Effects of Cell Network Structure on the Strength of Additively Manufactured Stainless Steels
The rapid melting and solidification cycle in additive manufacturing creates a non-equilibrium environment that induces metastable microstructures. These metastable microstructures include solute heterogeneity, dislocation cell structure and nano-sized precipitation, which contributes to the strengt...
Saved in:
Published in | Metals and materials international Vol. 27; no. 8; pp. 2614 - 2622 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Institute of Metals and Materials
01.08.2021
Springer Nature B.V 대한금속·재료학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid melting and solidification cycle in additive manufacturing creates a non-equilibrium environment that induces metastable microstructures. These metastable microstructures include solute heterogeneity, dislocation cell structure and nano-sized precipitation, which contributes to the strength of additively manufactured alloys. Because the presence of metastable microstructure contributes to the mechanical property enhancement of additively manufactured alloy, quantification and estimation of strength by metastable microstructure becomes important issue. In this study, the role of dislocation cell structure on the mechanical property of additively manufactured stainless steels was investigated. The evolved cell networks not only interrupted dislocation gliding, but also acted as crack propagation paths during plastic deformation. The finer cell networks found in the additively manufacture 304L stainless steels induced more interactions with dislocations than those found in the additively manufacture 316L stainless steels, and that is related to the higher strength during tensile test. This result demonstrates the dislocation cell structure is a main strengthening mechanism for additively manufactured materials and the modified Hall–Petch hardening model successfully estimate the strengthening by cell boundaries.
Graphic Abstract |
---|---|
AbstractList | The rapid melting and solidification cycle in additive manufacturing creates a non-equilibrium environment that induces metastable microstructures. These metastable microstructures include solute heterogeneity, dislocation cell structure and nano-sized precipitation, which contributes to the strength of additively manufactured alloys. Because the presence of metastable microstructure contributes to the mechanical property enhancement of additively manufactured alloy, quantification and estimation of strength by metastable microstructure becomes important issue. In this study, the role of dislocation cell structure on the mechanical property of additively manufactured stainless steels was investigated. The evolved cell networks not only interrupted dislocation gliding, but also acted as crack propagation paths during plastic deformation. The finer cell networks found in the additively manufacture 304L stainless steels induced more interactions with dislocations than those found in the additively manufacture 316L stainless steels, and that is related to the higher strength during tensile test. This result demonstrates the dislocation cell structure is a main strengthening mechanism for additively manufactured materials and the modified Hall–Petch hardening model successfully estimate the strengthening by cell boundaries.
Graphic Abstract The rapid melting and solidifcation cycle in additive manufacturing creates a non-equilibrium environment that inducesmetastable microstructures. These metastable microstructures include solute heterogeneity, dislocation cell structure andnano-sized precipitation, which contributes to the strength of additively manufactured alloys. Because the presence of metastable microstructure contributes to the mechanical property enhancement of additively manufactured alloy, quantifcationand estimation of strength by metastable microstructure becomes important issue. In this study, the role of dislocation cellstructure on the mechanical property of additively manufactured stainless steels was investigated. The evolved cell networksnot only interrupted dislocation gliding, but also acted as crack propagation paths during plastic deformation. The fner cellnetworks found in the additively manufacture 304L stainless steels induced more interactions with dislocations than thosefound in the additively manufacture 316L stainless steels, and that is related to the higher strength during tensile test. Thisresult demonstrates the dislocation cell structure is a main strengthening mechanism for additively manufactured materialsand the modifed Hall–Petch hardening model successfully estimate the strengthening by cell boundaries. KCI Citation Count: 0 The rapid melting and solidification cycle in additive manufacturing creates a non-equilibrium environment that induces metastable microstructures. These metastable microstructures include solute heterogeneity, dislocation cell structure and nano-sized precipitation, which contributes to the strength of additively manufactured alloys. Because the presence of metastable microstructure contributes to the mechanical property enhancement of additively manufactured alloy, quantification and estimation of strength by metastable microstructure becomes important issue. In this study, the role of dislocation cell structure on the mechanical property of additively manufactured stainless steels was investigated. The evolved cell networks not only interrupted dislocation gliding, but also acted as crack propagation paths during plastic deformation. The finer cell networks found in the additively manufacture 304L stainless steels induced more interactions with dislocations than those found in the additively manufacture 316L stainless steels, and that is related to the higher strength during tensile test. This result demonstrates the dislocation cell structure is a main strengthening mechanism for additively manufactured materials and the modified Hall–Petch hardening model successfully estimate the strengthening by cell boundaries.Graphic Abstract |
Author | Seol, Jae Bok Park, Jeong Min Kim, Jung Gi Park, Sun Hong Sung, Hyokyung Kim, Hyoung Seop |
Author_xml | – sequence: 1 givenname: Jung Gi orcidid: 0000-0002-3423-5401 surname: Kim fullname: Kim, Jung Gi email: junggi91@gnu.ac.kr organization: Department of Materials Engineering and Convergence Technology (Center for K-Metals), Gyeongsang National University – sequence: 2 givenname: Jae Bok surname: Seol fullname: Seol, Jae Bok organization: Department of Materials Engineering and Convergence Technology (Center for K-Metals), Gyeongsang National University – sequence: 3 givenname: Jeong Min surname: Park fullname: Park, Jeong Min organization: Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 4 givenname: Hyokyung surname: Sung fullname: Sung, Hyokyung organization: Department of Materials Engineering and Convergence Technology (Center for K-Metals), Gyeongsang National University – sequence: 5 givenname: Sun Hong surname: Park fullname: Park, Sun Hong organization: Materials Solution Research Group, Research Institute of Industrial Science and Technology – sequence: 6 givenname: Hyoung Seop surname: Kim fullname: Kim, Hyoung Seop email: hskim@postech.ac.kr organization: Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Center for High Entropy Alloys, Pohang University of Science and Technology (POSTECH) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002743351$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kMtKxDAUhoMoOI6-gKuCKxfVJG2aZjkM3sALeFlKSNOTMU5NNEmVeXs7U0Fw4eo_HL7vcPj30LbzDhA6JPiEYMxPI6GsxDmmJMdYCJKvttCEYszykpRiG00IE3UuKlrsor0YXzGuSEHoBD2fGQM6xcybbA5dl91C-vJhmT2k0OvUB8i8y9ILrBfgFullTc7a1ib7Cd0qu1GuN2pDtgOjrOsgxmEC6OI-2jGqi3Dwk1P0dH72OL_Mr-8uruaz61yXRKScGWgoNQ0Y1rS8IS3wshKirhpQNdEaGKNK1w1tC04wcF1hw6EpOG04rbEppuh4vOuCkUttpVd2kwsvl0HO7h-vpKhLwUsxsEcj-x78Rw8xyVffBze8JyljNcG83FD1SOngYwxgpLZJJetdCsp2kmC5Ll6OxcuheLkpXq4Glf5R34N9U2H1v1SMUhxgt4Dw-9U_1jfUPJkp |
CitedBy_id | crossref_primary_10_1016_j_msea_2023_145735 crossref_primary_10_1007_s11661_024_07644_w crossref_primary_10_1016_j_addma_2022_102744 crossref_primary_10_1016_j_jmst_2025_02_033 crossref_primary_10_1016_j_scriptamat_2023_115566 crossref_primary_10_1016_j_jallcom_2023_170602 crossref_primary_10_1016_j_jmrt_2024_08_194 crossref_primary_10_1007_s12540_023_01400_2 crossref_primary_10_3390_app122010646 crossref_primary_10_1007_s10853_022_07516_x crossref_primary_10_1016_j_mser_2022_100691 crossref_primary_10_1016_j_msea_2023_146031 crossref_primary_10_1016_j_mtcomm_2024_108613 crossref_primary_10_1016_j_jallcom_2023_170631 crossref_primary_10_1016_j_jmrt_2023_07_158 crossref_primary_10_1016_j_actamat_2022_118421 crossref_primary_10_1016_j_jmst_2024_07_010 crossref_primary_10_1016_j_actamat_2022_118561 crossref_primary_10_1016_j_jmrt_2025_02_238 crossref_primary_10_1016_j_msea_2022_144113 crossref_primary_10_1016_j_matdes_2023_112023 crossref_primary_10_1007_s11837_025_07304_3 crossref_primary_10_1016_j_addlet_2023_100172 crossref_primary_10_1007_s12540_023_01477_9 crossref_primary_10_1016_j_msea_2024_146537 crossref_primary_10_1007_s10853_022_07137_4 crossref_primary_10_1016_j_actamat_2022_118290 crossref_primary_10_1080_09506608_2022_2097411 crossref_primary_10_1016_j_addma_2023_103548 crossref_primary_10_1016_j_mtcomm_2023_105938 crossref_primary_10_1016_j_scriptamat_2023_115715 crossref_primary_10_1177_02670836241255257 crossref_primary_10_1016_j_msea_2024_146383 crossref_primary_10_1016_j_jallcom_2023_171390 crossref_primary_10_1186_s42649_022_00079_w crossref_primary_10_1016_j_msea_2022_143591 crossref_primary_10_1016_j_pnucene_2025_105694 crossref_primary_10_1016_j_msea_2023_144982 crossref_primary_10_1155_2021_6547213 crossref_primary_10_1016_j_addma_2021_102363 |
Cites_doi | 10.1016/j.msea.2016.09.028 10.1016/j.jmatprotec.2016.09.005 10.1016/j.msea.2017.04.058 10.1016/j.scriptamat.2018.05.015 10.1016/j.jnucmat.2015.12.034 10.1016/S1468-6996(01)00057-2 10.1017/S1431927617003518 10.1016/j.actamat.2016.07.019 10.1007/BF02657246 10.1186/s10033-019-0397-8 10.1016/j.actamat.2017.02.069 10.1016/j.matdes.2016.05.035 10.1073/pnas.1517193112 10.1016/j.addma.2019.101011 10.1038/nmat5021 10.1016/j.corsci.2019.108189 10.1016/S1005-0302(12)60016-4 10.1016/j.msea.2018.01.103 10.1557/JMR.2003.0220 10.1016/j.actamat.2018.11.021 10.1557/jmr.2014.208 10.1016/j.jallcom.2015.01.249 10.1016/j.actamat.2020.04.052 10.1016/j.msea.2019.138726 10.1146/annurev-matsci-070115-032024 10.2355/isijinternational.53.1224 10.1016/j.camwa.2018.06.029 10.1016/j.msea.2018.10.083 10.1016/j.jpcs.2004.08.048 10.1016/j.scriptamat.2017.07.037 10.1016/j.actamat.2016.03.019 10.1007/s12540-020-00931-2 10.1016/j.mattod.2017.11.004 10.1002/jctb.5000630501 10.1016/j.msea.2010.01.004 10.1080/21663831.2016.1153004 10.1016/j.cirp.2016.05.004 10.1007/s12540-019-00258-7 10.1016/0956-7151(95)00110-H 10.1038/ncomms15719 |
ContentType | Journal Article |
Copyright | The Korean Institute of Metals and Materials 2021. corrected publication 2021 The Korean Institute of Metals and Materials 2021. corrected publication 2021. |
Copyright_xml | – notice: The Korean Institute of Metals and Materials 2021. corrected publication 2021 – notice: The Korean Institute of Metals and Materials 2021. corrected publication 2021. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 ACYCR |
DOI | 10.1007/s12540-021-00991-y |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Korean Citation Index |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2005-4149 |
EndPage | 2622 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9849749 10_1007_s12540_021_00991_y |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2017R1A2A1A18069427; 2020R1A4A3079417 – fundername: Ministry of Trade, Industry and Energy grantid: 20012196 funderid: http://dx.doi.org/10.13039/501100003052 |
GroupedDBID | -EM 06D 0R~ 0VY 123 1N0 2.D 203 29M 2JY 2KG 2VQ 30V 4.4 406 408 40D 5VS 67Z 8FE 8FG 96X 9ZL AAAVM AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BA0 BENPR BGLVJ CAG CCPQU COF CS3 CSCUP D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZB HZ~ I0C IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ KB. KOV KVFHK LLZTM MA- MZR N2Q NDZJH NPVJJ NQJWS O9- O93 O9G O9I O9J P19 P2P P9N PDBOC PT4 PT5 Q2X R89 R9I RLLFE ROL RSV S1Z S26 S27 S28 S3B SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T16 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 Z45 Z7R Z7V Z7X Z7Y Z7Z Z83 Z85 ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SR 8BQ 8FD ABRTQ JG9 ACYCR |
ID | FETCH-LOGICAL-c419t-5feb22fbef5bd7b1de7469986bea81cce552ac8b2d3710e7c60f7eb372b7280f3 |
IEDL.DBID | U2A |
ISSN | 1598-9623 |
IngestDate | Sun Mar 09 07:54:21 EDT 2025 Fri Jul 25 19:00:14 EDT 2025 Thu Apr 24 23:00:13 EDT 2025 Tue Jul 01 01:15:26 EDT 2025 Fri Feb 21 02:47:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Strengthening Additive manufacturing Microstructure Stainless steel Mechanical property |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-5feb22fbef5bd7b1de7469986bea81cce552ac8b2d3710e7c60f7eb372b7280f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3423-5401 |
PQID | 2558107449 |
PQPubID | 326276 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9849749 proquest_journals_2558107449 crossref_citationtrail_10_1007_s12540_021_00991_y crossref_primary_10_1007_s12540_021_00991_y springer_journals_10_1007_s12540_021_00991_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | Metals and materials international |
PublicationTitleAbbrev | Met. Mater. Int |
PublicationYear | 2021 |
Publisher | The Korean Institute of Metals and Materials Springer Nature B.V 대한금속·재료학회 |
Publisher_xml | – name: The Korean Institute of Metals and Materials – name: Springer Nature B.V – name: 대한금속·재료학회 |
References | YangFPanYYuanFZhuYWuXMater. Res. Lett.201641451:CAS:528:DC%2BC28Xhslyrs7fN10.1080/21663831.2016.1153004 HarveyPDEngineering Properties of Steels1982Metals Park, OHAmerican Society for Metals CalcagnottoMPongeDDemirERaabeDMater. Sci. Eng. A2010527273810.1016/j.msea.2010.01.004 ZhuZGNguyenQBNgFLAnXHLiaoXZLiawPKNaiSMLWeiJScr. Mater.2018154201:CAS:528:DC%2BC1cXpslyms7s%3D10.1016/j.scriptamat.2018.05.015 MurrLEGaytanSMRamirazDAMartinezEHernandezJAmatoKNShindoPWMedinaFRWickerRBJ. Mater. Sci. Technol.20122811:CAS:528:DC%2BC38Xks1yltr8%3D10.1016/S1005-0302(12)60016-4 ZietalaMDurejkoTPolanskiMKunceIPlocinskiTZielinskiWLazinskaMStepniowskiWCzujkoTKurzydlowskiKJBojarZMater. Sci. Eng. A201667711:CAS:528:DC%2BC28XhsFWqu7zI10.1016/j.msea.2016.09.028 HerzogDSeydaVWyciskEEmmelmannCActa Mater.20161173711:CAS:528:DC%2BC28Xht1SgsLbP10.1016/j.actamat.2016.07.019 KurzynowskiTGruberKStopyraWKuźnickaBChlebusEMater. Sci. Eng. A2018718641:CAS:528:DC%2BC1cXitFyhtr4%3D10.1016/j.msea.2018.01.103 LewandowskiJJSeifiMAnnu. Rev. Mater. Res.2016461511:CAS:528:DC%2BC28XnsVWqt7c%3D10.1146/annurev-matsci-070115-032024 HanLLiuQGuJChin. J. Mech. Eng.2019328110.1186/s10033-019-0397-8 ZhongYLiuLWikmanSCuiDShenZJ. Nucl. Mater.20164701701:CAS:528:DC%2BC28Xht1eltw%3D%3D10.1016/j.jnucmat.2015.12.034 PecknerDBernsteinIMHandbook of stainless steels1977New York, NYMcGraw-Hill Book Company WangZPalmerTABeeseAMActa Mater.20161102261:CAS:528:DC%2BC28Xks1Giurw%3D10.1016/j.actamat.2016.03.019 RauschAMMarklMKörnerCComput. Math. Appl.201978235110.1016/j.camwa.2018.06.029 WangYMVoisinTMcKeownJTYeJCaltaNPLiZZengZZhangYChenWRoehlingTTOttRTSantalaMKDepondPJMatthewsMJHamzaAVZhuTNat. Mater.201817631:CAS:528:DC%2BC2sXhslemsrjF10.1038/nmat5021 EllinghamHJTJ. Soc. Chem. Ind.1944631251:CAS:528:DyaH2cXjtlWjtQ%3D%3D10.1002/jctb.5000630501 ChaoQCruzVThomasSBirbilisNCollinsPTaylorAHodgsonPDFabijanicDScr. Mater.2017141941:CAS:528:DC%2BC2sXht1ynt7fF10.1016/j.scriptamat.2017.07.037 ZhangAMisraAWangHChenTDSwadenerJGEmburyJDKungHHoaglandRGNastasiMJ. Mater. Res.20031816001:CAS:528:DC%2BD3sXlsFGgtbY%3D10.1557/JMR.2003.0220 GuoPZouBHuangCGaoHJ. Mater. Process. Technol.2017240121:CAS:528:DC%2BC28XhsFSktr7E10.1016/j.jmatprotec.2016.09.005 ZaeffererSMicrosc. Microanal.20172356610.1017/S1431927617003518 WuXYangMYuanFWuGWeiYHuangXZhuYProc. Natl. Acad. Soc. USA2015112145011:CAS:528:DC%2BC2MXhslyru7%2FI10.1073/pnas.1517193112 SunZTanXTorSBYeongWYMater. Des.20161041971:CAS:528:DC%2BC28XptFentLY%3D10.1016/j.matdes.2016.05.035 YoonJIKimJGJungJMLeeDJJeongHJShahbazMLeeSKimHSKorean JMet. Mater.2016542311:CAS:528:DC%2BC28XhtVCgsLjM KarthikGMKimHSMet. Mater. Int.20212711:CAS:528:DC%2BB3MXhtVerurfO10.1007/s12540-020-00931-2 JoYHJungSChoiWMSohnSSKimHSLeeBJKimNJLeeSNat. Commun.20178157191:CAS:528:DC%2BC2sXpvFels7g%3D10.1038/ncomms15719 SeolJBBaeJWKimJGSungHLiZLeeHHShimSHKoW-SHongSIKimHSActa Mater.20201943661:CAS:528:DC%2BB3cXhtFSgur3F10.1016/j.actamat.2020.04.052 ThompsonMKMoroniGVanekerTFadelGCampbellRIGibsonIBernardASchulzJGrafPAhujaBMartinaFCIRP Ann. Manuf. Technol.20166573710.1016/j.cirp.2016.05.004 KashyapBPTangriKActa Metall. Mater.19954339711:CAS:528:DyaK2MXovVemsbg%3D10.1016/0956-7151(95)00110-H HofmannDCKolodziejskaJRobertsSOtisRDillonRPSuhJ-OLiuZ-KBorgoniaJ-PJ. Mater. Res.201429189919101:CAS:528:DC%2BC2cXhsFyjtbnO10.1557/jmr.2014.208 SuryawanshiJPrashanthKGRamamurtyUMater. Sci. Eng. A20176961131:CAS:528:DC%2BC2sXmsVeis7w%3D10.1016/j.msea.2017.04.058 KimJGJangMJParkHKChinK-GLeeSKimHSMet. Mater. Int.2019259121:CAS:528:DC%2BC1MXmslWgurw%3D10.1007/s12540-019-00258-7 SmithTRSugarJDMarchiCSSchoenungJMActa Mater.20191647281:CAS:528:DC%2BC1cXit1Ggu7vF10.1016/j.actamat.2018.11.021 M. Laleh, A.E. Hughes, W. Xu, N. Haghdadi, K. Wang, P. Cizek, I. Gibson, M.Y. Tan, Corros. Sci. 161, 108189 (2019) GhayoorMLeeKHeYChangC-HPaulBKPasebaniSAddit. Manufac.2020321010111:CAS:528:DC%2BB3cXns1aisLw%3D10.1016/j.addma.2019.101011 XiongZHLiuSLLiSFShiYYangYFMisraRDKMater. Sci. Eng. A2019740–74114810.1016/j.msea.2018.10.083 KangY-BKimHSZhangJLeeH-GJ. Phys. Chem. Solids2005662191:CAS:528:DC%2BD2MXhtlGisLc%3D10.1016/j.jpcs.2004.08.048 DavisJRASM Specialty Handbook: Stainless steels1994Materials Park, OHAmerican Society for Metals UmedaTOkaneTSci. Technol. Adv. Mater.200122311:CAS:528:DC%2BD3MXmslyjs7s%3D10.1016/S1468-6996(01)00057-2 KimJGParkJMSeolJBChoeJYuJ-HYangSKimHSMater. Sci. Eng. A20207731387261:CAS:528:DC%2BC1MXit1KjtrjO10.1016/j.msea.2019.138726 MatsuokaYIwasakiTKakadaNTsuchiyamaTTakakiSISIJ Int.20135312241:CAS:528:DC%2BC3sXhtF2ntb3M10.2355/isijinternational.53.1224 SillDVarmaSKMetall. Trans. A199324115310.1007/BF02657246 KürnsteinerPWilmsMBWeisheitABarriobero-VilaPJägleEARaabeDActa Mater.20171295210.1016/j.actamat.2017.02.069 SaeidiKGaoXLofajFKvetkovaLShenZJJ. Alloy. Compd.20156334631:CAS:528:DC%2BC2MXivVCisLk%3D10.1016/j.jallcom.2015.01.249 LiuLDingQZhongYZouJWuJChiuY-LLiJZhangZYuQShenZMater. Today2018213543611:CAS:528:DC%2BC2sXhvVygsrbP10.1016/j.mattod.2017.11.004 TR Smith (991_CR12) 2019; 164 M Ghayoor (991_CR37) 2020; 32 ZG Zhu (991_CR26) 2018; 154 D Sill (991_CR18) 1993; 24 JG Kim (991_CR10) 2020; 773 D Peckner (991_CR24) 1977 S Zaefferer (991_CR23) 2017; 23 Y-B Kang (991_CR30) 2005; 66 GM Karthik (991_CR9) 2021; 27 J Suryawanshi (991_CR11) 2017; 696 K Saeidi (991_CR17) 2015; 633 PD Harvey (991_CR25) 1982 P Guo (991_CR32) 2017; 240 991_CR36 ZH Xiong (991_CR28) 2019; 740–741 M Zietala (991_CR35) 2016; 677 D Herzog (991_CR3) 2016; 117 AM Rausch (991_CR44) 2019; 78 X Wu (991_CR41) 2015; 112 JI Yoon (991_CR22) 2016; 54 HJT Ellingham (991_CR31) 1944; 63 DC Hofmann (991_CR8) 2014; 29 P Kürnsteiner (991_CR7) 2017; 129 YH Jo (991_CR20) 2017; 8 YM Wang (991_CR5) 2018; 17 Z Wang (991_CR14) 2016; 110 BP Kashyap (991_CR19) 1995; 43 L Han (991_CR38) 2019; 32 T Umeda (991_CR33) 2001; 2 Q Chao (991_CR29) 2017; 141 M Calcagnotto (991_CR27) 2010; 527 F Yang (991_CR40) 2016; 4 JB Seol (991_CR21) 2020; 194 T Kurzynowski (991_CR13) 2018; 718 JG Kim (991_CR42) 2019; 25 JR Davis (991_CR15) 1994 Y Zhong (991_CR16) 2016; 470 Z Sun (991_CR34) 2016; 104 Y Matsuoka (991_CR43) 2013; 53 A Zhang (991_CR39) 2003; 18 LE Murr (991_CR4) 2012; 28 JJ Lewandowski (991_CR2) 2016; 46 L Liu (991_CR6) 2018; 21 MK Thompson (991_CR1) 2016; 65 |
References_xml | – reference: YoonJIKimJGJungJMLeeDJJeongHJShahbazMLeeSKimHSKorean JMet. Mater.2016542311:CAS:528:DC%2BC28XhtVCgsLjM – reference: SaeidiKGaoXLofajFKvetkovaLShenZJJ. Alloy. Compd.20156334631:CAS:528:DC%2BC2MXivVCisLk%3D10.1016/j.jallcom.2015.01.249 – reference: SillDVarmaSKMetall. Trans. A199324115310.1007/BF02657246 – reference: MatsuokaYIwasakiTKakadaNTsuchiyamaTTakakiSISIJ Int.20135312241:CAS:528:DC%2BC3sXhtF2ntb3M10.2355/isijinternational.53.1224 – reference: KürnsteinerPWilmsMBWeisheitABarriobero-VilaPJägleEARaabeDActa Mater.20171295210.1016/j.actamat.2017.02.069 – reference: EllinghamHJTJ. Soc. Chem. Ind.1944631251:CAS:528:DyaH2cXjtlWjtQ%3D%3D10.1002/jctb.5000630501 – reference: KimJGParkJMSeolJBChoeJYuJ-HYangSKimHSMater. Sci. Eng. A20207731387261:CAS:528:DC%2BC1MXit1KjtrjO10.1016/j.msea.2019.138726 – reference: RauschAMMarklMKörnerCComput. Math. Appl.201978235110.1016/j.camwa.2018.06.029 – reference: ZhangAMisraAWangHChenTDSwadenerJGEmburyJDKungHHoaglandRGNastasiMJ. Mater. Res.20031816001:CAS:528:DC%2BD3sXlsFGgtbY%3D10.1557/JMR.2003.0220 – reference: SmithTRSugarJDMarchiCSSchoenungJMActa Mater.20191647281:CAS:528:DC%2BC1cXit1Ggu7vF10.1016/j.actamat.2018.11.021 – reference: LiuLDingQZhongYZouJWuJChiuY-LLiJZhangZYuQShenZMater. Today2018213543611:CAS:528:DC%2BC2sXhvVygsrbP10.1016/j.mattod.2017.11.004 – reference: KangY-BKimHSZhangJLeeH-GJ. Phys. Chem. Solids2005662191:CAS:528:DC%2BD2MXhtlGisLc%3D10.1016/j.jpcs.2004.08.048 – reference: KurzynowskiTGruberKStopyraWKuźnickaBChlebusEMater. Sci. Eng. A2018718641:CAS:528:DC%2BC1cXitFyhtr4%3D10.1016/j.msea.2018.01.103 – reference: ChaoQCruzVThomasSBirbilisNCollinsPTaylorAHodgsonPDFabijanicDScr. Mater.2017141941:CAS:528:DC%2BC2sXht1ynt7fF10.1016/j.scriptamat.2017.07.037 – reference: KarthikGMKimHSMet. Mater. Int.20212711:CAS:528:DC%2BB3MXhtVerurfO10.1007/s12540-020-00931-2 – reference: MurrLEGaytanSMRamirazDAMartinezEHernandezJAmatoKNShindoPWMedinaFRWickerRBJ. Mater. Sci. Technol.20122811:CAS:528:DC%2BC38Xks1yltr8%3D10.1016/S1005-0302(12)60016-4 – reference: YangFPanYYuanFZhuYWuXMater. Res. Lett.201641451:CAS:528:DC%2BC28Xhslyrs7fN10.1080/21663831.2016.1153004 – reference: GuoPZouBHuangCGaoHJ. Mater. Process. Technol.2017240121:CAS:528:DC%2BC28XhsFSktr7E10.1016/j.jmatprotec.2016.09.005 – reference: XiongZHLiuSLLiSFShiYYangYFMisraRDKMater. Sci. Eng. A2019740–74114810.1016/j.msea.2018.10.083 – reference: PecknerDBernsteinIMHandbook of stainless steels1977New York, NYMcGraw-Hill Book Company – reference: HarveyPDEngineering Properties of Steels1982Metals Park, OHAmerican Society for Metals – reference: ZhuZGNguyenQBNgFLAnXHLiaoXZLiawPKNaiSMLWeiJScr. Mater.2018154201:CAS:528:DC%2BC1cXpslyms7s%3D10.1016/j.scriptamat.2018.05.015 – reference: DavisJRASM Specialty Handbook: Stainless steels1994Materials Park, OHAmerican Society for Metals – reference: CalcagnottoMPongeDDemirERaabeDMater. Sci. Eng. A2010527273810.1016/j.msea.2010.01.004 – reference: ZietalaMDurejkoTPolanskiMKunceIPlocinskiTZielinskiWLazinskaMStepniowskiWCzujkoTKurzydlowskiKJBojarZMater. Sci. Eng. A201667711:CAS:528:DC%2BC28XhsFWqu7zI10.1016/j.msea.2016.09.028 – reference: KimJGJangMJParkHKChinK-GLeeSKimHSMet. Mater. Int.2019259121:CAS:528:DC%2BC1MXmslWgurw%3D10.1007/s12540-019-00258-7 – reference: WangYMVoisinTMcKeownJTYeJCaltaNPLiZZengZZhangYChenWRoehlingTTOttRTSantalaMKDepondPJMatthewsMJHamzaAVZhuTNat. Mater.201817631:CAS:528:DC%2BC2sXhslemsrjF10.1038/nmat5021 – reference: JoYHJungSChoiWMSohnSSKimHSLeeBJKimNJLeeSNat. Commun.20178157191:CAS:528:DC%2BC2sXpvFels7g%3D10.1038/ncomms15719 – reference: ZaeffererSMicrosc. Microanal.20172356610.1017/S1431927617003518 – reference: HerzogDSeydaVWyciskEEmmelmannCActa Mater.20161173711:CAS:528:DC%2BC28Xht1SgsLbP10.1016/j.actamat.2016.07.019 – reference: SuryawanshiJPrashanthKGRamamurtyUMater. Sci. Eng. A20176961131:CAS:528:DC%2BC2sXmsVeis7w%3D10.1016/j.msea.2017.04.058 – reference: WuXYangMYuanFWuGWeiYHuangXZhuYProc. Natl. Acad. Soc. USA2015112145011:CAS:528:DC%2BC2MXhslyru7%2FI10.1073/pnas.1517193112 – reference: ZhongYLiuLWikmanSCuiDShenZJ. Nucl. Mater.20164701701:CAS:528:DC%2BC28Xht1eltw%3D%3D10.1016/j.jnucmat.2015.12.034 – reference: WangZPalmerTABeeseAMActa Mater.20161102261:CAS:528:DC%2BC28Xks1Giurw%3D10.1016/j.actamat.2016.03.019 – reference: LewandowskiJJSeifiMAnnu. Rev. Mater. Res.2016461511:CAS:528:DC%2BC28XnsVWqt7c%3D10.1146/annurev-matsci-070115-032024 – reference: SunZTanXTorSBYeongWYMater. Des.20161041971:CAS:528:DC%2BC28XptFentLY%3D10.1016/j.matdes.2016.05.035 – reference: HanLLiuQGuJChin. J. Mech. Eng.2019328110.1186/s10033-019-0397-8 – reference: GhayoorMLeeKHeYChangC-HPaulBKPasebaniSAddit. Manufac.2020321010111:CAS:528:DC%2BB3cXns1aisLw%3D10.1016/j.addma.2019.101011 – reference: ThompsonMKMoroniGVanekerTFadelGCampbellRIGibsonIBernardASchulzJGrafPAhujaBMartinaFCIRP Ann. Manuf. Technol.20166573710.1016/j.cirp.2016.05.004 – reference: UmedaTOkaneTSci. Technol. Adv. Mater.200122311:CAS:528:DC%2BD3MXmslyjs7s%3D10.1016/S1468-6996(01)00057-2 – reference: HofmannDCKolodziejskaJRobertsSOtisRDillonRPSuhJ-OLiuZ-KBorgoniaJ-PJ. Mater. Res.201429189919101:CAS:528:DC%2BC2cXhsFyjtbnO10.1557/jmr.2014.208 – reference: SeolJBBaeJWKimJGSungHLiZLeeHHShimSHKoW-SHongSIKimHSActa Mater.20201943661:CAS:528:DC%2BB3cXhtFSgur3F10.1016/j.actamat.2020.04.052 – reference: KashyapBPTangriKActa Metall. Mater.19954339711:CAS:528:DyaK2MXovVemsbg%3D10.1016/0956-7151(95)00110-H – reference: M. Laleh, A.E. Hughes, W. Xu, N. Haghdadi, K. Wang, P. Cizek, I. Gibson, M.Y. Tan, Corros. Sci. 161, 108189 (2019) – volume: 677 start-page: 1 year: 2016 ident: 991_CR35 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.09.028 – volume: 240 start-page: 12 year: 2017 ident: 991_CR32 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2016.09.005 – volume: 696 start-page: 113 year: 2017 ident: 991_CR11 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.04.058 – volume: 154 start-page: 20 year: 2018 ident: 991_CR26 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.05.015 – volume: 470 start-page: 170 year: 2016 ident: 991_CR16 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2015.12.034 – volume: 2 start-page: 231 year: 2001 ident: 991_CR33 publication-title: Sci. Technol. Adv. Mater. doi: 10.1016/S1468-6996(01)00057-2 – volume-title: ASM Specialty Handbook: Stainless steels year: 1994 ident: 991_CR15 – volume: 23 start-page: 566 year: 2017 ident: 991_CR23 publication-title: Microsc. Microanal. doi: 10.1017/S1431927617003518 – volume-title: Engineering Properties of Steels year: 1982 ident: 991_CR25 – volume: 117 start-page: 371 year: 2016 ident: 991_CR3 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.019 – volume: 24 start-page: 1153 year: 1993 ident: 991_CR18 publication-title: Metall. Trans. A doi: 10.1007/BF02657246 – volume: 32 start-page: 81 year: 2019 ident: 991_CR38 publication-title: Chin. J. Mech. Eng. doi: 10.1186/s10033-019-0397-8 – volume: 129 start-page: 52 year: 2017 ident: 991_CR7 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.069 – volume-title: Handbook of stainless steels year: 1977 ident: 991_CR24 – volume: 104 start-page: 197 year: 2016 ident: 991_CR34 publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.05.035 – volume: 112 start-page: 14501 year: 2015 ident: 991_CR41 publication-title: Proc. Natl. Acad. Soc. USA doi: 10.1073/pnas.1517193112 – volume: 32 start-page: 101011 year: 2020 ident: 991_CR37 publication-title: Addit. Manufac. doi: 10.1016/j.addma.2019.101011 – volume: 17 start-page: 63 year: 2018 ident: 991_CR5 publication-title: Nat. Mater. doi: 10.1038/nmat5021 – ident: 991_CR36 doi: 10.1016/j.corsci.2019.108189 – volume: 28 start-page: 1 year: 2012 ident: 991_CR4 publication-title: J. Mater. Sci. Technol. doi: 10.1016/S1005-0302(12)60016-4 – volume: 718 start-page: 64 year: 2018 ident: 991_CR13 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.01.103 – volume: 18 start-page: 1600 year: 2003 ident: 991_CR39 publication-title: J. Mater. Res. doi: 10.1557/JMR.2003.0220 – volume: 164 start-page: 728 year: 2019 ident: 991_CR12 publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.11.021 – volume: 29 start-page: 1899 year: 2014 ident: 991_CR8 publication-title: J. Mater. Res. doi: 10.1557/jmr.2014.208 – volume: 633 start-page: 463 year: 2015 ident: 991_CR17 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.01.249 – volume: 194 start-page: 366 year: 2020 ident: 991_CR21 publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.04.052 – volume: 773 start-page: 138726 year: 2020 ident: 991_CR10 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138726 – volume: 46 start-page: 151 year: 2016 ident: 991_CR2 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070115-032024 – volume: 53 start-page: 1224 year: 2013 ident: 991_CR43 publication-title: ISIJ Int. doi: 10.2355/isijinternational.53.1224 – volume: 78 start-page: 2351 year: 2019 ident: 991_CR44 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.06.029 – volume: 740–741 start-page: 148 year: 2019 ident: 991_CR28 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.10.083 – volume: 66 start-page: 219 year: 2005 ident: 991_CR30 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2004.08.048 – volume: 141 start-page: 94 year: 2017 ident: 991_CR29 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.07.037 – volume: 110 start-page: 226 year: 2016 ident: 991_CR14 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.03.019 – volume: 27 start-page: 1 year: 2021 ident: 991_CR9 publication-title: Met. Mater. Int. doi: 10.1007/s12540-020-00931-2 – volume: 21 start-page: 354 year: 2018 ident: 991_CR6 publication-title: Mater. Today doi: 10.1016/j.mattod.2017.11.004 – volume: 63 start-page: 125 year: 1944 ident: 991_CR31 publication-title: J. Soc. Chem. Ind. doi: 10.1002/jctb.5000630501 – volume: 527 start-page: 2738 year: 2010 ident: 991_CR27 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.01.004 – volume: 4 start-page: 145 year: 2016 ident: 991_CR40 publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2016.1153004 – volume: 65 start-page: 737 year: 2016 ident: 991_CR1 publication-title: CIRP Ann. Manuf. Technol. doi: 10.1016/j.cirp.2016.05.004 – volume: 54 start-page: 231 year: 2016 ident: 991_CR22 publication-title: Met. Mater. – volume: 25 start-page: 912 year: 2019 ident: 991_CR42 publication-title: Met. Mater. Int. doi: 10.1007/s12540-019-00258-7 – volume: 43 start-page: 3971 year: 1995 ident: 991_CR19 publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(95)00110-H – volume: 8 start-page: 15719 year: 2017 ident: 991_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms15719 |
SSID | ssj0061312 |
Score | 2.4403145 |
Snippet | The rapid melting and solidification cycle in additive manufacturing creates a non-equilibrium environment that induces metastable microstructures. These... The rapid melting and solidifcation cycle in additive manufacturing creates a non-equilibrium environment that inducesmetastable microstructures. These... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2614 |
SubjectTerms | Additive manufacturing Alloying additive Characterization and Evaluation of Materials Chemical precipitation Chemistry and Materials Science Crack propagation Engineering Thermodynamics Heat and Mass Transfer Heterogeneity Machines Magnetic Materials Magnetism Manufacturing Materials Science Metallic Materials Microstructure Plastic deformation Processes Solid Mechanics Solidification Stainless steel Stainless steels Strengthening Tensile tests 재료공학 |
Title | Effects of Cell Network Structure on the Strength of Additively Manufactured Stainless Steels |
URI | https://link.springer.com/article/10.1007/s12540-021-00991-y https://www.proquest.com/docview/2558107449 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002743351 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Metals and Materials International, 2021, 27(8), , pp.2614-2622 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7YdoED4ikGY4oQN6i0dm3THrdpY4C2C0waBxQ1aTKmVS3a47B_j90HYwiQOKVqnFayk9iW7c-EXEuXSVtaviF9hxmIX24IsDIMie2umNsI_AAjuoOh2x_ZD2NnnBeFLYps9yIkmd7Um2I3C4P4mFKAZo1prEuk4oDvjolcI6tV3L-gn7IYp-PDUQbtnpfK_PyNLXVUiud6y9L8FhxNdU7vgOznxiJtZdI9JDsqPiJ7XyAEj8lrBj-8oImmHRVFdJjlddOnFBh2NVc0iSlYefhCxZPlG1K2wjDNGYrWdBDEK6xuAMoQaIJpHMHlB08KtOYJGfW6z52-kbdMAOaa_tJwNHjKlhZKOyJkwgwVA__X91yhAs-UUjmOFUhPWGETTAvFpNvQDPxpZgnsU6Wbp6QcJ7E6I7ShFCwOPA9uc0QVFEzpJlauulJor2lXiVlwjsscTxzbWkR8g4SM3ObAbZ5ym6-r5OZzzXuGpvEn9RUIhM_klCMINo6ThM_mHEz9e-57NvhCfpXUCnnx_PgtOPhJHmaa4vRtIcPN9O-_PP8f-QXZtdLNhAmBNVIGyapLMFKWok4qrV67PcTx7uWxW0_36AdZJOBO |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xOLAcECy7ojyt1XJiIzVuEzsHDhUPtUB7gUpckDd2bEBEKWqLUP8PP5SZPOiCYCUOnBLFkziasT0zmplvAH6bUJim4ZFnokB4hF_uabQyPEPtrkRYj6OYIrrdXtjuN08ug8sZeKpqYfJs9yokmZ_U02I3TkF8Sikgs8b3JmUq5amdPKKjNtrvHKJUdzk_Pro4aHtlLwGc1Y_GXuDQheROWxfoRGg_sQIdw0iG2sbSN8YGAY-N1DxpoM61woR1J9DRFFxTAyfXwO_OwjwaH5L2Tp-3qvMe9WERUw0iPDrQmihLc97_51fqbzYbuleW7ZtgbK7jjpdhqTROWatYTSswY7PvsPgPZOEqXBVwxyM2cOzApinrFXnk7DwHon0YWjbIGFqV9MBm1-MbomwlSZ6jlE5YN84eqJoCKROkiW-zFA9bvLOopX9A_0vY-hPmskFm14DVrcWXYylRexCKoRbWNahSNjTayUazBn7FOWVK_HJqo5GqKfIycVsht1XObTWpwd7LO_cFesd_qX-hQNSduVUEuk3X64G6Gyp0LToqkk30vaIabFbyUuV2Hyn0yyRlttLwn0qG0-GPp1z_HPkOLLQvumfqrNM73YBvPF9YlIy4CXMoZbuFBtJYb-frk8Hfr94Qz-rZHAw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED_xISF4QGyAVj42C7EniGjcJE4eeKiAisKoJo1KvExe7NgMEbmoLUL9r_gTucvHCmhM2gNPieJLYt3Zvjvd3e8AdnUkdKB54ukkFB7hl3sKrQxPU7srETXTJKWI7kUvOu0HZ1fh1Qw81rUwRbZ7HZIsaxoIpcmND-4yezAtfOMU0Kf0AjJxfG9SpVWem8kDOm2jw-4xSvgr552Ty6NTr-orgDPwk7EXWnQnuVXGhioTys-MQCcxiSNl0tjX2oQhT3WseNZC_WuEjppWoNMpuKJmTraF352F-YCqj3EH9Xm7PvtRN5bx1TDBYwQti6pM5-9zfqEKZ93QvrByXwVmC33XWYHlylBl7XJlfYAZ4z7C0jP4wlX4WUIfj9jAsiOT56xX5pSzHwUo7f3QsIFjaGHSA-Oux7-Jsp1lRb5SPmEXqbunygqkzJAmvXE5Hrx4Z1Bjr0H_Xdi6DnNu4MwnYE1j8OU0jlGTEKKhEsa2qGo20srGraABfs05qSssc2qpkcspCjNxWyK3ZcFtOWnA3p937kokj39S76BA5K2-kQTATdfrgbwdSnQzujKJA_TDkgZs1fKS1dYfSfTRYspypeH9WobT4bd_ufF_5F9g4ftxR37r9s43YZEX64ryErdgDoVsttFWGqvPxfJk8Ou998MTYF0gPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Cell+Network+Structure+on+the+Strength+of+Additively+Manufactured+Stainless+Steels&rft.jtitle=Metals+and+materials+international&rft.au=Kim%2C+Jung+Gi&rft.au=Seol%2C+Jae+Bok&rft.au=Park%2C+Jeong+Min&rft.au=Sung+Hyokyung&rft.date=2021-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1598-9623&rft.eissn=2005-4149&rft.volume=27&rft.issue=8&rft.spage=2614&rft.epage=2622&rft_id=info:doi/10.1007%2Fs12540-021-00991-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon |