Heterogeneous Aspects of Additive Manufactured Metallic Parts: A Review
Metal additive manufacturing (MAM) is an emerging technology to produce complex end-use metallic parts. To adopt MAM for manufacturing numerous engineering parts used in critical applications, a thorough understanding of the relationship between the complex thermal cycles in MAM and the unique heter...
Saved in:
Published in | Metals and materials international Vol. 27; no. 1; pp. 1 - 39 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Institute of Metals and Materials
01.01.2021
Springer Nature B.V 대한금속·재료학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal additive manufacturing (MAM) is an emerging technology to produce complex end-use metallic parts. To adopt MAM for manufacturing numerous engineering parts used in critical applications, a thorough understanding of the relationship between the complex thermal cycles in MAM and the unique heterogeneous microstructures of MAM parts need to be established. This review article provides a comprehensive overview of the evolution of heterogeneous microstructures in MAM parts, including melt pool boundaries, heterogeneous grain structure, sub-grain cellular structure, matrix supersaturation, segregation, phase transformation, oxides formation, and texture. The evolution of residual stresses and the anisotropy in MAM parts and the post-MAM heat treatment effects on the microstructural evolution are also discussed. This review covers the microstructural aspects of most engineering materials in particular steels, high entropy alloys, aluminum alloys, titanium alloys, nickel-base superalloys, and copper alloys, with a primary focus on the parts manufactured using selective laser melting, direct energy deposition, and electron beam melting processes.
Graphic Abstract |
---|---|
AbstractList | Metal additive manufacturing (MAM) is an emerging technology to produce complex end-use metallic parts. To adopt MAMfor manufacturing numerous engineering parts used in critical applications, a thorough understanding of the relationshipbetween the complex thermal cycles in MAM and the unique heterogeneous microstructures of MAM parts need to beestablished. This review article provides a comprehensive overview of the evolution of heterogeneous microstructures inMAM parts, including melt pool boundaries, heterogeneous grain structure, sub-grain cellular structure, matrix supersaturation,segregation, phase transformation, oxides formation, and texture. The evolution of residual stresses and the anisotropyin MAM parts and the post-MAM heat treatment effects on the microstructural evolution are also discussed. This reviewcovers the microstructural aspects of most engineering materials in particular steels, high entropy alloys, aluminum alloys,titanium alloys, nickel-base superalloys, and copper alloys, with a primary focus on the parts manufactured using selectivelaser melting, direct energy deposition, and electron beam melting processes. KCI Citation Count: 0 Metal additive manufacturing (MAM) is an emerging technology to produce complex end-use metallic parts. To adopt MAM for manufacturing numerous engineering parts used in critical applications, a thorough understanding of the relationship between the complex thermal cycles in MAM and the unique heterogeneous microstructures of MAM parts need to be established. This review article provides a comprehensive overview of the evolution of heterogeneous microstructures in MAM parts, including melt pool boundaries, heterogeneous grain structure, sub-grain cellular structure, matrix supersaturation, segregation, phase transformation, oxides formation, and texture. The evolution of residual stresses and the anisotropy in MAM parts and the post-MAM heat treatment effects on the microstructural evolution are also discussed. This review covers the microstructural aspects of most engineering materials in particular steels, high entropy alloys, aluminum alloys, titanium alloys, nickel-base superalloys, and copper alloys, with a primary focus on the parts manufactured using selective laser melting, direct energy deposition, and electron beam melting processes.Graphic Abstract Metal additive manufacturing (MAM) is an emerging technology to produce complex end-use metallic parts. To adopt MAM for manufacturing numerous engineering parts used in critical applications, a thorough understanding of the relationship between the complex thermal cycles in MAM and the unique heterogeneous microstructures of MAM parts need to be established. This review article provides a comprehensive overview of the evolution of heterogeneous microstructures in MAM parts, including melt pool boundaries, heterogeneous grain structure, sub-grain cellular structure, matrix supersaturation, segregation, phase transformation, oxides formation, and texture. The evolution of residual stresses and the anisotropy in MAM parts and the post-MAM heat treatment effects on the microstructural evolution are also discussed. This review covers the microstructural aspects of most engineering materials in particular steels, high entropy alloys, aluminum alloys, titanium alloys, nickel-base superalloys, and copper alloys, with a primary focus on the parts manufactured using selective laser melting, direct energy deposition, and electron beam melting processes. Graphic Abstract |
Author | Karthik, G. M. Kim, Hyoung Seop |
Author_xml | – sequence: 1 givenname: G. M. surname: Karthik fullname: Karthik, G. M. organization: Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 2 givenname: Hyoung Seop surname: Kim fullname: Kim, Hyoung Seop email: hskim@postech.ac.kr organization: Graduate Institute of Ferrous Technology, Pohang University of Science and Technology (POSTECH) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002671456$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kEtLxDAUhYMoOD7-gKuCKxfVm0fTxl0RX6AoouuQprdDdGzGJB3x31unguBiFpez-b7L4eyR7d73SMgRhVMKUJ5FygoBObDxQHGasy0yYwBFLqhQ22RGC1XlSjK-S_ZifAWQlFM2I9c3mDD4Ofboh5jVcYk2xcx3Wd22LrkVZvemHzpj0xCwze4xmcXC2ezRhBTPszp7wpXDzwOy05lFxMPf3CcvV5fPFzf53cP17UV9l1tBVcplKW3DSoZt0UJLFTemY2VbKgFdw2UjSy6rpkS0RQNGdWihLRrRgGUVUCH5PjmZ_vah02_WaW_cOudevwVdPz3faiUF58BH9nhil8F_DBiTfvVD6Md6momyksBBVCNVTZQNPsaAnbYumeR8n4JxC01B_0ysp4n1OLFeT6zZqLJ_6jK4dxO-Nkt8kuII93MMf602WN-6g46t |
CitedBy_id | crossref_primary_10_1016_j_msea_2023_145536 crossref_primary_10_1016_j_msea_2022_143632 crossref_primary_10_1007_s12540_021_01081_9 crossref_primary_10_1016_j_jallcom_2023_170602 crossref_primary_10_1016_j_msea_2024_146195 crossref_primary_10_1007_s40964_024_00592_2 crossref_primary_10_1016_j_addma_2024_104070 crossref_primary_10_1016_j_ultras_2023_107024 crossref_primary_10_1016_j_actamat_2022_118421 crossref_primary_10_1016_j_addma_2022_103146 crossref_primary_10_1007_s12540_022_01305_6 crossref_primary_10_1007_s13632_021_00721_1 crossref_primary_10_1016_j_msea_2022_143124 crossref_primary_10_1007_s12540_022_01222_8 crossref_primary_10_1016_j_addlet_2023_100172 crossref_primary_10_1007_s12540_023_01433_7 crossref_primary_10_1016_j_scriptamat_2022_115259 crossref_primary_10_1016_j_actamat_2024_119886 crossref_primary_10_1016_j_ijrmhm_2021_105730 crossref_primary_10_1016_j_msea_2022_142718 crossref_primary_10_1080_10910344_2024_2381206 crossref_primary_10_1080_21663831_2024_2371521 crossref_primary_10_1007_s12540_024_01707_8 crossref_primary_10_1080_21663831_2023_2192244 crossref_primary_10_1016_j_jmrt_2024_09_013 crossref_primary_10_1016_j_addma_2022_103370 crossref_primary_10_3390_ma16196459 crossref_primary_10_3390_met11111726 crossref_primary_10_1016_j_ijplas_2025_104262 crossref_primary_10_1016_j_jallcom_2023_171390 crossref_primary_10_1007_s40964_025_01033_4 crossref_primary_10_1016_j_actamat_2023_119224 crossref_primary_10_1080_09506608_2021_1951580 crossref_primary_10_1016_j_addma_2022_103131 crossref_primary_10_1016_j_addma_2024_104223 crossref_primary_10_1007_s41745_022_00290_4 crossref_primary_10_1007_s12540_023_01443_5 crossref_primary_10_1016_j_scriptamat_2021_114332 crossref_primary_10_1016_j_addma_2022_102744 crossref_primary_10_1016_j_scriptamat_2022_114732 crossref_primary_10_1007_s10853_021_06765_6 crossref_primary_10_1016_j_msea_2022_142729 crossref_primary_10_1016_j_mtcomm_2023_106616 crossref_primary_10_1121_10_0008972 crossref_primary_10_1007_s10853_022_07516_x crossref_primary_10_1007_s12540_022_01179_8 crossref_primary_10_1007_s12540_022_01360_z crossref_primary_10_3390_ma16041666 crossref_primary_10_1016_j_jallcom_2022_167492 crossref_primary_10_1088_2631_7990_acded2 crossref_primary_10_1039_D3RA01636F crossref_primary_10_1007_s11665_023_08051_9 crossref_primary_10_1016_j_jallcom_2024_175087 crossref_primary_10_1016_j_msea_2021_141101 crossref_primary_10_1016_j_addma_2022_102990 crossref_primary_10_1016_j_ijplas_2023_103787 crossref_primary_10_1016_j_addma_2021_102314 crossref_primary_10_1007_s00170_024_14156_9 crossref_primary_10_1002_srin_202400348 crossref_primary_10_1016_j_jmrt_2023_01_218 crossref_primary_10_1016_j_jmrt_2023_11_261 crossref_primary_10_1007_s12540_021_00986_9 crossref_primary_10_1016_j_jmapro_2023_06_013 crossref_primary_10_1007_s12540_021_01038_y crossref_primary_10_1016_j_jallcom_2022_166735 crossref_primary_10_1080_2374068X_2024_2432727 crossref_primary_10_3390_ma16216969 crossref_primary_10_1007_s12540_022_01246_0 crossref_primary_10_1016_j_actamat_2021_117426 crossref_primary_10_1007_s12540_024_01808_4 crossref_primary_10_1080_21663831_2023_2275599 crossref_primary_10_1080_21663831_2024_2305261 crossref_primary_10_1016_j_addlet_2023_100159 crossref_primary_10_1016_j_ijplas_2024_104142 crossref_primary_10_1016_j_jallcom_2023_169062 crossref_primary_10_1016_j_matlet_2021_130510 crossref_primary_10_1016_j_matdes_2022_111180 crossref_primary_10_1016_j_msea_2021_142462 crossref_primary_10_1016_j_matchemphys_2023_128840 crossref_primary_10_1007_s12540_023_01506_7 crossref_primary_10_1051_mfreview_2022033 crossref_primary_10_1134_S1061830922600757 crossref_primary_10_1016_j_jmrt_2023_11_093 crossref_primary_10_1016_j_msea_2022_143318 crossref_primary_10_3390_ma16144911 crossref_primary_10_1007_s11668_024_02032_3 crossref_primary_10_1007_s12540_023_01400_2 crossref_primary_10_1002_srin_202300574 crossref_primary_10_1007_s40516_023_00217_6 crossref_primary_10_1016_j_msea_2022_144091 crossref_primary_10_1016_j_jmrt_2023_07_276 crossref_primary_10_1007_s12540_022_01199_4 crossref_primary_10_1016_j_jmrt_2022_11_137 crossref_primary_10_1016_j_msea_2022_143164 crossref_primary_10_1038_s43246_024_00704_z crossref_primary_10_1016_j_scriptamat_2022_115051 crossref_primary_10_1016_j_jallcom_2023_171340 crossref_primary_10_1016_j_addma_2023_103749 crossref_primary_10_1016_j_addma_2022_102914 crossref_primary_10_1016_j_msea_2022_143720 crossref_primary_10_1080_21663831_2023_2292731 crossref_primary_10_1007_s12540_024_01724_7 crossref_primary_10_1016_j_msea_2024_146833 crossref_primary_10_1007_s10853_022_07137_4 crossref_primary_10_1016_j_apsusc_2023_156364 crossref_primary_10_1016_j_msea_2023_145726 crossref_primary_10_1016_j_ijrmhm_2023_106220 crossref_primary_10_1016_j_jallcom_2022_164415 crossref_primary_10_1016_j_scriptamat_2023_115715 crossref_primary_10_1080_17452759_2025_2470923 crossref_primary_10_1007_s12540_021_01030_6 crossref_primary_10_1016_j_jmst_2021_03_028 crossref_primary_10_1016_j_pmatsci_2022_101051 crossref_primary_10_1007_s12540_021_01015_5 crossref_primary_10_1007_s12540_021_01019_1 crossref_primary_10_1016_j_matchar_2023_112838 crossref_primary_10_3390_ma15217575 crossref_primary_10_1016_j_addma_2024_104025 crossref_primary_10_1016_j_matdes_2022_111245 crossref_primary_10_1007_s12540_021_00991_y crossref_primary_10_3390_met14091081 crossref_primary_10_1016_j_scriptamat_2023_115422 crossref_primary_10_1016_j_scriptamat_2021_114013 crossref_primary_10_1016_j_addma_2023_103516 crossref_primary_10_1016_j_jmrt_2022_10_143 crossref_primary_10_3390_coatings13091511 crossref_primary_10_1016_j_jmapro_2023_09_075 crossref_primary_10_1080_00325899_2023_2241245 crossref_primary_10_1016_j_jallcom_2023_170755 crossref_primary_10_1016_j_msea_2022_144436 crossref_primary_10_1016_j_jmrt_2023_11_060 crossref_primary_10_1016_j_msea_2024_146537 crossref_primary_10_1038_s41598_023_37060_w crossref_primary_10_1080_02670844_2023_2191400 crossref_primary_10_1111_ffe_13967 crossref_primary_10_1016_j_jmrt_2021_02_088 crossref_primary_10_1016_j_msea_2024_146383 crossref_primary_10_1002_adem_202300615 crossref_primary_10_1016_j_intermet_2022_107726 crossref_primary_10_1016_j_msea_2023_145797 crossref_primary_10_1007_s12598_025_03237_7 crossref_primary_10_1016_j_msea_2024_147631 |
Cites_doi | 10.1007/s12540-019-00441-w 10.1016/j.msea.2015.12.005 10.1016/j.actamat.2010.02.004 10.1016/j.ijmachtools.2017.04.008 10.1016/j.jallcom.2016.12.209 10.1016/j.jmst.2018.02.002 10.1016/j.msea.2017.08.029 10.1080/21663831.2017.1343208 10.1080/17452759.2015.1026045 10.1038/s41598-018-26136-7 10.1016/j.apmt.2017.02.004 10.1016/j.matdes.2016.03.111 10.1016/j.procir.2018.08.002 10.1016/j.msea.2013.10.023 10.1016/S1005-0302(12)60016-4 10.1007/s00170-020-05457-w 10.1016/S1359-6462(02)00335-4 10.1007/s11663-016-0892-6 10.1016/j.actamat.2014.11.028 10.1016/j.scriptamat.2017.10.021 10.1038/s41586-019-1783-1 10.1016/j.msea.2019.03.027 10.1016/j.jmatprotec.2014.06.002 10.3390/ma10010056 10.1038/nmat5021 10.1007/s11663-014-0267-9 10.1016/j.optlastec.2012.06.043 10.1016/j.matdes.2018.10.051 10.1016/j.scriptamat.2018.06.011 10.1007/s12540-017-7094-x 10.1108/13552540610707013 10.1016/j.apsusc.2005.01.039 10.1016/j.actamat.2016.07.012 10.1016/j.jallcom.2018.02.298 10.3390/met9020199 10.1007/s12540-018-00211-0 10.1016/j.msea.2016.01.019 10.1016/j.optlastec.2020.106283 10.1016/j.msea.2019.138152 10.2351/1.4828755 10.1007/s40964-017-0030-2 10.1007/s00170-016-8466-y 10.1007/s11661-014-2722-2 10.1016/j.heliyon.2019.e01186 10.1016/j.vacuum.2018.10.074 10.1080/10426914.2015.1026351 10.1016/j.matdes.2015.08.045 10.1179/026708301101509980 10.1016/S2238-7854(12)70029-7 10.1016/j.scriptamat.2011.03.024 10.1016/j.jallcom.2015.05.144 10.1080/21663831.2020.1751739 10.1007/s12540-019-00563-1 10.1016/j.matchar.2017.11.052 10.1016/S1359-6462(99)00089-5 10.1007/s11837-014-1271-x 10.1016/j.actamat.2015.06.036 10.3390/ma12010068 10.1007/s12540-019-00304-4 10.1016/j.actamat.2016.05.057 10.1007/s12540-019-00464-3 10.1016/j.actamat.2014.01.018 10.1016/j.matdes.2017.09.014 10.1007/s11661-011-0748-2 10.1016/j.msea.2018.10.083 10.1016/j.msea.2019.138633 10.3390/met9010103 10.1080/02670836.2019.1580434 10.1007/s11661-012-1560-3 10.1038/nature23894 10.1007/s00170-017-1331-9 10.1016/j.scriptamat.2012.06.014 10.1007/s11663-013-9875-z 10.1080/09506608.2015.1116649 10.1016/j.jmatprotec.2005.05.005 10.1243/03093247JSA464 10.3390/ma12060930 10.1016/j.actamat.2015.05.017 10.1007/s11661-017-4363-8 10.1016/j.ijhydene.2014.02.067 10.1016/j.matchar.2016.02.004 10.1038/s41563-019-0408-2 10.1016/j.matchar.2013.12.012 10.1016/j.actamat.2008.11.004 10.1016/j.msea.2017.04.033 10.1039/C4RA16721J 10.1016/j.vacuum.2020.109183 10.1016/j.optlastec.2019.01.009 10.1016/j.matlet.2018.04.052 10.1016/j.matdes.2018.107576 10.1080/10426914.2015.1090605 10.1016/j.optlastec.2015.07.009 10.1016/j.msea.2015.10.045 10.1016/j.jallcom.2012.07.022 10.7449/2012/Superalloys_2012_577_586 10.1016/j.msea.2015.12.101 10.1016/j.intermet.2018.01.002 10.3390/met8080643 10.1016/j.jmst.2016.03.020 10.1016/j.actamat.2011.12.032 10.1080/13621718.2019.1615189 10.1016/j.matdes.2013.08.085 10.1016/j.procir.2018.05.039 10.1016/j.jallcom.2015.01.256 10.1007/s11837-017-2711-1 10.1016/j.jallcom.2019.07.106 10.1016/j.jallcom.2015.01.249 10.1016/S0079-6425(02)00003-8 10.1016/j.msea.2018.08.046 10.1016/j.commatsci.2013.03.018 10.1007/s12540-019-00589-5 10.1016/j.actamat.2018.11.021 10.1007/s11661-014-2549-x 10.1007/s12540-019-00504-y 10.1016/j.matdes.2019.107815 10.1016/j.scriptamat.2018.09.017 10.1016/j.matchar.2018.01.015 10.1038/s41427-018-0018-5 10.3390/met8060440 10.1007/s11837-015-1764-2 10.1080/21663831.2019.1638844 10.1016/j.actamat.2017.02.069 10.1016/j.msea.2015.07.056 10.1038/srep16446 10.1557/jmr.2014.204 10.1016/0001-6160(63)90090-7 10.1016/j.matdes.2017.11.021 10.1007/s12540-018-0148-x 10.1016/j.jallcom.2019.03.221 10.1007/s11837-015-1798-5 10.1007/s00170-011-3878-1 10.1007/s12540-019-00264-9 10.1016/j.actamat.2011.03.033 10.1016/j.fusengdes.2017.01.032 10.1016/j.surfcoat.2011.09.051 10.1038/srep19717 10.1016/j.actamat.2016.12.027 10.1016/j.pmatsci.2017.10.001 10.1016/j.matdes.2016.11.040 10.1007/s11663-015-0310-5 10.1016/j.scriptamat.2014.11.037 10.1007/s11465-013-0248-8 10.1016/j.jnucmat.2017.11.036 10.1179/1743290114Y.0000000108 10.1007/s10853-017-1371-4 10.1007/s11837-015-1759-z 10.1016/j.phpro.2016.08.092 10.1557/JMR.2003.0267 10.1016/j.actamat.2012.04.006 10.1016/j.scriptamat.2018.05.015 10.1179/1743284714Y.0000000701 10.1016/j.jmatprotec.2018.01.012 10.1016/j.actamat.2014.05.037 10.1016/j.scriptamat.2017.02.036 10.1016/j.pmatsci.2019.100578 10.1016/j.matdes.2015.05.026 10.1016/j.mtla.2019.100359 10.1007/s11661-009-9949-3 10.1002/adem.200900259 10.1016/S0261-3069(99)00016-3 10.1016/j.msea.2015.08.061 10.1016/j.matchar.2013.07.012 10.1103/RevModPhys.67.85 10.1016/j.jnucmat.2008.11.023 10.1007/s11663-004-0088-3 10.1007/s11661-020-05880-4 10.1016/j.actamat.2012.11.052 10.1090/S0002-9904-1945-08394-3 10.1016/j.msea.2016.10.038 10.1016/j.matchar.2019.02.033 10.1108/01445150310698652 10.1016/j.msea.2011.10.095 10.1007/s12666-018-1458-x 10.1016/j.jnucmat.2016.12.042 10.1016/j.msea.2009.01.009 10.1016/j.msea.2014.01.012 10.1002/3527602119 10.1179/mst.1989.5.11.1057 10.1007/s11661-010-0397-x 10.1016/j.jmbbm.2013.01.021 10.1016/j.matchar.2008.07.006 10.1016/j.apsusc.2010.02.030 10.1016/j.jnucmat.2015.12.034 10.1016/S1359-6454(00)00367-0 10.1016/j.mtla.2020.100861 10.1016/j.scriptamat.2019.04.036 10.1557/jmr.2019.10 10.1016/j.jallcom.2018.12.267 10.1016/j.msea.2014.12.018 10.1016/j.jmatprotec.2016.08.003 10.1080/21663831.2020.1796836 10.1179/imr.1989.34.1.213 10.1002/9781118960332 10.1007/s11661-004-0094-8 10.1016/j.intermet.2018.10.018 10.1016/j.mtla.2019.100365 10.1080/14686996.2018.1527645 10.1002/adma.201903855 10.1007/s12540-019-00556-0 10.1016/j.actamat.2016.03.019 10.1016/j.actamat.2016.03.037 10.1108/13552540910960262 10.1016/j.actamat.2019.07.005 10.1016/j.actamat.2014.12.054 10.1016/j.msea.2013.04.099 10.1016/j.jallcom.2015.01.096 10.1007/s11663-017-0934-8 10.3390/ma10010008 10.1007/s12540-019-00484-z |
ContentType | Journal Article |
Copyright | The Korean Institute of Metals and Materials 2021 The Korean Institute of Metals and Materials 2021. |
Copyright_xml | – notice: The Korean Institute of Metals and Materials 2021 – notice: The Korean Institute of Metals and Materials 2021. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 ACYCR |
DOI | 10.1007/s12540-020-00931-2 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Korean Citation Index |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2005-4149 |
EndPage | 39 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9643303 10_1007_s12540_020_00931_2 |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2019H1D3A1A01102866 – fundername: Korean Institute of Materials Science grantid: PNK5520 |
GroupedDBID | -EM 06D 0R~ 0VY 123 1N0 2.D 203 29M 2JY 2KG 2VQ 30V 4.4 406 408 40D 5VS 67Z 8FE 8FG 96X 9ZL AAAVM AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BA0 BENPR BGLVJ CAG CCPQU COF CS3 CSCUP D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZB HZ~ I0C IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ KB. KOV KVFHK LLZTM MA- MZR N2Q NDZJH NPVJJ NQJWS O9- O93 O9G O9I O9J P19 P2P P9N PDBOC PT4 PT5 Q2X R89 R9I RLLFE ROL RSV S1Z S26 S27 S28 S3B SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T16 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 Z45 Z7R Z7V Z7X Z7Y Z7Z Z83 Z85 ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SR 8BQ 8FD ABRTQ JG9 AABYN AAFGU AAGCJ AAPBV AAUCO AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU Z5O Z7S Z88 |
ID | FETCH-LOGICAL-c419t-676cb272ed5d0d193aaf27d7940fb36b67368b7eec5b0a9fec0d5b4b0c2801463 |
IEDL.DBID | U2A |
ISSN | 1598-9623 |
IngestDate | Tue Nov 21 21:03:03 EST 2023 Fri Jul 25 12:24:39 EDT 2025 Thu Apr 24 22:58:09 EDT 2025 Tue Jul 01 01:15:26 EDT 2025 Fri Feb 21 02:33:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Heat treatment Selective laser melting Electron beam melting Microstructure Metal additive manufacturing Direct energy deposition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-676cb272ed5d0d193aaf27d7940fb36b67368b7eec5b0a9fec0d5b4b0c2801463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2478603048 |
PQPubID | 326276 |
PageCount | 39 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9643303 proquest_journals_2478603048 crossref_citationtrail_10_1007_s12540_020_00931_2 crossref_primary_10_1007_s12540_020_00931_2 springer_journals_10_1007_s12540_020_00931_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210100 2021-01-00 20210101 2021-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210100 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | Metals and materials international |
PublicationTitleAbbrev | Met. Mater. Int |
PublicationYear | 2021 |
Publisher | The Korean Institute of Metals and Materials Springer Nature B.V 대한금속·재료학회 |
Publisher_xml | – name: The Korean Institute of Metals and Materials – name: Springer Nature B.V – name: 대한금속·재료학회 |
References | KarthikGMRamGDJKottadaRSMater. Sci. Eng. A201665371831:CAS:528:DC%2BC28Xht1WmtQ%3D%3D WangZQPalmerTABeeseAMActa Mater.20161102262351:CAS:528:DC%2BC28Xks1Giurw%3D BhardwajTShuklaMPrasadNKPaulCBindraKMet. Mater. Int.202026101510291:CAS:528:DC%2BC1MXhvVems7vK MurrLEEsquivelEVQuinonesSAGaytanSMLopezMIMartinezEYMedinaFHernandezDHMartinezEMartinezJLStaffordSWBrownDKHoppeTMeyersWLindheUWickerRBMater. Charact.200960961051:CAS:528:DC%2BD1MXps1Sruw%3D%3D BrandlESchoberthALeyensCMater. Sci. Eng. A20125322953071:CAS:528:DC%2BC3MXhs1Ciu7rN ZhangDPrasadABerminghamMJTodaroCJBenoitMJPatelMNQiuDStJohnDHQianMEastonMAMetall. Mater. Trans. A202051434143591:CAS:528:DC%2BB3cXht1GjtLfL YadroitsevIYadroitsavaIVirtual Phys. Prototyp.2015106776 MalyMHollerCSkalonMMeierBKoutnyDPichlerRSommitschCPalousekDMaterials (Basel)2019129301:CAS:528:DC%2BC1MXitlClu77I T. Catts, GE turns to 3D printers for plane parts,https://www.bloomberg.com/news/articles/2013-11-27/general-electric-turns-to-3d-printers-for-plane-parts (2013) HolzweissigMJTaubeABrenneFSchaperMNiendorfTMetall. Mater. Trans. B2015465455491:CAS:528:DC%2BC2MXlsVartQ%3D%3D SamesWJListFAPannalaSDehoffRRBabuSSInt. Mater. Rev.201661315360 KiniARLaser Additive Manufacturing of Oxide Dispersion Strengthened Steels and Cu–Cr–Nb Alloys2019AachenRWTH Aachen ByunYLeeSSeoS-MYeomJ-TKimSEKangNHongJMet. Mater. Int.201824121312201:CAS:528:DC%2BC1cXhtlWhs7nI MartukanitzRMichalerisPPalmerTDebRoyTLiuZ-KOtisRHeoTWChenL-QAddit. Manuf.20141–45263 BrifYThomasMToddIScr. Mater.20159993961:CAS:528:DC%2BC2cXitFynsrrM ZhangYLiJCheSTianYMet. Mater. Int.2020267837921:CAS:528:DC%2BC1MXitlKhsrnM LiuPWWangZXiaoYHHorstemeyerMFCuiXYChenLAddit. Manuf.20192622291:CAS:528:DC%2BC1MXkt1Wksrs%3D DindaGPDasguptaAKMazumderJMater. Sci. Eng. A200950998104 KunceIPolanskiMKarczewskiKPlocinskiTKurzydlowskiKJJ. Alloy. Compd.20156487517581:CAS:528:DC%2BC2MXhtVOkurjF ZhangDQiuDGibsonMAZhengYFraserHLStJohnDHEastonMANature201957691951:CAS:528:DC%2BC1MXitlWku7nJ MaeshimaTOh-IshiKHeliyon2019501186 HooperPAAddit. Manuf.2018225485591:CAS:528:DC%2BC1cXhsVKit7%2FK PalanivelSSidharHMishraRSJOM2015676166211:CAS:528:DC%2BC2MXhtlKqsrs%3D StuckerBEJanaki RamGDMaterials Processing Handbook2007Boca RatonCRC Press JägleEAShengZWuLLuLRisseJWeisheitARaabeDJOM201668943949 WuASBrownDWKumarMGallegosGFKingWEMetall. Mater. Trans. A201445626062701:CAS:528:DC%2BC2cXhsFeqsL%2FO ZhuZGNguyenQBNgFLAnXHLiaoXZLiawPKNaiSMLWeiJScr. Mater.201815420241:CAS:528:DC%2BC1cXpslyms7s%3D MurrLEMartinezEHernandezJCollinsSAmatoKNGaytanSMShindoPWJ. Mater. Res. Technol.201211671771:CAS:528:DC%2BC2cXhs1KitLg%3D MukherjeeTZubackJSDeADebRoyTSci. Rep.20166197171:CAS:528:DC%2BC28Xht1CktLk%3D ZhouRLiuYZhouCSLiSQWuWQSongMLiuBLiangXPLiawPKIntermetallics2018941651711:CAS:528:DC%2BC1cXntVOjsA%3D%3D TanXPKokYHTanYJDescoinsMMangelinckDTorSBLeongKFChuaCKActa Mater.2015971161:CAS:528:DC%2BC2MXht1yjs7jJ KiesFKohnenPWilmsMBBrascheFPradeepKGSchwedtARichterSWeisheitASchleifenbaumJHHaaseCMater. Des.2018160125012641:CAS:528:DC%2BC1cXit1Cktb%2FI ShifengWShuaiLQingsongWYanCShengZYushengSJ. Mater. Process. Technol.2014214266026671:CAS:528:DC%2BC2cXht1WmurzL SongBDongSJLiuQLiaoHLCoddetCMater. Des.2014547277331:CAS:528:DC%2BC3sXhvValtbjO KarthikGRamGJKottadaRSMetall. Mater. Trans. B201748b11581173 DebroyTDavidSARev. Mod. Phys.199567851121:CAS:528:DyaK2MXmtFGmtL0%3D JeonJMParkJMYuJ-HKimJGSeongYParkSHKimHSMater. Sci. Eng. A20197631381521:CAS:528:DC%2BC1MXhsVajtLfE DavidsonKSingamneniSMater. Manuf. Process.201631154315551:CAS:528:DC%2BC28Xnt1Krtb0%3D SmithTRSugarJDMarchiCSSchoenungJMActa Mater.20191647287401:CAS:528:DC%2BC1cXit1Ggu7vF MukherjeeMMaterialia20197100359 FreemanFSHBSharpJXiJWToddIAddit. Manuf.2019301009171:CAS:528:DC%2BC1MXitF2qtrzL FangZCWuZLHuangCGWuCWOpt. Laser Technol.20201291062831:CAS:528:DC%2BB3cXntFygtb4%3D CongWNingFInt. J. Mach. Tool. Manu.20171216169 CasatiRCoduriMLecisNAndrianopoliCVedaniMMater. Charact.201813750571:CAS:528:DC%2BC1cXnvVyktQ%3D%3D TakataNNishidaRSuzukiAKobashiMKatoMMetals20188440 LiuYYangYQWangDInt. J. Adv. Manuf. Technol.201687647656 HolesingerTGCarpenterJSLienertTJPattersonBMPapinPASwensonHCordesNLJOM20166810001011 WangXJZhangLCFangMHSercombeTBMater. Sci. Eng. A20145973703751:CAS:528:DC%2BC2cXis1Shs7g%3D GaribaldiMAshcroftISimonelliMHagueRActa Mater.20161102072161:CAS:528:DC%2BC28Xks1Giuro%3D KouSWelding Metallurgy2003HobokenWiley ThivillonLBertrandPLagetBSmurovIJ. Nucl. Mater.20093852362411:CAS:528:DC%2BD1MXjtFeitr4%3D MartinJHYahataBDHundleyJMMayerJASchaedlerTAPollockTMNature20175493653691:CAS:528:DC%2BC2sXhsFehtrrL AliHMaLGhadbeigiHMumtazKMater. Sci. Eng. A20176952112201:CAS:528:DC%2BC2sXnsl2rsrg%3D KurzWFisherDJFundamentals of Solidification1984Stafa-ZurichTrans Tech Publications SpieringsABDawsonKHeelingTUggowitzerPJSchaublinRPalmFWegenerKMater. Des.201711552631:CAS:528:DC%2BC28XhvV2isb3E KürnsteinerPBajajPGuptaAWilmsMBWeisheitALiXLeinenbachCGaultBJägleEARaabeDAddit. Manuf.202032100910 ParimiLLRaviGAClarkDAttallahMMMater. Charact.2014891021111:CAS:528:DC%2BC2cXisFeqsbs%3D MurrLEMartinezEGaytanSMRamirezDAMachadoBIShindoPWMartinezJLMedinaFWootenJCiscelDAckelidUWickerRBMetall. Mater. Trans. A201142349135081:CAS:528:DC%2BC3MXhtFymsrnL ThijsLVerhaegheFCraeghsTHumbeeckJVKruthJ-PActa Mater.201058330333121:CAS:528:DC%2BC3cXkt1GqtL4%3D PiglioneADovgyyBLiuCGourlayCMHooperPAPhamMSMater. Lett.201822422251:CAS:528:DC%2BC1cXotF2hu74%3D DebRoyTWeiHLZubackJSMukherjeeTElmerJWMilewskiJOBeeseAMWilson-HeidADeAZhangWProg. Mater Sci.2018921122241:CAS:528:DC%2BC2sXhslGhtrjK HaaseCBultmannJHofJZieglerSBremenSHinkeCSchwedtAPrahlUBleckWMaterials (Basel)20171056 XuWLuiEWPaterasAQianMBrandtMActa Mater.20171253904001:CAS:528:DC%2BC28XitFWnurfO WuJWangXQWangWAttallahMMLorettoMHActa Mater.20161173113201:CAS:528:DC%2BC28Xht1eisLbL SmithTRSugarJDSchoenungJMSan MarchiCJOM2018703583631:CAS:528:DC%2BC1cXmt12jsg%3D%3D JägleEAChoiP-PVan HumbeeckJRaabeDJ. Mater. Res.2014292072 JohnsonLMahmoudiMZhangBSeedeRHuangXQMaierJTMaierHJKaramanIElwanyAArroyaveRActa Mater.20191761992101:CAS:528:DC%2BC1MXhtlKktL7O FujiedaTChenMCShiratoriHKuwabaraKYamanakaKKoizumiYChibaAWatanabeSAddit. Manuf.2019254124201:CAS:528:DC%2BC1MXjsF2rsQ%3D%3D MancaDRChuryumovAYPozdniakovAVProsviryakovASRyabovDKKrokhinAYKorolevVADaubarayteDKMet. Mater. Int.2019256336401:CAS:528:DC%2BC1cXisVGnt7rF ParkJMChoeJKimJGBaeJWMoonJYangSKimKTYuJ-HKimHSMater. Res. Lett.20208171:CAS:528:DC%2BB3cXhsVOkurw%3D LippoldJCWelding Metallurgy and Weldability2015HobokenWiley Online Library QiuCLJ. Alloy. Compd.2019790102310331:CAS:528:DC%2BC1MXlvVCmt7w%3D KellySMKampeSLMetall. Mater. Trans. A20043518611867 KarthikGMSathiyamoorthiPZargaranAParkJMAsghari-RadPSonSParkSHKimHSMaterialia2020131008611:CAS:528:DC%2BB3cXhs1KksbrP NiuPDLiRDYuanTCZhuSYChenCWangMBHuangLIntermetallics201910424321:CAS:528:DC%2BC1cXitVChtr7E GwalaniBSoniVWaseemOAMantriSABanerjeeROpt. Laser Technol.20191133303371:CAS:528:DC%2BC1MXht12jurc%3D LiuYJLiSJHouWTWangSGHaoYLYangRSercombeTBZhangLCJ. Mater. Sci. Technol.2016325055081:CAS:528:DC%2BB3cXmt12gt7s%3D LiXPWangXJSaundersMSuvorovaAZhangLCLiuYJFangMHHuangZHSercombeTBActa Mater.20159574821:CAS:528:DC%2BC2MXpsV2jtL4%3D SankarGSKarthikGMMohammadAKumarRJanaki RamGDTrans. Indian Inst. Met.2018723546 LeBrunTNakamotoTHorikawaKKobayashiHMater. Des.20158144531:CAS:528:DC%2BC2MXosVaitbk%3D YangKVShiYJPalmFWuXHRometschPScr. Mater.20181451131171:CAS:528:DC%2BC2sXhslWqsrbN ZhangHZhuHHQiTHuZHZengXYMater. Sci. Eng. A201665647541:CAS:528:DC%2BC28XovVyktQ%3D%3D KunceIPolanskiMBystrzyckiJInt. J. Hydrog. Energy201439990499101:CAS:528:DC%2BC2cXks1WrsLo%3D KrellJRottgerAGeenenKTheisenWJ. Mater. Process. Technol.20182556796881:CAS:528:DC%2BC1cXisl2gtbk%3D DindaGPDasguptaAKMazumderJScr. Mater.2012675035061:CAS:528:DC%2BC38XhtVWis73O YadollahiAShamsaeiNThompsonSMSeelyDWMater. Sci. Eng. A20156441711831:CAS:528:DC%2BC2MXhsVSjtbnM ZhuYTHuangJYGubiczaJUngarTWangYMMaEValievRZJ. Mater. Res.200318190819171:CAS:528:DC%2BD3sXmtlygtL8%3D TangMPistoriusPCBeuthJLAddit. Manuf.20171439481:CAS:528:DC%2BC2sXmvVGkt7Y%3D RoudnickáMMolnárováODvorskýDKřivskýLVojtěchDMet. Mater. Int.20202611681181 KalenticsNBoillatEPeyrePCiric-KosticSBogojevicNLogeREAddit. Manuf.20171690971:CAS:528:DC%2BC2sXhsV2jsbnJ ZhongYRannarLELiuLFKoptyugAWikmanSOlsenJCuiDQShenZJJ. Nucl. Mater.20174862342451:CAS:528:DC%2BC2sXhs1Klu7s%3D ZhaoXSongBZhangYJZhuXMWeiQSShiYSMater. Sci. Eng. A201564758611:CAS:528:DC%2BC2MXhsVyjtrfJ GäumannMBezençonCCanalisPKurzWActa Mater.20014910511062 MurrLEGaytanSMRamirezDAMartinezEHernandezJAmatoKNShindoPWMedinaFRWickerRBJ. Mater. Sci. Technol.2012281141:CAS:528:DC%2BC38Xks1yltr8%3D AhmadBvan der VeenSOFitzpatrickMEGuoHAddit. Manuf.2018225715821:CAS:528:DC%2BC1cXhsVKit7rI SaeidiKGaoXLofajFKvetkovaLShenZJJ. Alloy. Compd.20156334634691:CAS:528:DC%2BC2MXivVCisLk%3D A. Takaichi, Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi, T. Hanawa, J. Mech. Behav. Biomed. Mater. 21, 67–76 (2013) KrakhmalevPYadroitsavaIFredrikssonGYadroitsevIMater. Des.2015873803851:CAS:528:DC%2BC2MXhsVKlt7zN XuWBrandtMSunSElambasserilJLiuQLathamKXiaKQianMActa Mater.20158574841:CAS:528:DC%2BC2cXitFKlurfN LuYJWuSQGanYLHuangTTYangCGLinJJLinJXOpt. Laser Technol.2015751972061:CAS:528:DC%2BC2MXht1yhsb3I SunSHIshimotoTHagiharaKTsutsumiYHanawaTNakanoTScr. Mater.201915989931:CAS:528:DC%2BC1cXhslCisrbL SuproboGAmmarAAParkNBaekERKimSMet. Mater. Int.201925142814351:CAS:528:DC%2BC1MXhtVKisb7N ShiratoriHFujiedaTYamanakaKKoizumiYKuwabaraKKatoTChibaAMater. Sci. Eng. A201665639461:CAS:528:DC%2BC28XovVCjuw%3D%3D PasangTKirchnerAJehringUAzizideroueiMTaoYJiangCPWangJCAisyahISMet. Mater. Int.201925127812861:CAS:528:DC%2BC1MXptleltbs%3D NiendorfTLeudersSRiemerARichardHATrosterTSchwarzeDMetall. Mater. Trans. B2013447947961:CAS:528:DC%2BC3sXhtVyrsr7M LeeJ-BSeoD-IChangHYMet. Mater. Int.20202639451:CAS:528:DC%2BC1MXitFyrsL7I LiuJDavidchackRLDongHBComput. Mater. Sci.201374921001:CAS:528:DC%2BC3sXmslWqtro%3D WangYMVoisinTMcKeownJTYeJCaltaNPLiZZengZZhangYChenWRoehlingTTOttRTSantalaMKDepondPJMatthewsMJHamzaAVZhuTNat. Mater.20181763711:CAS:528:DC%2BC2sXhslemsrjF WeiHLBhadesh PA Hooper (931_CR113) 2018; 22 KV Yang (931_CR195) 2018; 145 B Mooney (931_CR236) 2019; 25 T Bhardwaj (931_CR164) 2020; 26 T Pasang (931_CR23) 2019; 25 LE Murr (931_CR159) 2012; 28 N Guo (931_CR2) 2013; 8 JM Jeon (931_CR35) 2019; 763 YM Wang (931_CR89) 2018; 17 BE Stucker (931_CR10) 2007 T Fujieda (931_CR80) 2019; 25 T DebRoy (931_CR54) 2018; 92 K Saeidi (931_CR107) 2015; 625 C Casavola (931_CR209) 2009; 44 M Maly (931_CR217) 2019; 12 H Shiratori (931_CR151) 2016; 656 931_CR224 GM Karthik (931_CR12) 2017; 679 D Buchbinder (931_CR220) 2014; 26 AA Antonysamy (931_CR60) 2013; 84 T Mukherjee (931_CR31) 2016; 6 PJ Withers (931_CR207) 2001; 17 931_CR221 RV Mises (931_CR108) 1945; 51 H-J Yi (931_CR163) 2020; 26 D Karlsson (931_CR149) 2019; 784 B Ren (931_CR200) 2019; 34 B Ahmad (931_CR210) 2018; 22 P Wang (931_CR145) 2019; 168 M Marya (931_CR187) 2015; 46 XJ Wang (931_CR176) 2014; 597 H Zhang (931_CR37) 2016; 656 T Mishurova (931_CR213) 2019; 25 N Takata (931_CR177) 2018; 143 T DebRoy (931_CR7) 2019; 18 PW Liu (931_CR62) 2019; 26 JW Cahn (931_CR126) 1963; 11 JJS Dilip (931_CR43) 2017; 13 931_CR18 EA Jägle (931_CR129) 2017; 10 JB Wang (931_CR121) 2020; 31 Y Kok (931_CR16) 2018; 139 S Lee (931_CR20) 2020; 26 G Suprobo (931_CR167) 2019; 25 J-B Lee (931_CR168) 2020; 26 L Johnson (931_CR33) 2019; 176 D Zhang (931_CR197) 2019; 576 K Davidson (931_CR127) 2016; 31 K Saeidi (931_CR233) 2019; 9 LN Carter (931_CR235) 2012; 2012 X Zhao (931_CR128) 2015; 30 Z Sun (931_CR153) 2019; 168 VD Divya (931_CR104) 2016; 114 S Bodziak (931_CR184) 2019; 151 Y Liu (931_CR215) 2016; 87 KG Prashanth (931_CR171) 2014; 590 H Dobbelstein (931_CR19) 2019; 25 ZJ Sun (931_CR76) 2018; 10 PD Niu (931_CR150) 2019; 104 JM Park (931_CR29) 2020; 35 DD Gu (931_CR169) 2012; 60 JC Lippold (931_CR58) 2015 P Krakhmalev (931_CR191) 2018; 8 RR Mudge (931_CR17) 2007; 86 Y Brif (931_CR146) 2015; 99 TG Holesinger (931_CR53) 2016; 68 YT Zhu (931_CR100) 2003; 18 J Krell (931_CR131) 2018; 255 J Cao (931_CR214) 2013; 45 D Wang (931_CR106) 2016; 100 E Atzeni (931_CR5) 2012; 62 I Gibson (931_CR14) 2014 C Haase (931_CR122) 2017; 10 V Manvatkar (931_CR63) 2015; 31 M Gäumann (931_CR61) 2001; 49 M Tang (931_CR55) 2017; 14 F Arias-González (931_CR166) 2018; 24 XY Lou (931_CR182) 2018; 499 931_CR1 931_CR3 L Facchini (931_CR228) 2009; 15 PL Blackwell (931_CR234) 2005; 170 JJS Dilip (931_CR39) 2017; 2 CL Qiu (931_CR157) 2013; 578 KN Amato (931_CR227) 2012; 60 JY Lee (931_CR4) 2017; 7 P Deng (931_CR179) 2020; 35 AR Kini (931_CR117) 2019 I Kunce (931_CR81) 2015; 648 R Mertens (931_CR141) 2016; 83 LP Kubin (931_CR112) 2003; 48 T Wang (931_CR65) 2015; 632 A Simchi (931_CR186) 2004; 35 HL Wei (931_CR73) 2015; 5 EA Jägle (931_CR118) 2016; 68 CL Qiu (931_CR185) 2019; 790 SH Sun (931_CR51) 2019; 159 SA David (931_CR59) 1989; 34 YJ Lu (931_CR212) 2015; 75 G Karthik (931_CR173) 2017; 48b GP Dinda (931_CR69) 2009; 509 P Tao (931_CR99) 2019; 159 J Wu (931_CR110) 2016; 117 P Bajaj (931_CR135) 2020; 772 EA Jägle (931_CR140) 2014; 29 P Kürnsteiner (931_CR132) 2017; 129 AS Wu (931_CR211) 2014; 45 BE Carroll (931_CR32) 2015; 87 T Debroy (931_CR123) 1995; 67 XL Wu (931_CR28) 2017; 5 FSHB Freeman (931_CR103) 2019; 30 T LeBrun (931_CR134) 2015; 81 LE Murr (931_CR230) 2011; 42 XP Li (931_CR40) 2015; 95 W Kurz (931_CR101) 1984 A Koptyug (931_CR6) 2013; 3 LE Murr (931_CR125) 2012; 1 H Zhang (931_CR85) 2017; 134 GP Dinda (931_CR36) 2012; 206 TR Smith (931_CR231) 2018; 70 W Xu (931_CR170) 2015; 85 RD Li (931_CR143) 2018; 746 JM Park (931_CR148) 2020; 8 DA Ramirez (931_CR180) 2011; 59 JP Kruth (931_CR21) 2003; 23 X Zhou (931_CR193) 2015; 631 GP Dinda (931_CR41) 2013; 44 B Gwalani (931_CR67) 2019; 113 L Thivillon (931_CR68) 2009; 385 GP Dinda (931_CR70) 2012; 67 T Qi (931_CR75) 2017; 135 AP Ventura (931_CR119) 2017; 48 M Åsberg (931_CR142) 2019; 742 ZH Xiong (931_CR44) 2019; 740 I Kunce (931_CR154) 2014; 39 RJ Moat (931_CR66) 2009; 57 F Deirmina (931_CR137) 2019; 753 AK Syed (931_CR237) 2019; 35 X Zhao (931_CR48) 2015; 647 L Facchini (931_CR133) 2010; 12 T Niendorf (931_CR194) 2013; 44 B Vrancken (931_CR162) 2014; 68 M Galati (931_CR26) 2018; 19 C Qiu (931_CR91) 2018; 8 S Bahl (931_CR88) 2019; 28 NT Aboulkhair (931_CR175) 2019; 106 Y Byun (931_CR165) 2018; 24 DR Manca (931_CR174) 2019; 25 ML Montero-Sistiaga (931_CR84) 2016; 238 K Saeidi (931_CR190) 2015; 5 T Maeshima (931_CR114) 2019; 5 L Thijs (931_CR38) 2013; 61 XD Xing (931_CR223) 2019; 9 L Thijs (931_CR46) 2010; 58 A Piglione (931_CR201) 2018; 224 KG Prashanth (931_CR92) 2017; 707 LM Sochalski-Kolbus (931_CR219) 2015; 46 A Yadollahi (931_CR56) 2015; 644 LC Zhang (931_CR161) 2011; 65 VK Nadimpalli (931_CR15) 2020; 108 HY Wan (931_CR98) 2018; 34 P Kürnsteiner (931_CR115) 2020; 32 HL Wei (931_CR72) 2019; 24 R Martukanitz (931_CR205) 2014; 1–4 LE Murr (931_CR95) 2009; 60 D Zhang (931_CR238) 2020; 51 Y Zhang (931_CR22) 2020; 26 HL Wei (931_CR52) 2016; 115 N Takata (931_CR198) 2018; 8 S Kou (931_CR57) 2003 G Karthik (931_CR172) 2017; 48 ZQ Wang (931_CR82) 2016; 110 Y Zhong (931_CR97) 2017; 486 R Casati (931_CR138) 2018; 137 H Ali (931_CR218) 2017; 695 AR Balachandramurthi (931_CR229) 2018; 12 UF Kocks (931_CR111) 2003; 48 M Roudnická (931_CR116) 2020; 26 MQ Zafar (931_CR9) 2019; 26 FJ Barbaro (931_CR188) 1989; 5 LL Parimi (931_CR64) 2014; 89 N Takata (931_CR202) 2017; 704 ZC Fang (931_CR206) 2020; 129 Y Zhong (931_CR90) 2016; 470 N Kalentics (931_CR222) 2017; 16 Y Zhong (931_CR96) 2017; 116 CL Tan (931_CR199) 2018; 19 YJ Liu (931_CR160) 2016; 32 E Brandl (931_CR49) 2012; 532 J Liu (931_CR192) 2013; 74 FY Yan (931_CR183) 2018; 155 S Palanivel (931_CR11) 2015; 67 AJ Birnbaum (931_CR93) 2019; 29 SM Kelly (931_CR156) 2004; 35 GS Sankar (931_CR50) 2018; 72 H Qi (931_CR47) 2009; 40 F Kies (931_CR45) 2018; 160 SS Al-Bermani (931_CR78) 2010; 41 JW Lin (931_CR239) 2020; 174 J Akram (931_CR74) 2018; 21 JH Martin (931_CR86) 2017; 549 S Uchida (931_CR120) 2019; 175 TR Smith (931_CR83) 2019; 164 HJ Niu (931_CR139) 1999; 41 RD Li (931_CR181) 2010; 256 C Han (931_CR25) 2020; 32 B Song (931_CR226) 2014; 54 I Yadroitsev (931_CR204) 2015; 10 MJ Holzweissig (931_CR130) 2015; 46 JD Majumdar (931_CR42) 2005; 247 WJ Sames (931_CR8) 2016; 61 P Mercelis (931_CR208) 2006; 12 H Zhang (931_CR152) 2018; 96 C Li (931_CR203) 2018; 71 P Krakhmalev (931_CR136) 2015; 87 K Saeidi (931_CR105) 2015; 633 YK Kim (931_CR144) 2019; 805 AB Spierings (931_CR178) 2017; 115 GM Karthik (931_CR13) 2016; 653 G Wang (931_CR94) 2020; 8 ZG Zhu (931_CR109) 2018; 154 M Yan (931_CR189) 2014; 57 W Shifeng (931_CR34) 2014; 214 Y Zhu (931_CR27) 2021; 9 MW Wu (931_CR225) 2016; 650 V Juechter (931_CR124) 2014; 76 SA Mantri (931_CR196) 2017; 52 AM Beese (931_CR77) 2016; 68 GM Karthik (931_CR30) 2020; 13 XP Tan (931_CR158) 2015; 97 XP Tan (931_CR79) 2019; 7 M Mukherjee (931_CR87) 2019; 7 W Xu (931_CR102) 2017; 125 B Vrancken (931_CR232) 2012; 541 W Cong (931_CR24) 2017; 121 C Leyens (931_CR155) 2003 ML Griffith (931_CR216) 1999; 20 M Garibaldi (931_CR71) 2016; 110 R Zhou (931_CR147) 2018; 94 |
References_xml | – reference: LeBrunTNakamotoTHorikawaKKobayashiHMater. Des.20158144531:CAS:528:DC%2BC2MXosVaitbk%3D – reference: KarthikGMRamGDJKottadaRSMater. Sci. Eng. A201665371831:CAS:528:DC%2BC28Xht1WmtQ%3D%3D – reference: ParkJMChoeJParkHKSonSJungJKimT-SYuJ-HKimJGKimHSAddit. Manuf.2020351013331:CAS:528:DC%2BB3cXhvV2nsbvL – reference: KokYTanXPWangPNaiMLSLohNHLiuETorSBMater. Des.20181395655861:CAS:528:DC%2BC2sXhvFWmtrjE – reference: CarterLNAttallahMMReedRCSuperalloys20122012577586 – reference: ShiratoriHFujiedaTYamanakaKKoizumiYKuwabaraKKatoTChibaAMater. Sci. Eng. A201665639461:CAS:528:DC%2BC28XovVCjuw%3D%3D – reference: AliHMaLGhadbeigiHMumtazKMater. Sci. Eng. A20176952112201:CAS:528:DC%2BC2sXnsl2rsrg%3D – reference: ParkJMChoeJKimJGBaeJWMoonJYangSKimKTYuJ-HKimHSMater. Res. Lett.20208171:CAS:528:DC%2BB3cXhsVOkurw%3D – reference: XiongZHLiuSLLiSFShiYYangYFMisraRDKMater. Sci. Eng. A2019740148156 – reference: ManvatkarVDeADebRoyTMater. Sci. Technol.2015319249301:CAS:528:DC%2BC2cXhvVGqsb%2FE – reference: WangYMVoisinTMcKeownJTYeJCaltaNPLiZZengZZhangYChenWRoehlingTTOttRTSantalaMKDepondPJMatthewsMJHamzaAVZhuTNat. Mater.20181763711:CAS:528:DC%2BC2sXhslemsrjF – reference: SaeidiKKvetkovaLLofajcFShenZJRSC Adv.2015520747207501:CAS:528:DC%2BC2MXislektbo%3D – reference: DobbelsteinHGurevichELGeorgeEPOstendorfALaplancheGAddit. Manuf.2019252522621:CAS:528:DC%2BC1MXjsF2rtQ%3D%3D – reference: SunZJTanXPTorSBChuaCKNPG Asia Mater.2018101271361:CAS:528:DC%2BC1cXosVWrsrg%3D – reference: WanHYZhouZJLiCPChenGFZhangGPJ. Mater. Sci. Technol.20183417991804 – reference: BalachandramurthiARMoverareJMahadeSPedersonRMaterials (Basel)20181268 – reference: NadimpalliVKKarthikGMJanakiramGDNagyPBInt. J. Adv. Manuf.202010817931810 – reference: SamesWJListFAPannalaSDehoffRRBabuSSInt. Mater. Rev.201661315360 – reference: FangZCWuZLHuangCGWuCWOpt. Laser Technol.20201291062831:CAS:528:DC%2BB3cXntFygtb4%3D – reference: SmithTRSugarJDMarchiCSSchoenungJMActa Mater.20191647287401:CAS:528:DC%2BC1cXit1Ggu7vF – reference: HolesingerTGCarpenterJSLienertTJPattersonBMPapinPASwensonHCordesNLJOM20166810001011 – reference: BlackwellPLJ. Mater. Process. Technol.20051702402461:CAS:528:DC%2BD2MXhtFGrsr7E – reference: BeeseAMCarrollBEJOM2016687247341:CAS:528:DC%2BC2MXitV2ntLfJ – reference: GalatiMIulianoLAddit. Manuf.201819120 – reference: KouSWelding Metallurgy2003HobokenWiley – reference: KrakhmalevPFredrikssonGSvenssonKYadroitsevIYadroitsavaIThuvanderMPengRMetals20188118 – reference: LeeJYAnJChuaCKAppl. Mater. Today20177120133 – reference: M.L. Griffith, D.L. Keicher, J. Romero, C. Atwood, L. Harwell, D. Greene, J. Smugeresky Laser Engineered Net Shaping (LENS) for the fabrication of metallic components, Sandia National Labs, Albuquerque, New Mexico, USA (1996) – reference: ZhongYRannarLEWikamanSKoptyugALiuLFCuiDQShenZJFusion Eng. Des.201711624331:CAS:528:DC%2BC2sXhvVektrg%3D – reference: MukherjeeMMaterialia20197100359 – reference: ZhuYTHuangJYGubiczaJUngarTWangYMMaEValievRZJ. Mater. Res.200318190819171:CAS:528:DC%2BD3sXmtlygtL8%3D – reference: DindaGPDasguptaAKMazumderJScr. Mater.2012675035061:CAS:528:DC%2BC38XhtVWis73O – reference: AhmadBvan der VeenSOFitzpatrickMEGuoHAddit. Manuf.2018225715821:CAS:528:DC%2BC1cXhsVKit7rI – reference: R. Mertens, S. Dadbakhsh, J. Van Humbeeck, J.P. Kruth, 10th Cirp Conference on Photonic Technologies, vol. 74, pp. 5–11 (2018) – reference: ÅsbergMFredrikssonGHatamiSFredrikssonWKrakhmalevPMater. Sci. Eng. A2019742584589 – reference: FacchiniLMagaliniERobottiPMolinariARapid Prototyp. J.200915171178 – reference: DebRoyTMukherjeeTMilewskiJOElmerJWRibicBBlecherJJZhangWNat. Mater.201918102610321:CAS:528:DC%2BC1MXhtlWisrnJ – reference: MisesRVBull. Am. Math. Soc.194551555562 – reference: QiHAzerMRitterAMetall. Mater. Trans. A20094024102422 – reference: ZhouXLiKLZhangDDLiuXHMaJLiuWShenZJJ. Alloy. Compd.20156311531641:CAS:528:DC%2BC2MXhsVGjsbo%3D – reference: DindaGPDasguptaAKMazumderJSurf. Coat. Technol.2012206215221601:CAS:528:DC%2BC38Xhtlamsg%3D%3D – reference: PalanivelSSidharHMishraRSJOM2015676166211:CAS:528:DC%2BC2MXhtlKqsrs%3D – reference: MukherjeeTZubackJSDeADebRoyTSci. Rep.20166197171:CAS:528:DC%2BC28Xht1CktLk%3D – reference: QiTZhuHHZhangHYinJKeLDZengXYMater. Des.20171352572661:CAS:528:DC%2BC2sXhsFylsLnI – reference: FujiedaTChenMCShiratoriHKuwabaraKYamanakaKKoizumiYChibaAWatanabeSAddit. Manuf.2019254124201:CAS:528:DC%2BC1MXjsF2rsQ%3D%3D – reference: HolzweissigMJTaubeABrenneFSchaperMNiendorfTMetall. Mater. Trans. B2015465455491:CAS:528:DC%2BC2MXlsVartQ%3D%3D – reference: MartukanitzRMichalerisPPalmerTDebRoyTLiuZ-KOtisRHeoTWChenL-QAddit. Manuf.20141–45263 – reference: QiuCKindiMAAladawiASHatmiIASci. Rep.201887785 – reference: MantriSAAlamTChoudhuriDYannettaCJMiklerCVCollinsPCBanerjeeRJ. Mater. Sci.20175212455124661:CAS:528:DC%2BC2sXhtFKrsLzL – reference: XuWLuiEWPaterasAQianMBrandtMActa Mater.20171253904001:CAS:528:DC%2BC28XitFWnurfO – reference: DindaGPDasguptaAKBhattacharyaSNatuHDuttaBMazumderJMetall. Mater. Trans. A201344223322421:CAS:528:DC%2BC3sXksFemurk%3D – reference: VranckenBThijsLKruthJPVan HumbeeckJJ. Alloy. Compd.20125411771851:CAS:528:DC%2BC38XhtlGkurnO – reference: KunceIPolanskiMKarczewskiKPlocinskiTKurzydlowskiKJJ. Alloy. Compd.20156487517581:CAS:528:DC%2BC2MXhtVOkurjF – reference: WithersPJBhadeshiaHKDHMater. Sci. Technol.2001173553651:CAS:528:DC%2BD3MXjtF2it78%3D – reference: QiuCLJ. Alloy. Compd.2019790102310331:CAS:528:DC%2BC1MXlvVCmt7w%3D – reference: RoudnickáMMolnárováODvorskýDKřivskýLVojtěchDMet. Mater. Int.20202611681181 – reference: ZhangHZhuHHQiTHuZHZengXYMater. Sci. Eng. A201665647541:CAS:528:DC%2BC28XovVyktQ%3D%3D – reference: CaoJLiuFCLinXHuangCPChenJHuangWDOpt. Laser Technol.2013452282351:CAS:528:DC%2BC38Xhtl2qs7jN – reference: SimchiAMetall. Mater. Trans. B200435937948 – reference: PrashanthKGScudinoSKlaussHJSurreddiKBLöberLWangZChaubeyAKKühnUEckertJMater. Sci. Eng. A20145901531601:CAS:528:DC%2BC3sXhvFajsrnI – reference: PiglioneADovgyyBLiuCGourlayCMHooperPAPhamMSMater. Lett.201822422251:CAS:528:DC%2BC1cXotF2hu74%3D – reference: WuMWLaiPHChenJKMater. Sci. Eng. A20166502952991:CAS:528:DC%2BC2MXhslWhu7jK – reference: SunSHIshimotoTHagiharaKTsutsumiYHanawaTNakanoTScr. Mater.201915989931:CAS:528:DC%2BC1cXhslCisrbL – reference: LiuPWWangZXiaoYHHorstemeyerMFCuiXYChenLAddit. Manuf.20192622291:CAS:528:DC%2BC1MXkt1Wksrs%3D – reference: SyedAKAwdMWaltherFZhangXMater. Sci. Technol.2019356536601:CAS:528:DC%2BC1MXmtFyqtLs%3D – reference: ZhaoXSongBZhangYJZhuXMWeiQSShiYSMater. Sci. Eng. A201564758611:CAS:528:DC%2BC2MXhsVyjtrfJ – reference: TangMPistoriusPCBeuthJLAddit. Manuf.20171439481:CAS:528:DC%2BC2sXmvVGkt7Y%3D – reference: MurrLEGaytanSMRamirezDAMartinezEHernandezJAmatoKNShindoPWMedinaFRWickerRBJ. Mater. Sci. Technol.2012281141:CAS:528:DC%2BC38Xks1yltr8%3D – reference: YiH-JKimJ-WKimY-LShinSMet. Mater. Int.202026123512461:CAS:528:DC%2BB3cXisleqsbg%3D – reference: MudgeRRWaldNRWeld. J.2007864448 – reference: MaryaMSinghVMaryaSHascoetJYMetall. Mater. Trans. B201546165416651:CAS:528:DC%2BC2MXlsVWnt7s%3D – reference: ThivillonLBertrandPLagetBSmurovIJ. Nucl. Mater.20093852362411:CAS:528:DC%2BD1MXjtFeitr4%3D – reference: MercelisPKruthJPRapid Prototyp. J.200612254265 – reference: WangGOuyangHFanCGuoQLiZQYanWTLiZMater. Res. Lett.202082832901:CAS:528:DC%2BB3cXhtVGjsLbO – reference: GibsonIRosenDWStuckerBAdditive Manufacturing Technologies2014New YorkSpringer – reference: ZhouRLiuYZhouCSLiSQWuWQSongMLiuBLiangXPLiawPKIntermetallics2018941651711:CAS:528:DC%2BC1cXntVOjsA%3D%3D – reference: DilipJJSRamGDJStarrTLStuckerBAddit. Manuf.20171349601:CAS:528:DC%2BC2sXmvVGku70%3D – reference: ZhangYLiJCheSTianYMet. Mater. Int.2020267837921:CAS:528:DC%2BC1MXitlKhsrnM – reference: LeyensCPetersMTitanium and Titanium Alloys: Fundamentals and Applications2003HobokenWiley – reference: YanMXuWDarguschMSTangHPBrandtMQianMPowder Metall.2014572512571:CAS:528:DC%2BC2cXhtleju77E – reference: GäumannMBezençonCCanalisPKurzWActa Mater.20014910511062 – reference: AmatoKNGaytanSMMurrLEMartinezEShindoPWHernandezJCollinsSMedinaFActa Mater.201260222922391:CAS:528:DC%2BC38Xjs1Wns78%3D – reference: XuWBrandtMSunSElambasserilJLiuQLathamKXiaKQianMActa Mater.20158574841:CAS:528:DC%2BC2cXitFKlurfN – reference: BodziakSAl-RubaieKSDalla ValentinaLLafrattaFHSantosECZanattaAMChenYMMater. Charact.201915173831:CAS:528:DC%2BC1MXktFyns7w%3D – reference: A. Takaichi, Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi, T. Hanawa, J. Mech. Behav. Biomed. Mater. 21, 67–76 (2013) – reference: ZhangHXuWXuYJLuZLLiDCInt. J. Adv. Manuf. Technol.201896461474 – reference: CarrollBEPalmerTABeeseAMActa Mater.2015873093201:CAS:528:DC%2BC2MXhvFKlt74%3D – reference: LiXPWangXJSaundersMSuvorovaAZhangLCLiuYJFangMHHuangZHSercombeTBActa Mater.20159574821:CAS:528:DC%2BC2MXpsV2jtL4%3D – reference: ZhongYRannarLELiuLFKoptyugAWikmanSOlsenJCuiDQShenZJJ. Nucl. Mater.20174862342451:CAS:528:DC%2BC2sXhs1Klu7s%3D – reference: MurrLEMartinezEGaytanSMRamirezDAMachadoBIShindoPWMartinezJLMedinaFWootenJCiscelDAckelidUWickerRBMetall. Mater. Trans. A201142349135081:CAS:528:DC%2BC3MXhtFymsrnL – reference: HaaseCBultmannJHofJZieglerSBremenSHinkeCSchwedtAPrahlUBleckWMaterials (Basel)20171056 – reference: LiuYYangYQWangDInt. J. Adv. Manuf. Technol.201687647656 – reference: KürnsteinerPWilmsMBWeisheitABarriobero-VilaPJägleEARaabeDActa Mater.20171295260 – reference: MalyMHollerCSkalonMMeierBKoutnyDPichlerRSommitschCPalousekDMaterials (Basel)2019129301:CAS:528:DC%2BC1MXitlClu77I – reference: MartinJHYahataBDHundleyJMMayerJASchaedlerTAPollockTMNature20175493653691:CAS:528:DC%2BC2sXhsFehtrrL – reference: GuDDHagedornYCMeinersWMengGBBatistaRJSWissenbachKPopraweRActa Mater.201260384938601:CAS:528:DC%2BC38XntFSqsbk%3D – reference: KimYKChoJLeeKAJ. Alloy. Compd.20198056806911:CAS:528:DC%2BC1MXhsVShs77O – reference: KarthikGMSathiyamoorthiPZargaranAParkJMAsghari-RadPSonSParkSHKimHSMaterialia2020131008611:CAS:528:DC%2BB3cXhs1KksbrP – reference: LeeJ-BSeoD-IChangHYMet. Mater. Int.20202639451:CAS:528:DC%2BC1MXitFyrsL7I – reference: LiuYJLiSJHouWTWangSGHaoYLYangRSercombeTBZhangLCJ. Mater. Sci. Technol.2016325055081:CAS:528:DC%2BB3cXmt12gt7s%3D – reference: ZhaoXWeiQSSongBLiuYLuoXWWenSFShiYSMater. Manuf. Process.201530128312891:CAS:528:DC%2BC2MXptF2qur4%3D – reference: MancaDRChuryumovAYPozdniakovAVProsviryakovASRyabovDKKrokhinAYKorolevVADaubarayteDKMet. Mater. Int.2019256336401:CAS:528:DC%2BC1cXisVGnt7rF – reference: KarthikGMPanikarSRamGDJKottadaRSMater. Sci. Eng. A20176791932031:CAS:528:DC%2BC28XhslWju7fO – reference: MurrLEEsquivelEVQuinonesSAGaytanSMLopezMIMartinezEYMedinaFHernandezDHMartinezEMartinezJLStaffordSWBrownDKHoppeTMeyersWLindheUWickerRBMater. Charact.200960961051:CAS:528:DC%2BD1MXps1Sruw%3D%3D – reference: YangKVShiYJPalmFWuXHRometschPScr. Mater.20181451131171:CAS:528:DC%2BC2sXhslWqsrbN – reference: ISO/ASTM52900, Standard Terminology for Additive Manufacturing – General Principles – Terminology, ASTM International, (West Conshohocken, PA 2015) – reference: SaeidiKAlviSLofajFPetkovVIAkhtarFMetals201991991:CAS:528:DC%2BC1MXitlemsLfO – reference: WangPHuangPFNgFLSinWJLuSLNaiMLSRDongZLWeiJMater. Des.20191681075761:CAS:528:DC%2BC1MXktFaqsL8%3D – reference: WeiHLMazumderJDebRoyTSci. Rep.20155164461:CAS:528:DC%2BC2MXhvVWmsrrN – reference: BuchbinderDMeinersWPirchNWissenbachKSchrageJJ. Laser Appl.201426012004 – reference: JohnsonLMahmoudiMZhangBSeedeRHuangXQMaierJTMaierHJKaramanIElwanyAArroyaveRActa Mater.20191761992101:CAS:528:DC%2BC1MXhtlKktL7O – reference: YadollahiAShamsaeiNThompsonSMSeelyDWMater. Sci. Eng. A20156441711831:CAS:528:DC%2BC2MXhsVSjtbnM – reference: Sochalski-KolbusLMPayzantEACornwellPAWatkinsTRBabuSSDehoffRRLorenzMOvchinnikovaODutyCMetall. Mater. Trans. A201546141914321:CAS:528:DC%2BC2MXls1OnsQ%3D%3D – reference: GriffithMLSchliengerMEHarwellLDOliverMSBaldwinMDEnszMTEssienMBrooksJRobinoCVSmugereskyJEHofmeisterWHWertMJNelsonDVMater. Des.199920107113 – reference: LiRDShiYSWangZGWangLLiuJHJiangWAppl. Surf. Sci.2010256435043561:CAS:528:DC%2BC3cXksV2lsL8%3D – reference: Montero-SistiagaMLMertensRVranckenBWangXVan HoorewederBKruthJ-PVan HumbeeckJJ. Mater. Process. Technol.20162384374451:CAS:528:DC%2BC28XhtlehsbjL – reference: JägleEAShengZWuLLuLRisseJWeisheitARaabeDJOM201668943949 – reference: ZhangDQiuDGibsonMAZhengYFraserHLStJohnDHEastonMANature201957691951:CAS:528:DC%2BC1MXitlWku7nJ – reference: MishurovaTArtztKHaubrichJRequenaGBrunoGAddit. Manuf.2019253253341:CAS:528:DC%2BC1MXjsF2qsQ%3D%3D – reference: TanCLZhouKSKuangMMaWYKuangTCSci. Technol. Adv. Mater.2018197467581:CAS:528:DC%2BC1MXhslKksb3P – reference: JuechterVScharowskyTSingerRFKornerCActa Mater.2014762522581:CAS:528:DC%2BC2cXhtFOrsb3P – reference: DilipJJSZhangSTengCZengKRobinsonCPalDStuckerBProg. Addit. Manuf.20172157167 – reference: LinJWChenFDTangXBLiuJShenSKGeGJVacuum20201741091831:CAS:528:DC%2BB3cXhtVKitL4%3D – reference: NiuHJChangITHScr. Mater.19994125301:CAS:528:DyaK1MXltFGhsbg%3D – reference: WangXJZhangLCFangMHSercombeTBMater. Sci. Eng. A20145973703751:CAS:528:DC%2BC2cXis1Shs7g%3D – reference: LouXYAndresenPLRebakRBJ. Nucl. Mater.20184991821901:CAS:528:DC%2BC2sXhvVKks77J – reference: MertensRVranckenBHolmstockNKindsYKruthJPVan HumbeeckJPhys. Procedia2016838828901:CAS:528:DC%2BC28XhsFais7bF – reference: VenturaAPMarvelCJPawlikowskiGBayesMWatanabeMVinciRPMisiolekWZMetall. Mater. Trans. A201748607060821:CAS:528:DC%2BC2sXhs1GktLrK – reference: RamirezDAMurrLEMartinezEHernandezDHMartinezJLMachadoBIMedinaFFrigolaPWickerRBActa Mater.201159408840991:CAS:528:DC%2BC3MXltl2ltL4%3D – reference: AtzeniESalmiAInt. J. Adv. Manuf. Tech.20126211471155 – reference: LeeSKimJShimD-SParkS-HChoiYSMet. Mater. Int.2020267087181:CAS:528:DC%2BB3cXhtVentr4%3D – reference: KarthikGRamGJKottadaRSMetall. Mater. Trans. B201748b11581173 – reference: T. Catts, GE turns to 3D printers for plane parts,https://www.bloomberg.com/news/articles/2013-11-27/general-electric-turns-to-3d-printers-for-plane-parts (2013) – reference: MooneyBKourousisKIRaghavendraRAddit. Manuf.20192519311:CAS:528:DC%2BC1MXjsF2rsA%3D%3D – reference: SaeidiKGaoXLofajFKvetkovaLShenZJJ. Alloy. Compd.20156334634691:CAS:528:DC%2BC2MXivVCisLk%3D – reference: NiuPDLiRDYuanTCZhuSYChenCWangMBHuangLIntermetallics201910424321:CAS:528:DC%2BC1cXitVChtr7E – reference: KiesFKohnenPWilmsMBBrascheFPradeepKGSchwedtARichterSWeisheitASchleifenbaumJHHaaseCMater. Des.2018160125012641:CAS:528:DC%2BC1cXit1Cktb%2FI – reference: KrellJRottgerAGeenenKTheisenWJ. Mater. Process. Technol.20182556796881:CAS:528:DC%2BC1cXisl2gtbk%3D – reference: BarbaroFJKrauklisPEasterlingKEMater. Sci. Technol.19895105710681:CAS:528:DyaK3cXhvVemtr0%3D – reference: TakataNKodairaHSekizawaKSuzukiAKobashiMMater. Sci. Eng. A20177042182281:CAS:528:DC%2BC2sXhtlart73L – reference: GuoNLeuMCFront. Mech. Eng.20138215243 – reference: ZhuYAmeyamaKAndersonPMBeyerleinIJGaoHKimHSLaverniaEMathaudhuSMughrabiHRitchieROTsujiNZhangXWuXMater. Res. Lett.202191311:CAS:528:DC%2BB3cXitV2isr%2FK – reference: DebRoyTWeiHLZubackJSMukherjeeTElmerJWMilewskiJOBeeseAMWilson-HeidADeAZhangWProg. Mater Sci.2018921122241:CAS:528:DC%2BC2sXhslGhtrjK – reference: ShifengWShuaiLQingsongWYanCShengZYushengSJ. Mater. Process. Technol.2014214266026671:CAS:528:DC%2BC2cXht1WmurzL – reference: SmithTRSugarJDSchoenungJMSan MarchiCJOM2018703583631:CAS:528:DC%2BC1cXmt12jsg%3D%3D – reference: ZhangDPrasadABerminghamMJTodaroCJBenoitMJPatelMNQiuDStJohnDHQianMEastonMAMetall. Mater. Trans. A202051434143591:CAS:528:DC%2BB3cXht1GjtLfL – reference: WuJWangXQWangWAttallahMMLorettoMHActa Mater.20161173113201:CAS:528:DC%2BC28Xht1eisLbL – reference: XingXDDuanXMJiangTTWangJDJiangFCMetals201991031:CAS:528:DC%2BC1MXitFyjtbjK – reference: MajumdarJDPinkertonALiuZMannaILiLAppl. Surf. Sci.2005247320327 – reference: KrakhmalevPYadroitsavaIFredrikssonGYadroitsevIMater. Des.2015873803851:CAS:528:DC%2BC2MXhsVKlt7zN – reference: KarlssonDMarshalAJohanssonFSchuiskyMSahlbergMSchneiderJMJanssonUJ. Alloy. Compd.20197841952031:CAS:528:DC%2BC1MXotVCnug%3D%3D – reference: WangTZhuYYZhangSQTangHBWangHMJ. Alloy. Compd.20156325055131:CAS:528:DC%2BC2MXitl2ksbc%3D – reference: DeirminaFPeghiniNAlMangourBGrzesiakDPellizzariMMater. Sci. Eng. A20197531091211:CAS:528:DC%2BC1MXltVSnur4%3D – reference: DivyaVDMunoz-MorenoRMesseOMDMBarnardJSBakerSIllstonTStoneHJMater. Charact.201611462741:CAS:528:DC%2BC28XjslSgsbw%3D – reference: PrashanthKGEckertJJ. Alloy. Compd.201770727341:CAS:528:DC%2BC28XitFKqsr7P – reference: KubinLPMortensenAScr. Mater.2003481191251:CAS:528:DC%2BD38XoslSrs7s%3D – reference: DavidsonKSingamneniSMater. Manuf. Process.201631154315551:CAS:528:DC%2BC28Xnt1Krtb0%3D – reference: SongBDongSJLiuQLiaoHLCoddetCMater. Des.2014547277331:CAS:528:DC%2BC3sXhvValtbjO – reference: BhardwajTShuklaMPrasadNKPaulCBindraKMet. Mater. Int.202026101510291:CAS:528:DC%2BC1MXhvVems7vK – reference: LiRDNiuPDYuanTCCaoPChenCZhouKCJ. Alloy. Compd.20187461251341:CAS:528:DC%2BC1cXjvVOrtro%3D – reference: KruthJPWangXLaouiTFroyenLAssembly Autom.200323357371 – reference: WuXLZhuYTMater. Res. Lett.201755275321:CAS:528:DC%2BC1cXhtVSktLrM – reference: KürnsteinerPBajajPGuptaAWilmsMBWeisheitALiXLeinenbachCGaultBJägleEARaabeDAddit. Manuf.202032100910 – reference: BirnbaumAJSteubenJCBarrickEJIliopoulosAPMichopoulosJGAddit. Manuf.2019291007841:CAS:528:DC%2BC1MXitVersb7N – reference: KoptyugARännarL-EBäckströmMFager FranzénSDérandPInt. J. Life Sci.201331524 – reference: YadroitsevIYadroitsavaIVirtual Phys. Prototyp.2015106776 – reference: BajajPHariharanAKiniAKurnsteinerPRaabeDJagleEAMater. Sci. Eng. A20207721386331:CAS:528:DC%2BC1MXit1GqtbbI – reference: LuYJWuSQGanYLHuangTTYangCGLinJJLinJXOpt. Laser Technol.2015751972061:CAS:528:DC%2BC2MXht1yhsb3I – reference: DebroyTDavidSARev. Mod. Phys.199567851121:CAS:528:DyaK2MXmtFGmtL0%3D – reference: GwalaniBSoniVWaseemOAMantriSABanerjeeROpt. Laser Technol.20191133303371:CAS:528:DC%2BC1MXht12jurc%3D – reference: WangDSongCHYangYQBaiYCMater. Des.20161002912991:CAS:528:DC%2BC28XmtVOhtb4%3D – reference: StuckerBEJanaki RamGDMaterials Processing Handbook2007Boca RatonCRC Press – reference: HanCFangQShiYTorSBChuaCKZhouKAdv. Mater.202032e1903855 – reference: MaeshimaTOh-IshiKHeliyon2019501186 – reference: GaribaldiMAshcroftISimonelliMHagueRActa Mater.20161102072161:CAS:528:DC%2BC28Xks1Giuro%3D – reference: WuASBrownDWKumarMGallegosGFKingWEMetall. Mater. Trans. A201445626062701:CAS:528:DC%2BC2cXhsFeqsL%2FO – reference: WeiHLBhadeshiaHKDHDavidSADebRoyTSci. Technol. Weld. Join.2019243613661:CAS:528:DC%2BC1MXps1Whtr0%3D – reference: KarthikGMastanaiahPRamGJKottadaRSMetall. Mater. Trans. B201748141614221:CAS:528:DC%2BC2sXisFSltb0%3D – reference: QiuCLAdkinsNJEAttallahMMMater. Sci. Eng. A20135782302391:CAS:528:DC%2BC3sXptFKrurw%3D – reference: PasangTKirchnerAJehringUAzizideroueiMTaoYJiangCPWangJCAisyahISMet. Mater. Int.201925127812861:CAS:528:DC%2BC1MXptleltbs%3D – reference: KunceIPolanskiMBystrzyckiJInt. J. Hydrog. Energy201439990499101:CAS:528:DC%2BC2cXks1WrsLo%3D – reference: KurzWFisherDJFundamentals of Solidification1984Stafa-ZurichTrans Tech Publications – reference: HooperPAAddit. Manuf.2018225485591:CAS:528:DC%2BC1cXhsVKit7%2FK – reference: BrandlESchoberthALeyensCMater. Sci. Eng. A20125322953071:CAS:528:DC%2BC3MXhs1Ciu7rN – reference: FreemanFSHBSharpJXiJWToddIAddit. Manuf.2019301009171:CAS:528:DC%2BC1MXitF2qtrzL – reference: AboulkhairNTSimonelliMParryLAshcroftITuckCHagueRProg. Mater. Sci.20191061005781:CAS:528:DC%2BC1MXhsVCms77L – reference: LiCLiuZYFangXYGuoYBProcedia CIRP201871348353 – reference: SankarGSKarthikGMMohammadAKumarRJanaki RamGDTrans. Indian Inst. Met.2018723546 – reference: ThijsLKempenKKruthJPVan HumbeeckJActa Mater.201361180918191:CAS:528:DC%2BC3sXjsVag – reference: JägleEAChoiP-PVan HumbeeckJRaabeDJ. Mater. Res.2014292072 – reference: JeonJMParkJMYuJ-HKimJGSeongYParkSHKimHSMater. Sci. Eng. A20197631381521:CAS:528:DC%2BC1MXhsVajtLfE – reference: AntonysamyAAMeyerJPrangnellPBMater. Charact.2013841531681:CAS:528:DC%2BC3sXhsF2gurvE – reference: FacchiniLVicenteNLonardelliIMagaliniERobottiPMolinariAAdv. Eng. Mater.2010121841881:CAS:528:DC%2BC3cXmvFKlurs%3D – reference: RenBLuDHZhouRLiZHGuanJRJ. Mater. Res.201934141514251:CAS:528:DC%2BC1MXosF2nuro%3D – reference: YanFYXiongWFaiersonEOlsonGBScr. Mater.20181551041081:CAS:528:DC%2BC1cXhtF2gtr%2FN – reference: SaeidiKGaoXZhongYShenZJMater. Sci. Eng. A20156252212291:CAS:528:DC%2BC2MXitVGmuw%3D%3D – reference: ByunYLeeSSeoS-MYeomJ-TKimSEKangNHongJMet. Mater. Int.201824121312201:CAS:528:DC%2BC1cXhtlWhs7nI – reference: WeiHLElmerJWDebRoyTActa Mater.20161151231311:CAS:528:DC%2BC28XhtVags7vL – reference: KiniARLaser Additive Manufacturing of Oxide Dispersion Strengthened Steels and Cu–Cr–Nb Alloys2019AachenRWTH Aachen – reference: KellySMKampeSLMetall. Mater. Trans. A20043518611867 – reference: TakataNNishidaRSuzukiAKobashiMKatoMMetals20188440 – reference: WangZQPalmerTABeeseAMActa Mater.20161102262351:CAS:528:DC%2BC28Xks1Giurw%3D – reference: AkramJChalavadiPPalDStuckerBAddit. Manuf.201821255268 – reference: ZhongYLiuLFWikmanSCuiDQShenZJJ. Nucl. Mater.20164701701781:CAS:528:DC%2BC28Xht1eltw%3D%3D – reference: ZafarMQZhaoHMet. Mater. Int.201926564585 – reference: MoatRJPinkertonAJLiLWithersPJPreussMActa Mater.200957122012291:CAS:528:DC%2BD1MXhsFelur4%3D – reference: DavidSAVitekJMInt. Mater. Rev.1989342132451:CAS:528:DyaK3MXls1Cjtbw%3D – reference: SunZTanXPDescoinsMMangelinckDTorSBLimCSScr. Mater.20191681291331:CAS:528:DC%2BC1MXptVWhtbc%3D – reference: ParimiLLRaviGAClarkDAttallahMMMater. Charact.2014891021111:CAS:528:DC%2BC2cXisFeqsbs%3D – reference: WangJBZhouXLLiJHBrochuMZhaoYFAddit. Manuf.2020311009211:CAS:528:DC%2BB3cXnvVegsrs%3D – reference: DengPKaradgeMRebakRBGuptaVKProrokBCLouXAddit. Manuf.2020351013341:CAS:528:DC%2BB3cXhvV2nsbvI – reference: KocksUFMeckingHProg. Mater Sci.2003481712731:CAS:528:DC%2BD38XpsFSlurg%3D – reference: VranckenBThijsLKruthJPVan HumbeeckJActa Mater.2014681501581:CAS:528:DC%2BC2cXjslahur0%3D – reference: TakataNKodairaHSuzukiAKobashiMMater. Charact.201814318261:CAS:528:DC%2BC2sXhvVOrurnI – reference: SpieringsABDawsonKHeelingTUggowitzerPJSchaublinRPalmFWegenerKMater. Des.201711552631:CAS:528:DC%2BC28XhvV2isb3E – reference: UchidaSKimuraTNakamotoTOzakiTMikiTTakemuraMOkaYTsubotaRMater. Des.20191751078151:CAS:528:DC%2BC1MXpvFOjsro%3D – reference: DindaGPDasguptaAKMazumderJMater. Sci. Eng. A200950998104 – reference: CasatiRCoduriMLecisNAndrianopoliCVedaniMMater. Charact.201813750571:CAS:528:DC%2BC1cXnvVyktQ%3D%3D – reference: ZhangHZhuHHNieXJYinJHuZHZengXYScr. Mater.20171346101:CAS:528:DC%2BC2sXktlKlu7Y%3D – reference: CasavolaCCarnpanelliSLPappalettereCJ. Strain Anal. Eng.20094493104 – reference: NiendorfTLeudersSRiemerARichardHATrosterTSchwarzeDMetall. Mater. Trans. B2013447947961:CAS:528:DC%2BC3sXhtVyrsr7M – reference: LiuJDavidchackRLDongHBComput. Mater. Sci.201374921001:CAS:528:DC%2BC3sXmslWqtro%3D – reference: BahlSMishraSYazarKUKolaIRChatterjeeKSuwasSAddit. Manuf.20192865771:CAS:528:DC%2BC1MXitVahu7rO – reference: ZhangLCKlemmDEckertJHaoYLSercombeTBScr. Mater.20116521241:CAS:528:DC%2BC3MXltVKrt70%3D – reference: ZhuZGNguyenQBNgFLAnXHLiaoXZLiawPKNaiSMLWeiJScr. Mater.201815420241:CAS:528:DC%2BC1cXpslyms7s%3D – reference: ThijsLVerhaegheFCraeghsTHumbeeckJVKruthJ-PActa Mater.201058330333121:CAS:528:DC%2BC3cXkt1GqtL4%3D – reference: JägleEAShengZKürnsteinerPOcylokSWeisheitARaabeDMaterials2017108 – reference: Al-BermaniSSBlackmoreMLZhangWToddIMetall. Mater. Trans. A201041342234341:CAS:528:DC%2BC3cXhtlKjsbvL – reference: TanXPChandraSKokYTorSBSeetGLohNHLiuEMaterialia20197100365 – reference: TanXPKokYHTanYJDescoinsMMangelinckDTorSBLeongKFChuaCKActa Mater.2015971161:CAS:528:DC%2BC2MXht1yjs7jJ – reference: TaoPLiHXHuangBYHuQDGongSLXuQYVacuum20191593823901:CAS:528:DC%2BC1cXitVyiurbK – reference: CongWNingFInt. J. Mach. Tool. Manu.20171216169 – reference: CahnJWActa Metall.196311127512821:CAS:528:DyaF2cXotFOq – reference: LippoldJCWelding Metallurgy and Weldability2015HobokenWiley Online Library – reference: MurrLEMartinezEHernandezJCollinsSAmatoKNGaytanSMShindoPWJ. Mater. Res. Technol.201211671771:CAS:528:DC%2BC2cXhs1KitLg%3D – reference: Arias-GonzálezFdel ValJComesañaRPenideJLusquiñosFQuinteroFRiveiroABoutinguizaMGilFJPouJMet. Mater. Int.201824231239 – reference: KalenticsNBoillatEPeyrePCiric-KosticSBogojevicNLogeREAddit. Manuf.20171690971:CAS:528:DC%2BC2sXhsV2jsbnJ – reference: SuproboGAmmarAAParkNBaekERKimSMet. Mater. Int.201925142814351:CAS:528:DC%2BC1MXhtVKisb7N – reference: BrifYThomasMToddIScr. Mater.20159993961:CAS:528:DC%2BC2cXitFynsrrM – volume: 26 start-page: 564 year: 2019 ident: 931_CR9 publication-title: Met. Mater. Int. doi: 10.1007/s12540-019-00441-w – volume: 653 start-page: 71 year: 2016 ident: 931_CR13 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.12.005 – volume: 29 start-page: 100784 year: 2019 ident: 931_CR93 publication-title: Addit. Manuf. – volume: 58 start-page: 3303 year: 2010 ident: 931_CR46 publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.02.004 – volume: 31 start-page: 100921 year: 2020 ident: 931_CR121 publication-title: Addit. Manuf. – volume: 121 start-page: 61 year: 2017 ident: 931_CR24 publication-title: Int. J. Mach. Tool. Manu. doi: 10.1016/j.ijmachtools.2017.04.008 – volume: 707 start-page: 27 year: 2017 ident: 931_CR92 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.12.209 – volume: 34 start-page: 1799 year: 2018 ident: 931_CR98 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.02.002 – volume: 704 start-page: 218 year: 2017 ident: 931_CR202 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.08.029 – volume: 5 start-page: 527 year: 2017 ident: 931_CR28 publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2017.1343208 – volume: 21 start-page: 255 year: 2018 ident: 931_CR74 publication-title: Addit. Manuf. – volume: 10 start-page: 67 year: 2015 ident: 931_CR204 publication-title: Virtual Phys. Prototyp. doi: 10.1080/17452759.2015.1026045 – volume: 8 start-page: 7785 year: 2018 ident: 931_CR91 publication-title: Sci. Rep. doi: 10.1038/s41598-018-26136-7 – volume: 19 start-page: 1 year: 2018 ident: 931_CR26 publication-title: Addit. Manuf. – volume: 7 start-page: 120 year: 2017 ident: 931_CR4 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2017.02.004 – volume: 100 start-page: 291 year: 2016 ident: 931_CR106 publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.03.111 – ident: 931_CR221 doi: 10.1016/j.procir.2018.08.002 – ident: 931_CR1 – volume: 26 start-page: 22 year: 2019 ident: 931_CR62 publication-title: Addit. Manuf. – volume-title: Welding Metallurgy year: 2003 ident: 931_CR57 – volume: 590 start-page: 153 year: 2014 ident: 931_CR171 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.10.023 – volume: 28 start-page: 1 year: 2012 ident: 931_CR159 publication-title: J. Mater. Sci. Technol. doi: 10.1016/S1005-0302(12)60016-4 – volume: 30 start-page: 100917 year: 2019 ident: 931_CR103 publication-title: Addit. Manuf. – volume: 108 start-page: 1793 year: 2020 ident: 931_CR15 publication-title: Int. J. Adv. Manuf. doi: 10.1007/s00170-020-05457-w – volume: 48 start-page: 119 year: 2003 ident: 931_CR112 publication-title: Scr. Mater. doi: 10.1016/S1359-6462(02)00335-4 – volume: 48b start-page: 1158 year: 2017 ident: 931_CR173 publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-016-0892-6 – volume: 13 start-page: 49 year: 2017 ident: 931_CR43 publication-title: Addit. Manuf. – volume: 85 start-page: 74 year: 2015 ident: 931_CR170 publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.11.028 – volume: 145 start-page: 113 year: 2018 ident: 931_CR195 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.10.021 – volume: 576 start-page: 91 year: 2019 ident: 931_CR197 publication-title: Nature doi: 10.1038/s41586-019-1783-1 – volume: 14 start-page: 39 year: 2017 ident: 931_CR55 publication-title: Addit. Manuf. – volume: 753 start-page: 109 year: 2019 ident: 931_CR137 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.03.027 – volume: 214 start-page: 2660 year: 2014 ident: 931_CR34 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2014.06.002 – volume: 10 start-page: 56 year: 2017 ident: 931_CR122 publication-title: Materials (Basel) doi: 10.3390/ma10010056 – volume: 17 start-page: 63 year: 2018 ident: 931_CR89 publication-title: Nat. Mater. doi: 10.1038/nmat5021 – volume: 46 start-page: 545 year: 2015 ident: 931_CR130 publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-014-0267-9 – volume: 45 start-page: 228 year: 2013 ident: 931_CR214 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2012.06.043 – volume: 160 start-page: 1250 year: 2018 ident: 931_CR45 publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.10.051 – volume: 155 start-page: 104 year: 2018 ident: 931_CR183 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.06.011 – ident: 931_CR18 – volume: 24 start-page: 231 year: 2018 ident: 931_CR166 publication-title: Met. Mater. Int. doi: 10.1007/s12540-017-7094-x – volume: 22 start-page: 571 year: 2018 ident: 931_CR210 publication-title: Addit. Manuf. – volume: 12 start-page: 254 year: 2006 ident: 931_CR208 publication-title: Rapid Prototyp. J. doi: 10.1108/13552540610707013 – volume: 247 start-page: 320 year: 2005 ident: 931_CR42 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2005.01.039 – volume: 117 start-page: 311 year: 2016 ident: 931_CR110 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.012 – volume: 28 start-page: 65 year: 2019 ident: 931_CR88 publication-title: Addit. Manuf. – volume: 746 start-page: 125 year: 2018 ident: 931_CR143 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.02.298 – volume-title: Additive Manufacturing Technologies year: 2014 ident: 931_CR14 – volume: 9 start-page: 199 year: 2019 ident: 931_CR233 publication-title: Metals doi: 10.3390/met9020199 – volume: 25 start-page: 633 year: 2019 ident: 931_CR174 publication-title: Met. Mater. Int. doi: 10.1007/s12540-018-00211-0 – volume: 25 start-page: 325 year: 2019 ident: 931_CR213 publication-title: Addit. Manuf. – volume: 656 start-page: 39 year: 2016 ident: 931_CR151 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.01.019 – volume: 129 start-page: 106283 year: 2020 ident: 931_CR206 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2020.106283 – volume: 763 start-page: 138152 year: 2019 ident: 931_CR35 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138152 – volume: 26 start-page: 012004 year: 2014 ident: 931_CR220 publication-title: J. Laser Appl. doi: 10.2351/1.4828755 – volume: 25 start-page: 252 year: 2019 ident: 931_CR19 publication-title: Addit. Manuf. – volume: 2 start-page: 157 year: 2017 ident: 931_CR39 publication-title: Prog. Addit. Manuf. doi: 10.1007/s40964-017-0030-2 – volume: 87 start-page: 647 year: 2016 ident: 931_CR215 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-8466-y – volume-title: Materials Processing Handbook year: 2007 ident: 931_CR10 – volume: 46 start-page: 1419 year: 2015 ident: 931_CR219 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-014-2722-2 – volume: 5 start-page: 01186 year: 2019 ident: 931_CR114 publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01186 – volume: 159 start-page: 382 year: 2019 ident: 931_CR99 publication-title: Vacuum doi: 10.1016/j.vacuum.2018.10.074 – volume: 30 start-page: 1283 year: 2015 ident: 931_CR128 publication-title: Mater. Manuf. Process. doi: 10.1080/10426914.2015.1026351 – volume: 87 start-page: 380 year: 2015 ident: 931_CR136 publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.08.045 – volume: 17 start-page: 355 year: 2001 ident: 931_CR207 publication-title: Mater. Sci. Technol. doi: 10.1179/026708301101509980 – volume: 1 start-page: 167 year: 2012 ident: 931_CR125 publication-title: J. Mater. Res. Technol. doi: 10.1016/S2238-7854(12)70029-7 – volume: 65 start-page: 21 year: 2011 ident: 931_CR161 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2011.03.024 – volume: 648 start-page: 751 year: 2015 ident: 931_CR81 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.05.144 – volume: 8 start-page: 283 year: 2020 ident: 931_CR94 publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2020.1751739 – volume: 26 start-page: 1235 year: 2020 ident: 931_CR163 publication-title: Met. Mater. Int. doi: 10.1007/s12540-019-00563-1 – volume: 143 start-page: 18 year: 2018 ident: 931_CR177 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2017.11.052 – volume: 35 start-page: 101334 year: 2020 ident: 931_CR179 publication-title: Addit. Manuf. – volume: 41 start-page: 25 year: 1999 ident: 931_CR139 publication-title: Scr. Mater. doi: 10.1016/S1359-6462(99)00089-5 – volume: 67 start-page: 616 year: 2015 ident: 931_CR11 publication-title: JOM doi: 10.1007/s11837-014-1271-x – volume: 97 start-page: 1 year: 2015 ident: 931_CR158 publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.06.036 – volume: 22 start-page: 548 year: 2018 ident: 931_CR113 publication-title: Addit. Manuf. – volume: 12 start-page: 68 year: 2018 ident: 931_CR229 publication-title: Materials (Basel) doi: 10.3390/ma12010068 – volume: 25 start-page: 1428 year: 2019 ident: 931_CR167 publication-title: Met. Mater. Int. doi: 10.1007/s12540-019-00304-4 – volume: 115 start-page: 123 year: 2016 ident: 931_CR52 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.05.057 – volume: 26 start-page: 1015 year: 2020 ident: 931_CR164 publication-title: Met. Mater. Int. doi: 10.1007/s12540-019-00464-3 – volume: 68 start-page: 150 year: 2014 ident: 931_CR162 publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.01.018 – volume: 16 start-page: 90 year: 2017 ident: 931_CR222 publication-title: Addit. Manuf. – volume: 135 start-page: 257 year: 2017 ident: 931_CR75 publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.09.014 – volume: 42 start-page: 3491 year: 2011 ident: 931_CR230 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-011-0748-2 – volume: 740 start-page: 148 year: 2019 ident: 931_CR44 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.10.083 – volume: 772 start-page: 138633 year: 2020 ident: 931_CR135 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138633 – volume: 9 start-page: 103 year: 2019 ident: 931_CR223 publication-title: Metals doi: 10.3390/met9010103 – volume: 35 start-page: 653 year: 2019 ident: 931_CR237 publication-title: Mater. Sci. Technol. doi: 10.1080/02670836.2019.1580434 – volume: 44 start-page: 2233 year: 2013 ident: 931_CR41 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-012-1560-3 – volume: 3 start-page: 15 year: 2013 ident: 931_CR6 publication-title: Int. J. Life Sci. – volume: 549 start-page: 365 year: 2017 ident: 931_CR86 publication-title: Nature doi: 10.1038/nature23894 – volume: 96 start-page: 461 year: 2018 ident: 931_CR152 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-1331-9 – volume: 67 start-page: 503 year: 2012 ident: 931_CR70 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2012.06.014 – volume-title: Fundamentals of Solidification year: 1984 ident: 931_CR101 – volume: 44 start-page: 794 year: 2013 ident: 931_CR194 publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-013-9875-z – volume: 61 start-page: 315 year: 2016 ident: 931_CR8 publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2015.1116649 – volume: 170 start-page: 240 year: 2005 ident: 931_CR234 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2005.05.005 – volume: 44 start-page: 93 year: 2009 ident: 931_CR209 publication-title: J. Strain Anal. Eng. doi: 10.1243/03093247JSA464 – volume: 12 start-page: 930 year: 2019 ident: 931_CR217 publication-title: Materials (Basel) doi: 10.3390/ma12060930 – volume: 95 start-page: 74 year: 2015 ident: 931_CR40 publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.05.017 – volume: 48 start-page: 6070 year: 2017 ident: 931_CR119 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-017-4363-8 – volume: 39 start-page: 9904 year: 2014 ident: 931_CR154 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.02.067 – volume: 114 start-page: 62 year: 2016 ident: 931_CR104 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2016.02.004 – volume: 18 start-page: 1026 year: 2019 ident: 931_CR7 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0408-2 – volume: 1–4 start-page: 52 year: 2014 ident: 931_CR205 publication-title: Addit. Manuf. – volume: 89 start-page: 102 year: 2014 ident: 931_CR64 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2013.12.012 – volume: 57 start-page: 1220 year: 2009 ident: 931_CR66 publication-title: Acta Mater. doi: 10.1016/j.actamat.2008.11.004 – volume: 695 start-page: 211 year: 2017 ident: 931_CR218 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.04.033 – volume: 5 start-page: 20747 year: 2015 ident: 931_CR190 publication-title: RSC Adv. doi: 10.1039/C4RA16721J – volume: 174 start-page: 109183 year: 2020 ident: 931_CR239 publication-title: Vacuum doi: 10.1016/j.vacuum.2020.109183 – volume: 113 start-page: 330 year: 2019 ident: 931_CR67 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.01.009 – volume: 35 start-page: 101333 year: 2020 ident: 931_CR29 publication-title: Addit. Manuf. – volume: 224 start-page: 22 year: 2018 ident: 931_CR201 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.04.052 – volume: 168 start-page: 107576 year: 2019 ident: 931_CR145 publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.107576 – volume: 31 start-page: 1543 year: 2016 ident: 931_CR127 publication-title: Mater. Manuf. Process. doi: 10.1080/10426914.2015.1090605 – volume: 75 start-page: 197 year: 2015 ident: 931_CR212 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2015.07.009 – volume: 650 start-page: 295 year: 2016 ident: 931_CR225 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.10.045 – volume: 541 start-page: 177 year: 2012 ident: 931_CR232 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2012.07.022 – volume: 2012 start-page: 577 year: 2012 ident: 931_CR235 publication-title: Superalloys doi: 10.7449/2012/Superalloys_2012_577_586 – volume: 656 start-page: 47 year: 2016 ident: 931_CR37 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.12.101 – volume: 94 start-page: 165 year: 2018 ident: 931_CR147 publication-title: Intermetallics doi: 10.1016/j.intermet.2018.01.002 – volume: 8 start-page: 1 year: 2018 ident: 931_CR191 publication-title: Metals doi: 10.3390/met8080643 – volume: 32 start-page: 505 year: 2016 ident: 931_CR160 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2016.03.020 – volume: 60 start-page: 2229 year: 2012 ident: 931_CR227 publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.12.032 – volume: 24 start-page: 361 year: 2019 ident: 931_CR72 publication-title: Sci. Technol. Weld. Join. doi: 10.1080/13621718.2019.1615189 – volume: 54 start-page: 727 year: 2014 ident: 931_CR226 publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.08.085 – volume: 71 start-page: 348 year: 2018 ident: 931_CR203 publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.05.039 – volume: 632 start-page: 505 year: 2015 ident: 931_CR65 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.01.256 – volume: 70 start-page: 358 year: 2018 ident: 931_CR231 publication-title: JOM doi: 10.1007/s11837-017-2711-1 – volume: 805 start-page: 680 year: 2019 ident: 931_CR144 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.07.106 – volume: 633 start-page: 463 year: 2015 ident: 931_CR105 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.01.249 – volume: 48 start-page: 171 year: 2003 ident: 931_CR111 publication-title: Prog. Mater Sci. doi: 10.1016/S0079-6425(02)00003-8 – volume: 742 start-page: 584 year: 2019 ident: 931_CR142 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.08.046 – volume: 74 start-page: 92 year: 2013 ident: 931_CR192 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2013.03.018 – volume: 26 start-page: 708 year: 2020 ident: 931_CR20 publication-title: Met. Mater. Int. doi: 10.1007/s12540-019-00589-5 – volume: 164 start-page: 728 year: 2019 ident: 931_CR83 publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.11.021 – volume: 45 start-page: 6260 year: 2014 ident: 931_CR211 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-014-2549-x – volume: 26 start-page: 1168 year: 2020 ident: 931_CR116 publication-title: Met. Mater. Int. doi: 10.1007/s12540-019-00504-y – volume-title: Laser Additive Manufacturing of Oxide Dispersion Strengthened Steels and Cu–Cr–Nb Alloys year: 2019 ident: 931_CR117 – volume: 175 start-page: 107815 year: 2019 ident: 931_CR120 publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107815 – volume: 159 start-page: 89 year: 2019 ident: 931_CR51 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.09.017 – volume: 137 start-page: 50 year: 2018 ident: 931_CR138 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.01.015 – volume: 10 start-page: 127 year: 2018 ident: 931_CR76 publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0018-5 – volume: 8 start-page: 440 year: 2018 ident: 931_CR198 publication-title: Metals doi: 10.3390/met8060440 – volume: 68 start-page: 943 year: 2016 ident: 931_CR118 publication-title: JOM doi: 10.1007/s11837-015-1764-2 – volume: 8 start-page: 1 year: 2020 ident: 931_CR148 publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2019.1638844 – volume: 129 start-page: 52 year: 2017 ident: 931_CR132 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.069 – volume: 644 start-page: 171 year: 2015 ident: 931_CR56 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.07.056 – volume: 5 start-page: 16446 year: 2015 ident: 931_CR73 publication-title: Sci. Rep. doi: 10.1038/srep16446 – volume: 29 start-page: 2072 year: 2014 ident: 931_CR140 publication-title: J. Mater. Res. doi: 10.1557/jmr.2014.204 – volume: 11 start-page: 1275 year: 1963 ident: 931_CR126 publication-title: Acta Metall. doi: 10.1016/0001-6160(63)90090-7 – volume: 139 start-page: 565 year: 2018 ident: 931_CR16 publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.11.021 – volume: 24 start-page: 1213 year: 2018 ident: 931_CR165 publication-title: Met. Mater. Int. doi: 10.1007/s12540-018-0148-x – volume: 790 start-page: 1023 year: 2019 ident: 931_CR185 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.03.221 – volume: 68 start-page: 1000 year: 2016 ident: 931_CR53 publication-title: JOM doi: 10.1007/s11837-015-1798-5 – volume: 62 start-page: 1147 year: 2012 ident: 931_CR5 publication-title: Int. J. Adv. Manuf. Tech. doi: 10.1007/s00170-011-3878-1 – volume: 25 start-page: 412 year: 2019 ident: 931_CR80 publication-title: Addit. Manuf. – volume: 25 start-page: 1278 year: 2019 ident: 931_CR23 publication-title: Met. Mater. Int. doi: 10.1007/s12540-019-00264-9 – volume: 59 start-page: 4088 year: 2011 ident: 931_CR180 publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.03.033 – volume: 116 start-page: 24 year: 2017 ident: 931_CR96 publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2017.01.032 – volume: 206 start-page: 2152 year: 2012 ident: 931_CR36 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2011.09.051 – volume: 6 start-page: 19717 year: 2016 ident: 931_CR31 publication-title: Sci. Rep. doi: 10.1038/srep19717 – volume: 125 start-page: 390 year: 2017 ident: 931_CR102 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.12.027 – volume: 92 start-page: 112 year: 2018 ident: 931_CR54 publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2017.10.001 – volume: 115 start-page: 52 year: 2017 ident: 931_CR178 publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.11.040 – volume: 46 start-page: 1654 year: 2015 ident: 931_CR187 publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-015-0310-5 – volume: 99 start-page: 93 year: 2015 ident: 931_CR146 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2014.11.037 – volume: 8 start-page: 215 year: 2013 ident: 931_CR2 publication-title: Front. Mech. Eng. doi: 10.1007/s11465-013-0248-8 – volume: 499 start-page: 182 year: 2018 ident: 931_CR182 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2017.11.036 – volume: 57 start-page: 251 year: 2014 ident: 931_CR189 publication-title: Powder Metall. doi: 10.1179/1743290114Y.0000000108 – volume: 52 start-page: 12455 year: 2017 ident: 931_CR196 publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1371-4 – ident: 931_CR3 – volume: 68 start-page: 724 year: 2016 ident: 931_CR77 publication-title: JOM doi: 10.1007/s11837-015-1759-z – volume: 25 start-page: 19 year: 2019 ident: 931_CR236 publication-title: Addit. Manuf. – volume: 83 start-page: 882 year: 2016 ident: 931_CR141 publication-title: Phys. Procedia doi: 10.1016/j.phpro.2016.08.092 – volume: 18 start-page: 1908 year: 2003 ident: 931_CR100 publication-title: J. Mater. Res. doi: 10.1557/JMR.2003.0267 – volume: 60 start-page: 3849 year: 2012 ident: 931_CR169 publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.04.006 – volume: 154 start-page: 20 year: 2018 ident: 931_CR109 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.05.015 – volume: 31 start-page: 924 year: 2015 ident: 931_CR63 publication-title: Mater. Sci. Technol. doi: 10.1179/1743284714Y.0000000701 – volume: 255 start-page: 679 year: 2018 ident: 931_CR131 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2018.01.012 – volume: 76 start-page: 252 year: 2014 ident: 931_CR124 publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.05.037 – volume: 134 start-page: 6 year: 2017 ident: 931_CR85 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.02.036 – volume: 106 start-page: 100578 year: 2019 ident: 931_CR175 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.100578 – volume: 81 start-page: 44 year: 2015 ident: 931_CR134 publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.05.026 – volume: 7 start-page: 100359 year: 2019 ident: 931_CR87 publication-title: Materialia doi: 10.1016/j.mtla.2019.100359 – volume: 40 start-page: 2410 year: 2009 ident: 931_CR47 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-009-9949-3 – volume: 12 start-page: 184 year: 2010 ident: 931_CR133 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200900259 – volume: 20 start-page: 107 year: 1999 ident: 931_CR216 publication-title: Mater. Des. doi: 10.1016/S0261-3069(99)00016-3 – volume: 647 start-page: 58 year: 2015 ident: 931_CR48 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.08.061 – volume: 84 start-page: 153 year: 2013 ident: 931_CR60 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2013.07.012 – volume: 67 start-page: 85 year: 1995 ident: 931_CR123 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.67.85 – volume: 385 start-page: 236 year: 2009 ident: 931_CR68 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2008.11.023 – volume: 35 start-page: 937 year: 2004 ident: 931_CR186 publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-004-0088-3 – volume: 51 start-page: 4341 year: 2020 ident: 931_CR238 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-020-05880-4 – volume: 61 start-page: 1809 year: 2013 ident: 931_CR38 publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.11.052 – volume: 51 start-page: 555 year: 1945 ident: 931_CR108 publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1945-08394-3 – volume: 679 start-page: 193 year: 2017 ident: 931_CR12 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.10.038 – volume: 151 start-page: 73 year: 2019 ident: 931_CR184 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2019.02.033 – volume: 23 start-page: 357 year: 2003 ident: 931_CR21 publication-title: Assembly Autom. doi: 10.1108/01445150310698652 – volume: 532 start-page: 295 year: 2012 ident: 931_CR49 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2011.10.095 – volume: 86 start-page: 44 year: 2007 ident: 931_CR17 publication-title: Weld. J. – volume: 72 start-page: 35 year: 2018 ident: 931_CR50 publication-title: Trans. Indian Inst. Met. doi: 10.1007/s12666-018-1458-x – volume: 486 start-page: 234 year: 2017 ident: 931_CR97 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2016.12.042 – volume: 509 start-page: 98 year: 2009 ident: 931_CR69 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2009.01.009 – volume: 597 start-page: 370 year: 2014 ident: 931_CR176 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2014.01.012 – volume-title: Titanium and Titanium Alloys: Fundamentals and Applications year: 2003 ident: 931_CR155 doi: 10.1002/3527602119 – volume: 5 start-page: 1057 year: 1989 ident: 931_CR188 publication-title: Mater. Sci. Technol. doi: 10.1179/mst.1989.5.11.1057 – volume: 41 start-page: 3422 year: 2010 ident: 931_CR78 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-010-0397-x – ident: 931_CR224 doi: 10.1016/j.jmbbm.2013.01.021 – volume: 60 start-page: 96 year: 2009 ident: 931_CR95 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2008.07.006 – volume: 256 start-page: 4350 year: 2010 ident: 931_CR181 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.02.030 – volume: 470 start-page: 170 year: 2016 ident: 931_CR90 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2015.12.034 – volume: 49 start-page: 1051 year: 2001 ident: 931_CR61 publication-title: Acta Mater. doi: 10.1016/S1359-6454(00)00367-0 – volume: 13 start-page: 100861 year: 2020 ident: 931_CR30 publication-title: Materialia doi: 10.1016/j.mtla.2020.100861 – volume: 168 start-page: 129 year: 2019 ident: 931_CR153 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2019.04.036 – volume: 34 start-page: 1415 year: 2019 ident: 931_CR200 publication-title: J. Mater. Res. doi: 10.1557/jmr.2019.10 – volume: 784 start-page: 195 year: 2019 ident: 931_CR149 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.12.267 – volume: 625 start-page: 221 year: 2015 ident: 931_CR107 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2014.12.018 – volume: 238 start-page: 437 year: 2016 ident: 931_CR84 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2016.08.003 – volume: 9 start-page: 1 year: 2021 ident: 931_CR27 publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2020.1796836 – volume: 34 start-page: 213 year: 1989 ident: 931_CR59 publication-title: Int. Mater. Rev. doi: 10.1179/imr.1989.34.1.213 – volume-title: Welding Metallurgy and Weldability year: 2015 ident: 931_CR58 doi: 10.1002/9781118960332 – volume: 35 start-page: 1861 year: 2004 ident: 931_CR156 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-004-0094-8 – volume: 104 start-page: 24 year: 2019 ident: 931_CR150 publication-title: Intermetallics doi: 10.1016/j.intermet.2018.10.018 – volume: 7 start-page: 100365 year: 2019 ident: 931_CR79 publication-title: Materialia doi: 10.1016/j.mtla.2019.100365 – volume: 19 start-page: 746 year: 2018 ident: 931_CR199 publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2018.1527645 – volume: 32 start-page: e1903855 year: 2020 ident: 931_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.201903855 – volume: 26 start-page: 783 year: 2020 ident: 931_CR22 publication-title: Met. Mater. Int. doi: 10.1007/s12540-019-00556-0 – volume: 110 start-page: 226 year: 2016 ident: 931_CR82 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.03.019 – volume: 110 start-page: 207 year: 2016 ident: 931_CR71 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.03.037 – volume: 15 start-page: 171 year: 2009 ident: 931_CR228 publication-title: Rapid Prototyp. J. doi: 10.1108/13552540910960262 – volume: 176 start-page: 199 year: 2019 ident: 931_CR33 publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.07.005 – volume: 87 start-page: 309 year: 2015 ident: 931_CR32 publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.12.054 – volume: 32 start-page: 100910 year: 2020 ident: 931_CR115 publication-title: Addit. Manuf. – volume: 578 start-page: 230 year: 2013 ident: 931_CR157 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.04.099 – volume: 631 start-page: 153 year: 2015 ident: 931_CR193 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.01.096 – volume: 48 start-page: 1416 year: 2017 ident: 931_CR172 publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-017-0934-8 – volume: 10 start-page: 8 year: 2017 ident: 931_CR129 publication-title: Materials doi: 10.3390/ma10010008 – volume: 26 start-page: 39 year: 2020 ident: 931_CR168 publication-title: Met. Mater. Int. doi: 10.1007/s12540-019-00484-z |
SSID | ssj0061312 |
Score | 2.5728273 |
SecondaryResourceType | review_article |
Snippet | Metal additive manufacturing (MAM) is an emerging technology to produce complex end-use metallic parts. To adopt MAM for manufacturing numerous engineering... Metal additive manufacturing (MAM) is an emerging technology to produce complex end-use metallic parts. To adopt MAMfor manufacturing numerous engineering... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Aluminum base alloys Anisotropy Cellular structure Characterization and Evaluation of Materials Chemistry and Materials Science Copper base alloys Electron beam melting Engineering Thermodynamics Evolution Grain structure Heat and Mass Transfer Heat treatment High entropy alloys Laser beam melting Machines Magnetic Materials Magnetism Manufacturing Materials Science Metallic Materials Microstructure New technology Nickel base alloys Phase transitions Processes Residual stress Solid Mechanics Superalloys Supersaturation Titanium alloys Titanium base alloys 재료공학 |
Title | Heterogeneous Aspects of Additive Manufactured Metallic Parts: A Review |
URI | https://link.springer.com/article/10.1007/s12540-020-00931-2 https://www.proquest.com/docview/2478603048 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002671456 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Metals and Materials International, 2021, 27(1), , pp.1-39 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vehBfGK1lkW8aSDZbl7eUmmtSosHC_W07CtSWlLp4_87kybWigqe9pDdBGZ3Zr7JzHxLyJVr0maqlHZsbJFUO1IOxFnSCaW2phnpWCpsTu71g-6APw79YdEUNi-r3cuUZG6p181uDJP4GO5gGO45YHirPsTuWMg1YElpf8E_rXKcfgyqDN69aJX5-R0b7mg7m6UbSPNbcjT3OZ19sleARZqsdveAbNnskOx-oRA8IvddrGeZwjGwEMPTJO-cnNNpShNj8rog2pPZEvsXljNraM8C2p6MNH2GMzO_pQldZQeOyaDTfrnrOsXlCI7mXrxwgjDQioXMGt-4BmCYlCkLDaiXm6pmoLBeK1KhtdpXroxTq13jK65czXLCmOYJqWTTzJ4Sypl0uebGtyzmngYAEHtxyj3pyUhZ5taIV8pI6II5HC-wmIg15zHKVYBcRS5XwWrk-nPN-4o348_ZlyB6MdYjgXTXOL5NxXgmANQ_CKQMA09bI_VyZ0ShaHPBeBgFmN6NauSm3K31498_efa_6edkh2E1S_7zpU4qi9nSXgAcWagGqSadVquP4_3rU7uRn8YPHyzWgQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BegAOFeUhQgNdVXACS_Zm_arEwYJCAgRxIBK3ZV9GEchGcSLU_9Mf2tmN3RTUIvXAyQevH5qZ3flmZ-ZbgD1f591cSuWZ1FhS7UR6GGcJLxbK6G6iUiFtc_LgKuoN2flteLsAP5teGFft3qQk3Uo9b3ajNolvwx0bhgcerUspL8yPZwzUqqP-CWp1n9LT7zfHPa8-S8BTLEgnXhRHStKYGh1qXyNqESKnsUZr9HPZjaQtb0pkbIwKpS_S3Chfh5JJX1HHr9LF9y7CBwQfiZ07Q5o16z36w1lONUxx6UA0Ubfm_P2fX7i_xWKcv0C2r5KxzsedrsLHGpySbGZNn2DBFGuw8gdl4Tqc9Wz9TIlmZ8ppRTLXqVmRMieZ1q4OiQxEMbX9EtOx0WRgEN0_jhS5RhutvpGMzLIRGzB8FwFuQqsoC7MFhFHhM8V0aGjKAoWAIw3SnAUiEIk01G9D0MiIq5qp3B6Y8cjnHMtWrhzlyp1cOW3Dwe9nnmY8HW-O_oqi5w9qxC29tr3el_xhzDGI6HNLUYaevQ2dRjO8ntgVpyxOIptOTtpw2Ghrfvvfn9z-v-FfYKl3M7jkl_2ri8-wTG0ljdv46UBrMp6aHYRCE7nrLJHA3Xub_i-18REB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7yANGDGB9kNSaN6EmHzPT2vAQPg8m6a9yQgwu5tf2UkDATdnYR_5U_0ap5uInEgIec5jBPqqu7vpqq72uA16H1Q6-1CVzuSFQ70wHmWSpIlXF2mJlcaSInT4-T8Ux8Po1P1-BXz4Vput37kmTLaSCVpnKxf2n9_or4xqmgT6kPpeRRwLu2yiP38wcmbfWHyQGO8BvOR4dfP46Dbl-BwIgoXwRJmhjNU-5sbEOLCEYpz1OLnhl6PUw0tTplOnXOxDpUuXcmtLEWOjS80VoZ4nPXYVMQ-xhn0IwX_dqPsbGtr8Y5LiOILDqazs3ffC0Urpdzfw3l_lWYbeLd6BE87IAqK1rP2oI1Vz6GB1fkC5_ApzH10lTogq5a1qxoWJs1qzwrrG16kthUlUviTiznzrKpQ6R_cWbYCfpr_Z4VrK1MPIXZnRjwGWyUVem2gQmuQmGEjR3PRWQQfORR7kWkIpVpx8MBRL2NpOlUy2nzjAu50lsmu0q0q2zsKvkA3v6557LV7Lj16ldoenluziRJbdPxeyXP5xITiokkuTKM8gPY6UdGdpO8llykWUKl5WwA7_rRWp3-9yuf_9_le3Dv5GAkv0yOj17AfU5NNc0_oB3YWMyX7iWiooXebRyRwbe79vzf560VNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Aspects+of+Additive+Manufactured+Metallic+Parts%3A+A+Review&rft.jtitle=Metals+and+materials+international&rft.au=Karthik%2C+G.+M.&rft.au=Kim%2C+Hyoung+Seop&rft.date=2021-01-01&rft.issn=1598-9623&rft.eissn=2005-4149&rft.volume=27&rft.issue=1&rft.spage=1&rft.epage=39&rft_id=info:doi/10.1007%2Fs12540-020-00931-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12540_020_00931_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon |