Effects of Cell Network Structure on the Strength of Additively Manufactured Stainless Steels

The rapid melting and solidification cycle in additive manufacturing creates a non-equilibrium environment that induces metastable microstructures. These metastable microstructures include solute heterogeneity, dislocation cell structure and nano-sized precipitation, which contributes to the strengt...

Full description

Saved in:
Bibliographic Details
Published inMetals and materials international Vol. 27; no. 8; pp. 2614 - 2622
Main Authors Kim, Jung Gi, Seol, Jae Bok, Park, Jeong Min, Sung, Hyokyung, Park, Sun Hong, Kim, Hyoung Seop
Format Journal Article
LanguageEnglish
Published Seoul The Korean Institute of Metals and Materials 01.08.2021
Springer Nature B.V
대한금속·재료학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid melting and solidification cycle in additive manufacturing creates a non-equilibrium environment that induces metastable microstructures. These metastable microstructures include solute heterogeneity, dislocation cell structure and nano-sized precipitation, which contributes to the strength of additively manufactured alloys. Because the presence of metastable microstructure contributes to the mechanical property enhancement of additively manufactured alloy, quantification and estimation of strength by metastable microstructure becomes important issue. In this study, the role of dislocation cell structure on the mechanical property of additively manufactured stainless steels was investigated. The evolved cell networks not only interrupted dislocation gliding, but also acted as crack propagation paths during plastic deformation. The finer cell networks found in the additively manufacture 304L stainless steels induced more interactions with dislocations than those found in the additively manufacture 316L stainless steels, and that is related to the higher strength during tensile test. This result demonstrates the dislocation cell structure is a main strengthening mechanism for additively manufactured materials and the modified Hall–Petch hardening model successfully estimate the strengthening by cell boundaries. Graphic Abstract
AbstractList The rapid melting and solidification cycle in additive manufacturing creates a non-equilibrium environment that induces metastable microstructures. These metastable microstructures include solute heterogeneity, dislocation cell structure and nano-sized precipitation, which contributes to the strength of additively manufactured alloys. Because the presence of metastable microstructure contributes to the mechanical property enhancement of additively manufactured alloy, quantification and estimation of strength by metastable microstructure becomes important issue. In this study, the role of dislocation cell structure on the mechanical property of additively manufactured stainless steels was investigated. The evolved cell networks not only interrupted dislocation gliding, but also acted as crack propagation paths during plastic deformation. The finer cell networks found in the additively manufacture 304L stainless steels induced more interactions with dislocations than those found in the additively manufacture 316L stainless steels, and that is related to the higher strength during tensile test. This result demonstrates the dislocation cell structure is a main strengthening mechanism for additively manufactured materials and the modified Hall–Petch hardening model successfully estimate the strengthening by cell boundaries. Graphic Abstract
The rapid melting and solidifcation cycle in additive manufacturing creates a non-equilibrium environment that inducesmetastable microstructures. These metastable microstructures include solute heterogeneity, dislocation cell structure andnano-sized precipitation, which contributes to the strength of additively manufactured alloys. Because the presence of metastable microstructure contributes to the mechanical property enhancement of additively manufactured alloy, quantifcationand estimation of strength by metastable microstructure becomes important issue. In this study, the role of dislocation cellstructure on the mechanical property of additively manufactured stainless steels was investigated. The evolved cell networksnot only interrupted dislocation gliding, but also acted as crack propagation paths during plastic deformation. The fner cellnetworks found in the additively manufacture 304L stainless steels induced more interactions with dislocations than thosefound in the additively manufacture 316L stainless steels, and that is related to the higher strength during tensile test. Thisresult demonstrates the dislocation cell structure is a main strengthening mechanism for additively manufactured materialsand the modifed Hall–Petch hardening model successfully estimate the strengthening by cell boundaries. KCI Citation Count: 0
The rapid melting and solidification cycle in additive manufacturing creates a non-equilibrium environment that induces metastable microstructures. These metastable microstructures include solute heterogeneity, dislocation cell structure and nano-sized precipitation, which contributes to the strength of additively manufactured alloys. Because the presence of metastable microstructure contributes to the mechanical property enhancement of additively manufactured alloy, quantification and estimation of strength by metastable microstructure becomes important issue. In this study, the role of dislocation cell structure on the mechanical property of additively manufactured stainless steels was investigated. The evolved cell networks not only interrupted dislocation gliding, but also acted as crack propagation paths during plastic deformation. The finer cell networks found in the additively manufacture 304L stainless steels induced more interactions with dislocations than those found in the additively manufacture 316L stainless steels, and that is related to the higher strength during tensile test. This result demonstrates the dislocation cell structure is a main strengthening mechanism for additively manufactured materials and the modified Hall–Petch hardening model successfully estimate the strengthening by cell boundaries.Graphic Abstract
Author Seol, Jae Bok
Park, Jeong Min
Kim, Jung Gi
Park, Sun Hong
Sung, Hyokyung
Kim, Hyoung Seop
Author_xml – sequence: 1
  givenname: Jung Gi
  orcidid: 0000-0002-3423-5401
  surname: Kim
  fullname: Kim, Jung Gi
  email: junggi91@gnu.ac.kr
  organization: Department of Materials Engineering and Convergence Technology (Center for K-Metals), Gyeongsang National University
– sequence: 2
  givenname: Jae Bok
  surname: Seol
  fullname: Seol, Jae Bok
  organization: Department of Materials Engineering and Convergence Technology (Center for K-Metals), Gyeongsang National University
– sequence: 3
  givenname: Jeong Min
  surname: Park
  fullname: Park, Jeong Min
  organization: Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)
– sequence: 4
  givenname: Hyokyung
  surname: Sung
  fullname: Sung, Hyokyung
  organization: Department of Materials Engineering and Convergence Technology (Center for K-Metals), Gyeongsang National University
– sequence: 5
  givenname: Sun Hong
  surname: Park
  fullname: Park, Sun Hong
  organization: Materials Solution Research Group, Research Institute of Industrial Science and Technology
– sequence: 6
  givenname: Hyoung Seop
  surname: Kim
  fullname: Kim, Hyoung Seop
  email: hskim@postech.ac.kr
  organization: Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Center for High Entropy Alloys, Pohang University of Science and Technology (POSTECH)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002743351$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kMtKxDAUhoMoOI6-gKuCKxfVJG2aZjkM3sALeFlKSNOTMU5NNEmVeXs7U0Fw4eo_HL7vcPj30LbzDhA6JPiEYMxPI6GsxDmmJMdYCJKvttCEYszykpRiG00IE3UuKlrsor0YXzGuSEHoBD2fGQM6xcybbA5dl91C-vJhmT2k0OvUB8i8y9ILrBfgFullTc7a1ib7Cd0qu1GuN2pDtgOjrOsgxmEC6OI-2jGqi3Dwk1P0dH72OL_Mr-8uruaz61yXRKScGWgoNQ0Y1rS8IS3wshKirhpQNdEaGKNK1w1tC04wcF1hw6EpOG04rbEppuh4vOuCkUttpVd2kwsvl0HO7h-vpKhLwUsxsEcj-x78Rw8xyVffBze8JyljNcG83FD1SOngYwxgpLZJJetdCsp2kmC5Ll6OxcuheLkpXq4Glf5R34N9U2H1v1SMUhxgt4Dw-9U_1jfUPJkp
CitedBy_id crossref_primary_10_1016_j_msea_2023_145735
crossref_primary_10_1007_s11661_024_07644_w
crossref_primary_10_1016_j_addma_2022_102744
crossref_primary_10_1016_j_jmst_2025_02_033
crossref_primary_10_1016_j_scriptamat_2023_115566
crossref_primary_10_1016_j_jallcom_2023_170602
crossref_primary_10_1016_j_jmrt_2024_08_194
crossref_primary_10_1007_s12540_023_01400_2
crossref_primary_10_3390_app122010646
crossref_primary_10_1007_s10853_022_07516_x
crossref_primary_10_1016_j_mser_2022_100691
crossref_primary_10_1016_j_msea_2023_146031
crossref_primary_10_1016_j_mtcomm_2024_108613
crossref_primary_10_1016_j_jallcom_2023_170631
crossref_primary_10_1016_j_jmrt_2023_07_158
crossref_primary_10_1016_j_actamat_2022_118421
crossref_primary_10_1016_j_jmst_2024_07_010
crossref_primary_10_1016_j_actamat_2022_118561
crossref_primary_10_1016_j_jmrt_2025_02_238
crossref_primary_10_1016_j_msea_2022_144113
crossref_primary_10_1016_j_matdes_2023_112023
crossref_primary_10_1007_s11837_025_07304_3
crossref_primary_10_1016_j_addlet_2023_100172
crossref_primary_10_1007_s12540_023_01477_9
crossref_primary_10_1016_j_msea_2024_146537
crossref_primary_10_1007_s10853_022_07137_4
crossref_primary_10_1016_j_actamat_2022_118290
crossref_primary_10_1080_09506608_2022_2097411
crossref_primary_10_1016_j_addma_2023_103548
crossref_primary_10_1016_j_mtcomm_2023_105938
crossref_primary_10_1016_j_scriptamat_2023_115715
crossref_primary_10_1177_02670836241255257
crossref_primary_10_1016_j_msea_2024_146383
crossref_primary_10_1016_j_jallcom_2023_171390
crossref_primary_10_1186_s42649_022_00079_w
crossref_primary_10_1016_j_msea_2022_143591
crossref_primary_10_1016_j_pnucene_2025_105694
crossref_primary_10_1016_j_msea_2023_144982
crossref_primary_10_1155_2021_6547213
crossref_primary_10_1016_j_addma_2021_102363
Cites_doi 10.1016/j.msea.2016.09.028
10.1016/j.jmatprotec.2016.09.005
10.1016/j.msea.2017.04.058
10.1016/j.scriptamat.2018.05.015
10.1016/j.jnucmat.2015.12.034
10.1016/S1468-6996(01)00057-2
10.1017/S1431927617003518
10.1016/j.actamat.2016.07.019
10.1007/BF02657246
10.1186/s10033-019-0397-8
10.1016/j.actamat.2017.02.069
10.1016/j.matdes.2016.05.035
10.1073/pnas.1517193112
10.1016/j.addma.2019.101011
10.1038/nmat5021
10.1016/j.corsci.2019.108189
10.1016/S1005-0302(12)60016-4
10.1016/j.msea.2018.01.103
10.1557/JMR.2003.0220
10.1016/j.actamat.2018.11.021
10.1557/jmr.2014.208
10.1016/j.jallcom.2015.01.249
10.1016/j.actamat.2020.04.052
10.1016/j.msea.2019.138726
10.1146/annurev-matsci-070115-032024
10.2355/isijinternational.53.1224
10.1016/j.camwa.2018.06.029
10.1016/j.msea.2018.10.083
10.1016/j.jpcs.2004.08.048
10.1016/j.scriptamat.2017.07.037
10.1016/j.actamat.2016.03.019
10.1007/s12540-020-00931-2
10.1016/j.mattod.2017.11.004
10.1002/jctb.5000630501
10.1016/j.msea.2010.01.004
10.1080/21663831.2016.1153004
10.1016/j.cirp.2016.05.004
10.1007/s12540-019-00258-7
10.1016/0956-7151(95)00110-H
10.1038/ncomms15719
ContentType Journal Article
Copyright The Korean Institute of Metals and Materials 2021. corrected publication 2021
The Korean Institute of Metals and Materials 2021. corrected publication 2021.
Copyright_xml – notice: The Korean Institute of Metals and Materials 2021. corrected publication 2021
– notice: The Korean Institute of Metals and Materials 2021. corrected publication 2021.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
ACYCR
DOI 10.1007/s12540-021-00991-y
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Korean Citation Index
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2005-4149
EndPage 2622
ExternalDocumentID oai_kci_go_kr_ARTI_9849749
10_1007_s12540_021_00991_y
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: 2017R1A2A1A18069427; 2020R1A4A3079417
– fundername: Ministry of Trade, Industry and Energy
  grantid: 20012196
  funderid: http://dx.doi.org/10.13039/501100003052
GroupedDBID -EM
06D
0R~
0VY
123
1N0
2.D
203
29M
2JY
2KG
2VQ
30V
4.4
406
408
40D
5VS
67Z
8FE
8FG
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
KB.
KOV
KVFHK
LLZTM
MA-
MZR
N2Q
NDZJH
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
P19
P2P
P9N
PDBOC
PT4
PT5
Q2X
R89
R9I
RLLFE
ROL
RSV
S1Z
S26
S27
S28
S3B
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T16
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
Z45
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SR
8BQ
8FD
ABRTQ
JG9
ACYCR
ID FETCH-LOGICAL-c419t-5feb22fbef5bd7b1de7469986bea81cce552ac8b2d3710e7c60f7eb372b7280f3
IEDL.DBID U2A
ISSN 1598-9623
IngestDate Sun Mar 09 07:54:21 EDT 2025
Fri Jul 25 19:00:14 EDT 2025
Thu Apr 24 23:00:13 EDT 2025
Tue Jul 01 01:15:26 EDT 2025
Fri Feb 21 02:47:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Strengthening
Additive manufacturing
Microstructure
Stainless steel
Mechanical property
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-5feb22fbef5bd7b1de7469986bea81cce552ac8b2d3710e7c60f7eb372b7280f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3423-5401
PQID 2558107449
PQPubID 326276
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9849749
proquest_journals_2558107449
crossref_citationtrail_10_1007_s12540_021_00991_y
crossref_primary_10_1007_s12540_021_00991_y
springer_journals_10_1007_s12540_021_00991_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Metals and materials international
PublicationTitleAbbrev Met. Mater. Int
PublicationYear 2021
Publisher The Korean Institute of Metals and Materials
Springer Nature B.V
대한금속·재료학회
Publisher_xml – name: The Korean Institute of Metals and Materials
– name: Springer Nature B.V
– name: 대한금속·재료학회
References YangFPanYYuanFZhuYWuXMater. Res. Lett.201641451:CAS:528:DC%2BC28Xhslyrs7fN10.1080/21663831.2016.1153004
HarveyPDEngineering Properties of Steels1982Metals Park, OHAmerican Society for Metals
CalcagnottoMPongeDDemirERaabeDMater. Sci. Eng. A2010527273810.1016/j.msea.2010.01.004
ZhuZGNguyenQBNgFLAnXHLiaoXZLiawPKNaiSMLWeiJScr. Mater.2018154201:CAS:528:DC%2BC1cXpslyms7s%3D10.1016/j.scriptamat.2018.05.015
MurrLEGaytanSMRamirazDAMartinezEHernandezJAmatoKNShindoPWMedinaFRWickerRBJ. Mater. Sci. Technol.20122811:CAS:528:DC%2BC38Xks1yltr8%3D10.1016/S1005-0302(12)60016-4
ZietalaMDurejkoTPolanskiMKunceIPlocinskiTZielinskiWLazinskaMStepniowskiWCzujkoTKurzydlowskiKJBojarZMater. Sci. Eng. A201667711:CAS:528:DC%2BC28XhsFWqu7zI10.1016/j.msea.2016.09.028
HerzogDSeydaVWyciskEEmmelmannCActa Mater.20161173711:CAS:528:DC%2BC28Xht1SgsLbP10.1016/j.actamat.2016.07.019
KurzynowskiTGruberKStopyraWKuźnickaBChlebusEMater. Sci. Eng. A2018718641:CAS:528:DC%2BC1cXitFyhtr4%3D10.1016/j.msea.2018.01.103
LewandowskiJJSeifiMAnnu. Rev. Mater. Res.2016461511:CAS:528:DC%2BC28XnsVWqt7c%3D10.1146/annurev-matsci-070115-032024
HanLLiuQGuJChin. J. Mech. Eng.2019328110.1186/s10033-019-0397-8
ZhongYLiuLWikmanSCuiDShenZJ. Nucl. Mater.20164701701:CAS:528:DC%2BC28Xht1eltw%3D%3D10.1016/j.jnucmat.2015.12.034
PecknerDBernsteinIMHandbook of stainless steels1977New York, NYMcGraw-Hill Book Company
WangZPalmerTABeeseAMActa Mater.20161102261:CAS:528:DC%2BC28Xks1Giurw%3D10.1016/j.actamat.2016.03.019
RauschAMMarklMKörnerCComput. Math. Appl.201978235110.1016/j.camwa.2018.06.029
WangYMVoisinTMcKeownJTYeJCaltaNPLiZZengZZhangYChenWRoehlingTTOttRTSantalaMKDepondPJMatthewsMJHamzaAVZhuTNat. Mater.201817631:CAS:528:DC%2BC2sXhslemsrjF10.1038/nmat5021
EllinghamHJTJ. Soc. Chem. Ind.1944631251:CAS:528:DyaH2cXjtlWjtQ%3D%3D10.1002/jctb.5000630501
ChaoQCruzVThomasSBirbilisNCollinsPTaylorAHodgsonPDFabijanicDScr. Mater.2017141941:CAS:528:DC%2BC2sXht1ynt7fF10.1016/j.scriptamat.2017.07.037
ZhangAMisraAWangHChenTDSwadenerJGEmburyJDKungHHoaglandRGNastasiMJ. Mater. Res.20031816001:CAS:528:DC%2BD3sXlsFGgtbY%3D10.1557/JMR.2003.0220
GuoPZouBHuangCGaoHJ. Mater. Process. Technol.2017240121:CAS:528:DC%2BC28XhsFSktr7E10.1016/j.jmatprotec.2016.09.005
ZaeffererSMicrosc. Microanal.20172356610.1017/S1431927617003518
WuXYangMYuanFWuGWeiYHuangXZhuYProc. Natl. Acad. Soc. USA2015112145011:CAS:528:DC%2BC2MXhslyru7%2FI10.1073/pnas.1517193112
SunZTanXTorSBYeongWYMater. Des.20161041971:CAS:528:DC%2BC28XptFentLY%3D10.1016/j.matdes.2016.05.035
YoonJIKimJGJungJMLeeDJJeongHJShahbazMLeeSKimHSKorean JMet. Mater.2016542311:CAS:528:DC%2BC28XhtVCgsLjM
KarthikGMKimHSMet. Mater. Int.20212711:CAS:528:DC%2BB3MXhtVerurfO10.1007/s12540-020-00931-2
JoYHJungSChoiWMSohnSSKimHSLeeBJKimNJLeeSNat. Commun.20178157191:CAS:528:DC%2BC2sXpvFels7g%3D10.1038/ncomms15719
SeolJBBaeJWKimJGSungHLiZLeeHHShimSHKoW-SHongSIKimHSActa Mater.20201943661:CAS:528:DC%2BB3cXhtFSgur3F10.1016/j.actamat.2020.04.052
ThompsonMKMoroniGVanekerTFadelGCampbellRIGibsonIBernardASchulzJGrafPAhujaBMartinaFCIRP Ann. Manuf. Technol.20166573710.1016/j.cirp.2016.05.004
KashyapBPTangriKActa Metall. Mater.19954339711:CAS:528:DyaK2MXovVemsbg%3D10.1016/0956-7151(95)00110-H
HofmannDCKolodziejskaJRobertsSOtisRDillonRPSuhJ-OLiuZ-KBorgoniaJ-PJ. Mater. Res.201429189919101:CAS:528:DC%2BC2cXhsFyjtbnO10.1557/jmr.2014.208
SuryawanshiJPrashanthKGRamamurtyUMater. Sci. Eng. A20176961131:CAS:528:DC%2BC2sXmsVeis7w%3D10.1016/j.msea.2017.04.058
KimJGJangMJParkHKChinK-GLeeSKimHSMet. Mater. Int.2019259121:CAS:528:DC%2BC1MXmslWgurw%3D10.1007/s12540-019-00258-7
SmithTRSugarJDMarchiCSSchoenungJMActa Mater.20191647281:CAS:528:DC%2BC1cXit1Ggu7vF10.1016/j.actamat.2018.11.021
M. Laleh, A.E. Hughes, W. Xu, N. Haghdadi, K. Wang, P. Cizek, I. Gibson, M.Y. Tan, Corros. Sci. 161, 108189 (2019)
GhayoorMLeeKHeYChangC-HPaulBKPasebaniSAddit. Manufac.2020321010111:CAS:528:DC%2BB3cXns1aisLw%3D10.1016/j.addma.2019.101011
XiongZHLiuSLLiSFShiYYangYFMisraRDKMater. Sci. Eng. A2019740–74114810.1016/j.msea.2018.10.083
KangY-BKimHSZhangJLeeH-GJ. Phys. Chem. Solids2005662191:CAS:528:DC%2BD2MXhtlGisLc%3D10.1016/j.jpcs.2004.08.048
DavisJRASM Specialty Handbook: Stainless steels1994Materials Park, OHAmerican Society for Metals
UmedaTOkaneTSci. Technol. Adv. Mater.200122311:CAS:528:DC%2BD3MXmslyjs7s%3D10.1016/S1468-6996(01)00057-2
KimJGParkJMSeolJBChoeJYuJ-HYangSKimHSMater. Sci. Eng. A20207731387261:CAS:528:DC%2BC1MXit1KjtrjO10.1016/j.msea.2019.138726
MatsuokaYIwasakiTKakadaNTsuchiyamaTTakakiSISIJ Int.20135312241:CAS:528:DC%2BC3sXhtF2ntb3M10.2355/isijinternational.53.1224
SillDVarmaSKMetall. Trans. A199324115310.1007/BF02657246
KürnsteinerPWilmsMBWeisheitABarriobero-VilaPJägleEARaabeDActa Mater.20171295210.1016/j.actamat.2017.02.069
SaeidiKGaoXLofajFKvetkovaLShenZJJ. Alloy. Compd.20156334631:CAS:528:DC%2BC2MXivVCisLk%3D10.1016/j.jallcom.2015.01.249
LiuLDingQZhongYZouJWuJChiuY-LLiJZhangZYuQShenZMater. Today2018213543611:CAS:528:DC%2BC2sXhvVygsrbP10.1016/j.mattod.2017.11.004
TR Smith (991_CR12) 2019; 164
M Ghayoor (991_CR37) 2020; 32
ZG Zhu (991_CR26) 2018; 154
D Sill (991_CR18) 1993; 24
JG Kim (991_CR10) 2020; 773
D Peckner (991_CR24) 1977
S Zaefferer (991_CR23) 2017; 23
Y-B Kang (991_CR30) 2005; 66
GM Karthik (991_CR9) 2021; 27
J Suryawanshi (991_CR11) 2017; 696
K Saeidi (991_CR17) 2015; 633
PD Harvey (991_CR25) 1982
P Guo (991_CR32) 2017; 240
991_CR36
ZH Xiong (991_CR28) 2019; 740–741
M Zietala (991_CR35) 2016; 677
D Herzog (991_CR3) 2016; 117
AM Rausch (991_CR44) 2019; 78
X Wu (991_CR41) 2015; 112
JI Yoon (991_CR22) 2016; 54
HJT Ellingham (991_CR31) 1944; 63
DC Hofmann (991_CR8) 2014; 29
P Kürnsteiner (991_CR7) 2017; 129
YH Jo (991_CR20) 2017; 8
YM Wang (991_CR5) 2018; 17
Z Wang (991_CR14) 2016; 110
BP Kashyap (991_CR19) 1995; 43
L Han (991_CR38) 2019; 32
T Umeda (991_CR33) 2001; 2
Q Chao (991_CR29) 2017; 141
M Calcagnotto (991_CR27) 2010; 527
F Yang (991_CR40) 2016; 4
JB Seol (991_CR21) 2020; 194
T Kurzynowski (991_CR13) 2018; 718
JG Kim (991_CR42) 2019; 25
JR Davis (991_CR15) 1994
Y Zhong (991_CR16) 2016; 470
Z Sun (991_CR34) 2016; 104
Y Matsuoka (991_CR43) 2013; 53
A Zhang (991_CR39) 2003; 18
LE Murr (991_CR4) 2012; 28
JJ Lewandowski (991_CR2) 2016; 46
L Liu (991_CR6) 2018; 21
MK Thompson (991_CR1) 2016; 65
References_xml – reference: YoonJIKimJGJungJMLeeDJJeongHJShahbazMLeeSKimHSKorean JMet. Mater.2016542311:CAS:528:DC%2BC28XhtVCgsLjM
– reference: SaeidiKGaoXLofajFKvetkovaLShenZJJ. Alloy. Compd.20156334631:CAS:528:DC%2BC2MXivVCisLk%3D10.1016/j.jallcom.2015.01.249
– reference: SillDVarmaSKMetall. Trans. A199324115310.1007/BF02657246
– reference: MatsuokaYIwasakiTKakadaNTsuchiyamaTTakakiSISIJ Int.20135312241:CAS:528:DC%2BC3sXhtF2ntb3M10.2355/isijinternational.53.1224
– reference: KürnsteinerPWilmsMBWeisheitABarriobero-VilaPJägleEARaabeDActa Mater.20171295210.1016/j.actamat.2017.02.069
– reference: EllinghamHJTJ. Soc. Chem. Ind.1944631251:CAS:528:DyaH2cXjtlWjtQ%3D%3D10.1002/jctb.5000630501
– reference: KimJGParkJMSeolJBChoeJYuJ-HYangSKimHSMater. Sci. Eng. A20207731387261:CAS:528:DC%2BC1MXit1KjtrjO10.1016/j.msea.2019.138726
– reference: RauschAMMarklMKörnerCComput. Math. Appl.201978235110.1016/j.camwa.2018.06.029
– reference: ZhangAMisraAWangHChenTDSwadenerJGEmburyJDKungHHoaglandRGNastasiMJ. Mater. Res.20031816001:CAS:528:DC%2BD3sXlsFGgtbY%3D10.1557/JMR.2003.0220
– reference: SmithTRSugarJDMarchiCSSchoenungJMActa Mater.20191647281:CAS:528:DC%2BC1cXit1Ggu7vF10.1016/j.actamat.2018.11.021
– reference: LiuLDingQZhongYZouJWuJChiuY-LLiJZhangZYuQShenZMater. Today2018213543611:CAS:528:DC%2BC2sXhvVygsrbP10.1016/j.mattod.2017.11.004
– reference: KangY-BKimHSZhangJLeeH-GJ. Phys. Chem. Solids2005662191:CAS:528:DC%2BD2MXhtlGisLc%3D10.1016/j.jpcs.2004.08.048
– reference: KurzynowskiTGruberKStopyraWKuźnickaBChlebusEMater. Sci. Eng. A2018718641:CAS:528:DC%2BC1cXitFyhtr4%3D10.1016/j.msea.2018.01.103
– reference: ChaoQCruzVThomasSBirbilisNCollinsPTaylorAHodgsonPDFabijanicDScr. Mater.2017141941:CAS:528:DC%2BC2sXht1ynt7fF10.1016/j.scriptamat.2017.07.037
– reference: KarthikGMKimHSMet. Mater. Int.20212711:CAS:528:DC%2BB3MXhtVerurfO10.1007/s12540-020-00931-2
– reference: MurrLEGaytanSMRamirazDAMartinezEHernandezJAmatoKNShindoPWMedinaFRWickerRBJ. Mater. Sci. Technol.20122811:CAS:528:DC%2BC38Xks1yltr8%3D10.1016/S1005-0302(12)60016-4
– reference: YangFPanYYuanFZhuYWuXMater. Res. Lett.201641451:CAS:528:DC%2BC28Xhslyrs7fN10.1080/21663831.2016.1153004
– reference: GuoPZouBHuangCGaoHJ. Mater. Process. Technol.2017240121:CAS:528:DC%2BC28XhsFSktr7E10.1016/j.jmatprotec.2016.09.005
– reference: XiongZHLiuSLLiSFShiYYangYFMisraRDKMater. Sci. Eng. A2019740–74114810.1016/j.msea.2018.10.083
– reference: PecknerDBernsteinIMHandbook of stainless steels1977New York, NYMcGraw-Hill Book Company
– reference: HarveyPDEngineering Properties of Steels1982Metals Park, OHAmerican Society for Metals
– reference: ZhuZGNguyenQBNgFLAnXHLiaoXZLiawPKNaiSMLWeiJScr. Mater.2018154201:CAS:528:DC%2BC1cXpslyms7s%3D10.1016/j.scriptamat.2018.05.015
– reference: DavisJRASM Specialty Handbook: Stainless steels1994Materials Park, OHAmerican Society for Metals
– reference: CalcagnottoMPongeDDemirERaabeDMater. Sci. Eng. A2010527273810.1016/j.msea.2010.01.004
– reference: ZietalaMDurejkoTPolanskiMKunceIPlocinskiTZielinskiWLazinskaMStepniowskiWCzujkoTKurzydlowskiKJBojarZMater. Sci. Eng. A201667711:CAS:528:DC%2BC28XhsFWqu7zI10.1016/j.msea.2016.09.028
– reference: KimJGJangMJParkHKChinK-GLeeSKimHSMet. Mater. Int.2019259121:CAS:528:DC%2BC1MXmslWgurw%3D10.1007/s12540-019-00258-7
– reference: WangYMVoisinTMcKeownJTYeJCaltaNPLiZZengZZhangYChenWRoehlingTTOttRTSantalaMKDepondPJMatthewsMJHamzaAVZhuTNat. Mater.201817631:CAS:528:DC%2BC2sXhslemsrjF10.1038/nmat5021
– reference: JoYHJungSChoiWMSohnSSKimHSLeeBJKimNJLeeSNat. Commun.20178157191:CAS:528:DC%2BC2sXpvFels7g%3D10.1038/ncomms15719
– reference: ZaeffererSMicrosc. Microanal.20172356610.1017/S1431927617003518
– reference: HerzogDSeydaVWyciskEEmmelmannCActa Mater.20161173711:CAS:528:DC%2BC28Xht1SgsLbP10.1016/j.actamat.2016.07.019
– reference: SuryawanshiJPrashanthKGRamamurtyUMater. Sci. Eng. A20176961131:CAS:528:DC%2BC2sXmsVeis7w%3D10.1016/j.msea.2017.04.058
– reference: WuXYangMYuanFWuGWeiYHuangXZhuYProc. Natl. Acad. Soc. USA2015112145011:CAS:528:DC%2BC2MXhslyru7%2FI10.1073/pnas.1517193112
– reference: ZhongYLiuLWikmanSCuiDShenZJ. Nucl. Mater.20164701701:CAS:528:DC%2BC28Xht1eltw%3D%3D10.1016/j.jnucmat.2015.12.034
– reference: WangZPalmerTABeeseAMActa Mater.20161102261:CAS:528:DC%2BC28Xks1Giurw%3D10.1016/j.actamat.2016.03.019
– reference: LewandowskiJJSeifiMAnnu. Rev. Mater. Res.2016461511:CAS:528:DC%2BC28XnsVWqt7c%3D10.1146/annurev-matsci-070115-032024
– reference: SunZTanXTorSBYeongWYMater. Des.20161041971:CAS:528:DC%2BC28XptFentLY%3D10.1016/j.matdes.2016.05.035
– reference: HanLLiuQGuJChin. J. Mech. Eng.2019328110.1186/s10033-019-0397-8
– reference: GhayoorMLeeKHeYChangC-HPaulBKPasebaniSAddit. Manufac.2020321010111:CAS:528:DC%2BB3cXns1aisLw%3D10.1016/j.addma.2019.101011
– reference: ThompsonMKMoroniGVanekerTFadelGCampbellRIGibsonIBernardASchulzJGrafPAhujaBMartinaFCIRP Ann. Manuf. Technol.20166573710.1016/j.cirp.2016.05.004
– reference: UmedaTOkaneTSci. Technol. Adv. Mater.200122311:CAS:528:DC%2BD3MXmslyjs7s%3D10.1016/S1468-6996(01)00057-2
– reference: HofmannDCKolodziejskaJRobertsSOtisRDillonRPSuhJ-OLiuZ-KBorgoniaJ-PJ. Mater. Res.201429189919101:CAS:528:DC%2BC2cXhsFyjtbnO10.1557/jmr.2014.208
– reference: SeolJBBaeJWKimJGSungHLiZLeeHHShimSHKoW-SHongSIKimHSActa Mater.20201943661:CAS:528:DC%2BB3cXhtFSgur3F10.1016/j.actamat.2020.04.052
– reference: KashyapBPTangriKActa Metall. Mater.19954339711:CAS:528:DyaK2MXovVemsbg%3D10.1016/0956-7151(95)00110-H
– reference: M. Laleh, A.E. Hughes, W. Xu, N. Haghdadi, K. Wang, P. Cizek, I. Gibson, M.Y. Tan, Corros. Sci. 161, 108189 (2019)
– volume: 677
  start-page: 1
  year: 2016
  ident: 991_CR35
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.09.028
– volume: 240
  start-page: 12
  year: 2017
  ident: 991_CR32
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2016.09.005
– volume: 696
  start-page: 113
  year: 2017
  ident: 991_CR11
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2017.04.058
– volume: 154
  start-page: 20
  year: 2018
  ident: 991_CR26
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.05.015
– volume: 470
  start-page: 170
  year: 2016
  ident: 991_CR16
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2015.12.034
– volume: 2
  start-page: 231
  year: 2001
  ident: 991_CR33
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1016/S1468-6996(01)00057-2
– volume-title: ASM Specialty Handbook: Stainless steels
  year: 1994
  ident: 991_CR15
– volume: 23
  start-page: 566
  year: 2017
  ident: 991_CR23
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927617003518
– volume-title: Engineering Properties of Steels
  year: 1982
  ident: 991_CR25
– volume: 117
  start-page: 371
  year: 2016
  ident: 991_CR3
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.07.019
– volume: 24
  start-page: 1153
  year: 1993
  ident: 991_CR18
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02657246
– volume: 32
  start-page: 81
  year: 2019
  ident: 991_CR38
  publication-title: Chin. J. Mech. Eng.
  doi: 10.1186/s10033-019-0397-8
– volume: 129
  start-page: 52
  year: 2017
  ident: 991_CR7
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.02.069
– volume-title: Handbook of stainless steels
  year: 1977
  ident: 991_CR24
– volume: 104
  start-page: 197
  year: 2016
  ident: 991_CR34
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.05.035
– volume: 112
  start-page: 14501
  year: 2015
  ident: 991_CR41
  publication-title: Proc. Natl. Acad. Soc. USA
  doi: 10.1073/pnas.1517193112
– volume: 32
  start-page: 101011
  year: 2020
  ident: 991_CR37
  publication-title: Addit. Manufac.
  doi: 10.1016/j.addma.2019.101011
– volume: 17
  start-page: 63
  year: 2018
  ident: 991_CR5
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5021
– ident: 991_CR36
  doi: 10.1016/j.corsci.2019.108189
– volume: 28
  start-page: 1
  year: 2012
  ident: 991_CR4
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/S1005-0302(12)60016-4
– volume: 718
  start-page: 64
  year: 2018
  ident: 991_CR13
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2018.01.103
– volume: 18
  start-page: 1600
  year: 2003
  ident: 991_CR39
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2003.0220
– volume: 164
  start-page: 728
  year: 2019
  ident: 991_CR12
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.11.021
– volume: 29
  start-page: 1899
  year: 2014
  ident: 991_CR8
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2014.208
– volume: 633
  start-page: 463
  year: 2015
  ident: 991_CR17
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.01.249
– volume: 194
  start-page: 366
  year: 2020
  ident: 991_CR21
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.04.052
– volume: 773
  start-page: 138726
  year: 2020
  ident: 991_CR10
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138726
– volume: 46
  start-page: 151
  year: 2016
  ident: 991_CR2
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070115-032024
– volume: 53
  start-page: 1224
  year: 2013
  ident: 991_CR43
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.53.1224
– volume: 78
  start-page: 2351
  year: 2019
  ident: 991_CR44
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.06.029
– volume: 740–741
  start-page: 148
  year: 2019
  ident: 991_CR28
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2018.10.083
– volume: 66
  start-page: 219
  year: 2005
  ident: 991_CR30
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2004.08.048
– volume: 141
  start-page: 94
  year: 2017
  ident: 991_CR29
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.07.037
– volume: 110
  start-page: 226
  year: 2016
  ident: 991_CR14
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.03.019
– volume: 27
  start-page: 1
  year: 2021
  ident: 991_CR9
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-020-00931-2
– volume: 21
  start-page: 354
  year: 2018
  ident: 991_CR6
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.11.004
– volume: 63
  start-page: 125
  year: 1944
  ident: 991_CR31
  publication-title: J. Soc. Chem. Ind.
  doi: 10.1002/jctb.5000630501
– volume: 527
  start-page: 2738
  year: 2010
  ident: 991_CR27
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2010.01.004
– volume: 4
  start-page: 145
  year: 2016
  ident: 991_CR40
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2016.1153004
– volume: 65
  start-page: 737
  year: 2016
  ident: 991_CR1
  publication-title: CIRP Ann. Manuf. Technol.
  doi: 10.1016/j.cirp.2016.05.004
– volume: 54
  start-page: 231
  year: 2016
  ident: 991_CR22
  publication-title: Met. Mater.
– volume: 25
  start-page: 912
  year: 2019
  ident: 991_CR42
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00258-7
– volume: 43
  start-page: 3971
  year: 1995
  ident: 991_CR19
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(95)00110-H
– volume: 8
  start-page: 15719
  year: 2017
  ident: 991_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15719
SSID ssj0061312
Score 2.4403145
Snippet The rapid melting and solidification cycle in additive manufacturing creates a non-equilibrium environment that induces metastable microstructures. These...
The rapid melting and solidifcation cycle in additive manufacturing creates a non-equilibrium environment that inducesmetastable microstructures. These...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2614
SubjectTerms Additive manufacturing
Alloying additive
Characterization and Evaluation of Materials
Chemical precipitation
Chemistry and Materials Science
Crack propagation
Engineering Thermodynamics
Heat and Mass Transfer
Heterogeneity
Machines
Magnetic Materials
Magnetism
Manufacturing
Materials Science
Metallic Materials
Microstructure
Plastic deformation
Processes
Solid Mechanics
Solidification
Stainless steel
Stainless steels
Strengthening
Tensile tests
재료공학
Title Effects of Cell Network Structure on the Strength of Additively Manufactured Stainless Steels
URI https://link.springer.com/article/10.1007/s12540-021-00991-y
https://www.proquest.com/docview/2558107449
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002743351
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Metals and Materials International, 2021, 27(8), , pp.2614-2622
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7YdoED4ikGY4oQN6i0dm3THrdpY4C2C0waBxQ1aTKmVS3a47B_j90HYwiQOKVqnFayk9iW7c-EXEuXSVtaviF9hxmIX24IsDIMie2umNsI_AAjuoOh2x_ZD2NnnBeFLYps9yIkmd7Um2I3C4P4mFKAZo1prEuk4oDvjolcI6tV3L-gn7IYp-PDUQbtnpfK_PyNLXVUiud6y9L8FhxNdU7vgOznxiJtZdI9JDsqPiJ7XyAEj8lrBj-8oImmHRVFdJjlddOnFBh2NVc0iSlYefhCxZPlG1K2wjDNGYrWdBDEK6xuAMoQaIJpHMHlB08KtOYJGfW6z52-kbdMAOaa_tJwNHjKlhZKOyJkwgwVA__X91yhAs-UUjmOFUhPWGETTAvFpNvQDPxpZgnsU6Wbp6QcJ7E6I7ShFCwOPA9uc0QVFEzpJlauulJor2lXiVlwjsscTxzbWkR8g4SM3ObAbZ5ym6-r5OZzzXuGpvEn9RUIhM_klCMINo6ThM_mHEz9e-57NvhCfpXUCnnx_PgtOPhJHmaa4vRtIcPN9O-_PP8f-QXZtdLNhAmBNVIGyapLMFKWok4qrV67PcTx7uWxW0_36AdZJOBO
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xOLAcECy7ojyt1XJiIzVuEzsHDhUPtUB7gUpckDd2bEBEKWqLUP8PP5SZPOiCYCUOnBLFkziasT0zmplvAH6bUJim4ZFnokB4hF_uabQyPEPtrkRYj6OYIrrdXtjuN08ug8sZeKpqYfJs9yokmZ_U02I3TkF8Sikgs8b3JmUq5amdPKKjNtrvHKJUdzk_Pro4aHtlLwGc1Y_GXuDQheROWxfoRGg_sQIdw0iG2sbSN8YGAY-N1DxpoM61woR1J9DRFFxTAyfXwO_OwjwaH5L2Tp-3qvMe9WERUw0iPDrQmihLc97_51fqbzYbuleW7ZtgbK7jjpdhqTROWatYTSswY7PvsPgPZOEqXBVwxyM2cOzApinrFXnk7DwHon0YWjbIGFqV9MBm1-MbomwlSZ6jlE5YN84eqJoCKROkiW-zFA9bvLOopX9A_0vY-hPmskFm14DVrcWXYylRexCKoRbWNahSNjTayUazBn7FOWVK_HJqo5GqKfIycVsht1XObTWpwd7LO_cFesd_qX-hQNSduVUEuk3X64G6Gyp0LToqkk30vaIabFbyUuV2Hyn0yyRlttLwn0qG0-GPp1z_HPkOLLQvumfqrNM73YBvPF9YlIy4CXMoZbuFBtJYb-frk8Hfr94Qz-rZHAw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED_xISF4QGyAVj42C7EniGjcJE4eeKiAisKoJo1KvExe7NgMEbmoLUL9r_gTucvHCmhM2gNPieJLYt3Zvjvd3e8AdnUkdKB54ukkFB7hl3sKrQxPU7srETXTJKWI7kUvOu0HZ1fh1Qw81rUwRbZ7HZIsaxoIpcmND-4yezAtfOMU0Kf0AjJxfG9SpVWem8kDOm2jw-4xSvgr552Ty6NTr-orgDPwk7EXWnQnuVXGhioTys-MQCcxiSNl0tjX2oQhT3WseNZC_WuEjppWoNMpuKJmTraF352F-YCqj3EH9Xm7PvtRN5bx1TDBYwQti6pM5-9zfqEKZ93QvrByXwVmC33XWYHlylBl7XJlfYAZ4z7C0jP4wlX4WUIfj9jAsiOT56xX5pSzHwUo7f3QsIFjaGHSA-Oux7-Jsp1lRb5SPmEXqbunygqkzJAmvXE5Hrx4Z1Bjr0H_Xdi6DnNu4MwnYE1j8OU0jlGTEKKhEsa2qGo20srGraABfs05qSssc2qpkcspCjNxWyK3ZcFtOWnA3p937kokj39S76BA5K2-kQTATdfrgbwdSnQzujKJA_TDkgZs1fKS1dYfSfTRYspypeH9WobT4bd_ufF_5F9g4ftxR37r9s43YZEX64ryErdgDoVsttFWGqvPxfJk8Ou998MTYF0gPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Cell+Network+Structure+on+the+Strength+of+Additively+Manufactured+Stainless+Steels&rft.jtitle=Metals+and+materials+international&rft.au=Kim%2C+Jung+Gi&rft.au=Seol%2C+Jae+Bok&rft.au=Park%2C+Jeong+Min&rft.au=Sung+Hyokyung&rft.date=2021-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1598-9623&rft.eissn=2005-4149&rft.volume=27&rft.issue=8&rft.spage=2614&rft.epage=2622&rft_id=info:doi/10.1007%2Fs12540-021-00991-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon