New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation

[Display omitted] Smad3 is a critical signaling protein in renal fibrosis. Proteolysis targeting chimeric molecules (PROTACs) are small molecules designed to degrade target proteins via ubiquitination. They have three components: (1) a recognition motif for E3 ligase; (2) a linker; and (3) a ligand...

Full description

Saved in:
Bibliographic Details
Published inBiochemical pharmacology Vol. 116; pp. 200 - 209
Main Authors Wang, Xin, Feng, Shaozhen, Fan, Jinjin, Li, Xiaoyan, Wen, Qiong, Luo, Ning
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 15.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Smad3 is a critical signaling protein in renal fibrosis. Proteolysis targeting chimeric molecules (PROTACs) are small molecules designed to degrade target proteins via ubiquitination. They have three components: (1) a recognition motif for E3 ligase; (2) a linker; and (3) a ligand for the target protein. We aimed to design a new PROTAC to prevent renal fibrosis by targeting Smad3 proteins and using hydroxylated pentapeptide of hypoxia-inducible factor-1α as the recognition motif for von Hippel–Lindau (VHL) ubiquitin ligase (E3). Computer-aided drug design was used to find a specific ligand targeting Smad3. Surface plasmon resonance (SPR) was used to verify and optimize screening results. Synthesized PROTAC was validated by two-stage mass spectrometry. The PROTAC’s specificity for VHL (E3 ligase) was proved with two human renal carcinoma cell lines, 786-0 (VHL−) and ACHN (VHL+), and its anti-fibrosis effect was tested in renal fibrosis cell models. Thirteen small molecular compounds (SMCs) were obtained from the Enamine library using GLIDE molecular docking program. SPR results showed that #8 SMC (EN300-72284) combined best with Smad3 (KD=4.547×10−5M). Mass spectrometry showed that synthesized PROTAC had the correct peptide molecular weights. Western blot showed Smad3 was degraded by PROTAC with whole-cell lysate of ACHN but not 786-0. Degradation, but not ubiquitination, of Smad3 was inhibited by proteasome inhibitor MG132. The upregulation of fibronectin and Collagen I induced by TGF-β1 in both renal fibroblast and mesangial cells were inhibited by PROTAC. The new PROTAC might prevent renal fibrosis by targeting Smad3 for ubiquitination and degradation.
AbstractList Smad3 is a critical signaling protein in renal fibrosis. Proteolysis targeting chimeric molecules (PROTACs) are small molecules designed to degrade target proteins via ubiquitination. They have three components: (1) a recognition motif for E3 ligase; (2) a linker; and (3) a ligand for the target protein. We aimed to design a new PROTAC to prevent renal fibrosis by targeting Smad3 proteins and using hydroxylated pentapeptide of hypoxia-inducible factor-1α as the recognition motif for von Hippel-Lindau (VHL) ubiquitin ligase (E3). Computer-aided drug design was used to find a specific ligand targeting Smad3. Surface plasmon resonance (SPR) was used to verify and optimize screening results. Synthesized PROTAC was validated by two-stage mass spectrometry. The PROTAC's specificity for VHL (E3 ligase) was proved with two human renal carcinoma cell lines, 786-0 (VHL(-)) and ACHN (VHL(+)), and its anti-fibrosis effect was tested in renal fibrosis cell models. Thirteen small molecular compounds (SMCs) were obtained from the Enamine library using GLIDE molecular docking program. SPR results showed that #8 SMC (EN300-72284) combined best with Smad3 (KD=4.547×10(-5)M). Mass spectrometry showed that synthesized PROTAC had the correct peptide molecular weights. Western blot showed Smad3 was degraded by PROTAC with whole-cell lysate of ACHN but not 786-0. Degradation, but not ubiquitination, of Smad3 was inhibited by proteasome inhibitor MG132. The upregulation of fibronectin and Collagen I induced by TGF-β1 in both renal fibroblast and mesangial cells were inhibited by PROTAC. The new PROTAC might prevent renal fibrosis by targeting Smad3 for ubiquitination and degradation.
[Display omitted] Smad3 is a critical signaling protein in renal fibrosis. Proteolysis targeting chimeric molecules (PROTACs) are small molecules designed to degrade target proteins via ubiquitination. They have three components: (1) a recognition motif for E3 ligase; (2) a linker; and (3) a ligand for the target protein. We aimed to design a new PROTAC to prevent renal fibrosis by targeting Smad3 proteins and using hydroxylated pentapeptide of hypoxia-inducible factor-1α as the recognition motif for von Hippel–Lindau (VHL) ubiquitin ligase (E3). Computer-aided drug design was used to find a specific ligand targeting Smad3. Surface plasmon resonance (SPR) was used to verify and optimize screening results. Synthesized PROTAC was validated by two-stage mass spectrometry. The PROTAC’s specificity for VHL (E3 ligase) was proved with two human renal carcinoma cell lines, 786-0 (VHL−) and ACHN (VHL+), and its anti-fibrosis effect was tested in renal fibrosis cell models. Thirteen small molecular compounds (SMCs) were obtained from the Enamine library using GLIDE molecular docking program. SPR results showed that #8 SMC (EN300-72284) combined best with Smad3 (KD=4.547×10−5M). Mass spectrometry showed that synthesized PROTAC had the correct peptide molecular weights. Western blot showed Smad3 was degraded by PROTAC with whole-cell lysate of ACHN but not 786-0. Degradation, but not ubiquitination, of Smad3 was inhibited by proteasome inhibitor MG132. The upregulation of fibronectin and Collagen I induced by TGF-β1 in both renal fibroblast and mesangial cells were inhibited by PROTAC. The new PROTAC might prevent renal fibrosis by targeting Smad3 for ubiquitination and degradation.
Smad3 is a critical signaling protein in renal fibrosis. Proteolysis targeting chimeric molecules (PROTACs) are small molecules designed to degrade target proteins via ubiquitination. They have three components: (1) a recognition motif for E3 ligase; (2) a linker; and (3) a ligand for the target protein. We aimed to design a new PROTAC to prevent renal fibrosis by targeting Smad3 proteins and using hydroxylated pentapeptide of hypoxia-inducible factor-1α as the recognition motif for von Hippel-Lindau (VHL) ubiquitin ligase (E3).PURPOSESmad3 is a critical signaling protein in renal fibrosis. Proteolysis targeting chimeric molecules (PROTACs) are small molecules designed to degrade target proteins via ubiquitination. They have three components: (1) a recognition motif for E3 ligase; (2) a linker; and (3) a ligand for the target protein. We aimed to design a new PROTAC to prevent renal fibrosis by targeting Smad3 proteins and using hydroxylated pentapeptide of hypoxia-inducible factor-1α as the recognition motif for von Hippel-Lindau (VHL) ubiquitin ligase (E3).Computer-aided drug design was used to find a specific ligand targeting Smad3. Surface plasmon resonance (SPR) was used to verify and optimize screening results. Synthesized PROTAC was validated by two-stage mass spectrometry. The PROTAC's specificity for VHL (E3 ligase) was proved with two human renal carcinoma cell lines, 786-0 (VHL(-)) and ACHN (VHL(+)), and its anti-fibrosis effect was tested in renal fibrosis cell models.METHODSComputer-aided drug design was used to find a specific ligand targeting Smad3. Surface plasmon resonance (SPR) was used to verify and optimize screening results. Synthesized PROTAC was validated by two-stage mass spectrometry. The PROTAC's specificity for VHL (E3 ligase) was proved with two human renal carcinoma cell lines, 786-0 (VHL(-)) and ACHN (VHL(+)), and its anti-fibrosis effect was tested in renal fibrosis cell models.Thirteen small molecular compounds (SMCs) were obtained from the Enamine library using GLIDE molecular docking program. SPR results showed that #8 SMC (EN300-72284) combined best with Smad3 (KD=4.547×10(-5)M). Mass spectrometry showed that synthesized PROTAC had the correct peptide molecular weights. Western blot showed Smad3 was degraded by PROTAC with whole-cell lysate of ACHN but not 786-0. Degradation, but not ubiquitination, of Smad3 was inhibited by proteasome inhibitor MG132. The upregulation of fibronectin and Collagen I induced by TGF-β1 in both renal fibroblast and mesangial cells were inhibited by PROTAC.RESULTSThirteen small molecular compounds (SMCs) were obtained from the Enamine library using GLIDE molecular docking program. SPR results showed that #8 SMC (EN300-72284) combined best with Smad3 (KD=4.547×10(-5)M). Mass spectrometry showed that synthesized PROTAC had the correct peptide molecular weights. Western blot showed Smad3 was degraded by PROTAC with whole-cell lysate of ACHN but not 786-0. Degradation, but not ubiquitination, of Smad3 was inhibited by proteasome inhibitor MG132. The upregulation of fibronectin and Collagen I induced by TGF-β1 in both renal fibroblast and mesangial cells were inhibited by PROTAC.The new PROTAC might prevent renal fibrosis by targeting Smad3 for ubiquitination and degradation.CONCLUSIONThe new PROTAC might prevent renal fibrosis by targeting Smad3 for ubiquitination and degradation.
Author Luo, Ning
Wang, Xin
Fan, Jinjin
Wen, Qiong
Feng, Shaozhen
Li, Xiaoyan
Author_xml – sequence: 1
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  email: wangxin8@mail.sysu.edu.cn
– sequence: 2
  givenname: Shaozhen
  surname: Feng
  fullname: Feng, Shaozhen
– sequence: 3
  givenname: Jinjin
  surname: Fan
  fullname: Fan, Jinjin
– sequence: 4
  givenname: Xiaoyan
  surname: Li
  fullname: Li, Xiaoyan
– sequence: 5
  givenname: Qiong
  surname: Wen
  fullname: Wen, Qiong
– sequence: 6
  givenname: Ning
  surname: Luo
  fullname: Luo, Ning
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27473774$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1vFDEQhi0URC6BH0CDXKa5jT92bS9UUUQ-pAgKQodk-WP25NOe92J7E-Xf47sLFClSzYz8vCPPc4KO4hQBoc-UNJRQcb5urNs2rLYNkQ2h8h1aUCX5kvVCHaEFIUTUvmPH6CTn9W5Ugn5Ax0y2kkvZLtCfH_CEc0mmwOoZD1PCCaIZ8RBsmnLIX_G9SSsoIa7wr43xHG_TVCDEvIdnGx7mUF9NCVPEJnrsYZWM388f0fvBjBk-vdRT9Pvq-_3lzfLu5_Xt5cXd0rW0L0tBeyK9JZxxP_R2oL0jgwOAruXegWeCG9upQbVWWNf5zgrVgeLArGNWdvwUnR321r89zJCL3oTsYBxNhGnOmiracdG2TFX0yws62w14vU1hY9Kz_mekAvQAuHp_TjD8RyjRO-t6rat1vbOuidTVes3IVxkXyt5AFRvGN5PfDkmoeh4DJJ1dgFiPDglc0X4Kb6T_AvvTnVo
CitedBy_id crossref_primary_10_1016_j_biopha_2018_02_090
crossref_primary_10_1016_j_drudis_2024_104194
crossref_primary_10_1021_acs_biochem_4c00577
crossref_primary_10_1002_med_21877
crossref_primary_10_1016_j_ejmech_2020_112981
crossref_primary_10_1016_j_ejmech_2020_113150
crossref_primary_10_1039_D4DD00177J
crossref_primary_10_1016_j_csbj_2019_01_006
crossref_primary_10_1002_slct_202003162
crossref_primary_10_1002_tcr_201800032
crossref_primary_10_1021_acs_biochem_1c00464
crossref_primary_10_1016_j_ymthe_2023_12_009
crossref_primary_10_1016_j_ejmech_2020_112539
crossref_primary_10_1111_febs_15966
crossref_primary_10_3389_fonc_2020_621294
crossref_primary_10_1016_j_ejmech_2020_112698
crossref_primary_10_1016_j_bbcan_2018_11_007
crossref_primary_10_1093_nar_gkad043
crossref_primary_10_1038_s41392_019_0101_6
crossref_primary_10_1016_j_ddtec_2019_01_002
crossref_primary_10_1002_wcms_70013
crossref_primary_10_1016_j_chembiol_2017_05_024
crossref_primary_10_3390_molecules27248828
crossref_primary_10_1074_jbc_M117_816868
crossref_primary_10_1016_j_molcel_2020_01_010
crossref_primary_10_1096_fj_201902751R
crossref_primary_10_1080_08916934_2022_2103797
crossref_primary_10_1038_s41419_018_1098_4
crossref_primary_10_3389_fchem_2021_707317
crossref_primary_10_1002_cbf_3369
crossref_primary_10_26508_lsa_202302408
crossref_primary_10_1038_s41392_024_02004_x
crossref_primary_10_3390_cells11172762
crossref_primary_10_1016_j_ejmech_2023_116096
crossref_primary_10_3390_molecules23061479
crossref_primary_10_15212_AMM_2022_0041
crossref_primary_10_2174_0929867330666230130121822
crossref_primary_10_1111_odi_14725
crossref_primary_10_1093_toxsci_kfy017
crossref_primary_10_1016_j_ejmech_2024_116837
crossref_primary_10_1016_j_isci_2024_110423
crossref_primary_10_1016_j_phrs_2024_107234
crossref_primary_10_3390_biom12091257
crossref_primary_10_3390_pharmaceutics14122829
crossref_primary_10_1186_s13578_022_00936_x
crossref_primary_10_1002_ddr_22026
crossref_primary_10_3390_molecules25245956
crossref_primary_10_1021_acs_chemrev_7b00077
crossref_primary_10_1016_j_jpha_2023_09_004
crossref_primary_10_3389_fcell_2021_678077
crossref_primary_10_3390_ijms22020476
crossref_primary_10_1080_17460441_2019_1660641
crossref_primary_10_1080_15384101_2020_1743915
crossref_primary_10_1016_j_semcancer_2020_02_006
crossref_primary_10_1186_s12943_021_01434_3
crossref_primary_10_1016_j_ejmech_2018_03_066
crossref_primary_10_1021_acsomega_4c06177
crossref_primary_10_1042_BCJ20160762
crossref_primary_10_1016_j_bbcan_2020_188365
crossref_primary_10_1016_j_ejps_2024_106793
Cites_doi 10.1074/mcp.T300009-MCP200
10.1046/j.1523-1755.2002.0610s1094.x
10.1001/archderm.144.9.1106
10.1161/CIRCRESAHA.109.216101
10.1152/ajprenal.00595.2011
10.1016/S0006-291X(03)00885-4
10.1096/fj.02-1117fje
10.1172/JCI200319270
10.1073/pnas.141230798
10.1073/pnas.98.3.974
10.1002/cbic.200700438
10.1161/HYPERTENSIONAHA.109.136531
10.1038/onc.2008.320
10.1126/science.1059796
10.1038/bmt.2008.252
10.4049/jimmunol.173.3.2099
10.1161/01.RES.0000218782.52610.dc
10.1161/CIRCULATIONAHA.107.704197
10.1152/ajprenal.00675.2009
10.1681/ASN.2010111168
10.1091/mbc.12.5.1431
10.1016/S0092-8674(01)00507-4
10.1681/ASN.2010020134
10.1002/jcc.20292
10.1016/S1083-8791(03)00151-4
10.1681/ASN.2009010018
10.1016/S0002-9440(10)64926-7
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.bcp.2016.07.017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-2968
EndPage 209
ExternalDocumentID 27473774
10_1016_j_bcp_2016_07_017
S0006295216301940
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5RE
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IH2
IHE
J1W
K-O
KOM
L7B
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SPT
SSP
SSZ
T5K
TEORI
TWZ
WH7
ZA5
~G-
.55
.GJ
.HR
3O-
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMT
HVGLF
HZ~
LPU
R2-
SEW
SSH
VH1
WUQ
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c419t-61907db0323df9bf19c0fceee543dced263ab58f84b6bc5d5b685e83e2bc2b753
IEDL.DBID .~1
ISSN 0006-2952
1873-2968
IngestDate Fri Jul 11 11:46:34 EDT 2025
Mon Jul 21 05:54:37 EDT 2025
Thu Apr 24 23:12:46 EDT 2025
Tue Jul 01 03:01:17 EDT 2025
Fri Feb 23 02:26:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Computer-aided drug design
Ubiquitination
Proteolysis targeting chimeric molecules
Fibrosis
Language English
License Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-61907db0323df9bf19c0fceee543dced263ab58f84b6bc5d5b685e83e2bc2b753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27473774
PQID 1815364428
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1815364428
pubmed_primary_27473774
crossref_primary_10_1016_j_bcp_2016_07_017
crossref_citationtrail_10_1016_j_bcp_2016_07_017
elsevier_sciencedirect_doi_10_1016_j_bcp_2016_07_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-15
PublicationDateYYYYMMDD 2016-09-15
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biochemical pharmacology
PublicationTitleAlternate Biochem Pharmacol
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Chung, Zhang, Kong, Tan, Huang, Kopp, Lan (b0010) 2010; 21
Li, Huang, Zhu, Oldfield, Cooper, Truong, Johnson, Lan (b0005) 2004; 18
Chung, Chen, Meng, Lan (b0050) 2010; 21
Zhong, Chung, Chen, Meng, Lan (b0055) 2011; 22
Flanders, Sullivan, Fujii, Sowers, Anzano, Arabshahi, Major, Deng, Russo, Mitchell, Roberts (b0125) 2002; 160
Dobaczewski, Bujak, Li, Gonzalez-Quesada, Mendoza, Wang, Frangogiannis (b0140) 2010; 107
Los, Jansen, Kaelin, Lips, Blijham, Voest (b0105) 1996; 75
Sakamoto, Kim, Kumagai, Mercurio, Crews, Deshaies (b0065) 2001; 98
Epstein, Gleadle, McNeill, Hewitson, O’Rourke, Mole, Mukherji, Metzen, Wilson, Dhanda, Tian, Masson, Hamilton, Jaakkola, Barstead, Hodgkin, Maxwell, Pugh, Schofield, Ratcliffe (b0095) 2001; 107
Liu, Huang, Lan (b0035) 2012; 302
Yang, Chung, Huang, Lan (b0020) 2009; 54
Bonniaud, Kolb, Galt, Robertson, Robbins, Stampfli, Lavery, Margetts, Roberts, Gauldie (b0130) 2004; 173
Fujimoto, Maezawa, Yokote, Joh, Kobayashi, Kawamura, Nishimura, Roberts, Saito, Mori (b0030) 2003; 305
Lee, Puppala, Choi, Swanson, Kim (b0075) 2007; 8
Moreno-Romero, Fernández-Avilés, Carreras, Rovira, Martínez, Mascaró (b0115) 2008; 144
Sakamoto, Kim, Verma, Ransick, Stein, Crews, Deshaies (b0070) 2003; 2
Bujak, Ren, Kweon, Dobaczewski, Reddy, Taffet, Wang, Frangogiannis (b0135) 2007; 116
Pines, Snyder, Yarkoni, Nagler (b0120) 2003; 9
Magro, Catteau, Coiteux, Bruno, Jouet, Yakoub-Agha (b0110) 2008; 42
Zhou, Fu, Huang, Liu, Chung, Lai, Lan (b0040) 2010; 298
Sato, Muragaki, Saika, Roberts, Ooshima (b0025) 2003; 112
Fukuchi, Imamura, Chiba, Ebisawa, Kawabata, Tanaka, Miyazono (b0060) 2001; 12
Rodriguez-Gonzalez, Cyrus, Salcius, Kim, Crews, Deshaies, Sakamoto (b0080) 2008; 27
Jaakkola, Mole, Tian, Wilson, Gielbert, Gaskell, von Kriegsheim, Hebestreit, Mukherji, Schofield, Maxwell, Pugh, Ratcliffe (b0100) 2001; 292
Wang, Huang, Canlas, Oka, Truong, Deng, Bhowmick, Ju, Bottinger, Lan (b0015) 2006; 98
Banks, Beard, Cao, Cho, Damm, Farid, Felts, Halgren, Mainz, Maple, Murphy, Philipp, Repasky, Zhang, Berne, Friesner, Gallicchio, Levy (b0090) 2005; 26
Zhang, Chang, Gehling, Hemmati-Brivanlou, Derynck (b0085) 2001; 98
Terada, Hanada, Nakao, Kuwahara, Sasaki, Marumo (b0045) 2002; 61
Sakamoto (10.1016/j.bcp.2016.07.017_b0070) 2003; 2
Sato (10.1016/j.bcp.2016.07.017_b0025) 2003; 112
Rodriguez-Gonzalez (10.1016/j.bcp.2016.07.017_b0080) 2008; 27
Moreno-Romero (10.1016/j.bcp.2016.07.017_b0115) 2008; 144
Yang (10.1016/j.bcp.2016.07.017_b0020) 2009; 54
Zhong (10.1016/j.bcp.2016.07.017_b0055) 2011; 22
Chung (10.1016/j.bcp.2016.07.017_b0010) 2010; 21
Chung (10.1016/j.bcp.2016.07.017_b0050) 2010; 21
Zhang (10.1016/j.bcp.2016.07.017_b0085) 2001; 98
Wang (10.1016/j.bcp.2016.07.017_b0015) 2006; 98
Pines (10.1016/j.bcp.2016.07.017_b0120) 2003; 9
Bonniaud (10.1016/j.bcp.2016.07.017_b0130) 2004; 173
Los (10.1016/j.bcp.2016.07.017_b0105) 1996; 75
Terada (10.1016/j.bcp.2016.07.017_b0045) 2002; 61
Dobaczewski (10.1016/j.bcp.2016.07.017_b0140) 2010; 107
Banks (10.1016/j.bcp.2016.07.017_b0090) 2005; 26
Lee (10.1016/j.bcp.2016.07.017_b0075) 2007; 8
Magro (10.1016/j.bcp.2016.07.017_b0110) 2008; 42
Zhou (10.1016/j.bcp.2016.07.017_b0040) 2010; 298
Epstein (10.1016/j.bcp.2016.07.017_b0095) 2001; 107
Fujimoto (10.1016/j.bcp.2016.07.017_b0030) 2003; 305
Li (10.1016/j.bcp.2016.07.017_b0005) 2004; 18
Flanders (10.1016/j.bcp.2016.07.017_b0125) 2002; 160
Bujak (10.1016/j.bcp.2016.07.017_b0135) 2007; 116
Liu (10.1016/j.bcp.2016.07.017_b0035) 2012; 302
Sakamoto (10.1016/j.bcp.2016.07.017_b0065) 2001; 98
Jaakkola (10.1016/j.bcp.2016.07.017_b0100) 2001; 292
Fukuchi (10.1016/j.bcp.2016.07.017_b0060) 2001; 12
References_xml – volume: 298
  start-page: F1006
  year: 2010
  end-page: F1017
  ident: b0040
  article-title: Mechanism of chronic aristolochic acid nephropathy: role of Smad3
  publication-title: Am. J. Physiol. Renal Physiol.
– volume: 9
  start-page: 417
  year: 2003
  end-page: 425
  ident: b0120
  article-title: Halofuginone to treat fibrosis in chronic graft-versus-host disease and scleroderma
  publication-title: Biol. Blood Marrow Transplant.
– volume: 173
  start-page: 2099
  year: 2004
  end-page: 2108
  ident: b0130
  article-title: Smad3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis
  publication-title: J. Immunol.
– volume: 98
  start-page: 1032
  year: 2006
  end-page: 1039
  ident: b0015
  article-title: Essential role of Smad3 in angiotensin II-induced vascular fibrosis
  publication-title: Circ. Res.
– volume: 116
  start-page: 2127
  year: 2007
  end-page: 2138
  ident: b0135
  article-title: Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling
  publication-title: Circulation
– volume: 61
  start-page: S94
  year: 2002
  end-page: S98
  ident: b0045
  article-title: Gene transfer of Smad7 using electroporation of adenovirus prevents renal fibrosis in post-obstructed kidney
  publication-title: Kidney Int.
– volume: 12
  start-page: 1431
  year: 2001
  end-page: 1443
  ident: b0060
  article-title: Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins
  publication-title: Mol. Biol. Cell
– volume: 18
  start-page: 176
  year: 2004
  end-page: 178
  ident: b0005
  article-title: Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease
  publication-title: FASEB J.
– volume: 292
  start-page: 468
  year: 2001
  end-page: 472
  ident: b0100
  article-title: Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O
  publication-title: Science
– volume: 27
  start-page: 7201
  year: 2008
  end-page: 7211
  ident: b0080
  article-title: Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer
  publication-title: Oncogene
– volume: 305
  start-page: 1002
  year: 2003
  end-page: 1007
  ident: b0030
  article-title: Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 107
  start-page: 43
  year: 2001
  end-page: 54
  ident: b0095
  article-title: Elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation
  publication-title: Cell
– volume: 144
  start-page: 1106
  year: 2008
  end-page: 1109
  ident: b0115
  article-title: Imatinib as a potential treatment for sclerodermatous chronic graft-vs-host disease
  publication-title: Arch. Dermatol.
– volume: 160
  start-page: 1057
  year: 2002
  end-page: 1068
  ident: b0125
  article-title: Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation
  publication-title: Am. J. Pathol.
– volume: 26
  start-page: 1752
  year: 2005
  end-page: 1780
  ident: b0090
  article-title: Integrated Modeling Program, Applied Chemical Theory (IMPACT)
  publication-title: J. Comput. Chem.
– volume: 302
  start-page: F986
  year: 2012
  end-page: F997
  ident: b0035
  article-title: Smad3 mediates ANG II-induced hypertensive kidney disease in mice
  publication-title: Am. J. Physiol. Renal Physiol.
– volume: 98
  start-page: 8554
  year: 2001
  end-page: 8559
  ident: b0065
  article-title: Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 112
  start-page: 1486
  year: 2003
  end-page: 1494
  ident: b0025
  article-title: Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction
  publication-title: J. Clin. Invest.
– volume: 22
  start-page: 1668
  year: 2011
  end-page: 1681
  ident: b0055
  article-title: Smad3-mediated upregulation of miR-21 promotes renal fibrosis
  publication-title: J. Am. Soc. Nephrol.
– volume: 98
  start-page: 974
  year: 2001
  end-page: 979
  ident: b0085
  article-title: Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 8
  start-page: 2058
  year: 2007
  end-page: 2062
  ident: b0075
  article-title: Targeted degradation of the aryl hydrocarbon receptor by the PROTAC approach: a useful chemical genetic tool
  publication-title: ChemBioChem
– volume: 54
  start-page: 877
  year: 2009
  end-page: 884
  ident: b0020
  article-title: Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3
  publication-title: Hypertension
– volume: 21
  start-page: 1317
  year: 2010
  end-page: 1325
  ident: b0050
  article-title: MiR-192 mediates TGF-beta/Smad3-driven renal fibrosis
  publication-title: J. Am. Soc. Nephrol.
– volume: 107
  start-page: 418
  year: 2010
  end-page: 428
  ident: b0140
  article-title: Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction
  publication-title: Circ. Res.
– volume: 2
  start-page: 1350
  year: 2003
  end-page: 1358
  ident: b0070
  article-title: Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation
  publication-title: Mol. Cell. Proteomics
– volume: 21
  start-page: 249
  year: 2010
  end-page: 260
  ident: b0010
  article-title: Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling
  publication-title: J. Am. Soc. Nephrol.
– volume: 42
  start-page: 757
  year: 2008
  end-page: 760
  ident: b0110
  article-title: Efficacy of imatinib mesylate in the treatment of refractory sclerodermatous chronic GVHD
  publication-title: Bone Marrow Transplant.
– volume: 75
  start-page: 231
  year: 1996
  end-page: 238
  ident: b0105
  article-title: Expression pattern of the von Hippel–Lindau protein in human tissues
  publication-title: Lab. Invest.
– volume: 2
  start-page: 1350
  issue: 12
  year: 2003
  ident: 10.1016/j.bcp.2016.07.017_b0070
  article-title: Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.T300009-MCP200
– volume: 61
  start-page: S94
  issue: 1 Suppl
  year: 2002
  ident: 10.1016/j.bcp.2016.07.017_b0045
  article-title: Gene transfer of Smad7 using electroporation of adenovirus prevents renal fibrosis in post-obstructed kidney
  publication-title: Kidney Int.
  doi: 10.1046/j.1523-1755.2002.0610s1094.x
– volume: 144
  start-page: 1106
  issue: 9
  year: 2008
  ident: 10.1016/j.bcp.2016.07.017_b0115
  article-title: Imatinib as a potential treatment for sclerodermatous chronic graft-vs-host disease
  publication-title: Arch. Dermatol.
  doi: 10.1001/archderm.144.9.1106
– volume: 107
  start-page: 418
  issue: 3
  year: 2010
  ident: 10.1016/j.bcp.2016.07.017_b0140
  article-title: Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.109.216101
– volume: 302
  start-page: F986
  issue: 8
  year: 2012
  ident: 10.1016/j.bcp.2016.07.017_b0035
  article-title: Smad3 mediates ANG II-induced hypertensive kidney disease in mice
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00595.2011
– volume: 305
  start-page: 1002
  issue: 4
  year: 2003
  ident: 10.1016/j.bcp.2016.07.017_b0030
  article-title: Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(03)00885-4
– volume: 18
  start-page: 176
  issue: 1
  year: 2004
  ident: 10.1016/j.bcp.2016.07.017_b0005
  article-title: Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease
  publication-title: FASEB J.
  doi: 10.1096/fj.02-1117fje
– volume: 112
  start-page: 1486
  issue: 10
  year: 2003
  ident: 10.1016/j.bcp.2016.07.017_b0025
  article-title: Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI200319270
– volume: 98
  start-page: 8554
  issue: 15
  year: 2001
  ident: 10.1016/j.bcp.2016.07.017_b0065
  article-title: Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.141230798
– volume: 98
  start-page: 974
  issue: 3
  year: 2001
  ident: 10.1016/j.bcp.2016.07.017_b0085
  article-title: Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.98.3.974
– volume: 8
  start-page: 2058
  issue: 17
  year: 2007
  ident: 10.1016/j.bcp.2016.07.017_b0075
  article-title: Targeted degradation of the aryl hydrocarbon receptor by the PROTAC approach: a useful chemical genetic tool
  publication-title: ChemBioChem
  doi: 10.1002/cbic.200700438
– volume: 54
  start-page: 877
  issue: 4
  year: 2009
  ident: 10.1016/j.bcp.2016.07.017_b0020
  article-title: Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.109.136531
– volume: 27
  start-page: 7201
  issue: 57
  year: 2008
  ident: 10.1016/j.bcp.2016.07.017_b0080
  article-title: Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2008.320
– volume: 292
  start-page: 468
  issue: 5516
  year: 2001
  ident: 10.1016/j.bcp.2016.07.017_b0100
  article-title: Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation
  publication-title: Science
  doi: 10.1126/science.1059796
– volume: 42
  start-page: 757
  issue: 11
  year: 2008
  ident: 10.1016/j.bcp.2016.07.017_b0110
  article-title: Efficacy of imatinib mesylate in the treatment of refractory sclerodermatous chronic GVHD
  publication-title: Bone Marrow Transplant.
  doi: 10.1038/bmt.2008.252
– volume: 173
  start-page: 2099
  issue: 3
  year: 2004
  ident: 10.1016/j.bcp.2016.07.017_b0130
  article-title: Smad3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.173.3.2099
– volume: 75
  start-page: 231
  issue: 2
  year: 1996
  ident: 10.1016/j.bcp.2016.07.017_b0105
  article-title: Expression pattern of the von Hippel–Lindau protein in human tissues
  publication-title: Lab. Invest.
– volume: 98
  start-page: 1032
  issue: 8
  year: 2006
  ident: 10.1016/j.bcp.2016.07.017_b0015
  article-title: Essential role of Smad3 in angiotensin II-induced vascular fibrosis
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000218782.52610.dc
– volume: 116
  start-page: 2127
  issue: 19
  year: 2007
  ident: 10.1016/j.bcp.2016.07.017_b0135
  article-title: Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.704197
– volume: 298
  start-page: F1006
  issue: 4
  year: 2010
  ident: 10.1016/j.bcp.2016.07.017_b0040
  article-title: Mechanism of chronic aristolochic acid nephropathy: role of Smad3
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00675.2009
– volume: 22
  start-page: 1668
  issue: 9
  year: 2011
  ident: 10.1016/j.bcp.2016.07.017_b0055
  article-title: Smad3-mediated upregulation of miR-21 promotes renal fibrosis
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2010111168
– volume: 12
  start-page: 1431
  issue: 5
  year: 2001
  ident: 10.1016/j.bcp.2016.07.017_b0060
  article-title: Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.12.5.1431
– volume: 107
  start-page: 43
  issue: 1
  year: 2001
  ident: 10.1016/j.bcp.2016.07.017_b0095
  article-title: Elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00507-4
– volume: 21
  start-page: 1317
  issue: 8
  year: 2010
  ident: 10.1016/j.bcp.2016.07.017_b0050
  article-title: MiR-192 mediates TGF-beta/Smad3-driven renal fibrosis
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2010020134
– volume: 26
  start-page: 1752
  issue: 16
  year: 2005
  ident: 10.1016/j.bcp.2016.07.017_b0090
  article-title: Integrated Modeling Program, Applied Chemical Theory (IMPACT)
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20292
– volume: 9
  start-page: 417
  issue: 7
  year: 2003
  ident: 10.1016/j.bcp.2016.07.017_b0120
  article-title: Halofuginone to treat fibrosis in chronic graft-versus-host disease and scleroderma
  publication-title: Biol. Blood Marrow Transplant.
  doi: 10.1016/S1083-8791(03)00151-4
– volume: 21
  start-page: 249
  issue: 2
  year: 2010
  ident: 10.1016/j.bcp.2016.07.017_b0010
  article-title: Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2009010018
– volume: 160
  start-page: 1057
  issue: 3
  year: 2002
  ident: 10.1016/j.bcp.2016.07.017_b0125
  article-title: Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)64926-7
SSID ssj0006861
Score 2.447133
Snippet [Display omitted] Smad3 is a critical signaling protein in renal fibrosis. Proteolysis targeting chimeric molecules (PROTACs) are small molecules designed to...
Smad3 is a critical signaling protein in renal fibrosis. Proteolysis targeting chimeric molecules (PROTACs) are small molecules designed to degrade target...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 200
SubjectTerms Amino Acid Motifs
Benzofurans - chemistry
Benzofurans - metabolism
Benzofurans - therapeutic use
Binding Sites
Cell Line, Tumor
Computer-aided drug design
Drug Design
Fibrosis
Humans
Hypoxia-Inducible Factor 1, alpha Subunit - chemistry
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Hypoxia-Inducible Factor 1, alpha Subunit - therapeutic use
Kidney - drug effects
Kidney - metabolism
Kidney - pathology
Ligands
Models, Molecular
Molecular Docking Simulation
Molecular Targeted Therapy
Peptide Fragments - chemistry
Peptide Fragments - metabolism
Peptide Fragments - therapeutic use
Protein Interaction Domains and Motifs
Proteolysis - drug effects
Proteolysis targeting chimeric molecules
Pyridines - chemistry
Pyridines - metabolism
Pyridines - therapeutic use
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - metabolism
Recombinant Fusion Proteins - therapeutic use
Renal Insufficiency, Chronic - drug therapy
Renal Insufficiency, Chronic - metabolism
Renal Insufficiency, Chronic - pathology
Smad3 Protein - antagonists & inhibitors
Smad3 Protein - chemistry
Smad3 Protein - metabolism
Small Molecule Libraries
Surface Plasmon Resonance
Ubiquitin-Protein Ligases - chemistry
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Ubiquitination - drug effects
Title New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation
URI https://dx.doi.org/10.1016/j.bcp.2016.07.017
https://www.ncbi.nlm.nih.gov/pubmed/27473774
https://www.proquest.com/docview/1815364428
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB0hOJRL1VKgaUu0SFUOCIPj_YjNDUWgAGqERJA4IK32y5IROBQnh1z62zu7thMhUQ492t61V36jmTfa2TcAPxOrTSwyFw2o1RFGCBMpYUVkFU1Vmiutw3bBr7EY3bLLO363BsP2LIwvq2x8f-3Tg7du7hw3f_P4uSj8Gd9YJBmGH4FGmjGftzM28FZ-9GdV5iFS0XTNE5Ef3e5shhovbbxkZb_W7ww9y96MTf_iniEGnX-Cjw15JKf1-j7Dmiu34MOw7dm2Bb3rWol6cUgmq4NV1SHpkeuVRvXiC9yjcyNVrUy7IEhcyYvzr84xe55WRXVCJqFEHAMbuXlSlpIg6FCUVRg818XveYFPA65ElZZYrzpRN2jahtvzs8lwFDWNFiLD-tkM00dMka2OaUJtnum8n5k4x-jpOKMWgUgEVZqnecq00IZbrkXKXUpdok2iMeHZgfVyWrqvQAxFCodZFDN-MufaMWcNYzZWzA6E6EDc_mJpGhVy3wzjUbblZg8SUZEeFRkPJKLSgYPllOdaguO9wazFTb6yI4kh4r1p-y3GEiHzmyaqdNN5JZEBcYqkMUk7sFuDv1yFz-gp8udv__fR77Dpr3z1SZ__gPXZy9ztIcWZ6W6w4S5snF5cjcZ_ARhA-_s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6hcIALommBlLYsUsWhwsLxPmL3hqKi8IqQGiQOSKt9WTKiDuDkkH_P7NpOVKlw6NW7Y1v7rWa-0c5-A_A9sdrEInPRgFodYYQwkRJWRFbRVKW50jocF1yPxeiWXdzxuzUYtndhfFll4_trnx68dfPkpFnNk6ei8Hd8Y5FkGH4EbtKMYd6-7tWpeAfWT88vR-OlQxapaBrnicgbtIebocxLG69a2a8lPEPbsn-Gp7foZwhDZ9uw1fBHclr_4gdYc2UXNoZt27YuHN3UYtSLYzJZ3a2qjskRuVnJVC8-wj36N1LV4rQLgtyVvDj_6hwT6GlVVD_JJFSJY2wjv_8oS0nQdCjKKkye6-J5XuBogJao0hLrhSfqHk2f4Pbs12Q4ippeC5Fh_WyGGSRmyVbHNKE2z3Tez0ycYwB1nFGLWCSCKs3TPGVaaMMt1yLlLqUu0SbRmPPsQKeclm4PiKHI4jCRYsYbc64dc9YwZmPF7ECIHsTtEkvTCJH7fhiPsq04e5CIivSoyHggEZUe_FiaPNUqHO9NZi1u8q-tJDFKvGd22GIsETJ_bqJKN51XEkkQp8gbk7QHuzX4y7_wST1FCv35_z56ABujyfWVvDofX-7Dph_xxSh9_gU6s5e5-4qMZ6a_NTv6Fbcu_qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+strategy+for+renal+fibrosis%3A+Targeting+Smad3+proteins+for+ubiquitination+and+degradation&rft.jtitle=Biochemical+pharmacology&rft.au=Wang%2C+Xin&rft.au=Feng%2C+Shaozhen&rft.au=Fan%2C+Jinjin&rft.au=Li%2C+Xiaoyan&rft.date=2016-09-15&rft.issn=1873-2968&rft.eissn=1873-2968&rft.volume=116&rft.spage=200&rft_id=info:doi/10.1016%2Fj.bcp.2016.07.017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2952&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2952&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2952&client=summon