.actamat.2017.02.069
10.1016/j.msea.2015.07.056
10.1038/srep16446
10.1557/jmr.2014.204
10.1016/0001-6160(63)90090-7
10.1016/j.matdes.2017.11.021
10.1007/s12540-018-0148-x
10.1016/j.jallcom.2019.03.221
10.1007/s11837-015-1798-5
10.1007/s00170-011-3878-1
10.1007/s12540-019-00264-9
10.1016/j.actamat.2011.03.033
10.1016/j.fusengdes.2017.01.032
10.1016/j.surfcoat.2011.09.051
10.1038/srep19717
10.1016/j.actamat.2016.12.027
10.1016/j.pmatsci.2017.10.001
10.1016/j.matdes.2016.11.040
10.1007/s11663-015-0310-5
10.1016/j.scriptamat.2014.11.037
10.1007/s11465-013-0248-8
10.1016/j.jnucmat.2017.11.036
10.1179/1743290114Y.0000000108
10.1007/s10853-017-1371-4
10.1007/s11837-015-1759-z
10.1016/j.phpro.2016.08.092
10.1557/JMR.2003.0267
10.1016/j.actamat.2012.04.006
10.1016/j.scriptamat.2018.05.015
10.1179/1743284714Y.0000000701
10.1016/j.jmatprotec.2018.01.012
10.1016/j.actamat.2014.05.037
10.1016/j.scriptamat.2017.02.036
10.1016/j.pmatsci.2019.100578
10.1016/j.matdes.2015.05.026
10.1016/j.mtla.2019.100359
10.1007/s11661-009-9949-3
10.1002/adem.200900259
10.1016/S0261-3069(99)00016-3
10.1016/j.msea.2015.08.061
10.1016/j.matchar.2013.07.012
10.1103/RevModPhys.67.85
10.1016/j.jnucmat.2008.11.023
10.1007/s11663-004-0088-3
10.1007/s11661-020-05880-4
10.1016/j.actamat.2012.11.052
10.1090/S0002-9904-1945-08394-3
10.1016/j.msea.2016.10.038
10.1016/j.matchar.2019.02.033
10.1108/01445150310698652
10.1016/j.msea.2011.10.095
10.1007/s12666-018-1458-x
10.1016/j.jnucmat.2016.12.042
10.1016/j.msea.2009.01.009
10.1016/j.msea.2014.01.012
10.1002/3527602119
10.1179/mst.1989.5.11.1057
10.1007/s11661-010-0397-x
10.1016/j.jmbbm.2013.01.021
10.1016/j.matchar.2008.07.006
10.1016/j.apsusc.2010.02.030
10.1016/j.jnucmat.2015.12.034
10.1016/S1359-6454(00)00367-0
10.1016/j.mtla.2020.100861
10.1016/j.scriptamat.2019.04.036
10.1557/jmr.2019.10
10.1016/j.jallcom.2018.12.267
10.1016/j.msea.2014.12.018
10.1016/j.jmatprotec.2016.08.003
10.1080/21663831.2020.1796836
10.1179/imr.1989.34.1.213
10.1002/9781118960332
10.1007/s11661-004-0094-8
10.1016/j.intermet.2018.10.018
10.1016/j.mtla.2019.100365
10.1080/14686996.2018.1527645
10.1002/adma.201903855
10.1007/s12540-019-00556-0
10.1016/j.actamat.2016.03.019
10.1016/j.actamat.2016.03.037
10.1108/13552540910960262
10.1016/j.actamat.2019.07.005
10.1016/j.actamat.2014.12.054
10.1016/j.msea.2013.04.099
10.1016/j.jallcom.2015.01.096
10.1007/s11663-017-0934-8
10.3390/ma10010008
10.1007/s12540-019-00484-z
ContentType Journal Article
Copyright The Korean Institute of Metals and Materials 2021
The Korean Institute of Metals and Materials 2021.
Copyright_xml – notice: The Korean Institute of Metals and Materials 2021
– notice: The Korean Institute of Metals and Materials 2021.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
ACYCR
DOI 10.1007/s12540-020-00931-2
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Korean Citation Index
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2005-4149
EndPage 39
ExternalDocumentID oai_kci_go_kr_ARTI_9643303
10_1007_s12540_020_00931_2
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: 2019H1D3A1A01102866
– fundername: Korean Institute of Materials Science
  grantid: PNK5520
GroupedDBID -EM
06D
0R~
0VY
123
1N0
2.D
203
29M
2JY
2KG
2VQ
30V
4.4
406
408
40D
5VS
67Z
8FE
8FG
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
KB.
KOV
KVFHK
LLZTM
MA-
MZR
N2Q
NDZJH
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
P19
P2P
P9N
PDBOC
PT4
PT5
Q2X
R89
R9I
RLLFE
ROL
RSV
S1Z
S26
S27
S28
S3B
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T16
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
Z45
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SR
8BQ
8FD
ABRTQ
JG9
AABYN
AAFGU
AAGCJ
AAPBV
AAUCO
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
SQXTU
Z5O
Z7S
Z88
ID FETCH-LOGICAL-c419t-676cb272ed5d0d193aaf27d7940fb36b67368b7eec5b0a9fec0d5b4b0c2801463
IEDL.DBID U2A
ISSN 1598-9623
IngestDate Tue Nov 21 21:03:03 EST 2023
Fri Jul 25 12:24:39 EDT 2025
Thu Apr 24 22:58:09 EDT 2025
Tue Jul 01 01:15:26 EDT 2025
Fri Feb 21 02:33:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Heat treatment
Selective laser melting
Electron beam melting
Microstructure
Metal additive manufacturing
Direct energy deposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-676cb272ed5d0d193aaf27d7940fb36b67368b7eec5b0a9fec0d5b4b0c2801463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2478603048
PQPubID 326276
PageCount 39
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9643303
proquest_journals_2478603048
crossref_citationtrail_10_1007_s12540_020_00931_2
crossref_primary_10_1007_s12540_020_00931_2
springer_journals_10_1007_s12540_020_00931_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210100
2021-01-00
20210101
2021-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 1
  year: 2021
  text: 20210100
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Metals and materials international
PublicationTitleAbbrev Met. Mater. Int
PublicationYear 2021
Publisher The Korean Institute of Metals and Materials
Springer Nature B.V
대한금속·재료학회
Publisher_xml – name: The Korean Institute of Metals and Materials
– name: Springer Nature B.V
– name: 대한금속·재료학회
References KarthikGMRamGDJKottadaRSMater. Sci. Eng. A201665371831:CAS:528:DC%2BC28Xht1WmtQ%3D%3D
WangZQPalmerTABeeseAMActa Mater.20161102262351:CAS:528:DC%2BC28Xks1Giurw%3D
BhardwajTShuklaMPrasadNKPaulCBindraKMet. Mater. Int.202026101510291:CAS:528:DC%2BC1MXhvVems7vK
MurrLEEsquivelEVQuinonesSAGaytanSMLopezMIMartinezEYMedinaFHernandezDHMartinezEMartinezJLStaffordSWBrownDKHoppeTMeyersWLindheUWickerRBMater. Charact.200960961051:CAS:528:DC%2BD1MXps1Sruw%3D%3D
BrandlESchoberthALeyensCMater. Sci. Eng. A20125322953071:CAS:528:DC%2BC3MXhs1Ciu7rN
ZhangDPrasadABerminghamMJTodaroCJBenoitMJPatelMNQiuDStJohnDHQianMEastonMAMetall. Mater. Trans. A202051434143591:CAS:528:DC%2BB3cXht1GjtLfL
YadroitsevIYadroitsavaIVirtual Phys. Prototyp.2015106776
MalyMHollerCSkalonMMeierBKoutnyDPichlerRSommitschCPalousekDMaterials (Basel)2019129301:CAS:528:DC%2BC1MXitlClu77I
T. Catts, GE turns to 3D printers for plane parts,https://www.bloomberg.com/news/articles/2013-11-27/general-electric-turns-to-3d-printers-for-plane-parts (2013)
HolzweissigMJTaubeABrenneFSchaperMNiendorfTMetall. Mater. Trans. B2015465455491:CAS:528:DC%2BC2MXlsVartQ%3D%3D
SamesWJListFAPannalaSDehoffRRBabuSSInt. Mater. Rev.201661315360
KiniARLaser Additive Manufacturing of Oxide Dispersion Strengthened Steels and Cu–Cr–Nb Alloys2019AachenRWTH Aachen
ByunYLeeSSeoS-MYeomJ-TKimSEKangNHongJMet. Mater. Int.201824121312201:CAS:528:DC%2BC1cXhtlWhs7nI
MartukanitzRMichalerisPPalmerTDebRoyTLiuZ-KOtisRHeoTWChenL-QAddit. Manuf.20141–45263
BrifYThomasMToddIScr. Mater.20159993961:CAS:528:DC%2BC2cXitFynsrrM
ZhangYLiJCheSTianYMet. Mater. Int.2020267837921:CAS:528:DC%2BC1MXitlKhsrnM
LiuPWWangZXiaoYHHorstemeyerMFCuiXYChenLAddit. Manuf.20192622291:CAS:528:DC%2BC1MXkt1Wksrs%3D
DindaGPDasguptaAKMazumderJMater. Sci. Eng. A200950998104
KunceIPolanskiMKarczewskiKPlocinskiTKurzydlowskiKJJ. Alloy. Compd.20156487517581:CAS:528:DC%2BC2MXhtVOkurjF
ZhangDQiuDGibsonMAZhengYFraserHLStJohnDHEastonMANature201957691951:CAS:528:DC%2BC1MXitlWku7nJ
MaeshimaTOh-IshiKHeliyon2019501186
HooperPAAddit. Manuf.2018225485591:CAS:528:DC%2BC1cXhsVKit7%2FK
PalanivelSSidharHMishraRSJOM2015676166211:CAS:528:DC%2BC2MXhtlKqsrs%3D
StuckerBEJanaki RamGDMaterials Processing Handbook2007Boca RatonCRC Press
JägleEAShengZWuLLuLRisseJWeisheitARaabeDJOM201668943949
WuASBrownDWKumarMGallegosGFKingWEMetall. Mater. Trans. A201445626062701:CAS:528:DC%2BC2cXhsFeqsL%2FO
ZhuZGNguyenQBNgFLAnXHLiaoXZLiawPKNaiSMLWeiJScr. Mater.201815420241:CAS:528:DC%2BC1cXpslyms7s%3D
MurrLEMartinezEHernandezJCollinsSAmatoKNGaytanSMShindoPWJ. Mater. Res. Technol.201211671771:CAS:528:DC%2BC2cXhs1KitLg%3D
MukherjeeTZubackJSDeADebRoyTSci. Rep.20166197171:CAS:528:DC%2BC28Xht1CktLk%3D
ZhouRLiuYZhouCSLiSQWuWQSongMLiuBLiangXPLiawPKIntermetallics2018941651711:CAS:528:DC%2BC1cXntVOjsA%3D%3D
TanXPKokYHTanYJDescoinsMMangelinckDTorSBLeongKFChuaCKActa Mater.2015971161:CAS:528:DC%2BC2MXht1yjs7jJ
KiesFKohnenPWilmsMBBrascheFPradeepKGSchwedtARichterSWeisheitASchleifenbaumJHHaaseCMater. Des.2018160125012641:CAS:528:DC%2BC1cXit1Cktb%2FI
ShifengWShuaiLQingsongWYanCShengZYushengSJ. Mater. Process. Technol.2014214266026671:CAS:528:DC%2BC2cXht1WmurzL
SongBDongSJLiuQLiaoHLCoddetCMater. Des.2014547277331:CAS:528:DC%2BC3sXhvValtbjO
KarthikGRamGJKottadaRSMetall. Mater. Trans. B201748b11581173
DebroyTDavidSARev. Mod. Phys.199567851121:CAS:528:DyaK2MXmtFGmtL0%3D
JeonJMParkJMYuJ-HKimJGSeongYParkSHKimHSMater. Sci. Eng. A20197631381521:CAS:528:DC%2BC1MXhsVajtLfE
DavidsonKSingamneniSMater. Manuf. Process.201631154315551:CAS:528:DC%2BC28Xnt1Krtb0%3D
SmithTRSugarJDMarchiCSSchoenungJMActa Mater.20191647287401:CAS:528:DC%2BC1cXit1Ggu7vF
MukherjeeMMaterialia20197100359
FreemanFSHBSharpJXiJWToddIAddit. Manuf.2019301009171:CAS:528:DC%2BC1MXitF2qtrzL
FangZCWuZLHuangCGWuCWOpt. Laser Technol.20201291062831:CAS:528:DC%2BB3cXntFygtb4%3D
CongWNingFInt. J. Mach. Tool. Manu.20171216169
CasatiRCoduriMLecisNAndrianopoliCVedaniMMater. Charact.201813750571:CAS:528:DC%2BC1cXnvVyktQ%3D%3D
TakataNNishidaRSuzukiAKobashiMKatoMMetals20188440
LiuYYangYQWangDInt. J. Adv. Manuf. Technol.201687647656
HolesingerTGCarpenterJSLienertTJPattersonBMPapinPASwensonHCordesNLJOM20166810001011
WangXJZhangLCFangMHSercombeTBMater. Sci. Eng. A20145973703751:CAS:528:DC%2BC2cXis1Shs7g%3D
GaribaldiMAshcroftISimonelliMHagueRActa Mater.20161102072161:CAS:528:DC%2BC28Xks1Giuro%3D
KouSWelding Metallurgy2003HobokenWiley
ThivillonLBertrandPLagetBSmurovIJ. Nucl. Mater.20093852362411:CAS:528:DC%2BD1MXjtFeitr4%3D
MartinJHYahataBDHundleyJMMayerJASchaedlerTAPollockTMNature20175493653691:CAS:528:DC%2BC2sXhsFehtrrL
AliHMaLGhadbeigiHMumtazKMater. Sci. Eng. A20176952112201:CAS:528:DC%2BC2sXnsl2rsrg%3D
KurzWFisherDJFundamentals of Solidification1984Stafa-ZurichTrans Tech Publications
SpieringsABDawsonKHeelingTUggowitzerPJSchaublinRPalmFWegenerKMater. Des.201711552631:CAS:528:DC%2BC28XhvV2isb3E
KürnsteinerPBajajPGuptaAWilmsMBWeisheitALiXLeinenbachCGaultBJägleEARaabeDAddit. Manuf.202032100910
ParimiLLRaviGAClarkDAttallahMMMater. Charact.2014891021111:CAS:528:DC%2BC2cXisFeqsbs%3D
MurrLEMartinezEGaytanSMRamirezDAMachadoBIShindoPWMartinezJLMedinaFWootenJCiscelDAckelidUWickerRBMetall. Mater. Trans. A201142349135081:CAS:528:DC%2BC3MXhtFymsrnL
ThijsLVerhaegheFCraeghsTHumbeeckJVKruthJ-PActa Mater.201058330333121:CAS:528:DC%2BC3cXkt1GqtL4%3D
PiglioneADovgyyBLiuCGourlayCMHooperPAPhamMSMater. Lett.201822422251:CAS:528:DC%2BC1cXotF2hu74%3D
DebRoyTWeiHLZubackJSMukherjeeTElmerJWMilewskiJOBeeseAMWilson-HeidADeAZhangWProg. Mater Sci.2018921122241:CAS:528:DC%2BC2sXhslGhtrjK
HaaseCBultmannJHofJZieglerSBremenSHinkeCSchwedtAPrahlUBleckWMaterials (Basel)20171056
XuWLuiEWPaterasAQianMBrandtMActa Mater.20171253904001:CAS:528:DC%2BC28XitFWnurfO
WuJWangXQWangWAttallahMMLorettoMHActa Mater.20161173113201:CAS:528:DC%2BC28Xht1eisLbL
SmithTRSugarJDSchoenungJMSan MarchiCJOM2018703583631:CAS:528:DC%2BC1cXmt12jsg%3D%3D
JägleEAChoiP-PVan HumbeeckJRaabeDJ. Mater. Res.2014292072
JohnsonLMahmoudiMZhangBSeedeRHuangXQMaierJTMaierHJKaramanIElwanyAArroyaveRActa Mater.20191761992101:CAS:528:DC%2BC1MXhtlKktL7O
FujiedaTChenMCShiratoriHKuwabaraKYamanakaKKoizumiYChibaAWatanabeSAddit. Manuf.2019254124201:CAS:528:DC%2BC1MXjsF2rsQ%3D%3D
MancaDRChuryumovAYPozdniakovAVProsviryakovASRyabovDKKrokhinAYKorolevVADaubarayteDKMet. Mater. Int.2019256336401:CAS:528:DC%2BC1cXisVGnt7rF
ParkJMChoeJKimJGBaeJWMoonJYangSKimKTYuJ-HKimHSMater. Res. Lett.20208171:CAS:528:DC%2BB3cXhsVOkurw%3D
LippoldJCWelding Metallurgy and Weldability2015HobokenWiley Online Library
QiuCLJ. Alloy. Compd.2019790102310331:CAS:528:DC%2BC1MXlvVCmt7w%3D
KellySMKampeSLMetall. Mater. Trans. A20043518611867
KarthikGMSathiyamoorthiPZargaranAParkJMAsghari-RadPSonSParkSHKimHSMaterialia2020131008611:CAS:528:DC%2BB3cXhs1KksbrP
NiuPDLiRDYuanTCZhuSYChenCWangMBHuangLIntermetallics201910424321:CAS:528:DC%2BC1cXitVChtr7E
GwalaniBSoniVWaseemOAMantriSABanerjeeROpt. Laser Technol.20191133303371:CAS:528:DC%2BC1MXht12jurc%3D
LiuYJLiSJHouWTWangSGHaoYLYangRSercombeTBZhangLCJ. Mater. Sci. Technol.2016325055081:CAS:528:DC%2BB3cXmt12gt7s%3D
LiXPWangXJSaundersMSuvorovaAZhangLCLiuYJFangMHHuangZHSercombeTBActa Mater.20159574821:CAS:528:DC%2BC2MXpsV2jtL4%3D
SankarGSKarthikGMMohammadAKumarRJanaki RamGDTrans. Indian Inst. Met.2018723546
LeBrunTNakamotoTHorikawaKKobayashiHMater. Des.20158144531:CAS:528:DC%2BC2MXosVaitbk%3D
YangKVShiYJPalmFWuXHRometschPScr. Mater.20181451131171:CAS:528:DC%2BC2sXhslWqsrbN
ZhangHZhuHHQiTHuZHZengXYMater. Sci. Eng. A201665647541:CAS:528:DC%2BC28XovVyktQ%3D%3D
KunceIPolanskiMBystrzyckiJInt. J. Hydrog. Energy201439990499101:CAS:528:DC%2BC2cXks1WrsLo%3D
KrellJRottgerAGeenenKTheisenWJ. Mater. Process. Technol.20182556796881:CAS:528:DC%2BC1cXisl2gtbk%3D
DindaGPDasguptaAKMazumderJScr. Mater.2012675035061:CAS:528:DC%2BC38XhtVWis73O
YadollahiAShamsaeiNThompsonSMSeelyDWMater. Sci. Eng. A20156441711831:CAS:528:DC%2BC2MXhsVSjtbnM
ZhuYTHuangJYGubiczaJUngarTWangYMMaEValievRZJ. Mater. Res.200318190819171:CAS:528:DC%2BD3sXmtlygtL8%3D
TangMPistoriusPCBeuthJLAddit. Manuf.20171439481:CAS:528:DC%2BC2sXmvVGkt7Y%3D
RoudnickáMMolnárováODvorskýDKřivskýLVojtěchDMet. Mater. Int.20202611681181
KalenticsNBoillatEPeyrePCiric-KosticSBogojevicNLogeREAddit. Manuf.20171690971:CAS:528:DC%2BC2sXhsV2jsbnJ
ZhongYRannarLELiuLFKoptyugAWikmanSOlsenJCuiDQShenZJJ. Nucl. Mater.20174862342451:CAS:528:DC%2BC2sXhs1Klu7s%3D
ZhaoXSongBZhangYJZhuXMWeiQSShiYSMater. Sci. Eng. A201564758611:CAS:528:DC%2BC2MXhsVyjtrfJ
GäumannMBezençonCCanalisPKurzWActa Mater.20014910511062
MurrLEGaytanSMRamirezDAMartinezEHernandezJAmatoKNShindoPWMedinaFRWickerRBJ. Mater. Sci. Technol.2012281141:CAS:528:DC%2BC38Xks1yltr8%3D
AhmadBvan der VeenSOFitzpatrickMEGuoHAddit. Manuf.2018225715821:CAS:528:DC%2BC1cXhsVKit7rI
SaeidiKGaoXLofajFKvetkovaLShenZJJ. Alloy. Compd.20156334634691:CAS:528:DC%2BC2MXivVCisLk%3D
A. Takaichi, Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi, T. Hanawa, J. Mech. Behav. Biomed. Mater. 21, 67–76 (2013)
KrakhmalevPYadroitsavaIFredrikssonGYadroitsevIMater. Des.2015873803851:CAS:528:DC%2BC2MXhsVKlt7zN
XuWBrandtMSunSElambasserilJLiuQLathamKXiaKQianMActa Mater.20158574841:CAS:528:DC%2BC2cXitFKlurfN
LuYJWuSQGanYLHuangTTYangCGLinJJLinJXOpt. Laser Technol.2015751972061:CAS:528:DC%2BC2MXht1yhsb3I
SunSHIshimotoTHagiharaKTsutsumiYHanawaTNakanoTScr. Mater.201915989931:CAS:528:DC%2BC1cXhslCisrbL
SuproboGAmmarAAParkNBaekERKimSMet. Mater. Int.201925142814351:CAS:528:DC%2BC1MXhtVKisb7N
ShiratoriHFujiedaTYamanakaKKoizumiYKuwabaraKKatoTChibaAMater. Sci. Eng. A201665639461:CAS:528:DC%2BC28XovVCjuw%3D%3D
PasangTKirchnerAJehringUAzizideroueiMTaoYJiangCPWangJCAisyahISMet. Mater. Int.201925127812861:CAS:528:DC%2BC1MXptleltbs%3D
NiendorfTLeudersSRiemerARichardHATrosterTSchwarzeDMetall. Mater. Trans. B2013447947961:CAS:528:DC%2BC3sXhtVyrsr7M
LeeJ-BSeoD-IChangHYMet. Mater. Int.20202639451:CAS:528:DC%2BC1MXitFyrsL7I
LiuJDavidchackRLDongHBComput. Mater. Sci.201374921001:CAS:528:DC%2BC3sXmslWqtro%3D
WangYMVoisinTMcKeownJTYeJCaltaNPLiZZengZZhangYChenWRoehlingTTOttRTSantalaMKDepondPJMatthewsMJHamzaAVZhuTNat. Mater.20181763711:CAS:528:DC%2BC2sXhslemsrjF
WeiHLBhadesh
PA Hooper (931_CR113) 2018; 22
KV Yang (931_CR195) 2018; 145
B Mooney (931_CR236) 2019; 25
T Bhardwaj (931_CR164) 2020; 26
T Pasang (931_CR23) 2019; 25
LE Murr (931_CR159) 2012; 28
N Guo (931_CR2) 2013; 8
JM Jeon (931_CR35) 2019; 763
YM Wang (931_CR89) 2018; 17
BE Stucker (931_CR10) 2007
T Fujieda (931_CR80) 2019; 25
T DebRoy (931_CR54) 2018; 92
K Saeidi (931_CR107) 2015; 625
C Casavola (931_CR209) 2009; 44
M Maly (931_CR217) 2019; 12
H Shiratori (931_CR151) 2016; 656
931_CR224
GM Karthik (931_CR12) 2017; 679
D Buchbinder (931_CR220) 2014; 26
AA Antonysamy (931_CR60) 2013; 84
T Mukherjee (931_CR31) 2016; 6
PJ Withers (931_CR207) 2001; 17
931_CR221
RV Mises (931_CR108) 1945; 51
H-J Yi (931_CR163) 2020; 26
D Karlsson (931_CR149) 2019; 784
B Ren (931_CR200) 2019; 34
B Ahmad (931_CR210) 2018; 22
P Wang (931_CR145) 2019; 168
M Marya (931_CR187) 2015; 46
XJ Wang (931_CR176) 2014; 597
H Zhang (931_CR37) 2016; 656
T Mishurova (931_CR213) 2019; 25
N Takata (931_CR177) 2018; 143
T DebRoy (931_CR7) 2019; 18
PW Liu (931_CR62) 2019; 26
JW Cahn (931_CR126) 1963; 11
JJS Dilip (931_CR43) 2017; 13
931_CR18
EA Jägle (931_CR129) 2017; 10
JB Wang (931_CR121) 2020; 31
Y Kok (931_CR16) 2018; 139
S Lee (931_CR20) 2020; 26
G Suprobo (931_CR167) 2019; 25
J-B Lee (931_CR168) 2020; 26
L Johnson (931_CR33) 2019; 176
D Zhang (931_CR197) 2019; 576
K Davidson (931_CR127) 2016; 31
K Saeidi (931_CR233) 2019; 9
LN Carter (931_CR235) 2012; 2012
X Zhao (931_CR128) 2015; 30
Z Sun (931_CR153) 2019; 168
VD Divya (931_CR104) 2016; 114
S Bodziak (931_CR184) 2019; 151
Y Liu (931_CR215) 2016; 87
KG Prashanth (931_CR171) 2014; 590
H Dobbelstein (931_CR19) 2019; 25
ZJ Sun (931_CR76) 2018; 10
PD Niu (931_CR150) 2019; 104
JM Park (931_CR29) 2020; 35
DD Gu (931_CR169) 2012; 60
JC Lippold (931_CR58) 2015
P Krakhmalev (931_CR191) 2018; 8
RR Mudge (931_CR17) 2007; 86
Y Brif (931_CR146) 2015; 99
TG Holesinger (931_CR53) 2016; 68
YT Zhu (931_CR100) 2003; 18
J Krell (931_CR131) 2018; 255
J Cao (931_CR214) 2013; 45
D Wang (931_CR106) 2016; 100
E Atzeni (931_CR5) 2012; 62
I Gibson (931_CR14) 2014
C Haase (931_CR122) 2017; 10
V Manvatkar (931_CR63) 2015; 31
M Gäumann (931_CR61) 2001; 49
M Tang (931_CR55) 2017; 14
F Arias-González (931_CR166) 2018; 24
XY Lou (931_CR182) 2018; 499
931_CR1
931_CR3
L Facchini (931_CR228) 2009; 15
PL Blackwell (931_CR234) 2005; 170
JJS Dilip (931_CR39) 2017; 2
CL Qiu (931_CR157) 2013; 578
KN Amato (931_CR227) 2012; 60
JY Lee (931_CR4) 2017; 7
P Deng (931_CR179) 2020; 35
AR Kini (931_CR117) 2019
I Kunce (931_CR81) 2015; 648
R Mertens (931_CR141) 2016; 83
LP Kubin (931_CR112) 2003; 48
T Wang (931_CR65) 2015; 632
A Simchi (931_CR186) 2004; 35
HL Wei (931_CR73) 2015; 5
EA Jägle (931_CR118) 2016; 68
CL Qiu (931_CR185) 2019; 790
SH Sun (931_CR51) 2019; 159
SA David (931_CR59) 1989; 34
YJ Lu (931_CR212) 2015; 75
G Karthik (931_CR173) 2017; 48b
GP Dinda (931_CR69) 2009; 509
P Tao (931_CR99) 2019; 159
J Wu (931_CR110) 2016; 117
P Bajaj (931_CR135) 2020; 772
EA Jägle (931_CR140) 2014; 29
P Kürnsteiner (931_CR132) 2017; 129
AS Wu (931_CR211) 2014; 45
BE Carroll (931_CR32) 2015; 87
T Debroy (931_CR123) 1995; 67
XL Wu (931_CR28) 2017; 5
FSHB Freeman (931_CR103) 2019; 30
T LeBrun (931_CR134) 2015; 81
LE Murr (931_CR230) 2011; 42
XP Li (931_CR40) 2015; 95
W Kurz (931_CR101) 1984
A Koptyug (931_CR6) 2013; 3
LE Murr (931_CR125) 2012; 1
H Zhang (931_CR85) 2017; 134
GP Dinda (931_CR36) 2012; 206
TR Smith (931_CR231) 2018; 70
W Xu (931_CR170) 2015; 85
RD Li (931_CR143) 2018; 746
JM Park (931_CR148) 2020; 8
DA Ramirez (931_CR180) 2011; 59
JP Kruth (931_CR21) 2003; 23
X Zhou (931_CR193) 2015; 631
GP Dinda (931_CR41) 2013; 44
B Gwalani (931_CR67) 2019; 113
L Thivillon (931_CR68) 2009; 385
GP Dinda (931_CR70) 2012; 67
T Qi (931_CR75) 2017; 135
AP Ventura (931_CR119) 2017; 48
M Åsberg (931_CR142) 2019; 742
ZH Xiong (931_CR44) 2019; 740
I Kunce (931_CR154) 2014; 39
RJ Moat (931_CR66) 2009; 57
F Deirmina (931_CR137) 2019; 753
AK Syed (931_CR237) 2019; 35
X Zhao (931_CR48) 2015; 647
L Facchini (931_CR133) 2010; 12
T Niendorf (931_CR194) 2013; 44
B Vrancken (931_CR162) 2014; 68
M Galati (931_CR26) 2018; 19
C Qiu (931_CR91) 2018; 8
S Bahl (931_CR88) 2019; 28
NT Aboulkhair (931_CR175) 2019; 106
Y Byun (931_CR165) 2018; 24
DR Manca (931_CR174) 2019; 25
ML Montero-Sistiaga (931_CR84) 2016; 238
K Saeidi (931_CR190) 2015; 5
T Maeshima (931_CR114) 2019; 5
L Thijs (931_CR38) 2013; 61
XD Xing (931_CR223) 2019; 9
L Thijs (931_CR46) 2010; 58
A Piglione (931_CR201) 2018; 224
KG Prashanth (931_CR92) 2017; 707
LM Sochalski-Kolbus (931_CR219) 2015; 46
A Yadollahi (931_CR56) 2015; 644
LC Zhang (931_CR161) 2011; 65
VK Nadimpalli (931_CR15) 2020; 108
HY Wan (931_CR98) 2018; 34
P Kürnsteiner (931_CR115) 2020; 32
HL Wei (931_CR72) 2019; 24
R Martukanitz (931_CR205) 2014; 1–4
LE Murr (931_CR95) 2009; 60
D Zhang (931_CR238) 2020; 51
Y Zhang (931_CR22) 2020; 26
HL Wei (931_CR52) 2016; 115
N Takata (931_CR198) 2018; 8
S Kou (931_CR57) 2003
G Karthik (931_CR172) 2017; 48
ZQ Wang (931_CR82) 2016; 110
Y Zhong (931_CR97) 2017; 486
R Casati (931_CR138) 2018; 137
H Ali (931_CR218) 2017; 695
AR Balachandramurthi (931_CR229) 2018; 12
UF Kocks (931_CR111) 2003; 48
M Roudnická (931_CR116) 2020; 26
MQ Zafar (931_CR9) 2019; 26
FJ Barbaro (931_CR188) 1989; 5
LL Parimi (931_CR64) 2014; 89
N Takata (931_CR202) 2017; 704
ZC Fang (931_CR206) 2020; 129
Y Zhong (931_CR90) 2016; 470
N Kalentics (931_CR222) 2017; 16
Y Zhong (931_CR96) 2017; 116
CL Tan (931_CR199) 2018; 19
YJ Liu (931_CR160) 2016; 32
E Brandl (931_CR49) 2012; 532
J Liu (931_CR192) 2013; 74
FY Yan (931_CR183) 2018; 155
S Palanivel (931_CR11) 2015; 67
AJ Birnbaum (931_CR93) 2019; 29
SM Kelly (931_CR156) 2004; 35
GS Sankar (931_CR50) 2018; 72
H Qi (931_CR47) 2009; 40
F Kies (931_CR45) 2018; 160
SS Al-Bermani (931_CR78) 2010; 41
JW Lin (931_CR239) 2020; 174
J Akram (931_CR74) 2018; 21
JH Martin (931_CR86) 2017; 549
S Uchida (931_CR120) 2019; 175
TR Smith (931_CR83) 2019; 164
HJ Niu (931_CR139) 1999; 41
RD Li (931_CR181) 2010; 256
C Han (931_CR25) 2020; 32
B Song (931_CR226) 2014; 54
I Yadroitsev (931_CR204) 2015; 10
MJ Holzweissig (931_CR130) 2015; 46
JD Majumdar (931_CR42) 2005; 247
WJ Sames (931_CR8) 2016; 61
P Mercelis (931_CR208) 2006; 12
H Zhang (931_CR152) 2018; 96
C Li (931_CR203) 2018; 71
P Krakhmalev (931_CR136) 2015; 87
K Saeidi (931_CR105) 2015; 633
YK Kim (931_CR144) 2019; 805
AB Spierings (931_CR178) 2017; 115
GM Karthik (931_CR13) 2016; 653
G Wang (931_CR94) 2020; 8
ZG Zhu (931_CR109) 2018; 154
M Yan (931_CR189) 2014; 57
W Shifeng (931_CR34) 2014; 214
Y Zhu (931_CR27) 2021; 9
MW Wu (931_CR225) 2016; 650
V Juechter (931_CR124) 2014; 76
SA Mantri (931_CR196) 2017; 52
AM Beese (931_CR77) 2016; 68
GM Karthik (931_CR30) 2020; 13
XP Tan (931_CR158) 2015; 97
XP Tan (931_CR79) 2019; 7
M Mukherjee (931_CR87) 2019; 7
W Xu (931_CR102) 2017; 125
B Vrancken (931_CR232) 2012; 541
W Cong (931_CR24) 2017; 121
C Leyens (931_CR155) 2003
ML Griffith (931_CR216) 1999; 20
M Garibaldi (931_CR71) 2016; 110
R Zhou (931_CR147) 2018; 94
References_xml – reference: LeBrunTNakamotoTHorikawaKKobayashiHMater. Des.20158144531:CAS:528:DC%2BC2MXosVaitbk%3D
– reference: KarthikGMRamGDJKottadaRSMater. Sci. Eng. A201665371831:CAS:528:DC%2BC28Xht1WmtQ%3D%3D
– reference: ParkJMChoeJParkHKSonSJungJKimT-SYuJ-HKimJGKimHSAddit. Manuf.2020351013331:CAS:528:DC%2BB3cXhvV2nsbvL
– reference: KokYTanXPWangPNaiMLSLohNHLiuETorSBMater. Des.20181395655861:CAS:528:DC%2BC2sXhvFWmtrjE
– reference: CarterLNAttallahMMReedRCSuperalloys20122012577586
– reference: ShiratoriHFujiedaTYamanakaKKoizumiYKuwabaraKKatoTChibaAMater. Sci. Eng. A201665639461:CAS:528:DC%2BC28XovVCjuw%3D%3D
– reference: AliHMaLGhadbeigiHMumtazKMater. Sci. Eng. A20176952112201:CAS:528:DC%2BC2sXnsl2rsrg%3D
– reference: ParkJMChoeJKimJGBaeJWMoonJYangSKimKTYuJ-HKimHSMater. Res. Lett.20208171:CAS:528:DC%2BB3cXhsVOkurw%3D
– reference: XiongZHLiuSLLiSFShiYYangYFMisraRDKMater. Sci. Eng. A2019740148156
– reference: ManvatkarVDeADebRoyTMater. Sci. Technol.2015319249301:CAS:528:DC%2BC2cXhvVGqsb%2FE
– reference: WangYMVoisinTMcKeownJTYeJCaltaNPLiZZengZZhangYChenWRoehlingTTOttRTSantalaMKDepondPJMatthewsMJHamzaAVZhuTNat. Mater.20181763711:CAS:528:DC%2BC2sXhslemsrjF
– reference: SaeidiKKvetkovaLLofajcFShenZJRSC Adv.2015520747207501:CAS:528:DC%2BC2MXislektbo%3D
– reference: DobbelsteinHGurevichELGeorgeEPOstendorfALaplancheGAddit. Manuf.2019252522621:CAS:528:DC%2BC1MXjsF2rtQ%3D%3D
– reference: SunZJTanXPTorSBChuaCKNPG Asia Mater.2018101271361:CAS:528:DC%2BC1cXosVWrsrg%3D
– reference: WanHYZhouZJLiCPChenGFZhangGPJ. Mater. Sci. Technol.20183417991804
– reference: BalachandramurthiARMoverareJMahadeSPedersonRMaterials (Basel)20181268
– reference: NadimpalliVKKarthikGMJanakiramGDNagyPBInt. J. Adv. Manuf.202010817931810
– reference: SamesWJListFAPannalaSDehoffRRBabuSSInt. Mater. Rev.201661315360
– reference: FangZCWuZLHuangCGWuCWOpt. Laser Technol.20201291062831:CAS:528:DC%2BB3cXntFygtb4%3D
– reference: SmithTRSugarJDMarchiCSSchoenungJMActa Mater.20191647287401:CAS:528:DC%2BC1cXit1Ggu7vF
– reference: HolesingerTGCarpenterJSLienertTJPattersonBMPapinPASwensonHCordesNLJOM20166810001011
– reference: BlackwellPLJ. Mater. Process. Technol.20051702402461:CAS:528:DC%2BD2MXhtFGrsr7E
– reference: BeeseAMCarrollBEJOM2016687247341:CAS:528:DC%2BC2MXitV2ntLfJ
– reference: GalatiMIulianoLAddit. Manuf.201819120
– reference: KouSWelding Metallurgy2003HobokenWiley
– reference: KrakhmalevPFredrikssonGSvenssonKYadroitsevIYadroitsavaIThuvanderMPengRMetals20188118
– reference: LeeJYAnJChuaCKAppl. Mater. Today20177120133
– reference: M.L. Griffith, D.L. Keicher, J. Romero, C. Atwood, L. Harwell, D. Greene, J. Smugeresky Laser Engineered Net Shaping (LENS) for the fabrication of metallic components, Sandia National Labs, Albuquerque, New Mexico, USA (1996)
– reference: ZhongYRannarLEWikamanSKoptyugALiuLFCuiDQShenZJFusion Eng. Des.201711624331:CAS:528:DC%2BC2sXhvVektrg%3D
– reference: MukherjeeMMaterialia20197100359
– reference: ZhuYTHuangJYGubiczaJUngarTWangYMMaEValievRZJ. Mater. Res.200318190819171:CAS:528:DC%2BD3sXmtlygtL8%3D
– reference: DindaGPDasguptaAKMazumderJScr. Mater.2012675035061:CAS:528:DC%2BC38XhtVWis73O
– reference: AhmadBvan der VeenSOFitzpatrickMEGuoHAddit. Manuf.2018225715821:CAS:528:DC%2BC1cXhsVKit7rI
– reference: R. Mertens, S. Dadbakhsh, J. Van Humbeeck, J.P. Kruth, 10th Cirp Conference on Photonic Technologies, vol. 74, pp. 5–11 (2018)
– reference: ÅsbergMFredrikssonGHatamiSFredrikssonWKrakhmalevPMater. Sci. Eng. A2019742584589
– reference: FacchiniLMagaliniERobottiPMolinariARapid Prototyp. J.200915171178
– reference: DebRoyTMukherjeeTMilewskiJOElmerJWRibicBBlecherJJZhangWNat. Mater.201918102610321:CAS:528:DC%2BC1MXhtlWisrnJ
– reference: MisesRVBull. Am. Math. Soc.194551555562
– reference: QiHAzerMRitterAMetall. Mater. Trans. A20094024102422
– reference: ZhouXLiKLZhangDDLiuXHMaJLiuWShenZJJ. Alloy. Compd.20156311531641:CAS:528:DC%2BC2MXhsVGjsbo%3D
– reference: DindaGPDasguptaAKMazumderJSurf. Coat. Technol.2012206215221601:CAS:528:DC%2BC38Xhtlamsg%3D%3D
– reference: PalanivelSSidharHMishraRSJOM2015676166211:CAS:528:DC%2BC2MXhtlKqsrs%3D
– reference: MukherjeeTZubackJSDeADebRoyTSci. Rep.20166197171:CAS:528:DC%2BC28Xht1CktLk%3D
– reference: QiTZhuHHZhangHYinJKeLDZengXYMater. Des.20171352572661:CAS:528:DC%2BC2sXhsFylsLnI
– reference: FujiedaTChenMCShiratoriHKuwabaraKYamanakaKKoizumiYChibaAWatanabeSAddit. Manuf.2019254124201:CAS:528:DC%2BC1MXjsF2rsQ%3D%3D
– reference: HolzweissigMJTaubeABrenneFSchaperMNiendorfTMetall. Mater. Trans. B2015465455491:CAS:528:DC%2BC2MXlsVartQ%3D%3D
– reference: MartukanitzRMichalerisPPalmerTDebRoyTLiuZ-KOtisRHeoTWChenL-QAddit. Manuf.20141–45263
– reference: QiuCKindiMAAladawiASHatmiIASci. Rep.201887785
– reference: MantriSAAlamTChoudhuriDYannettaCJMiklerCVCollinsPCBanerjeeRJ. Mater. Sci.20175212455124661:CAS:528:DC%2BC2sXhtFKrsLzL
– reference: XuWLuiEWPaterasAQianMBrandtMActa Mater.20171253904001:CAS:528:DC%2BC28XitFWnurfO
– reference: DindaGPDasguptaAKBhattacharyaSNatuHDuttaBMazumderJMetall. Mater. Trans. A201344223322421:CAS:528:DC%2BC3sXksFemurk%3D
– reference: VranckenBThijsLKruthJPVan HumbeeckJJ. Alloy. Compd.20125411771851:CAS:528:DC%2BC38XhtlGkurnO
– reference: KunceIPolanskiMKarczewskiKPlocinskiTKurzydlowskiKJJ. Alloy. Compd.20156487517581:CAS:528:DC%2BC2MXhtVOkurjF
– reference: WithersPJBhadeshiaHKDHMater. Sci. Technol.2001173553651:CAS:528:DC%2BD3MXjtF2it78%3D
– reference: QiuCLJ. Alloy. Compd.2019790102310331:CAS:528:DC%2BC1MXlvVCmt7w%3D
– reference: RoudnickáMMolnárováODvorskýDKřivskýLVojtěchDMet. Mater. Int.20202611681181
– reference: ZhangHZhuHHQiTHuZHZengXYMater. Sci. Eng. A201665647541:CAS:528:DC%2BC28XovVyktQ%3D%3D
– reference: CaoJLiuFCLinXHuangCPChenJHuangWDOpt. Laser Technol.2013452282351:CAS:528:DC%2BC38Xhtl2qs7jN
– reference: SimchiAMetall. Mater. Trans. B200435937948
– reference: PrashanthKGScudinoSKlaussHJSurreddiKBLöberLWangZChaubeyAKKühnUEckertJMater. Sci. Eng. A20145901531601:CAS:528:DC%2BC3sXhvFajsrnI
– reference: PiglioneADovgyyBLiuCGourlayCMHooperPAPhamMSMater. Lett.201822422251:CAS:528:DC%2BC1cXotF2hu74%3D
– reference: WuMWLaiPHChenJKMater. Sci. Eng. A20166502952991:CAS:528:DC%2BC2MXhslWhu7jK
– reference: SunSHIshimotoTHagiharaKTsutsumiYHanawaTNakanoTScr. Mater.201915989931:CAS:528:DC%2BC1cXhslCisrbL
– reference: LiuPWWangZXiaoYHHorstemeyerMFCuiXYChenLAddit. Manuf.20192622291:CAS:528:DC%2BC1MXkt1Wksrs%3D
– reference: SyedAKAwdMWaltherFZhangXMater. Sci. Technol.2019356536601:CAS:528:DC%2BC1MXmtFyqtLs%3D
– reference: ZhaoXSongBZhangYJZhuXMWeiQSShiYSMater. Sci. Eng. A201564758611:CAS:528:DC%2BC2MXhsVyjtrfJ
– reference: TangMPistoriusPCBeuthJLAddit. Manuf.20171439481:CAS:528:DC%2BC2sXmvVGkt7Y%3D
– reference: MurrLEGaytanSMRamirezDAMartinezEHernandezJAmatoKNShindoPWMedinaFRWickerRBJ. Mater. Sci. Technol.2012281141:CAS:528:DC%2BC38Xks1yltr8%3D
– reference: YiH-JKimJ-WKimY-LShinSMet. Mater. Int.202026123512461:CAS:528:DC%2BB3cXisleqsbg%3D
– reference: MudgeRRWaldNRWeld. J.2007864448
– reference: MaryaMSinghVMaryaSHascoetJYMetall. Mater. Trans. B201546165416651:CAS:528:DC%2BC2MXlsVWnt7s%3D
– reference: ThivillonLBertrandPLagetBSmurovIJ. Nucl. Mater.20093852362411:CAS:528:DC%2BD1MXjtFeitr4%3D
– reference: MercelisPKruthJPRapid Prototyp. J.200612254265
– reference: WangGOuyangHFanCGuoQLiZQYanWTLiZMater. Res. Lett.202082832901:CAS:528:DC%2BB3cXhtVGjsLbO
– reference: GibsonIRosenDWStuckerBAdditive Manufacturing Technologies2014New YorkSpringer
– reference: ZhouRLiuYZhouCSLiSQWuWQSongMLiuBLiangXPLiawPKIntermetallics2018941651711:CAS:528:DC%2BC1cXntVOjsA%3D%3D
– reference: DilipJJSRamGDJStarrTLStuckerBAddit. Manuf.20171349601:CAS:528:DC%2BC2sXmvVGku70%3D
– reference: ZhangYLiJCheSTianYMet. Mater. Int.2020267837921:CAS:528:DC%2BC1MXitlKhsrnM
– reference: LeyensCPetersMTitanium and Titanium Alloys: Fundamentals and Applications2003HobokenWiley
– reference: YanMXuWDarguschMSTangHPBrandtMQianMPowder Metall.2014572512571:CAS:528:DC%2BC2cXhtleju77E
– reference: GäumannMBezençonCCanalisPKurzWActa Mater.20014910511062
– reference: AmatoKNGaytanSMMurrLEMartinezEShindoPWHernandezJCollinsSMedinaFActa Mater.201260222922391:CAS:528:DC%2BC38Xjs1Wns78%3D
– reference: XuWBrandtMSunSElambasserilJLiuQLathamKXiaKQianMActa Mater.20158574841:CAS:528:DC%2BC2cXitFKlurfN
– reference: BodziakSAl-RubaieKSDalla ValentinaLLafrattaFHSantosECZanattaAMChenYMMater. Charact.201915173831:CAS:528:DC%2BC1MXktFyns7w%3D
– reference: A. Takaichi, Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi, T. Hanawa, J. Mech. Behav. Biomed. Mater. 21, 67–76 (2013)
– reference: ZhangHXuWXuYJLuZLLiDCInt. J. Adv. Manuf. Technol.201896461474
– reference: CarrollBEPalmerTABeeseAMActa Mater.2015873093201:CAS:528:DC%2BC2MXhvFKlt74%3D
– reference: LiXPWangXJSaundersMSuvorovaAZhangLCLiuYJFangMHHuangZHSercombeTBActa Mater.20159574821:CAS:528:DC%2BC2MXpsV2jtL4%3D
– reference: ZhongYRannarLELiuLFKoptyugAWikmanSOlsenJCuiDQShenZJJ. Nucl. Mater.20174862342451:CAS:528:DC%2BC2sXhs1Klu7s%3D
– reference: MurrLEMartinezEGaytanSMRamirezDAMachadoBIShindoPWMartinezJLMedinaFWootenJCiscelDAckelidUWickerRBMetall. Mater. Trans. A201142349135081:CAS:528:DC%2BC3MXhtFymsrnL
– reference: HaaseCBultmannJHofJZieglerSBremenSHinkeCSchwedtAPrahlUBleckWMaterials (Basel)20171056
– reference: LiuYYangYQWangDInt. J. Adv. Manuf. Technol.201687647656
– reference: KürnsteinerPWilmsMBWeisheitABarriobero-VilaPJägleEARaabeDActa Mater.20171295260
– reference: MalyMHollerCSkalonMMeierBKoutnyDPichlerRSommitschCPalousekDMaterials (Basel)2019129301:CAS:528:DC%2BC1MXitlClu77I
– reference: MartinJHYahataBDHundleyJMMayerJASchaedlerTAPollockTMNature20175493653691:CAS:528:DC%2BC2sXhsFehtrrL
– reference: GuDDHagedornYCMeinersWMengGBBatistaRJSWissenbachKPopraweRActa Mater.201260384938601:CAS:528:DC%2BC38XntFSqsbk%3D
– reference: KimYKChoJLeeKAJ. Alloy. Compd.20198056806911:CAS:528:DC%2BC1MXhsVShs77O
– reference: KarthikGMSathiyamoorthiPZargaranAParkJMAsghari-RadPSonSParkSHKimHSMaterialia2020131008611:CAS:528:DC%2BB3cXhs1KksbrP
– reference: LeeJ-BSeoD-IChangHYMet. Mater. Int.20202639451:CAS:528:DC%2BC1MXitFyrsL7I
– reference: LiuYJLiSJHouWTWangSGHaoYLYangRSercombeTBZhangLCJ. Mater. Sci. Technol.2016325055081:CAS:528:DC%2BB3cXmt12gt7s%3D
– reference: ZhaoXWeiQSSongBLiuYLuoXWWenSFShiYSMater. Manuf. Process.201530128312891:CAS:528:DC%2BC2MXptF2qur4%3D
– reference: MancaDRChuryumovAYPozdniakovAVProsviryakovASRyabovDKKrokhinAYKorolevVADaubarayteDKMet. Mater. Int.2019256336401:CAS:528:DC%2BC1cXisVGnt7rF
– reference: KarthikGMPanikarSRamGDJKottadaRSMater. Sci. Eng. A20176791932031:CAS:528:DC%2BC28XhslWju7fO
– reference: MurrLEEsquivelEVQuinonesSAGaytanSMLopezMIMartinezEYMedinaFHernandezDHMartinezEMartinezJLStaffordSWBrownDKHoppeTMeyersWLindheUWickerRBMater. Charact.200960961051:CAS:528:DC%2BD1MXps1Sruw%3D%3D
– reference: YangKVShiYJPalmFWuXHRometschPScr. Mater.20181451131171:CAS:528:DC%2BC2sXhslWqsrbN
– reference: ISO/ASTM52900, Standard Terminology for Additive Manufacturing – General Principles – Terminology, ASTM International, (West Conshohocken, PA 2015)
– reference: SaeidiKAlviSLofajFPetkovVIAkhtarFMetals201991991:CAS:528:DC%2BC1MXitlemsLfO
– reference: WangPHuangPFNgFLSinWJLuSLNaiMLSRDongZLWeiJMater. Des.20191681075761:CAS:528:DC%2BC1MXktFaqsL8%3D
– reference: WeiHLMazumderJDebRoyTSci. Rep.20155164461:CAS:528:DC%2BC2MXhvVWmsrrN
– reference: BuchbinderDMeinersWPirchNWissenbachKSchrageJJ. Laser Appl.201426012004
– reference: JohnsonLMahmoudiMZhangBSeedeRHuangXQMaierJTMaierHJKaramanIElwanyAArroyaveRActa Mater.20191761992101:CAS:528:DC%2BC1MXhtlKktL7O
– reference: YadollahiAShamsaeiNThompsonSMSeelyDWMater. Sci. Eng. A20156441711831:CAS:528:DC%2BC2MXhsVSjtbnM
– reference: Sochalski-KolbusLMPayzantEACornwellPAWatkinsTRBabuSSDehoffRRLorenzMOvchinnikovaODutyCMetall. Mater. Trans. A201546141914321:CAS:528:DC%2BC2MXls1OnsQ%3D%3D
– reference: GriffithMLSchliengerMEHarwellLDOliverMSBaldwinMDEnszMTEssienMBrooksJRobinoCVSmugereskyJEHofmeisterWHWertMJNelsonDVMater. Des.199920107113
– reference: LiRDShiYSWangZGWangLLiuJHJiangWAppl. Surf. Sci.2010256435043561:CAS:528:DC%2BC3cXksV2lsL8%3D
– reference: Montero-SistiagaMLMertensRVranckenBWangXVan HoorewederBKruthJ-PVan HumbeeckJJ. Mater. Process. Technol.20162384374451:CAS:528:DC%2BC28XhtlehsbjL
– reference: JägleEAShengZWuLLuLRisseJWeisheitARaabeDJOM201668943949
– reference: ZhangDQiuDGibsonMAZhengYFraserHLStJohnDHEastonMANature201957691951:CAS:528:DC%2BC1MXitlWku7nJ
– reference: MishurovaTArtztKHaubrichJRequenaGBrunoGAddit. Manuf.2019253253341:CAS:528:DC%2BC1MXjsF2qsQ%3D%3D
– reference: TanCLZhouKSKuangMMaWYKuangTCSci. Technol. Adv. Mater.2018197467581:CAS:528:DC%2BC1MXhslKksb3P
– reference: JuechterVScharowskyTSingerRFKornerCActa Mater.2014762522581:CAS:528:DC%2BC2cXhtFOrsb3P
– reference: DilipJJSZhangSTengCZengKRobinsonCPalDStuckerBProg. Addit. Manuf.20172157167
– reference: LinJWChenFDTangXBLiuJShenSKGeGJVacuum20201741091831:CAS:528:DC%2BB3cXhtVKitL4%3D
– reference: NiuHJChangITHScr. Mater.19994125301:CAS:528:DyaK1MXltFGhsbg%3D
– reference: WangXJZhangLCFangMHSercombeTBMater. Sci. Eng. A20145973703751:CAS:528:DC%2BC2cXis1Shs7g%3D
– reference: LouXYAndresenPLRebakRBJ. Nucl. Mater.20184991821901:CAS:528:DC%2BC2sXhvVKks77J
– reference: MertensRVranckenBHolmstockNKindsYKruthJPVan HumbeeckJPhys. Procedia2016838828901:CAS:528:DC%2BC28XhsFais7bF
– reference: VenturaAPMarvelCJPawlikowskiGBayesMWatanabeMVinciRPMisiolekWZMetall. Mater. Trans. A201748607060821:CAS:528:DC%2BC2sXhs1GktLrK
– reference: RamirezDAMurrLEMartinezEHernandezDHMartinezJLMachadoBIMedinaFFrigolaPWickerRBActa Mater.201159408840991:CAS:528:DC%2BC3MXltl2ltL4%3D
– reference: AtzeniESalmiAInt. J. Adv. Manuf. Tech.20126211471155
– reference: LeeSKimJShimD-SParkS-HChoiYSMet. Mater. Int.2020267087181:CAS:528:DC%2BB3cXhtVentr4%3D
– reference: KarthikGRamGJKottadaRSMetall. Mater. Trans. B201748b11581173
– reference: T. Catts, GE turns to 3D printers for plane parts,https://www.bloomberg.com/news/articles/2013-11-27/general-electric-turns-to-3d-printers-for-plane-parts (2013)
– reference: MooneyBKourousisKIRaghavendraRAddit. Manuf.20192519311:CAS:528:DC%2BC1MXjsF2rsA%3D%3D
– reference: SaeidiKGaoXLofajFKvetkovaLShenZJJ. Alloy. Compd.20156334634691:CAS:528:DC%2BC2MXivVCisLk%3D
– reference: NiuPDLiRDYuanTCZhuSYChenCWangMBHuangLIntermetallics201910424321:CAS:528:DC%2BC1cXitVChtr7E
– reference: KiesFKohnenPWilmsMBBrascheFPradeepKGSchwedtARichterSWeisheitASchleifenbaumJHHaaseCMater. Des.2018160125012641:CAS:528:DC%2BC1cXit1Cktb%2FI
– reference: KrellJRottgerAGeenenKTheisenWJ. Mater. Process. Technol.20182556796881:CAS:528:DC%2BC1cXisl2gtbk%3D
– reference: BarbaroFJKrauklisPEasterlingKEMater. Sci. Technol.19895105710681:CAS:528:DyaK3cXhvVemtr0%3D
– reference: TakataNKodairaHSekizawaKSuzukiAKobashiMMater. Sci. Eng. A20177042182281:CAS:528:DC%2BC2sXhtlart73L
– reference: GuoNLeuMCFront. Mech. Eng.20138215243
– reference: ZhuYAmeyamaKAndersonPMBeyerleinIJGaoHKimHSLaverniaEMathaudhuSMughrabiHRitchieROTsujiNZhangXWuXMater. Res. Lett.202191311:CAS:528:DC%2BB3cXitV2isr%2FK
– reference: DebRoyTWeiHLZubackJSMukherjeeTElmerJWMilewskiJOBeeseAMWilson-HeidADeAZhangWProg. Mater Sci.2018921122241:CAS:528:DC%2BC2sXhslGhtrjK
– reference: ShifengWShuaiLQingsongWYanCShengZYushengSJ. Mater. Process. Technol.2014214266026671:CAS:528:DC%2BC2cXht1WmurzL
– reference: SmithTRSugarJDSchoenungJMSan MarchiCJOM2018703583631:CAS:528:DC%2BC1cXmt12jsg%3D%3D
– reference: ZhangDPrasadABerminghamMJTodaroCJBenoitMJPatelMNQiuDStJohnDHQianMEastonMAMetall. Mater. Trans. A202051434143591:CAS:528:DC%2BB3cXht1GjtLfL
– reference: WuJWangXQWangWAttallahMMLorettoMHActa Mater.20161173113201:CAS:528:DC%2BC28Xht1eisLbL
– reference: XingXDDuanXMJiangTTWangJDJiangFCMetals201991031:CAS:528:DC%2BC1MXitFyjtbjK
– reference: MajumdarJDPinkertonALiuZMannaILiLAppl. Surf. Sci.2005247320327
– reference: KrakhmalevPYadroitsavaIFredrikssonGYadroitsevIMater. Des.2015873803851:CAS:528:DC%2BC2MXhsVKlt7zN
– reference: KarlssonDMarshalAJohanssonFSchuiskyMSahlbergMSchneiderJMJanssonUJ. Alloy. Compd.20197841952031:CAS:528:DC%2BC1MXotVCnug%3D%3D
– reference: WangTZhuYYZhangSQTangHBWangHMJ. Alloy. Compd.20156325055131:CAS:528:DC%2BC2MXitl2ksbc%3D
– reference: DeirminaFPeghiniNAlMangourBGrzesiakDPellizzariMMater. Sci. Eng. A20197531091211:CAS:528:DC%2BC1MXltVSnur4%3D
– reference: DivyaVDMunoz-MorenoRMesseOMDMBarnardJSBakerSIllstonTStoneHJMater. Charact.201611462741:CAS:528:DC%2BC28XjslSgsbw%3D
– reference: PrashanthKGEckertJJ. Alloy. Compd.201770727341:CAS:528:DC%2BC28XitFKqsr7P
– reference: KubinLPMortensenAScr. Mater.2003481191251:CAS:528:DC%2BD38XoslSrs7s%3D
– reference: DavidsonKSingamneniSMater. Manuf. Process.201631154315551:CAS:528:DC%2BC28Xnt1Krtb0%3D
– reference: SongBDongSJLiuQLiaoHLCoddetCMater. Des.2014547277331:CAS:528:DC%2BC3sXhvValtbjO
– reference: BhardwajTShuklaMPrasadNKPaulCBindraKMet. Mater. Int.202026101510291:CAS:528:DC%2BC1MXhvVems7vK
– reference: LiRDNiuPDYuanTCCaoPChenCZhouKCJ. Alloy. Compd.20187461251341:CAS:528:DC%2BC1cXjvVOrtro%3D
– reference: KruthJPWangXLaouiTFroyenLAssembly Autom.200323357371
– reference: WuXLZhuYTMater. Res. Lett.201755275321:CAS:528:DC%2BC1cXhtVSktLrM
– reference: KürnsteinerPBajajPGuptaAWilmsMBWeisheitALiXLeinenbachCGaultBJägleEARaabeDAddit. Manuf.202032100910
– reference: BirnbaumAJSteubenJCBarrickEJIliopoulosAPMichopoulosJGAddit. Manuf.2019291007841:CAS:528:DC%2BC1MXitVersb7N
– reference: KoptyugARännarL-EBäckströmMFager FranzénSDérandPInt. J. Life Sci.201331524
– reference: YadroitsevIYadroitsavaIVirtual Phys. Prototyp.2015106776
– reference: BajajPHariharanAKiniAKurnsteinerPRaabeDJagleEAMater. Sci. Eng. A20207721386331:CAS:528:DC%2BC1MXit1GqtbbI
– reference: LuYJWuSQGanYLHuangTTYangCGLinJJLinJXOpt. Laser Technol.2015751972061:CAS:528:DC%2BC2MXht1yhsb3I
– reference: DebroyTDavidSARev. Mod. Phys.199567851121:CAS:528:DyaK2MXmtFGmtL0%3D
– reference: GwalaniBSoniVWaseemOAMantriSABanerjeeROpt. Laser Technol.20191133303371:CAS:528:DC%2BC1MXht12jurc%3D
– reference: WangDSongCHYangYQBaiYCMater. Des.20161002912991:CAS:528:DC%2BC28XmtVOhtb4%3D
– reference: StuckerBEJanaki RamGDMaterials Processing Handbook2007Boca RatonCRC Press
– reference: HanCFangQShiYTorSBChuaCKZhouKAdv. Mater.202032e1903855
– reference: MaeshimaTOh-IshiKHeliyon2019501186
– reference: GaribaldiMAshcroftISimonelliMHagueRActa Mater.20161102072161:CAS:528:DC%2BC28Xks1Giuro%3D
– reference: WuASBrownDWKumarMGallegosGFKingWEMetall. Mater. Trans. A201445626062701:CAS:528:DC%2BC2cXhsFeqsL%2FO
– reference: WeiHLBhadeshiaHKDHDavidSADebRoyTSci. Technol. Weld. Join.2019243613661:CAS:528:DC%2BC1MXps1Whtr0%3D
– reference: KarthikGMastanaiahPRamGJKottadaRSMetall. Mater. Trans. B201748141614221:CAS:528:DC%2BC2sXisFSltb0%3D
– reference: QiuCLAdkinsNJEAttallahMMMater. Sci. Eng. A20135782302391:CAS:528:DC%2BC3sXptFKrurw%3D
– reference: PasangTKirchnerAJehringUAzizideroueiMTaoYJiangCPWangJCAisyahISMet. Mater. Int.201925127812861:CAS:528:DC%2BC1MXptleltbs%3D
– reference: KunceIPolanskiMBystrzyckiJInt. J. Hydrog. Energy201439990499101:CAS:528:DC%2BC2cXks1WrsLo%3D
– reference: KurzWFisherDJFundamentals of Solidification1984Stafa-ZurichTrans Tech Publications
– reference: HooperPAAddit. Manuf.2018225485591:CAS:528:DC%2BC1cXhsVKit7%2FK
– reference: BrandlESchoberthALeyensCMater. Sci. Eng. A20125322953071:CAS:528:DC%2BC3MXhs1Ciu7rN
– reference: FreemanFSHBSharpJXiJWToddIAddit. Manuf.2019301009171:CAS:528:DC%2BC1MXitF2qtrzL
– reference: AboulkhairNTSimonelliMParryLAshcroftITuckCHagueRProg. Mater. Sci.20191061005781:CAS:528:DC%2BC1MXhsVCms77L
– reference: LiCLiuZYFangXYGuoYBProcedia CIRP201871348353
– reference: SankarGSKarthikGMMohammadAKumarRJanaki RamGDTrans. Indian Inst. Met.2018723546
– reference: ThijsLKempenKKruthJPVan HumbeeckJActa Mater.201361180918191:CAS:528:DC%2BC3sXjsVag
– reference: JägleEAChoiP-PVan HumbeeckJRaabeDJ. Mater. Res.2014292072
– reference: JeonJMParkJMYuJ-HKimJGSeongYParkSHKimHSMater. Sci. Eng. A20197631381521:CAS:528:DC%2BC1MXhsVajtLfE
– reference: AntonysamyAAMeyerJPrangnellPBMater. Charact.2013841531681:CAS:528:DC%2BC3sXhsF2gurvE
– reference: FacchiniLVicenteNLonardelliIMagaliniERobottiPMolinariAAdv. Eng. Mater.2010121841881:CAS:528:DC%2BC3cXmvFKlurs%3D
– reference: RenBLuDHZhouRLiZHGuanJRJ. Mater. Res.201934141514251:CAS:528:DC%2BC1MXosF2nuro%3D
– reference: YanFYXiongWFaiersonEOlsonGBScr. Mater.20181551041081:CAS:528:DC%2BC1cXhtF2gtr%2FN
– reference: SaeidiKGaoXZhongYShenZJMater. Sci. Eng. A20156252212291:CAS:528:DC%2BC2MXitVGmuw%3D%3D
– reference: ByunYLeeSSeoS-MYeomJ-TKimSEKangNHongJMet. Mater. Int.201824121312201:CAS:528:DC%2BC1cXhtlWhs7nI
– reference: WeiHLElmerJWDebRoyTActa Mater.20161151231311:CAS:528:DC%2BC28XhtVags7vL
– reference: KiniARLaser Additive Manufacturing of Oxide Dispersion Strengthened Steels and Cu–Cr–Nb Alloys2019AachenRWTH Aachen
– reference: KellySMKampeSLMetall. Mater. Trans. A20043518611867
– reference: TakataNNishidaRSuzukiAKobashiMKatoMMetals20188440
– reference: WangZQPalmerTABeeseAMActa Mater.20161102262351:CAS:528:DC%2BC28Xks1Giurw%3D
– reference: AkramJChalavadiPPalDStuckerBAddit. Manuf.201821255268
– reference: ZhongYLiuLFWikmanSCuiDQShenZJJ. Nucl. Mater.20164701701781:CAS:528:DC%2BC28Xht1eltw%3D%3D
– reference: ZafarMQZhaoHMet. Mater. Int.201926564585
– reference: MoatRJPinkertonAJLiLWithersPJPreussMActa Mater.200957122012291:CAS:528:DC%2BD1MXhsFelur4%3D
– reference: DavidSAVitekJMInt. Mater. Rev.1989342132451:CAS:528:DyaK3MXls1Cjtbw%3D
– reference: SunZTanXPDescoinsMMangelinckDTorSBLimCSScr. Mater.20191681291331:CAS:528:DC%2BC1MXptVWhtbc%3D
– reference: ParimiLLRaviGAClarkDAttallahMMMater. Charact.2014891021111:CAS:528:DC%2BC2cXisFeqsbs%3D
– reference: WangJBZhouXLLiJHBrochuMZhaoYFAddit. Manuf.2020311009211:CAS:528:DC%2BB3cXnvVegsrs%3D
– reference: DengPKaradgeMRebakRBGuptaVKProrokBCLouXAddit. Manuf.2020351013341:CAS:528:DC%2BB3cXhvV2nsbvI
– reference: KocksUFMeckingHProg. Mater Sci.2003481712731:CAS:528:DC%2BD38XpsFSlurg%3D
– reference: VranckenBThijsLKruthJPVan HumbeeckJActa Mater.2014681501581:CAS:528:DC%2BC2cXjslahur0%3D
– reference: TakataNKodairaHSuzukiAKobashiMMater. Charact.201814318261:CAS:528:DC%2BC2sXhvVOrurnI
– reference: SpieringsABDawsonKHeelingTUggowitzerPJSchaublinRPalmFWegenerKMater. Des.201711552631:CAS:528:DC%2BC28XhvV2isb3E
– reference: UchidaSKimuraTNakamotoTOzakiTMikiTTakemuraMOkaYTsubotaRMater. Des.20191751078151:CAS:528:DC%2BC1MXpvFOjsro%3D
– reference: DindaGPDasguptaAKMazumderJMater. Sci. Eng. A200950998104
– reference: CasatiRCoduriMLecisNAndrianopoliCVedaniMMater. Charact.201813750571:CAS:528:DC%2BC1cXnvVyktQ%3D%3D
– reference: ZhangHZhuHHNieXJYinJHuZHZengXYScr. Mater.20171346101:CAS:528:DC%2BC2sXktlKlu7Y%3D
– reference: CasavolaCCarnpanelliSLPappalettereCJ. Strain Anal. Eng.20094493104
– reference: NiendorfTLeudersSRiemerARichardHATrosterTSchwarzeDMetall. Mater. Trans. B2013447947961:CAS:528:DC%2BC3sXhtVyrsr7M
– reference: LiuJDavidchackRLDongHBComput. Mater. Sci.201374921001:CAS:528:DC%2BC3sXmslWqtro%3D
– reference: BahlSMishraSYazarKUKolaIRChatterjeeKSuwasSAddit. Manuf.20192865771:CAS:528:DC%2BC1MXitVahu7rO
– reference: ZhangLCKlemmDEckertJHaoYLSercombeTBScr. Mater.20116521241:CAS:528:DC%2BC3MXltVKrt70%3D
– reference: ZhuZGNguyenQBNgFLAnXHLiaoXZLiawPKNaiSMLWeiJScr. Mater.201815420241:CAS:528:DC%2BC1cXpslyms7s%3D
– reference: ThijsLVerhaegheFCraeghsTHumbeeckJVKruthJ-PActa Mater.201058330333121:CAS:528:DC%2BC3cXkt1GqtL4%3D
– reference: JägleEAShengZKürnsteinerPOcylokSWeisheitARaabeDMaterials2017108
– reference: Al-BermaniSSBlackmoreMLZhangWToddIMetall. Mater. Trans. A201041342234341:CAS:528:DC%2BC3cXhtlKjsbvL
– reference: TanXPChandraSKokYTorSBSeetGLohNHLiuEMaterialia20197100365
– reference: TanXPKokYHTanYJDescoinsMMangelinckDTorSBLeongKFChuaCKActa Mater.2015971161:CAS:528:DC%2BC2MXht1yjs7jJ
– reference: TaoPLiHXHuangBYHuQDGongSLXuQYVacuum20191593823901:CAS:528:DC%2BC1cXitVyiurbK
– reference: CongWNingFInt. J. Mach. Tool. Manu.20171216169
– reference: CahnJWActa Metall.196311127512821:CAS:528:DyaF2cXotFOq
– reference: LippoldJCWelding Metallurgy and Weldability2015HobokenWiley Online Library
– reference: MurrLEMartinezEHernandezJCollinsSAmatoKNGaytanSMShindoPWJ. Mater. Res. Technol.201211671771:CAS:528:DC%2BC2cXhs1KitLg%3D
– reference: Arias-GonzálezFdel ValJComesañaRPenideJLusquiñosFQuinteroFRiveiroABoutinguizaMGilFJPouJMet. Mater. Int.201824231239
– reference: KalenticsNBoillatEPeyrePCiric-KosticSBogojevicNLogeREAddit. Manuf.20171690971:CAS:528:DC%2BC2sXhsV2jsbnJ
– reference: SuproboGAmmarAAParkNBaekERKimSMet. Mater. Int.201925142814351:CAS:528:DC%2BC1MXhtVKisb7N
– reference: BrifYThomasMToddIScr. Mater.20159993961:CAS:528:DC%2BC2cXitFynsrrM
– volume: 26
  start-page: 564
  year: 2019
  ident: 931_CR9
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00441-w
– volume: 653
  start-page: 71
  year: 2016
  ident: 931_CR13
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.12.005
– volume: 29
  start-page: 100784
  year: 2019
  ident: 931_CR93
  publication-title: Addit. Manuf.
– volume: 58
  start-page: 3303
  year: 2010
  ident: 931_CR46
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.02.004
– volume: 31
  start-page: 100921
  year: 2020
  ident: 931_CR121
  publication-title: Addit. Manuf.
– volume: 121
  start-page: 61
  year: 2017
  ident: 931_CR24
  publication-title: Int. J. Mach. Tool. Manu.
  doi: 10.1016/j.ijmachtools.2017.04.008
– volume: 707
  start-page: 27
  year: 2017
  ident: 931_CR92
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2016.12.209
– volume: 34
  start-page: 1799
  year: 2018
  ident: 931_CR98
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2018.02.002
– volume: 704
  start-page: 218
  year: 2017
  ident: 931_CR202
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2017.08.029
– volume: 5
  start-page: 527
  year: 2017
  ident: 931_CR28
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2017.1343208
– volume: 21
  start-page: 255
  year: 2018
  ident: 931_CR74
  publication-title: Addit. Manuf.
– volume: 10
  start-page: 67
  year: 2015
  ident: 931_CR204
  publication-title: Virtual Phys. Prototyp.
  doi: 10.1080/17452759.2015.1026045
– volume: 8
  start-page: 7785
  year: 2018
  ident: 931_CR91
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-26136-7
– volume: 19
  start-page: 1
  year: 2018
  ident: 931_CR26
  publication-title: Addit. Manuf.
– volume: 7
  start-page: 120
  year: 2017
  ident: 931_CR4
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2017.02.004
– volume: 100
  start-page: 291
  year: 2016
  ident: 931_CR106
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.03.111
– ident: 931_CR221
  doi: 10.1016/j.procir.2018.08.002
– ident: 931_CR1
– volume: 26
  start-page: 22
  year: 2019
  ident: 931_CR62
  publication-title: Addit. Manuf.
– volume-title: Welding Metallurgy
  year: 2003
  ident: 931_CR57
– volume: 590
  start-page: 153
  year: 2014
  ident: 931_CR171
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.10.023
– volume: 28
  start-page: 1
  year: 2012
  ident: 931_CR159
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/S1005-0302(12)60016-4
– volume: 30
  start-page: 100917
  year: 2019
  ident: 931_CR103
  publication-title: Addit. Manuf.
– volume: 108
  start-page: 1793
  year: 2020
  ident: 931_CR15
  publication-title: Int. J. Adv. Manuf.
  doi: 10.1007/s00170-020-05457-w
– volume: 48
  start-page: 119
  year: 2003
  ident: 931_CR112
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(02)00335-4
– volume: 48b
  start-page: 1158
  year: 2017
  ident: 931_CR173
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-016-0892-6
– volume: 13
  start-page: 49
  year: 2017
  ident: 931_CR43
  publication-title: Addit. Manuf.
– volume: 85
  start-page: 74
  year: 2015
  ident: 931_CR170
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.11.028
– volume: 145
  start-page: 113
  year: 2018
  ident: 931_CR195
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.10.021
– volume: 576
  start-page: 91
  year: 2019
  ident: 931_CR197
  publication-title: Nature
  doi: 10.1038/s41586-019-1783-1
– volume: 14
  start-page: 39
  year: 2017
  ident: 931_CR55
  publication-title: Addit. Manuf.
– volume: 753
  start-page: 109
  year: 2019
  ident: 931_CR137
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.03.027
– volume: 214
  start-page: 2660
  year: 2014
  ident: 931_CR34
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2014.06.002
– volume: 10
  start-page: 56
  year: 2017
  ident: 931_CR122
  publication-title: Materials (Basel)
  doi: 10.3390/ma10010056
– volume: 17
  start-page: 63
  year: 2018
  ident: 931_CR89
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5021
– volume: 46
  start-page: 545
  year: 2015
  ident: 931_CR130
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-014-0267-9
– volume: 45
  start-page: 228
  year: 2013
  ident: 931_CR214
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2012.06.043
– volume: 160
  start-page: 1250
  year: 2018
  ident: 931_CR45
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.10.051
– volume: 155
  start-page: 104
  year: 2018
  ident: 931_CR183
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.06.011
– ident: 931_CR18
– volume: 24
  start-page: 231
  year: 2018
  ident: 931_CR166
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-017-7094-x
– volume: 22
  start-page: 571
  year: 2018
  ident: 931_CR210
  publication-title: Addit. Manuf.
– volume: 12
  start-page: 254
  year: 2006
  ident: 931_CR208
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552540610707013
– volume: 247
  start-page: 320
  year: 2005
  ident: 931_CR42
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2005.01.039
– volume: 117
  start-page: 311
  year: 2016
  ident: 931_CR110
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.07.012
– volume: 28
  start-page: 65
  year: 2019
  ident: 931_CR88
  publication-title: Addit. Manuf.
– volume: 746
  start-page: 125
  year: 2018
  ident: 931_CR143
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.02.298
– volume-title: Additive Manufacturing Technologies
  year: 2014
  ident: 931_CR14
– volume: 9
  start-page: 199
  year: 2019
  ident: 931_CR233
  publication-title: Metals
  doi: 10.3390/met9020199
– volume: 25
  start-page: 633
  year: 2019
  ident: 931_CR174
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-018-00211-0
– volume: 25
  start-page: 325
  year: 2019
  ident: 931_CR213
  publication-title: Addit. Manuf.
– volume: 656
  start-page: 39
  year: 2016
  ident: 931_CR151
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.01.019
– volume: 129
  start-page: 106283
  year: 2020
  ident: 931_CR206
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2020.106283
– volume: 763
  start-page: 138152
  year: 2019
  ident: 931_CR35
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138152
– volume: 26
  start-page: 012004
  year: 2014
  ident: 931_CR220
  publication-title: J. Laser Appl.
  doi: 10.2351/1.4828755
– volume: 25
  start-page: 252
  year: 2019
  ident: 931_CR19
  publication-title: Addit. Manuf.
– volume: 2
  start-page: 157
  year: 2017
  ident: 931_CR39
  publication-title: Prog. Addit. Manuf.
  doi: 10.1007/s40964-017-0030-2
– volume: 87
  start-page: 647
  year: 2016
  ident: 931_CR215
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-8466-y
– volume-title: Materials Processing Handbook
  year: 2007
  ident: 931_CR10
– volume: 46
  start-page: 1419
  year: 2015
  ident: 931_CR219
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-014-2722-2
– volume: 5
  start-page: 01186
  year: 2019
  ident: 931_CR114
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e01186
– volume: 159
  start-page: 382
  year: 2019
  ident: 931_CR99
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2018.10.074
– volume: 30
  start-page: 1283
  year: 2015
  ident: 931_CR128
  publication-title: Mater. Manuf. Process.
  doi: 10.1080/10426914.2015.1026351
– volume: 87
  start-page: 380
  year: 2015
  ident: 931_CR136
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.08.045
– volume: 17
  start-page: 355
  year: 2001
  ident: 931_CR207
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/026708301101509980
– volume: 1
  start-page: 167
  year: 2012
  ident: 931_CR125
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/S2238-7854(12)70029-7
– volume: 65
  start-page: 21
  year: 2011
  ident: 931_CR161
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2011.03.024
– volume: 648
  start-page: 751
  year: 2015
  ident: 931_CR81
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.05.144
– volume: 8
  start-page: 283
  year: 2020
  ident: 931_CR94
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2020.1751739
– volume: 26
  start-page: 1235
  year: 2020
  ident: 931_CR163
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00563-1
– volume: 143
  start-page: 18
  year: 2018
  ident: 931_CR177
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2017.11.052
– volume: 35
  start-page: 101334
  year: 2020
  ident: 931_CR179
  publication-title: Addit. Manuf.
– volume: 41
  start-page: 25
  year: 1999
  ident: 931_CR139
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(99)00089-5
– volume: 67
  start-page: 616
  year: 2015
  ident: 931_CR11
  publication-title: JOM
  doi: 10.1007/s11837-014-1271-x
– volume: 97
  start-page: 1
  year: 2015
  ident: 931_CR158
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.06.036
– volume: 22
  start-page: 548
  year: 2018
  ident: 931_CR113
  publication-title: Addit. Manuf.
– volume: 12
  start-page: 68
  year: 2018
  ident: 931_CR229
  publication-title: Materials (Basel)
  doi: 10.3390/ma12010068
– volume: 25
  start-page: 1428
  year: 2019
  ident: 931_CR167
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00304-4
– volume: 115
  start-page: 123
  year: 2016
  ident: 931_CR52
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.05.057
– volume: 26
  start-page: 1015
  year: 2020
  ident: 931_CR164
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00464-3
– volume: 68
  start-page: 150
  year: 2014
  ident: 931_CR162
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.01.018
– volume: 16
  start-page: 90
  year: 2017
  ident: 931_CR222
  publication-title: Addit. Manuf.
– volume: 135
  start-page: 257
  year: 2017
  ident: 931_CR75
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.09.014
– volume: 42
  start-page: 3491
  year: 2011
  ident: 931_CR230
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-011-0748-2
– volume: 740
  start-page: 148
  year: 2019
  ident: 931_CR44
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2018.10.083
– volume: 772
  start-page: 138633
  year: 2020
  ident: 931_CR135
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138633
– volume: 9
  start-page: 103
  year: 2019
  ident: 931_CR223
  publication-title: Metals
  doi: 10.3390/met9010103
– volume: 35
  start-page: 653
  year: 2019
  ident: 931_CR237
  publication-title: Mater. Sci. Technol.
  doi: 10.1080/02670836.2019.1580434
– volume: 44
  start-page: 2233
  year: 2013
  ident: 931_CR41
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-012-1560-3
– volume: 3
  start-page: 15
  year: 2013
  ident: 931_CR6
  publication-title: Int. J. Life Sci.
– volume: 549
  start-page: 365
  year: 2017
  ident: 931_CR86
  publication-title: Nature
  doi: 10.1038/nature23894
– volume: 96
  start-page: 461
  year: 2018
  ident: 931_CR152
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-1331-9
– volume: 67
  start-page: 503
  year: 2012
  ident: 931_CR70
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2012.06.014
– volume-title: Fundamentals of Solidification
  year: 1984
  ident: 931_CR101
– volume: 44
  start-page: 794
  year: 2013
  ident: 931_CR194
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-013-9875-z
– volume: 61
  start-page: 315
  year: 2016
  ident: 931_CR8
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2015.1116649
– volume: 170
  start-page: 240
  year: 2005
  ident: 931_CR234
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2005.05.005
– volume: 44
  start-page: 93
  year: 2009
  ident: 931_CR209
  publication-title: J. Strain Anal. Eng.
  doi: 10.1243/03093247JSA464
– volume: 12
  start-page: 930
  year: 2019
  ident: 931_CR217
  publication-title: Materials (Basel)
  doi: 10.3390/ma12060930
– volume: 95
  start-page: 74
  year: 2015
  ident: 931_CR40
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.05.017
– volume: 48
  start-page: 6070
  year: 2017
  ident: 931_CR119
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-017-4363-8
– volume: 39
  start-page: 9904
  year: 2014
  ident: 931_CR154
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2014.02.067
– volume: 114
  start-page: 62
  year: 2016
  ident: 931_CR104
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2016.02.004
– volume: 18
  start-page: 1026
  year: 2019
  ident: 931_CR7
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0408-2
– volume: 1–4
  start-page: 52
  year: 2014
  ident: 931_CR205
  publication-title: Addit. Manuf.
– volume: 89
  start-page: 102
  year: 2014
  ident: 931_CR64
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2013.12.012
– volume: 57
  start-page: 1220
  year: 2009
  ident: 931_CR66
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2008.11.004
– volume: 695
  start-page: 211
  year: 2017
  ident: 931_CR218
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2017.04.033
– volume: 5
  start-page: 20747
  year: 2015
  ident: 931_CR190
  publication-title: RSC Adv.
  doi: 10.1039/C4RA16721J
– volume: 174
  start-page: 109183
  year: 2020
  ident: 931_CR239
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2020.109183
– volume: 113
  start-page: 330
  year: 2019
  ident: 931_CR67
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2019.01.009
– volume: 35
  start-page: 101333
  year: 2020
  ident: 931_CR29
  publication-title: Addit. Manuf.
– volume: 224
  start-page: 22
  year: 2018
  ident: 931_CR201
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.04.052
– volume: 168
  start-page: 107576
  year: 2019
  ident: 931_CR145
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.107576
– volume: 31
  start-page: 1543
  year: 2016
  ident: 931_CR127
  publication-title: Mater. Manuf. Process.
  doi: 10.1080/10426914.2015.1090605
– volume: 75
  start-page: 197
  year: 2015
  ident: 931_CR212
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2015.07.009
– volume: 650
  start-page: 295
  year: 2016
  ident: 931_CR225
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.10.045
– volume: 541
  start-page: 177
  year: 2012
  ident: 931_CR232
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2012.07.022
– volume: 2012
  start-page: 577
  year: 2012
  ident: 931_CR235
  publication-title: Superalloys
  doi: 10.7449/2012/Superalloys_2012_577_586
– volume: 656
  start-page: 47
  year: 2016
  ident: 931_CR37
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.12.101
– volume: 94
  start-page: 165
  year: 2018
  ident: 931_CR147
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2018.01.002
– volume: 8
  start-page: 1
  year: 2018
  ident: 931_CR191
  publication-title: Metals
  doi: 10.3390/met8080643
– volume: 32
  start-page: 505
  year: 2016
  ident: 931_CR160
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2016.03.020
– volume: 60
  start-page: 2229
  year: 2012
  ident: 931_CR227
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.12.032
– volume: 24
  start-page: 361
  year: 2019
  ident: 931_CR72
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1080/13621718.2019.1615189
– volume: 54
  start-page: 727
  year: 2014
  ident: 931_CR226
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.08.085
– volume: 71
  start-page: 348
  year: 2018
  ident: 931_CR203
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.05.039
– volume: 632
  start-page: 505
  year: 2015
  ident: 931_CR65
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.01.256
– volume: 70
  start-page: 358
  year: 2018
  ident: 931_CR231
  publication-title: JOM
  doi: 10.1007/s11837-017-2711-1
– volume: 805
  start-page: 680
  year: 2019
  ident: 931_CR144
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.07.106
– volume: 633
  start-page: 463
  year: 2015
  ident: 931_CR105
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.01.249
– volume: 48
  start-page: 171
  year: 2003
  ident: 931_CR111
  publication-title: Prog. Mater Sci.
  doi: 10.1016/S0079-6425(02)00003-8
– volume: 742
  start-page: 584
  year: 2019
  ident: 931_CR142
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2018.08.046
– volume: 74
  start-page: 92
  year: 2013
  ident: 931_CR192
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2013.03.018
– volume: 26
  start-page: 708
  year: 2020
  ident: 931_CR20
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00589-5
– volume: 164
  start-page: 728
  year: 2019
  ident: 931_CR83
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.11.021
– volume: 45
  start-page: 6260
  year: 2014
  ident: 931_CR211
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-014-2549-x
– volume: 26
  start-page: 1168
  year: 2020
  ident: 931_CR116
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00504-y
– volume-title: Laser Additive Manufacturing of Oxide Dispersion Strengthened Steels and Cu–Cr–Nb Alloys
  year: 2019
  ident: 931_CR117
– volume: 175
  start-page: 107815
  year: 2019
  ident: 931_CR120
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107815
– volume: 159
  start-page: 89
  year: 2019
  ident: 931_CR51
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.09.017
– volume: 137
  start-page: 50
  year: 2018
  ident: 931_CR138
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2018.01.015
– volume: 10
  start-page: 127
  year: 2018
  ident: 931_CR76
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-018-0018-5
– volume: 8
  start-page: 440
  year: 2018
  ident: 931_CR198
  publication-title: Metals
  doi: 10.3390/met8060440
– volume: 68
  start-page: 943
  year: 2016
  ident: 931_CR118
  publication-title: JOM
  doi: 10.1007/s11837-015-1764-2
– volume: 8
  start-page: 1
  year: 2020
  ident: 931_CR148
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2019.1638844
– volume: 129
  start-page: 52
  year: 2017
  ident: 931_CR132
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.02.069
– volume: 644
  start-page: 171
  year: 2015
  ident: 931_CR56
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.07.056
– volume: 5
  start-page: 16446
  year: 2015
  ident: 931_CR73
  publication-title: Sci. Rep.
  doi: 10.1038/srep16446
– volume: 29
  start-page: 2072
  year: 2014
  ident: 931_CR140
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2014.204
– volume: 11
  start-page: 1275
  year: 1963
  ident: 931_CR126
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(63)90090-7
– volume: 139
  start-page: 565
  year: 2018
  ident: 931_CR16
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.11.021
– volume: 24
  start-page: 1213
  year: 2018
  ident: 931_CR165
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-018-0148-x
– volume: 790
  start-page: 1023
  year: 2019
  ident: 931_CR185
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.03.221
– volume: 68
  start-page: 1000
  year: 2016
  ident: 931_CR53
  publication-title: JOM
  doi: 10.1007/s11837-015-1798-5
– volume: 62
  start-page: 1147
  year: 2012
  ident: 931_CR5
  publication-title: Int. J. Adv. Manuf. Tech.
  doi: 10.1007/s00170-011-3878-1
– volume: 25
  start-page: 412
  year: 2019
  ident: 931_CR80
  publication-title: Addit. Manuf.
– volume: 25
  start-page: 1278
  year: 2019
  ident: 931_CR23
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00264-9
– volume: 59
  start-page: 4088
  year: 2011
  ident: 931_CR180
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.03.033
– volume: 116
  start-page: 24
  year: 2017
  ident: 931_CR96
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2017.01.032
– volume: 206
  start-page: 2152
  year: 2012
  ident: 931_CR36
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2011.09.051
– volume: 6
  start-page: 19717
  year: 2016
  ident: 931_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/srep19717
– volume: 125
  start-page: 390
  year: 2017
  ident: 931_CR102
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.12.027
– volume: 92
  start-page: 112
  year: 2018
  ident: 931_CR54
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2017.10.001
– volume: 115
  start-page: 52
  year: 2017
  ident: 931_CR178
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.11.040
– volume: 46
  start-page: 1654
  year: 2015
  ident: 931_CR187
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-015-0310-5
– volume: 99
  start-page: 93
  year: 2015
  ident: 931_CR146
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2014.11.037
– volume: 8
  start-page: 215
  year: 2013
  ident: 931_CR2
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-013-0248-8
– volume: 499
  start-page: 182
  year: 2018
  ident: 931_CR182
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2017.11.036
– volume: 57
  start-page: 251
  year: 2014
  ident: 931_CR189
  publication-title: Powder Metall.
  doi: 10.1179/1743290114Y.0000000108
– volume: 52
  start-page: 12455
  year: 2017
  ident: 931_CR196
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1371-4
– ident: 931_CR3
– volume: 68
  start-page: 724
  year: 2016
  ident: 931_CR77
  publication-title: JOM
  doi: 10.1007/s11837-015-1759-z
– volume: 25
  start-page: 19
  year: 2019
  ident: 931_CR236
  publication-title: Addit. Manuf.
– volume: 83
  start-page: 882
  year: 2016
  ident: 931_CR141
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2016.08.092
– volume: 18
  start-page: 1908
  year: 2003
  ident: 931_CR100
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2003.0267
– volume: 60
  start-page: 3849
  year: 2012
  ident: 931_CR169
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.04.006
– volume: 154
  start-page: 20
  year: 2018
  ident: 931_CR109
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.05.015
– volume: 31
  start-page: 924
  year: 2015
  ident: 931_CR63
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284714Y.0000000701
– volume: 255
  start-page: 679
  year: 2018
  ident: 931_CR131
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2018.01.012
– volume: 76
  start-page: 252
  year: 2014
  ident: 931_CR124
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.05.037
– volume: 134
  start-page: 6
  year: 2017
  ident: 931_CR85
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.02.036
– volume: 106
  start-page: 100578
  year: 2019
  ident: 931_CR175
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2019.100578
– volume: 81
  start-page: 44
  year: 2015
  ident: 931_CR134
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.05.026
– volume: 7
  start-page: 100359
  year: 2019
  ident: 931_CR87
  publication-title: Materialia
  doi: 10.1016/j.mtla.2019.100359
– volume: 40
  start-page: 2410
  year: 2009
  ident: 931_CR47
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-009-9949-3
– volume: 12
  start-page: 184
  year: 2010
  ident: 931_CR133
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200900259
– volume: 20
  start-page: 107
  year: 1999
  ident: 931_CR216
  publication-title: Mater. Des.
  doi: 10.1016/S0261-3069(99)00016-3
– volume: 647
  start-page: 58
  year: 2015
  ident: 931_CR48
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.08.061
– volume: 84
  start-page: 153
  year: 2013
  ident: 931_CR60
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2013.07.012
– volume: 67
  start-page: 85
  year: 1995
  ident: 931_CR123
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.67.85
– volume: 385
  start-page: 236
  year: 2009
  ident: 931_CR68
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2008.11.023
– volume: 35
  start-page: 937
  year: 2004
  ident: 931_CR186
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-004-0088-3
– volume: 51
  start-page: 4341
  year: 2020
  ident: 931_CR238
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-020-05880-4
– volume: 61
  start-page: 1809
  year: 2013
  ident: 931_CR38
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.11.052
– volume: 51
  start-page: 555
  year: 1945
  ident: 931_CR108
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1945-08394-3
– volume: 679
  start-page: 193
  year: 2017
  ident: 931_CR12
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.10.038
– volume: 151
  start-page: 73
  year: 2019
  ident: 931_CR184
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2019.02.033
– volume: 23
  start-page: 357
  year: 2003
  ident: 931_CR21
  publication-title: Assembly Autom.
  doi: 10.1108/01445150310698652
– volume: 532
  start-page: 295
  year: 2012
  ident: 931_CR49
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2011.10.095
– volume: 86
  start-page: 44
  year: 2007
  ident: 931_CR17
  publication-title: Weld. J.
– volume: 72
  start-page: 35
  year: 2018
  ident: 931_CR50
  publication-title: Trans. Indian Inst. Met.
  doi: 10.1007/s12666-018-1458-x
– volume: 486
  start-page: 234
  year: 2017
  ident: 931_CR97
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2016.12.042
– volume: 509
  start-page: 98
  year: 2009
  ident: 931_CR69
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2009.01.009
– volume: 597
  start-page: 370
  year: 2014
  ident: 931_CR176
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2014.01.012
– volume-title: Titanium and Titanium Alloys: Fundamentals and Applications
  year: 2003
  ident: 931_CR155
  doi: 10.1002/3527602119
– volume: 5
  start-page: 1057
  year: 1989
  ident: 931_CR188
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/mst.1989.5.11.1057
– volume: 41
  start-page: 3422
  year: 2010
  ident: 931_CR78
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-010-0397-x
– ident: 931_CR224
  doi: 10.1016/j.jmbbm.2013.01.021
– volume: 60
  start-page: 96
  year: 2009
  ident: 931_CR95
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2008.07.006
– volume: 256
  start-page: 4350
  year: 2010
  ident: 931_CR181
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.02.030
– volume: 470
  start-page: 170
  year: 2016
  ident: 931_CR90
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2015.12.034
– volume: 49
  start-page: 1051
  year: 2001
  ident: 931_CR61
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(00)00367-0
– volume: 13
  start-page: 100861
  year: 2020
  ident: 931_CR30
  publication-title: Materialia
  doi: 10.1016/j.mtla.2020.100861
– volume: 168
  start-page: 129
  year: 2019
  ident: 931_CR153
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2019.04.036
– volume: 34
  start-page: 1415
  year: 2019
  ident: 931_CR200
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2019.10
– volume: 784
  start-page: 195
  year: 2019
  ident: 931_CR149
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.12.267
– volume: 625
  start-page: 221
  year: 2015
  ident: 931_CR107
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2014.12.018
– volume: 238
  start-page: 437
  year: 2016
  ident: 931_CR84
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2016.08.003
– volume: 9
  start-page: 1
  year: 2021
  ident: 931_CR27
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2020.1796836
– volume: 34
  start-page: 213
  year: 1989
  ident: 931_CR59
  publication-title: Int. Mater. Rev.
  doi: 10.1179/imr.1989.34.1.213
– volume-title: Welding Metallurgy and Weldability
  year: 2015
  ident: 931_CR58
  doi: 10.1002/9781118960332
– volume: 35
  start-page: 1861
  year: 2004
  ident: 931_CR156
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-004-0094-8
– volume: 104
  start-page: 24
  year: 2019
  ident: 931_CR150
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2018.10.018
– volume: 7
  start-page: 100365
  year: 2019
  ident: 931_CR79
  publication-title: Materialia
  doi: 10.1016/j.mtla.2019.100365
– volume: 19
  start-page: 746
  year: 2018
  ident: 931_CR199
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2018.1527645
– volume: 32
  start-page: e1903855
  year: 2020
  ident: 931_CR25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903855
– volume: 26
  start-page: 783
  year: 2020
  ident: 931_CR22
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00556-0
– volume: 110
  start-page: 226
  year: 2016
  ident: 931_CR82
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.03.019
– volume: 110
  start-page: 207
  year: 2016
  ident: 931_CR71
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.03.037
– volume: 15
  start-page: 171
  year: 2009
  ident: 931_CR228
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552540910960262
– volume: 176
  start-page: 199
  year: 2019
  ident: 931_CR33
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.07.005
– volume: 87
  start-page: 309
  year: 2015
  ident: 931_CR32
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.12.054
– volume: 32
  start-page: 100910
  year: 2020
  ident: 931_CR115
  publication-title: Addit. Manuf.
– volume: 578
  start-page: 230
  year: 2013
  ident: 931_CR157
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.04.099
– volume: 631
  start-page: 153
  year: 2015
  ident: 931_CR193
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.01.096
– volume: 48
  start-page: 1416
  year: 2017
  ident: 931_CR172
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-017-0934-8
– volume: 10
  start-page: 8
  year: 2017
  ident: 931_CR129
  publication-title: Materials
  doi: 10.3390/ma10010008
– volume: 26
  start-page: 39
  year: 2020
  ident: 931_CR168
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00484-z
SSID ssj0061312
Score 2.5728273
SecondaryResourceType review_article
Snippet Metal additive manufacturing (MAM) is an emerging technology to produce complex end-use metallic parts. To adopt MAM for manufacturing numerous engineering...
Metal additive manufacturing (MAM) is an emerging technology to produce complex end-use metallic parts. To adopt MAMfor manufacturing numerous engineering...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Aluminum base alloys
Anisotropy
Cellular structure
Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper base alloys
Electron beam melting
Engineering Thermodynamics
Evolution
Grain structure
Heat and Mass Transfer
Heat treatment
High entropy alloys
Laser beam melting
Machines
Magnetic Materials
Magnetism
Manufacturing
Materials Science
Metallic Materials
Microstructure
New technology
Nickel base alloys
Phase transitions
Processes
Residual stress
Solid Mechanics
Superalloys
Supersaturation
Titanium alloys
Titanium base alloys
재료공학
Title Heterogeneous Aspects of Additive Manufactured Metallic Parts: A Review
URI https://link.springer.com/article/10.1007/s12540-020-00931-2
https://www.proquest.com/docview/2478603048
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002671456
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Metals and Materials International, 2021, 27(1), , pp.1-39
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vehBfGK1lkW8aSDZbl7eUmmtSosHC_W07CtSWlLp4_87kybWigqe9pDdBGZ3Zr7JzHxLyJVr0maqlHZsbJFUO1IOxFnSCaW2phnpWCpsTu71g-6APw79YdEUNi-r3cuUZG6p181uDJP4GO5gGO45YHirPsTuWMg1YElpf8E_rXKcfgyqDN69aJX5-R0b7mg7m6UbSPNbcjT3OZ19sleARZqsdveAbNnskOx-oRA8IvddrGeZwjGwEMPTJO-cnNNpShNj8rog2pPZEvsXljNraM8C2p6MNH2GMzO_pQldZQeOyaDTfrnrOsXlCI7mXrxwgjDQioXMGt-4BmCYlCkLDaiXm6pmoLBeK1KhtdpXroxTq13jK65czXLCmOYJqWTTzJ4Sypl0uebGtyzmngYAEHtxyj3pyUhZ5taIV8pI6II5HC-wmIg15zHKVYBcRS5XwWrk-nPN-4o348_ZlyB6MdYjgXTXOL5NxXgmANQ_CKQMA09bI_VyZ0ShaHPBeBgFmN6NauSm3K31498_efa_6edkh2E1S_7zpU4qi9nSXgAcWagGqSadVquP4_3rU7uRn8YPHyzWgQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BegAOFeUhQgNdVXACS_Zm_arEwYJCAgRxIBK3ZV9GEchGcSLU_9Mf2tmN3RTUIvXAyQevH5qZ3flmZ-ZbgD1f591cSuWZ1FhS7UR6GGcJLxbK6G6iUiFtc_LgKuoN2flteLsAP5teGFft3qQk3Uo9b3ajNolvwx0bhgcerUspL8yPZwzUqqP-CWp1n9LT7zfHPa8-S8BTLEgnXhRHStKYGh1qXyNqESKnsUZr9HPZjaQtb0pkbIwKpS_S3Chfh5JJX1HHr9LF9y7CBwQfiZ07Q5o16z36w1lONUxx6UA0Ubfm_P2fX7i_xWKcv0C2r5KxzsedrsLHGpySbGZNn2DBFGuw8gdl4Tqc9Wz9TIlmZ8ppRTLXqVmRMieZ1q4OiQxEMbX9EtOx0WRgEN0_jhS5RhutvpGMzLIRGzB8FwFuQqsoC7MFhFHhM8V0aGjKAoWAIw3SnAUiEIk01G9D0MiIq5qp3B6Y8cjnHMtWrhzlyp1cOW3Dwe9nnmY8HW-O_oqi5w9qxC29tr3el_xhzDGI6HNLUYaevQ2dRjO8ntgVpyxOIptOTtpw2Ghrfvvfn9z-v-FfYKl3M7jkl_2ri8-wTG0ljdv46UBrMp6aHYRCE7nrLJHA3Xub_i-18REB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7yANGDGB9kNSaN6EmHzPT2vAQPg8m6a9yQgwu5tf2UkDATdnYR_5U_0ap5uInEgIec5jBPqqu7vpqq72uA16H1Q6-1CVzuSFQ70wHmWSpIlXF2mJlcaSInT4-T8Ux8Po1P1-BXz4Vput37kmTLaSCVpnKxf2n9_or4xqmgT6kPpeRRwLu2yiP38wcmbfWHyQGO8BvOR4dfP46Dbl-BwIgoXwRJmhjNU-5sbEOLCEYpz1OLnhl6PUw0tTplOnXOxDpUuXcmtLEWOjS80VoZ4nPXYVMQ-xhn0IwX_dqPsbGtr8Y5LiOILDqazs3ffC0Urpdzfw3l_lWYbeLd6BE87IAqK1rP2oI1Vz6GB1fkC5_ApzH10lTogq5a1qxoWJs1qzwrrG16kthUlUviTiznzrKpQ6R_cWbYCfpr_Z4VrK1MPIXZnRjwGWyUVem2gQmuQmGEjR3PRWQQfORR7kWkIpVpx8MBRL2NpOlUy2nzjAu50lsmu0q0q2zsKvkA3v6557LV7Lj16ldoenluziRJbdPxeyXP5xITiokkuTKM8gPY6UdGdpO8llykWUKl5WwA7_rRWp3-9yuf_9_le3Dv5GAkv0yOj17AfU5NNc0_oB3YWMyX7iWiooXebRyRwbe79vzf560VNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Aspects+of+Additive+Manufactured+Metallic+Parts%3A+A+Review&rft.jtitle=Metals+and+materials+international&rft.au=Karthik%2C+G.+M.&rft.au=Kim%2C+Hyoung+Seop&rft.date=2021-01-01&rft.issn=1598-9623&rft.eissn=2005-4149&rft.volume=27&rft.issue=1&rft.spage=1&rft.epage=39&rft_id=info:doi/10.1007%2Fs12540-020-00931-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12540_020_00931_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon