Magnetic sensors-A review and recent technologies
Magnetic field sensors are an integral part of many industrial and biomedical applications, and their utilization continues to grow at a high rate. The development is driven both by new use cases and demand like internet of things as well as by new technologies and capabilities like flexible and str...
Saved in:
Published in | Engineering Research Express Vol. 3; no. 2; pp. 22005 - 22026 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetic field sensors are an integral part of many industrial and biomedical applications, and their utilization continues to grow at a high rate. The development is driven both by new use cases and demand like internet of things as well as by new technologies and capabilities like flexible and stretchable devices. Magnetic field sensors exploit different physical principles for their operation, resulting in different specifications with respect to sensitivity, linearity, field range, power consumption, costs etc. In this review, we will focus on solid state magnetic field sensors that enable miniaturization and are suitable for integrated approaches to satisfy the needs of growing application areas like biosensors, ubiquitous sensor networks, wearables, smart things etc. Such applications require a high sensitivity, low power consumption, flexible substrates and miniaturization. Hence, the sensor types covered in this review are Hall Effect, Giant Magnetoresistance, Tunnel Magnetoresistance, Anisotropic Magnetoresistance and Giant Magnetoimpedance. |
---|---|
AbstractList | Magnetic field sensors are an integral part of many industrial and biomedical applications, and their utilization continues to grow at a high rate. The development is driven both by new use cases and demand like internet of things as well as by new technologies and capabilities like flexible and stretchable devices. Magnetic field sensors exploit different physical principles for their operation, resulting in different specifications with respect to sensitivity, linearity, field range, power consumption, costs etc. In this review, we will focus on solid state magnetic field sensors that enable miniaturization and are suitable for integrated approaches to satisfy the needs of growing application areas like biosensors, ubiquitous sensor networks, wearables, smart things etc. Such applications require a high sensitivity, low power consumption, flexible substrates and miniaturization. Hence, the sensor types covered in this review are Hall Effect, Giant Magnetoresistance, Tunnel Magnetoresistance, Anisotropic Magnetoresistance and Giant Magnetoimpedance. |
Author | Przybysz, Alexander Khan, Mohammed Asadullah Sun, Jian Kosel, Jürgen Li, Bodong |
Author_xml | – sequence: 1 givenname: Mohammed Asadullah orcidid: 0000-0002-4219-2149 surname: Khan fullname: Khan, Mohammed Asadullah organization: The University of Sheffield Department of Automatic Control and Systems Engineering (ACSE), Sheffield, United Kingdom – sequence: 2 givenname: Jian orcidid: 0000-0002-7992-8092 surname: Sun fullname: Sun, Jian organization: Central South University School of Physics and Electronics, Changsha, Hunan, People’s Republic of China – sequence: 3 givenname: Bodong surname: Li fullname: Li, Bodong organization: EXPEC Advanced Research Centre, Saudi Aramco, Dhahran, Saudi Arabia – sequence: 4 givenname: Alexander surname: Przybysz fullname: Przybysz, Alexander organization: King Abdullah University of Science and Technology Computer, Electrical and Mathematical Science and Engineering division (CEMSE), Thuwal, Saudi Arabia – sequence: 5 givenname: Jürgen surname: Kosel fullname: Kosel, Jürgen organization: Sensor Systems Division, Silicon Austria Labs, Villach, Austria |
BookMark | eNp9j01LxDAQhoOs4Lru3WNPnqw7adI0PS6LX7DiRc8hTadrZE1KEr_-vV0qIqIyh3kZ3mfgOSQT5x0SckzhjIKUi0IwmktRlwttQDK5R6Zfp8m3fEDmMdoGuBBUVLSaEnqjNw6TNVlEF32I-TIL-GLxNdOuHaJBl7KE5sH5rd9YjEdkv9PbiPPPPSP3F-d3q6t8fXt5vVquc8NpnfKyq0A2WrSGgaSyAahoCcMwjsiLrpKU16arC9qKEkEzzbVp2pozUQETDZsRMf41wccYsFPGJp2sdylou1UU1M5d7eTUTk6N7gMIP8A-2Ccd3v9DTkbE-l49-ufgBjOF4U0xVSgoCoBS9W03FE9_Kf759wPQpncb |
CODEN | ERENBL |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2024_178295 crossref_primary_10_1103_PhysRevB_109_094405 crossref_primary_10_1109_JSEN_2023_3297952 crossref_primary_10_1016_j_jmmm_2022_169894 crossref_primary_10_3390_nano12121954 crossref_primary_10_1109_JMEMS_2022_3226150 crossref_primary_10_3390_bios12070517 crossref_primary_10_1016_j_sintl_2024_100288 crossref_primary_10_3390_s22218162 crossref_primary_10_1109_TIM_2024_3470055 crossref_primary_10_1109_JSEN_2022_3215285 crossref_primary_10_1016_j_sna_2024_115552 crossref_primary_10_1039_D2CE01695H crossref_primary_10_1051_e3sconf_202455201062 crossref_primary_10_1109_TCPMT_2024_3522319 crossref_primary_10_37569_DalatUniversity_13_1_1042_2023 crossref_primary_10_3390_s24248023 crossref_primary_10_3390_s24196477 crossref_primary_10_1016_j_measurement_2023_113663 crossref_primary_10_3390_micro4020015 crossref_primary_10_1007_s00604_025_07005_3 crossref_primary_10_3390_s22093292 crossref_primary_10_1021_acsanm_3c01936 crossref_primary_10_3390_s22228923 crossref_primary_10_1039_D3NR05737B crossref_primary_10_1109_JSEN_2024_3476499 crossref_primary_10_1364_OE_478862 crossref_primary_10_1002_aelm_202300677 crossref_primary_10_1088_1674_1056_ad7e9b crossref_primary_10_11648_j_ijssn_20251301_11 crossref_primary_10_1109_JSEN_2024_3457799 crossref_primary_10_1021_acsmaterialsau_3c00045 crossref_primary_10_7498_aps_74_20241498 crossref_primary_10_1063_5_0132173 crossref_primary_10_1063_5_0166821 crossref_primary_10_1016_j_coco_2023_101675 crossref_primary_10_1016_j_jmmm_2025_172962 crossref_primary_10_1103_PhysRevB_109_L060408 crossref_primary_10_1109_JSEN_2023_3244120 crossref_primary_10_30888_2709_2267_2024_25_00_003 crossref_primary_10_1063_5_0222971 crossref_primary_10_1016_j_snr_2023_100172 crossref_primary_10_3390_magnetism2030021 crossref_primary_10_3390_su142114641 crossref_primary_10_1103_PhysRevApplied_21_024027 crossref_primary_10_3390_s23062939 crossref_primary_10_3390_jlpea14030043 crossref_primary_10_3390_s22114004 crossref_primary_10_3390_jmse11071423 crossref_primary_10_1109_ACCESS_2023_3327306 crossref_primary_10_3390_photonics9020102 crossref_primary_10_1109_TIM_2022_3212530 crossref_primary_10_1109_JSEN_2024_3415388 crossref_primary_10_4028_p_eTDD12 crossref_primary_10_1038_s41528_024_00311_5 crossref_primary_10_3390_s23125365 crossref_primary_10_3390_s25061835 crossref_primary_10_1063_5_0157687 crossref_primary_10_1038_s41598_025_92976_9 crossref_primary_10_1007_s44290_024_00141_4 crossref_primary_10_1107_S160057752400119X crossref_primary_10_1021_acsnano_5c00422 crossref_primary_10_1063_5_0232652 crossref_primary_10_1007_s12596_023_01181_2 crossref_primary_10_3390_s23031435 crossref_primary_10_1088_1361_6501_ad457a crossref_primary_10_1016_j_microc_2024_110690 crossref_primary_10_1063_5_0250222 crossref_primary_10_3390_s23073558 crossref_primary_10_3390_mi15010161 crossref_primary_10_3390_s23208626 crossref_primary_10_1119_5_0189388 crossref_primary_10_3390_magnetochemistry8100128 crossref_primary_10_1016_j_sna_2024_115517 crossref_primary_10_3390_ma16217020 crossref_primary_10_3788_AOS240621 crossref_primary_10_3390_s24165402 crossref_primary_10_3390_mi13112018 crossref_primary_10_1109_LSENS_2024_3389099 crossref_primary_10_3389_fcvm_2023_1232882 crossref_primary_10_1016_j_heliyon_2024_e30845 crossref_primary_10_3390_s24154902 crossref_primary_10_1103_PhysRevApplied_20_014001 crossref_primary_10_1109_JSEN_2023_3313013 crossref_primary_10_3390_s25041235 crossref_primary_10_3390_s25061640 crossref_primary_10_1109_TIM_2023_3268485 crossref_primary_10_1038_s44306_024_00031_6 crossref_primary_10_1109_ACCESS_2023_3325035 crossref_primary_10_1149_1945_7111_ad1f35 crossref_primary_10_1109_JSEN_2024_3492006 crossref_primary_10_35848_1347_4065_ac223e crossref_primary_10_1088_1361_6463_ac68af crossref_primary_10_3233_JAE_220296 crossref_primary_10_3390_s24123790 crossref_primary_10_1109_JLT_2023_3244932 crossref_primary_10_3390_s23136043 crossref_primary_10_3390_polym14183713 crossref_primary_10_1103_PhysRevApplied_20_034003 crossref_primary_10_3390_ma16206750 crossref_primary_10_1016_j_cja_2025_103423 crossref_primary_10_1016_j_tsf_2022_139428 crossref_primary_10_1039_D4TA02765E crossref_primary_10_1109_JSEN_2024_3507799 crossref_primary_10_1088_1361_6463_ace6b7 crossref_primary_10_1088_2053_1591_ac2442 crossref_primary_10_1109_JSEN_2023_3297254 crossref_primary_10_1016_j_jmmm_2023_171236 crossref_primary_10_3390_ma16237296 crossref_primary_10_1016_j_jallcom_2022_164902 crossref_primary_10_1088_1742_6596_2613_1_012012 crossref_primary_10_1108_SR_08_2023_0325 crossref_primary_10_1109_TMAG_2024_3432158 crossref_primary_10_1109_LSENS_2025_3547745 crossref_primary_10_35848_1882_0786_ad1002 crossref_primary_10_1016_j_measurement_2022_111979 crossref_primary_10_1007_s00339_023_06759_y crossref_primary_10_1109_JSEN_2023_3241967 crossref_primary_10_1016_j_measurement_2024_114492 crossref_primary_10_3390_s23094564 crossref_primary_10_1016_j_measurement_2023_113482 crossref_primary_10_1109_TIM_2024_3369140 crossref_primary_10_1063_5_0187035 crossref_primary_10_3390_nano12193278 crossref_primary_10_3390_app142411695 crossref_primary_10_1016_j_ndteint_2024_103106 crossref_primary_10_1016_j_mtphys_2024_101544 crossref_primary_10_1109_TIE_2022_3201305 crossref_primary_10_1038_s44306_024_00054_z crossref_primary_10_1021_acsaelm_3c00745 crossref_primary_10_1088_2633_4356_adb474 crossref_primary_10_1007_s11051_024_06164_3 crossref_primary_10_1063_5_0109527 crossref_primary_10_1002_aisy_202300751 crossref_primary_10_1002_adma_202311996 crossref_primary_10_3390_s24134384 crossref_primary_10_3390_mi13030418 crossref_primary_10_1021_acsami_3c16240 crossref_primary_10_1063_9_0000692 crossref_primary_10_1021_acsami_4c02874 crossref_primary_10_1039_D2NR06886A crossref_primary_10_2174_1573405620666230825113444 |
Cites_doi | 10.1166/jnn.2012.6541 10.1016/j.bios.2018.08.060 10.1063/1.5027035 10.1016/j.jmmm.2014.11.067 10.1016/j.bios.2014.03.035 10.1002/adma.201403907 10.1038/s41528-018-0046-9 10.3379/jmsjmag.19.265 10.7567/1882-0786/aaf697 10.1109/20.92276 10.1063/1.365100 10.1109/LMAG.2010.2052238 10.1007/s00604-014-1241-6 10.2475/ajs.s3-19.111.200 10.3390/s16060828 10.1103/PhysRevB.39.4828 10.1063/1.5007693 10.1088/2053-1583/aa735d 10.1109/TMAG.2012.2198798 10.1063/1.2976435 10.3390/s16111902 10.1063/1.3676212 10.1038/s41598-019-39817-8 10.1109/TMAG.2011.2158600 10.1063/1.4917244 10.1103/PhysRevB.43.1297 10.1109/TMAG.2012.2198627 10.1038/srep01207 10.3390/s121115520 10.1063/1.3575591 10.1063/1.112104 10.1109/LMAG.2013.2276551 10.1039/C5NR08729E 10.1016/j.sna.2017.06.001 10.1063/1.5044741 10.1021/ac404015j 10.1109/TMAG.2012.2203297 10.1109/JSEN.2016.2523463 10.1016/j.ndteint.2011.04.004 10.1109/MEMSYS.2015.7051105 10.1063/1.4875597 10.1109/20.312279 10.1002/adem.201800471 10.3390/s19081761 10.1002/adma.201405027 10.1088/2043-6262/7/4/045006 10.1109/TMAG.2015.2446332 10.1063/1.4978918 10.1016/0924-4247(96)01285-X 10.1038/s41598-018-19480-1 10.1002/adma.201503127 10.1063/1.5001098 10.1016/S0304-8853(97)01148-7 10.1126/scitranslmed.3003747 10.1073/pnas.0712129105 10.1038/srep42001 10.1063/1.4919897 10.1016/j.jmmm.2015.07.107 10.1109/TMAG.2019.2896036 10.1103/PhysRevLett.61.2472 10.1109/MWSYM.2014.6848560 10.1140/epjb/e2013-30933-6 10.1063/1.3536822 10.1109/JSEN.2016.2575802 10.1039/C4LC00821A 10.3389/fmicb.2016.00400 10.1103/PhysRevB.63.054416 10.1016/j.jmmm.2015.04.113 10.1109/TMAG.2011.2148165 10.1109/TMAG.2008.920962 10.1016/0304-8853(95)90001-2 10.1038/s41598-017-11476-7 10.1016/j.bios.2014.01.028 10.1039/C7LC00026J 10.1016/j.sna.2008.03.014 10.1109/JSEN.2014.2368074 10.1063/1.370123 10.1016/S0924-4247(02)00386-2 10.1063/1.2710953 10.1088/0957-0233/25/10/105401 10.1063/1.1418423 10.1155/2015/718069 10.1088/0957-4484/20/38/385501 10.1063/1.4864045 10.1109/IEDM.2016.7838483 10.1109/JSEN.2006.877996 10.1016/j.bios.2018.10.018 10.1016/0375-9601(75)90174-7 10.1016/j.jallcom.2017.09.271 10.1002/adma.201602910 10.1109/IEDM.2015.7409822 10.5772/intechopen.70084 10.1017/S0007087400017738 10.1063/1.3300717 10.1002/adma.200800230 10.1109/JSEN.2006.874493 10.1063/1.4916036 10.1109/JSEN.2018.2872604 10.1038/nature02325 10.3389/fnins.2018.00909 10.1103/PhysRevB.63.220403 10.1098/rspl.1856.0144 10.1016/j.snb.2016.11.051 10.1063/1.2176238 10.1186/1556-276X-7-506 10.1063/1.4769837 |
ContentType | Journal Article |
Copyright | 2021 The Author(s). Published by IOP Publishing Ltd |
Copyright_xml | – notice: 2021 The Author(s). Published by IOP Publishing Ltd |
DBID | O3W TSCCA AAYXX CITATION |
DOI | 10.1088/2631-8695/ac0838 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2631-8695 |
ExternalDocumentID | 10_1088_2631_8695_ac0838 erxac0838 |
GroupedDBID | O3W TSCCA AAYXX ABJNI ALMA_UNASSIGNED_HOLDINGS CITATION |
ID | FETCH-LOGICAL-c419t-5f708ba6dc30818b00715050534ee42f78149cf921d65e0a3a4acbd94367036b3 |
IEDL.DBID | IOP |
ISSN | 2631-8695 |
IngestDate | Tue Jul 01 02:33:20 EDT 2025 Thu Apr 24 23:02:47 EDT 2025 Wed Aug 21 03:42:46 EDT 2024 Tue Nov 30 22:47:51 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-5f708ba6dc30818b00715050534ee42f78149cf921d65e0a3a4acbd94367036b3 |
Notes | ERX2-100175.R1 |
ORCID | 0000-0002-7992-8092 0000-0002-4219-2149 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/2631-8695/ac0838 |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1088_2631_8695_ac0838 iop_journals_10_1088_2631_8695_ac0838 crossref_citationtrail_10_1088_2631_8695_ac0838 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Engineering Research Express |
PublicationTitleAbbrev | ERX |
PublicationTitleAlternate | Eng. Res. Express |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Li (erxac0838bib103) 2014; 59 Popovic (erxac0838bib37) 1996; 56 Mazumdar (erxac0838bib84) 2007; 101 Gao (erxac0838bib76) 2019; 123 Lee (erxac0838bib74) 2014; 57 Merazzo (erxac0838bib95) 2018; 8 Kurlyandskaya (erxac0838bib109) 2001; 90 Mareschal (erxac0838bib68) 2018; 55 Bray (erxac0838bib2) 2014 erxac0838bib131 Granell (erxac0838bib31) 2019; 3 erxac0838bib132 erxac0838bib130 Butler (erxac0838bib80) 2001; 63 Fu (erxac0838bib94) 2012; 101 Barber (erxac0838bib1) 1988; 24 Joo (erxac0838bib21) 2017; 4 He (erxac0838bib50) 2011; 44 Jin (erxac0838bib90) 2017; 122 Usov (erxac0838bib113) 1998; 185 Li (erxac0838bib121) 2015; 378 Jiang (erxac0838bib87) 2016 Jiang (erxac0838bib54) 2006; 99 Karnaushenko (erxac0838bib70) 2015; 27 Buznikov (erxac0838bib107) 2019; 19 Lima (erxac0838bib96) 2014; 25 Fan (erxac0838bib93) 2014 Moretti (erxac0838bib104) 2018; 12 Ikeda (erxac0838bib83) 2008; 93 Issadore (erxac0838bib27) 2012; 4 Ouyang (erxac0838bib67) 2012; 12 erxac0838bib128 Chen (erxac0838bib97) 2017; 7 erxac0838bib129 Panina (erxac0838bib111) 1994; 65 erxac0838bib126 Heidari (erxac0838bib34) 2016; 16 erxac0838bib127 Faraday (erxac0838bib4) 2016 Akhter (erxac0838bib39) 1997; 81 erxac0838bib125 Heim (erxac0838bib60) 1994; 30 Chiang (erxac0838bib65) 2015; 117 García-Arribas (erxac0838bib120) 2016; 400 Izci (erxac0838bib20) 2018; 18 Weinstock (erxac0838bib9) 2012 Uchiyama (erxac0838bib117) 2012; 48 Melzer (erxac0838bib32) 2015; 27 Verpillat (erxac0838bib49) 2008; 105 Paun (erxac0838bib16) 2015; 391 König (erxac0838bib43) 2010 Peng (erxac0838bib110) 2016 García-Arribas (erxac0838bib112) 2013; 86 Krishna (erxac0838bib71) 2016; 7 Tumanski (erxac0838bib45) 2001 Li (erxac0838bib114) 2013 Dieny (erxac0838bib59) 1991; 43 Schrittwieser (erxac0838bib29) 2016; 16 Das KG (erxac0838bib12) 2018 Wang (erxac0838bib77) 2014; 86 Baibich (erxac0838bib58) 1988; 61 Cardoso (erxac0838bib89) 2014; 115 Gooneratne (erxac0838bib73) 2011; 109 Thomson (erxac0838bib36) 1857; 8 Vilela (erxac0838bib108) 2017; 121 Huang (erxac0838bib35) 2015 Li (erxac0838bib106) 2018; 730 Zheng (erxac0838bib11) 2019; 55 Liu (erxac0838bib26) 2011; 47 Tavassolizadeh (erxac0838bib91) 2016; 16 Miyazaki (erxac0838bib79) 1995; 139 Lenz (erxac0838bib8) 2006; 6 Ramsden (erxac0838bib14) 2011 Lai (erxac0838bib47) 2015 Wang (erxac0838bib62) 2008; 44 Karnaushenko (erxac0838bib122) 2015; 27 Wang (erxac0838bib38) 2016; 28 Haned (erxac0838bib18) 2003; 102 Xiong (erxac0838bib63) 2004; 427 Lin (erxac0838bib25) 2017; 17 Alfadhel (erxac0838bib123) 2014; 14 Pannetier-Lecoeur (erxac0838bib66) 2011; 98 Sengupta (erxac0838bib88) 2017; 7 Blagojevic (erxac0838bib15) 2006; 6 Giouroudi (erxac0838bib30) 2018; 124 Guedes (erxac0838bib64) 2012; 48 Uchiyama (erxac0838bib115) 2011; 47 Donolato (erxac0838bib55) 2009; 20 Binasch (erxac0838bib57) 1989; 39 Kokkinis (erxac0838bib72) 2015; 117 Ouyang (erxac0838bib85) 2015; 51 Dauber (erxac0838bib23) 2015; 106 Sekino (erxac0838bib28) 2018; 8 Sharma (erxac0838bib101) 2017; 242 Grosz (erxac0838bib42) 2013; 4 Mohri (erxac0838bib116) 2012; 12 Griesbach (erxac0838bib51) 2012; 48 Mathon (erxac0838bib81) 2001; 63 Fuji (erxac0838bib92) 2017 Zhang (erxac0838bib124) 2012; 7 Akin (erxac0838bib53) 2018; 18 Julliere (erxac0838bib78) 1975; 54 Nesvet (erxac0838bib75) 2019; 124 Mohri (erxac0838bib105) 1995; 19 Amara (erxac0838bib98) 2018; 20 García-Arribas (erxac0838bib119) 2017 Sugihara (erxac0838bib82) 2019; 12 Hall (erxac0838bib13) 1880; 111 Ørsted (erxac0838bib6) 2014 Maxwell (erxac0838bib5) 1881 Bandiera (erxac0838bib61) 2010; 1 Yf (erxac0838bib69) 2008; 20 Hien (erxac0838bib56) 2016; 7 Mohri (erxac0838bib118) 2015; 2015 Huang (erxac0838bib22) 2014; 104 Grosz (erxac0838bib41) 2016; 16 Cubells (erxac0838bib86) 2013 Yd (erxac0838bib7) 2017 Leahy (erxac0838bib10) 2018 Sadeghi (erxac0838bib17) 2015; 15 Guo (erxac0838bib48) 2017; 263 Lei (erxac0838bib100) 2012; 111 Caneva (erxac0838bib3) 1980; 13 Choe (erxac0838bib52) 1999; 85 Barraud (erxac0838bib99) 2010; 96 Wang (erxac0838bib24) 2016; 8 Yu (erxac0838bib46) 2014 Li (erxac0838bib102) 2014; 181 Dimitrova (erxac0838bib44) 2008; 147 Xu (erxac0838bib19) 2013; 3 Satake (erxac0838bib33) 2019; 9 Freitas (erxac0838bib40) 2004 |
References_xml | – volume: 12 start-page: 7491 year: 2012 ident: erxac0838bib116 article-title: sensor: recent advances of amorphous wire and CMOS-IC magneto-impedance sensor publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2012.6541 – volume: 123 start-page: 204 year: 2019 ident: erxac0838bib76 article-title: Multiplex measurement of twelve tumor markers using a GMR multi-biomarker immunoassay biosensor publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.08.060 – year: 2011 ident: erxac0838bib14 – volume: 18 start-page: 4392 year: 2018 ident: erxac0838bib53 article-title: Based magneto-resistive sensor: modeling, fabrication publication-title: Characterization, And Application. Sensors. – volume: 124 year: 2018 ident: erxac0838bib30 article-title: Perspective: magnetoresistive sensors for biomedicine publication-title: J. Appl. Phys. doi: 10.1063/1.5027035 – volume: 378 start-page: 499 year: 2015 ident: erxac0838bib121 article-title: Flexible magnetoimpedance sensor publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2014.11.067 – year: 2016 ident: erxac0838bib4 – volume: 59 start-page: 145 year: 2014 ident: erxac0838bib103 article-title: An efficient biosensor made of an electromagnetic trap and a magneto-resistive sensor publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.03.035 – volume: 27 start-page: 880 year: 2015 ident: erxac0838bib70 article-title: High‐performance magnetic sensorics for printable and flexible electronics publication-title: Adv. Mater. doi: 10.1002/adma.201403907 – ident: erxac0838bib130 – year: 2014 ident: erxac0838bib46 article-title: Development of a compliant magnetic 3D tactile sensor with AMR elements – volume: 3 start-page: 3 year: 2019 ident: erxac0838bib31 article-title: Highly compliant planar Hall effect sensor with sub 200 nT sensitivity publication-title: NPJ Flexible Electronics. doi: 10.1038/s41528-018-0046-9 – volume: 19 start-page: 265 year: 1995 ident: erxac0838bib105 article-title: giant magneto-impedance in Co-rich amorphous wires and films publication-title: Journal of the Magnetics Society of Japan. doi: 10.3379/jmsjmag.19.265 – volume: 12 year: 2019 ident: erxac0838bib82 article-title: Surface smoothing process for high-performance MgO-based magnetic tunnel junctions publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/aaf697 – start-page: 331 year: 2004 ident: erxac0838bib40 article-title: Magnetoresistive DNA chips – volume: 24 start-page: 2883 year: 1988 ident: erxac0838bib1 article-title: History and magnetics of compass adjusting publication-title: IEEE Trans. Magn. doi: 10.1109/20.92276 – volume: 81 start-page: 4122 year: 1997 ident: erxac0838bib39 article-title: Thickness and grain-size dependence of the coercivity in permalloy thin films publication-title: J. Appl. Phys. doi: 10.1063/1.365100 – year: 1881 ident: erxac0838bib5 – volume: 1 year: 2010 ident: erxac0838bib61 article-title: Comparison of synthetic antiferromagnets and hard ferromagnets as reference layer in magnetic tunnel junctions with perpendicular magnetic anisotropy publication-title: IEEE Magn. Lett. doi: 10.1109/LMAG.2010.2052238 – volume: 181 start-page: 1743 year: 2014 ident: erxac0838bib102 article-title: Magneto-mechanical trapping systems for biological target detection publication-title: Microchim. Acta doi: 10.1007/s00604-014-1241-6 – volume: 111 start-page: 200 year: 1880 ident: erxac0838bib13 article-title: On a new action of the magnet on electric currents publication-title: Am. J. Sci. doi: 10.2475/ajs.s3-19.111.200 – volume: 16 start-page: 828 year: 2016 ident: erxac0838bib29 article-title: Homogeneous biosensing based on magnetic particle labels publication-title: Sensors doi: 10.3390/s16060828 – volume: 39 start-page: 4828 year: 1989 ident: erxac0838bib57 article-title: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange publication-title: Physical Review B. doi: 10.1103/PhysRevB.39.4828 – volume: 55 start-page: 6200104 year: 2018 ident: erxac0838bib68 article-title: Aluminum alloy sensitization evaluation by using eddy current techniques based on igmr-magnetometer head publication-title: IEEE Trans. Magn – volume: 8 year: 2018 ident: erxac0838bib95 article-title: Reading magnetic ink patterns with magnetoresistive sensors publication-title: AIP Adv. doi: 10.1063/1.5007693 – volume: 4 year: 2017 ident: erxac0838bib21 article-title: Feasibility of ultra-sensitive 2D layered Hall elements publication-title: 2D Mater. doi: 10.1088/2053-1583/aa735d – volume: 48 start-page: 3843 year: 2012 ident: erxac0838bib51 article-title: Design, fabrication, and testing of a modular magnetic field microsensor on a flexible polymer foil publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2012.2198798 – volume: 93 year: 2008 ident: erxac0838bib83 article-title: Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in Co Fe B∕ Mg O∕ Co Fe B pseudo-spin-valves annealed at high temperature publication-title: Appl. Phys. Lett. doi: 10.1063/1.2976435 – volume: 16 start-page: 1902 year: 2016 ident: erxac0838bib91 article-title: Tunnel magnetoresistance sensors with magnetostrictive electrodes: strain sensors publication-title: Sensors doi: 10.3390/s16111902 – volume: 111 year: 2012 ident: erxac0838bib100 article-title: Liver cancer immunoassay with magnetic nanoparticles and MgO-based magnetic tunnel junction sensors publication-title: J. Appl. Phys. doi: 10.1063/1.3676212 – volume: 9 start-page: 3282 year: 2019 ident: erxac0838bib33 article-title: Fe-Sn nanocrystalline films for flexible magnetic sensors with high thermal stability publication-title: Sci. Rep. doi: 10.1038/s41598-019-39817-8 – volume: 47 start-page: 3449 year: 2011 ident: erxac0838bib26 article-title: CMOS Hall-effect sensor for the characterization and detection of magnetic nanoparticles for biomedical applications publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2011.2158600 – volume: 117 year: 2015 ident: erxac0838bib72 article-title: Magnetic-based biomolecule detection using giant magnetoresistance sensors publication-title: J. Appl. Phys. doi: 10.1063/1.4917244 – volume: 43 start-page: 1297 year: 1991 ident: erxac0838bib59 article-title: Giant magnetoresistive in soft ferromagnetic multilayers publication-title: Physical Review B. doi: 10.1103/PhysRevB.43.1297 – volume: 48 start-page: 3833 year: 2012 ident: erxac0838bib117 article-title: Recent advances of pico-Tesla resolution magneto-impedance sensor based on amorphous wire CMOS IC MI sensor publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2012.2198627 – volume: 3 start-page: 1207 year: 2013 ident: erxac0838bib19 article-title: Batch-fabricated high-performance graphene Hall elements publication-title: Sci. Rep. doi: 10.1038/srep01207 – volume: 12 start-page: 15520 year: 2012 ident: erxac0838bib67 article-title: A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications publication-title: Sensors doi: 10.3390/s121115520 – volume: 98 year: 2011 ident: erxac0838bib66 article-title: Magnetocardiography with sensors based on giant magnetoresistance publication-title: Appl. Phys. Lett. doi: 10.1063/1.3575591 – volume: 65 start-page: 1189 year: 1994 ident: erxac0838bib111 article-title: Magneto‐impedance effect in amorphous wires publication-title: Appl. Phys. Lett. doi: 10.1063/1.112104 – volume: 4 year: 2013 ident: erxac0838bib42 article-title: Planar hall effect sensors with subnanotesla resolution. publication-title: IEEE Magn. Lett. doi: 10.1109/LMAG.2013.2276551 – volume: 8 start-page: 7683 year: 2016 ident: erxac0838bib24 article-title: Flexible Hall sensors based on graphene publication-title: Nanoscale. doi: 10.1039/C5NR08729E – volume: 263 start-page: 159 year: 2017 ident: erxac0838bib48 article-title: Multilayer anisotropic magnetoresistive angle sensor publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2017.06.001 – year: 2018 ident: erxac0838bib10 doi: 10.1063/1.5044741 – volume: 86 start-page: 3712 year: 2014 ident: erxac0838bib77 article-title: Magnetic detection of mercuric ion using giant magnetoresistance-based biosensing system publication-title: Anal. Chem. doi: 10.1021/ac404015j – volume: 48 start-page: 4115 year: 2012 ident: erxac0838bib64 article-title: Towards picoTesla magnetic field detection using a GMR-MEMS hybrid device publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2012.2203297 – ident: erxac0838bib127 – volume: 16 start-page: 3224 year: 2016 ident: erxac0838bib41 article-title: A high-resolution planar Hall effect magnetometer for ultra-low frequencies publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2016.2523463 – year: 2014 ident: erxac0838bib6 – year: 2018 ident: erxac0838bib12 – volume: 44 start-page: 438 year: 2011 ident: erxac0838bib50 article-title: Multi-frequency ECT with AMR sensor publication-title: NDT & E International. doi: 10.1016/j.ndteint.2011.04.004 – year: 2015 ident: erxac0838bib47 article-title: Monolithic integration of micro magnetic pillar array with anisotropic magneto-resistive (AMR) structure for out-of-plane magnetic field detection doi: 10.1109/MEMSYS.2015.7051105 – volume: 104 year: 2014 ident: erxac0838bib22 article-title: Ultra-sensitive graphene Hall elements publication-title: Appl. Phys. Lett. doi: 10.1063/1.4875597 – volume: 30 start-page: 316 year: 1994 ident: erxac0838bib60 article-title: Design and operation of spin valve sensors publication-title: IEEE Trans. Magn. doi: 10.1109/20.312279 – volume: 20 start-page: 1800471 year: 2018 ident: erxac0838bib98 article-title: High-performance flexible magnetic tunnel junctions for smart miniaturized instruments publication-title: Adv. Eng. Mat. doi: 10.1002/adem.201800471 – volume: 19 start-page: 1761 year: 2019 ident: erxac0838bib107 article-title: Magnetoimpedance in symmetric and non-symmetric nanostructured multilayers: A theoretical study publication-title: Sensors doi: 10.3390/s19081761 – volume: 27 start-page: 1274 year: 2015 ident: erxac0838bib32 article-title: Wearable magnetic field sensors for flexible electronics publication-title: Adv. Mater. doi: 10.1002/adma.201405027 – year: 2010 ident: erxac0838bib43 article-title: A novel micro paramagnetic oxygen sensor based on an anisotropic magneto resistance-device – volume: 7 year: 2016 ident: erxac0838bib56 article-title: DNA-magnetic bead detection using disposable cards and the anisotropic magnetoresistive sensor publication-title: Adv. Nat. Sci.: Nanosci. Nanotechnol. doi: 10.1088/2043-6262/7/4/045006 – volume: 51 start-page: 1 year: 2015 ident: erxac0838bib85 article-title: Contactless current sensors based on magnetic tunnel junction for smart grid applications publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2015.2446332 – volume: 121 start-page: 124501 year: 2017 ident: erxac0838bib108 article-title: Giant magnetoimpedance effect in a thin-film multilayer meander-like sensor publication-title: J. Appl. Phys. doi: 10.1063/1.4978918 – volume: 56 start-page: 39 year: 1996 ident: erxac0838bib37 article-title: The future of magnetic sensors publication-title: Sens. Actuators, A doi: 10.1016/0924-4247(96)01285-X – year: 2012 ident: erxac0838bib9 – volume: 8 start-page: 1195 year: 2018 ident: erxac0838bib28 article-title: Handheld magnetic probe with permanent magnet and Hall sensor for identifying sentinel lymph nodes in breast cancer patients publication-title: Sci. Rep. doi: 10.1038/s41598-018-19480-1 – ident: erxac0838bib128 – volume: 27 start-page: 6582 year: 2015 ident: erxac0838bib122 article-title: Self‐assembled on‐chip‐integrated giant magneto‐impedance sensorics publication-title: Adv. Mater. doi: 10.1002/adma.201503127 – volume: 122 year: 2017 ident: erxac0838bib90 article-title: Magnetic sensor based on serial magnetic tunnel junctions for highly sensitive detection of surface cracks publication-title: J. Appl. Phys. doi: 10.1063/1.5001098 – year: 2017 ident: erxac0838bib7 publication-title: Magnetic Sensor Market and Technologies: Yole Développement – volume: 185 start-page: 159 year: 1998 ident: erxac0838bib113 article-title: Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(97)01148-7 – volume: 4 start-page: 141ra92 year: 2012 ident: erxac0838bib27 article-title: Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-hall detector publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3003747 – volume: 105 start-page: 2271 year: 2008 ident: erxac0838bib49 article-title: Remote detection of nuclear magnetic resonance with an anisotropic magnetoresistive sensor publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0712129105 – volume: 7 year: 2017 ident: erxac0838bib97 article-title: High performance MgO-barrier magnetic tunnel junctions for flexible and wearable spintronic applications publication-title: Sci. Rep. doi: 10.1038/srep42001 – volume: 106 year: 2015 ident: erxac0838bib23 article-title: Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride publication-title: Appl. Phys. Lett. doi: 10.1063/1.4919897 – volume: 400 start-page: 321 year: 2016 ident: erxac0838bib120 article-title: Thin-film magneto-impedance structures with very large sensitivity publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.07.107 – volume: 55 start-page: 1 year: 2019 ident: erxac0838bib11 doi: 10.1109/TMAG.2019.2896036 – ident: erxac0838bib125 – volume: 61 start-page: 2472 year: 1988 ident: erxac0838bib58 article-title: Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.2472 – year: 2014 ident: erxac0838bib93 article-title: Magnetic tunnel junction-based on-chip microwave phase and spectrum analyzer doi: 10.1109/MWSYM.2014.6848560 – volume: 86 start-page: 136 year: 2013 ident: erxac0838bib112 article-title: Tailoring the magnetic anisotropy of thin film permalloy microstrips by combined shape and induced anisotropies publication-title: The European Physical Journal B. doi: 10.1140/epjb/e2013-30933-6 – year: 2014 ident: erxac0838bib2 – volume: 109 year: 2011 ident: erxac0838bib73 article-title: A giant magnetoresistance ring-sensor based microsystem for magnetic bead manipulation and detection publication-title: J. Appl. Phys. doi: 10.1063/1.3536822 – ident: erxac0838bib131 – year: 2017 ident: erxac0838bib92 article-title: An ultra-sensitive spintronic strain-gauge sensor with gauge factor of 5000 and demonstration of a Spin-MEMS Microphone. Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) – volume: 16 start-page: 8736 year: 2016 ident: erxac0838bib34 article-title: CMOS vertical Hall magnetic sensors on flexible substrate publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2016.2575802 – volume: 14 start-page: 4362 year: 2014 ident: erxac0838bib123 article-title: A magnetic nanocomposite for biomimetic flow sensing publication-title: Lab Chip doi: 10.1039/C4LC00821A – volume: 7 start-page: 400 year: 2016 ident: erxac0838bib71 article-title: Giant magnetoresistance-based biosensor for detection of influenza a virus publication-title: Frontiers in Microbiology. doi: 10.3389/fmicb.2016.00400 – year: 2013 ident: erxac0838bib114 article-title: A thin film passive magnetic field sensor operated at 425 MHz. 2013 Transducers & Eurosensors XXVII – volume: 63 year: 2001 ident: erxac0838bib80 article-title: Spin-dependent tunneling conductance of Fe∣ MgO∣ Fe sandwiches publication-title: Physical Review B. doi: 10.1103/PhysRevB.63.054416 – volume: 391 start-page: 122 year: 2015 ident: erxac0838bib16 article-title: Three-dimensional simulations in optimal performance trial between two types of Hall sensors fabrication technologies publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.04.113 – volume: 47 start-page: 3070 year: 2011 ident: erxac0838bib115 article-title: Measurement of spontaneous oscillatory magnetic field of guinea-pig smooth muscle preparation using pico-tesla resolution amorphous wire magneto-impedance sensor publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2011.2148165 – volume: 44 start-page: 1687 year: 2008 ident: erxac0838bib62 article-title: Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2008.920962 – volume: 139 start-page: L231 year: 1995 ident: erxac0838bib79 article-title: Giant magnetic tunneling effect in Fe/Al2O3/Fe junction publication-title: J. Magn. Magn. Mater. doi: 10.1016/0304-8853(95)90001-2 – volume: 7 year: 2017 ident: erxac0838bib88 article-title: Magnetic tunnel junction as an on-chip temperature sensor publication-title: Sci. Rep. doi: 10.1038/s41598-017-11476-7 – volume: 57 start-page: 48 year: 2014 ident: erxac0838bib74 article-title: Wheatstone bridge giant-magnetoresistance based cell counter publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.01.028 – year: 2001 ident: erxac0838bib45 – ident: erxac0838bib132 – year: 2016 ident: erxac0838bib110 – volume: 17 start-page: 1884 year: 2017 ident: erxac0838bib25 article-title: Magnetic sensing platform technologies for biomedical applications publication-title: Lab Chip doi: 10.1039/C7LC00026J – volume: 147 start-page: 387 year: 2008 ident: erxac0838bib44 article-title: Thin film integrated AMR sensor for linear position measurements publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2008.03.014 – volume: 15 start-page: 1817 year: 2015 ident: erxac0838bib17 article-title: Highly sensitive nanotesla quantum-well Hall-effect integrated circuit using GaAs–InGaAs–AlGaAs 2DEG publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2014.2368074 – volume: 85 start-page: 5777 year: 1999 ident: erxac0838bib52 article-title: Surface roughness effects on magnetoresistive and magnetic properties of NiFe thin films publication-title: J. Appl. Phys. doi: 10.1063/1.370123 – volume: 102 start-page: 216 year: 2003 ident: erxac0838bib18 article-title: Nano-tesla magnetic field magnetometry using an InGaAs–AlGaAs–GaAs 2DEG Hall sensor publication-title: Sens. Actuators, A doi: 10.1016/S0924-4247(02)00386-2 – volume: 101 year: 2007 ident: erxac0838bib84 article-title: Thermal stability, sensitivity, and noise characteristics of MgO-based magnetic tunnel junctions publication-title: J. Appl. Phys. doi: 10.1063/1.2710953 – volume: 25 year: 2014 ident: erxac0838bib96 article-title: Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/25/10/105401 – volume: 90 start-page: 6280 year: 2001 ident: erxac0838bib109 article-title: Very large magnetoimpedance effect in FeCoNi ferromagnetic tubes with high order magnetic anisotropy publication-title: J. Appl. Phys. doi: 10.1063/1.1418423 – volume: 2015 start-page: 718069 year: 2015 ident: erxac0838bib118 article-title: Recent advances of amorphous wire CMOS IC magneto-impedance sensors: innovative high-performance micromagnetic sensor chip publication-title: Journal of Sensors doi: 10.1155/2015/718069 – volume: 20 year: 2009 ident: erxac0838bib55 article-title: Nanosized corners for trapping and detecting magnetic nanoparticles publication-title: Nanotechnology doi: 10.1088/0957-4484/20/38/385501 – volume: 115 year: 2014 ident: erxac0838bib89 article-title: Magnetic tunnel junction based eddy current testing probe for detection of surface defects publication-title: J. Appl. Phys. doi: 10.1063/1.4864045 – year: 2016 ident: erxac0838bib87 article-title: Fast spintronic thermal sensor for IC power driver cooling down doi: 10.1109/IEDM.2016.7838483 – volume: 6 start-page: 1016 year: 2006 ident: erxac0838bib15 article-title: SOI Hall-sensor front end for energy measurement publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2006.877996 – volume: 124 start-page: 136 year: 2019 ident: erxac0838bib75 article-title: Highly sensitive detection of DNA hypermethylation in melanoma cancer cells publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.10.018 – volume: 54 start-page: 225 year: 1975 ident: erxac0838bib78 article-title: Tunneling between ferromagnetic films publication-title: Phys. Lett. A doi: 10.1016/0375-9601(75)90174-7 – volume: 730 start-page: 17 year: 2018 ident: erxac0838bib106 article-title: Magnetoimpedance effect in FINEMET/Ni80Fe20 composite ribbons publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.09.271 – volume: 28 start-page: 9370 year: 2016 ident: erxac0838bib38 article-title: Highly sensitive flexible magnetic sensor based on anisotropic magnetoresistance effect publication-title: Adv. Mater. doi: 10.1002/adma.201602910 – year: 2015 ident: erxac0838bib35 article-title: Flexible graphene hall sensors with high sensitivity doi: 10.1109/IEDM.2015.7409822 – year: 2017 ident: erxac0838bib119 article-title: Thin-film magneto-impedance sensors doi: 10.5772/intechopen.70084 – volume: 13 start-page: 121 year: 1980 ident: erxac0838bib3 article-title: Ampère, the etherians, and the Oersted connexion publication-title: The British Journal for the History of Science. doi: 10.1017/S0007087400017738 – volume: 96 year: 2010 ident: erxac0838bib99 article-title: Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates publication-title: Appl. Phys. Lett. doi: 10.1063/1.3300717 – ident: erxac0838bib129 – volume: 20 start-page: 3224 year: 2008 ident: erxac0838bib69 article-title: Towards flexible magnetoelectronics: buffer‐enhanced and mechanically tunable GMR of Co/Cu multilayers on plastic substrates publication-title: Adv. Mater. doi: 10.1002/adma.200800230 – volume: 6 start-page: 631 year: 2006 ident: erxac0838bib8 article-title: Magnetic sensors and their applications publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2006.874493 – volume: 117 year: 2015 ident: erxac0838bib65 article-title: Tri-axis magnetometer with in-plane giant magnetoresistance sensors for compass application publication-title: J. Appl. Phys. doi: 10.1063/1.4916036 – volume: 18 start-page: 9534 year: 2018 ident: erxac0838bib20 article-title: The construction of a graphene hall effect magnetometer publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2018.2872604 – volume: 427 start-page: 821 year: 2004 ident: erxac0838bib63 article-title: Giant magnetoresistance in organic spin-valves publication-title: Nature doi: 10.1038/nature02325 – volume: 12 year: 2018 ident: erxac0838bib104 article-title: Biocompatibility of a Magnetic Tunnel Junction sensor array for the detection of neuronal signals in culture publication-title: Frontiers in Neuroscience. doi: 10.3389/fnins.2018.00909 – volume: 63 year: 2001 ident: erxac0838bib81 article-title: Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe (001) junction publication-title: Physical Review B. doi: 10.1103/PhysRevB.63.220403 – year: 2013 ident: erxac0838bib86 – volume: 8 start-page: 546 year: 1857 ident: erxac0838bib36 article-title: On the electro-dynamic qualities of metals:-Effects of magnetization on the electric conductivity of nickel and of iron publication-title: Proc. R. Soc. Lond. doi: 10.1098/rspl.1856.0144 – ident: erxac0838bib126 – volume: 242 start-page: 280 year: 2017 ident: erxac0838bib101 article-title: Integrated platform for detecting pathogenic DNA via magnetic tunneling junction-based biosensors publication-title: Sensors Actuators B doi: 10.1016/j.snb.2016.11.051 – volume: 99 year: 2006 ident: erxac0838bib54 article-title: An integrated microfluidic cell for detection, manipulation, and sorting of single micron-sized magnetic beads publication-title: J. Appl. Phys. doi: 10.1063/1.2176238 – volume: 7 start-page: 506 year: 2012 ident: erxac0838bib124 article-title: Enhanced giant magnetoimpedance in heterogeneous nanobrush publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-7-506 – volume: 101 year: 2012 ident: erxac0838bib94 article-title: Microwave reflection imaging using a magnetic tunnel junction based spintronic microwave sensor publication-title: Appl. Phys. Lett. doi: 10.1063/1.4769837 |
SSID | ssib046616717 ssib037096498 ssib052001916 |
Score | 2.5660136 |
SecondaryResourceType | review_article |
Snippet | Magnetic field sensors are an integral part of many industrial and biomedical applications, and their utilization continues to grow at a high rate. The... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 22005 |
SubjectTerms | flexible internet of things magnetic sensors sensor networks solid state sensors stretchable ubiquitous sensing |
Title | Magnetic sensors-A review and recent technologies |
URI | https://iopscience.iop.org/article/10.1088/2631-8695/ac0838 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELbasrDwECDKMwMMDG7rRxxbTBWiqpBKGajogGTZjsMASqs2lRC_HjuPQhGqEEvk4XLJnZzcnX3fZwAuFEZMK0OgIRq7AsUoqGObwIhrnbBQGJ6j0gb3rD-id-NwXAPXSyzMZFr--ltuWBAFFy4sG-J4GzOCIGcibCvjEgheBxuEu8Dp0XvDh2oykcgl5_SrlqAuEDFXu5Rblb8pWglNdff4b5Gmtw2eq3csGkxeW4tMt8zHD_rGfxqxA7bKDDToFqK7oGbTPYAG6iX1eMZg7urayWwOu0GBaglUGruhb-IMsmod3pXX-2DUu3286cPyNAVoKBIZDJOow7VisSGexk775CL059gRai3Fiee-EiYRGMUstB1FFFVGx4J6ijfCNDkAjXSS2kMQRIxpD6klvpuT0IQ7rUpYZQWzSCPUBO3KkdKUVOP-xIs3mW95cy69-dKbLwvzm-Bqece0oNlYI3vpvCrLb22-Ru58Rc7O3iWRWHpscSeU0zg5-qOmY7CJfStLvvhyAhrZbGFPXS6S6bN8zrnrkDx9AtUq1H0 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZokRALAgHi3QwwMJg28SP2WAFVebQwUNHNsh2HBaVVGyR-PufEBSqhis3D5eScL_Gdfd93CJ3rJOZGW4ItMQkkKFZjk7kcp8KYnDNpRYVKGwx5f0Tvx2wc-pxWWJjJNPz6r2BYEwXXJgwFcaKdcBJjwSVrawsBhGhPs7yB1hmBrQYc-om8LhyKpBCg0598goIEh_wlXFf-pWxpe2rAFH7tNr1ttBXCxKhbT2oHrbliF8UD_VZ40GE0h-RzMpvjblRDTyJdZDD0lZZRuTgshxx4D416ty_XfRxaHmBLY1lilqcdYTTPLPFcc8ZHAMw3myPUOZrknqBK2lwmccaZ62iiqbYmk9TzsBFuyD5qFpPCHaAo5dx43CvxJZeE5gK0aum0k9zFJo4PUXvxpsoGPnDfluJdVffSQihvG-Vto2rbHKLL7yemNRfGCtkLMJ4KH8R8hVxrSc7NPhVRifIA4A5TsLRH_9TUQhvPNz31eDd8OEabiS89qQ5LTlCznH24U4gdSnNW-ccX7NC4aQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+sensors-A+review+and+recent+technologies&rft.jtitle=Engineering+Research+Express&rft.au=Khan%2C+Mohammed+Asadullah&rft.au=Sun%2C+Jian&rft.au=Li%2C+Bodong&rft.au=Przybysz%2C+Alexander&rft.date=2021-06-01&rft.pub=IOP+Publishing&rft.eissn=2631-8695&rft.volume=3&rft.issue=2&rft_id=info:doi/10.1088%2F2631-8695%2Fac0838&rft.externalDocID=erxac0838 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon |