Learning spatial regularized correlation filters with response consistency and distractor repression for UAV tracking
Correlation filter-based trackers have made significant progress in visual object tracking for various types of unmanned aerial vehicle (UAV) applications due to their promising performance and efficiency. However, the boundary effect remains a challenging problem. Several methods enlarge search are...
Saved in:
Published in | EURASIP journal on advances in signal processing Vol. 2023; no. 1; pp. 35 - 21 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2023
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Correlation filter-based trackers have made significant progress in visual object tracking for various types of unmanned aerial vehicle (UAV) applications due to their promising performance and efficiency. However, the boundary effect remains a challenging problem. Several methods enlarge search areas to handle this shortcoming but introduce more background noise, and the filter is prone to learn from distractors. To address this issue, we present spatial regularized correlation filters with response consistency and distractor repression. Specifically, a temporal constraint is introduced to reinforce the consistency across frames by minimizing the difference between consecutive correlation response maps. A dynamic spatial constraint is also integrated by exploiting the local maximum points of the correlation response produced during the detection phase to mitigate the interference from background distractions. The proposed appearance model can optimize the temporal and spatial constraints together with a spatial regularization weight simultaneously. Meanwhile, the proposed appearance model can be solved effectively based on the alternating direction method of multipliers algorithm. The spatial and temporal information concealed in the response maps is fully taken into consideration to boost overall tracking performance. Extensive experiments are conducted on a public UAV benchmark dataset with 123 challenging sequences. The experimental results and analysis demonstrate that the proposed method outperforms 12 state-of-the-art trackers in terms of both accuracy and robustness while efficiently operating in real time. |
---|---|
AbstractList | Correlation filter-based trackers have made significant progress in visual object tracking for various types of unmanned aerial vehicle (UAV) applications due to their promising performance and efficiency. However, the boundary effect remains a challenging problem. Several methods enlarge search areas to handle this shortcoming but introduce more background noise, and the filter is prone to learn from distractors. To address this issue, we present spatial regularized correlation filters with response consistency and distractor repression. Specifically, a temporal constraint is introduced to reinforce the consistency across frames by minimizing the difference between consecutive correlation response maps. A dynamic spatial constraint is also integrated by exploiting the local maximum points of the correlation response produced during the detection phase to mitigate the interference from background distractions. The proposed appearance model can optimize the temporal and spatial constraints together with a spatial regularization weight simultaneously. Meanwhile, the proposed appearance model can be solved effectively based on the alternating direction method of multipliers algorithm. The spatial and temporal information concealed in the response maps is fully taken into consideration to boost overall tracking performance. Extensive experiments are conducted on a public UAV benchmark dataset with 123 challenging sequences. The experimental results and analysis demonstrate that the proposed method outperforms 12 state-of-the-art trackers in terms of both accuracy and robustness while efficiently operating in real time. Abstract Correlation filter-based trackers have made significant progress in visual object tracking for various types of unmanned aerial vehicle (UAV) applications due to their promising performance and efficiency. However, the boundary effect remains a challenging problem. Several methods enlarge search areas to handle this shortcoming but introduce more background noise, and the filter is prone to learn from distractors. To address this issue, we present spatial regularized correlation filters with response consistency and distractor repression. Specifically, a temporal constraint is introduced to reinforce the consistency across frames by minimizing the difference between consecutive correlation response maps. A dynamic spatial constraint is also integrated by exploiting the local maximum points of the correlation response produced during the detection phase to mitigate the interference from background distractions. The proposed appearance model can optimize the temporal and spatial constraints together with a spatial regularization weight simultaneously. Meanwhile, the proposed appearance model can be solved effectively based on the alternating direction method of multipliers algorithm. The spatial and temporal information concealed in the response maps is fully taken into consideration to boost overall tracking performance. Extensive experiments are conducted on a public UAV benchmark dataset with 123 challenging sequences. The experimental results and analysis demonstrate that the proposed method outperforms 12 state-of-the-art trackers in terms of both accuracy and robustness while efficiently operating in real time. |
ArticleNumber | 35 |
Audience | Academic |
Author | Zhang, Wei |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-9048-8307 surname: Zhang fullname: Zhang, Wei email: zhangwei.personal@163.com organization: Department of Computer Science, Baoji University of Arts and Sciences |
BookMark | eNp9UU1v1DAQjVCRaAt_gFMkzim24zj2cVXxUWmlXihXa-KMg5fUDnZWqPx6ZjeIckI-2DN-7_l53lV1EVPEqnrL2Q3nWr0vvFWtbJhoG8aM0Q17UV1ypftGcc0u_jm_qq5KOTDWKcHEZXXcI-QY4lSXBdYAc51xOs6Qwy8ca5dyxpn6KdY-zCvmUv8M6zcClSXFgoSIJZQVo3uqIY71SEUGt6ZMmIVg5cyl8mH3tT5dfafHXlcvPcwF3_zZr6uHjx--3H5u9vef7m53-8ZJbtamk7xHD9gb0WthDLQClIHO8WHsDAcjFRdCdL1j7Ti4XhrBwHum0A_c6KG9ru423THBwS45PEJ-sgmCPTdSnizkNbgZrQIhmEYgrUF2TGrmB6VHD3IUiJ6R1rtNa8npxxHLag_pmCPZt-SuZ0a2RhDqZkNNQKIh-nT6M60RHwMNC2mMaHe95Mr0uuNEEBvB5VRKRv_XJmf2lK3dsrWUrT1na09e2o1UCBwnzM9e_sP6DeYdqq0 |
Cites_doi | 10.1109/CVPR.2015.7298632 10.1109/TPAMI.2014.2345390 10.1109/ACCESS.2019.2922703 10.1109/ICUAS.2014.6842309 10.1109/TMM.2020.2990064 10.1109/CVPR.2005.177 10.1109/IROS45743.2020.9341761 10.1007/978-3-642-33765-9_50 10.1109/CVPR.2016.156 10.1109/CVPR.2016.159 10.1109/ICRA.2014.6907659 10.1109/IROS45743.2020.9341595 10.1109/ICCV.2019.00298 10.1109/TPAMI.2014.2388226 10.1007/s11263-017-1061-3 10.1109/CVPR.2015.7299124 10.1109/CVPR.2018.00515 10.1109/ICCV.2015.490 10.1109/CVPR.2012.6248068 10.1007/978-3-319-46448-0_27 10.1109/CVPRW.2016.11 10.1007/978-3-319-16181-5_18 10.1109/ICCVW.2015.84 10.1007/s10514-016-9564-2 10.5244/C.28.65 10.1007/978-3-319-10599-4_13 10.1109/CVPR.2010.5539960 10.1117/1.JEI.27.3.033005 10.1109/MGRS.2021.3072992 10.1109/CVPR.2015.7299177 10.1109/TPAMI.2011.239 10.1109/CVPR.2015.7299094 10.1109/ICCV.2017.129 10.1109/TPAMI.2015.2509974 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 COPYRIGHT 2023 Springer The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: COPYRIGHT 2023 Springer – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1186/s13634-023-00998-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (New) Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-6180 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_6a2208ea7c0b450480fb68dfa4d2eef0 A741697851 10_1186_s13634_023_00998_0 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Key Research and Development Projects of Shaanxi Province grantid: 2022GY-071 funderid: http://dx.doi.org/10.13039/501100015401 – fundername: Natural Science Foundation of Shaanxi Provincial Department of Education grantid: 20JK0487 funderid: http://dx.doi.org/10.13039/501100010228 |
GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABEEZ ABUWG ACACY ACGFO ACGFS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ARCSS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU DU5 DWQXO E3Z EBLON EBS EDO F5P GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 M0N M~E OK1 P62 PIMPY PQQKQ PROAC Q2X RHU RHW RNS RSV SEG SOJ TUS U2A AASML AAYXX CITATION OVT PHGZM PHGZT PMFND 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c419t-5417efae79278299a32a69a5c1bd591a946122257c03dbc74920aff06efb198b3 |
IEDL.DBID | BENPR |
ISSN | 1687-6180 1687-6172 |
IngestDate | Wed Aug 27 01:16:22 EDT 2025 Fri Jul 25 05:24:26 EDT 2025 Tue Jun 10 20:44:20 EDT 2025 Tue Jul 01 01:54:57 EDT 2025 Fri Feb 21 02:45:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Visual object tracking Response map Unmanned aerial vehicle (UAV) Correlation filter Spatial–temporal information |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-5417efae79278299a32a69a5c1bd591a946122257c03dbc74920aff06efb198b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9048-8307 |
OpenAccessLink | https://www.proquest.com/docview/2787094392?pq-origsite=%requestingapplication% |
PQID | 2787094392 |
PQPubID | 237299 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6a2208ea7c0b450480fb68dfa4d2eef0 proquest_journals_2787094392 gale_infotracacademiconefile_A741697851 crossref_primary_10_1186_s13634_023_00998_0 springer_journals_10_1186_s13634_023_00998_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | EURASIP journal on advances in signal processing |
PublicationTitleAbbrev | EURASIP J. Adv. Signal Process |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | LiYFuCHuangZZhangYPanJIntermittent contextual learning for keyfilter-aware UAV object tracking using deep convolutional featureIEEE Trans. Multimed.20212381082210.1109/TMM.2020.2990064 M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Learning spatially regularized correlation filters for visual tracking, in 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7–13, 2015, p. 4310–4318 (2015). https://doi.org/10.1109/ICCV.2015.490 J.F. Henriques, R. Caseiro, P. Martins, J.P. Batista, Exploiting the circulant structure of tracking-by-detection with kernels, in Computer Vision—ECCV 2012—12th European Conference on Computer Vision, Florence, Italy, October 7–13, 2012, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 7575, p. 702–715 (2012). https://doi.org/10.1007/978-3-642-33765-9_50 FuCLiBDingFLinFLuGCorrelation filters for unmanned aerial vehicle-based aerial tracking: a review and experimental evaluationIEEE Geosci. Remote Sens. Mag.202110112516010.1109/MGRS.2021.3072992 F. Li, C. Tian, W. Zuo, L. Zhang, M. Yang, Learning spatial-temporal regularized correlation filters for visual tracking, in 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22, 2018, p. 4904–4913 (2018). https://doi.org/10.1109/CVPR.2018.00515 Z. Huang, C. Fu, Y. Li, F. Lin, P. Lu, Learning aberrance repressed correlation filters for real-time UAV tracking, in 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27–November 2, 2019, p. 2891–2900 (2019). https://doi.org/10.1109/ICCV.2019.00298 L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, P.H.S. Torr, Staple: complementary learners for real-time tracking, in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016, p. 1401–1409 (2016). https://doi.org/10.1109/CVPR.2016.156 Y. Li, C. Fu, F. Ding, Z. Huang, J. Pan, Augmented memory for correlation filters in real-time UAV tracking, in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020, Las Vegas, NV, USA, October 24, 2020–January 24, 2021, p. 1559–1566 (2020). https://doi.org/10.1109/IROS45743.2020.9341595 F.S. Khan, R.M. Anwer, J. van de Weijer, A.D. Bagdanov, M. Vanrell, A.M. López, Color attributes for object detection, in 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16–21, 2012, p. 3306–3313 (2012). https://doi.org/10.1109/CVPR.2012.6248068 D.S. Bolme, J.R. Beveridge, B.A. Draper, Y.M. Lui, Visual object tracking using adaptive correlation filters, in The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13–18 June 2010, p. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 K.B. Petersen, M.S. Pedersen, The Matrix Cookbook. Technical University of Denmark (2012). http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html WuYLimJYangMObject tracking benchmarkIEEE Trans. Pattern Anal. Mach. Intell.20153791834184810.1109/TPAMI.2014.2388226 ZhangWKangBZhangSEnhanced occlusion handling and multipeak redetection for long-term object trackingJ. Electron. Imaging2018270303300510.1117/1.JEI.27.3.033005 M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Convolutional features for correlation filter based visual tracking, in 2015 IEEE International Conference on Computer Vision Workshop, ICCV Workshops 2015, Santiago, Chile, December 7–13, 2015, p. 621–629 (2015). https://doi.org/10.1109/ICCVW.2015.84 C. Fu, F. Ding, Y. Li, J. Jin, C. Feng, Dr2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{\text{2}}$$\end{document}track: towards real-time visual tracking for UAV via distractor repressed dynamic regression, in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020, Las Vegas, NV, USA, October 24, 2020–January 24, 2021, p. 1597–1604 (2020). https://doi.org/10.1109/IROS45743.2020.9341761 HareSGolodetzSSaffariAVineetVChengMHicksSLTorrPHSStruck: structured output tracking with kernelsIEEE Trans. Pattern Anal. Mach. Intell.201638102096210910.1109/TPAMI.2015.2509974 C. Fu, A. Carrio, M.A. Olivares-Méndez, R. Suarez-Fernandez, P.C. Cervera, Robust real-time vision-based aircraft tracking from unmanned aerial vehicles, in 2014 IEEE International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31–June 7, 2014, p. 5441–5446 (2014). https://doi.org/10.1109/ICRA.2014.6907659 T. Liu, G. Wang, Q. Yang, Real-time part-based visual tracking via adaptive correlation filters, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 4902–4912 (2015). https://doi.org/10.1109/CVPR.2015.7299124 Y. Li, J. Zhu, A scale adaptive kernel correlation filter tracker with feature integration, in Computer Vision—ECCV 2014 Workshops—Zurich, Switzerland, September 6–7 and 12, 2014, Proceedings, Part II. Lecture Notes in Computer Science, vol. 8926, p. 254–265 (2014). https://doi.org/10.1007/978-3-319-16181-5_18 LukezicAVojírTZajcLCMatasJKristanMDiscriminative correlation filter tracker with channel and spatial reliabilityInt. J. Comput. Vis.20181267671688380588810.1007/s11263-017-1061-3 M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Accurate scale estimation for robust visual tracking, in British Machine Vision Conference, BMVC 2014, Nottingham, UK, September 1–5, 2014 (2014). http://www.bmva.org/bmvc/2014/papers/paper038/index.html R. Li, M. Pang, C. Zhao, G. Zhou, L. Fang, Monocular long-term target following on uavs, in 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2016, Las Vegas, NV, USA, June 26–July 1, 2016, p. 29–37 (2016). https://doi.org/10.1109/CVPRW.2016.11 N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20–26 June 2005, San Diego, CA, USA, p. 886–893 (2005). https://doi.org/10.1109/CVPR.2005.177 C. Ma, X. Yang, C. Zhang, M. Yang, Long-term correlation tracking, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 5388–5396 (2015). https://doi.org/10.1109/CVPR.2015.7299177 M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking, in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016, p. 1430–1438 (2016). https://doi.org/10.1109/CVPR.2016.159 KalalZMikolajczykKMatasJTracking-learning-detectionIEEE Trans. Pattern Anal. Mach. Intell.20123471409142210.1109/TPAMI.2011.239 J. Zhang, S. Ma, S. Sclaroff, MEEM: robust tracking via multiple experts using entropy minimization, in Computer Vision—ECCV 2014—13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part VI. Lecture Notes in Computer Science, vol. 8694, p. 188–203 (2014). https://doi.org/10.1007/978-3-319-10599-4_13 HenriquesJFCaseiroRMartinsPBatistaJHigh-speed tracking with kernelized correlation filtersIEEE Trans. Pattern Anal. Mach. Intell.201537358359610.1109/TPAMI.2014.2345390 Y. Li, J. Zhu, S.C.H. Hoi, Reliable patch trackers: Robust visual tracking by exploiting reliable patches, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 353–361 (2015). https://doi.org/10.1109/CVPR.2015.7298632 C. Fu, A. Carrio, M.A. Olivares-Mendez, P. Campoy, Online learning-based robust visual tracking for autonomous landing of unmanned aerial vehicles, in 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, p. 649–655 (2014) H.K. Galoogahi, A. Fagg, S. Lucey, Learning background-aware correlation filters for visual tracking, in IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22–29, 2017, p. 1144–1152 (2017). https://doi.org/10.1109/ICCV.2017.129 M. Mueller, N. Smith, B. Ghanem, A benchmark and simulator for UAV tracking, in Computer Vision—ECCV 2016—14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9905, p. 445–461 (2016). https://doi.org/10.1007/978-3-319-46448-0_27 FuCZhangYHuangZDuanRXieZPart-based background-aware tracking for UAV with convolutional featuresIEEE Access20197799978001010.1109/ACCESS.2019.2922703 H.K. Galoogahi, T. Sim, S. Lucey, Correlation filters with limited boundaries, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 4630–4638 (2015). https://doi.org/10.1109/CVPR.2015.7299094 LinSGarrattMALambertAJMonocular vision-based real-time target recognition and tracking for autonomously landing an UAV in a cluttered shipboard environmentAuton. Robots201741488190110.1007/s10514-016-9564-2 998_CR6 998_CR8 998_CR9 C Fu (998_CR5) 2021; 10 998_CR19 998_CR18 998_CR17 998_CR15 S Lin (998_CR3) 2017; 41 998_CR14 998_CR13 998_CR35 998_CR12 998_CR11 998_CR10 998_CR31 998_CR30 S Hare (998_CR34) 2016; 38 Y Li (998_CR21) 2021; 23 Y Wu (998_CR32) 2015; 37 C Fu (998_CR16) 2019; 7 998_CR29 998_CR1 998_CR28 998_CR2 998_CR26 998_CR4 998_CR25 W Zhang (998_CR27) 2018; 27 A Lukezic (998_CR24) 2018; 126 998_CR23 998_CR22 Z Kalal (998_CR33) 2012; 34 998_CR20 JF Henriques (998_CR7) 2015; 37 |
References_xml | – reference: FuCLiBDingFLinFLuGCorrelation filters for unmanned aerial vehicle-based aerial tracking: a review and experimental evaluationIEEE Geosci. Remote Sens. Mag.202110112516010.1109/MGRS.2021.3072992 – reference: HareSGolodetzSSaffariAVineetVChengMHicksSLTorrPHSStruck: structured output tracking with kernelsIEEE Trans. Pattern Anal. Mach. Intell.201638102096210910.1109/TPAMI.2015.2509974 – reference: C. Fu, A. Carrio, M.A. Olivares-Mendez, P. Campoy, Online learning-based robust visual tracking for autonomous landing of unmanned aerial vehicles, in 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, p. 649–655 (2014) – reference: Y. Li, J. Zhu, A scale adaptive kernel correlation filter tracker with feature integration, in Computer Vision—ECCV 2014 Workshops—Zurich, Switzerland, September 6–7 and 12, 2014, Proceedings, Part II. Lecture Notes in Computer Science, vol. 8926, p. 254–265 (2014). https://doi.org/10.1007/978-3-319-16181-5_18 – reference: Y. Li, J. Zhu, S.C.H. Hoi, Reliable patch trackers: Robust visual tracking by exploiting reliable patches, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 353–361 (2015). https://doi.org/10.1109/CVPR.2015.7298632 – reference: WuYLimJYangMObject tracking benchmarkIEEE Trans. Pattern Anal. Mach. Intell.20153791834184810.1109/TPAMI.2014.2388226 – reference: LinSGarrattMALambertAJMonocular vision-based real-time target recognition and tracking for autonomously landing an UAV in a cluttered shipboard environmentAuton. Robots201741488190110.1007/s10514-016-9564-2 – reference: C. Fu, A. Carrio, M.A. Olivares-Méndez, R. Suarez-Fernandez, P.C. Cervera, Robust real-time vision-based aircraft tracking from unmanned aerial vehicles, in 2014 IEEE International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31–June 7, 2014, p. 5441–5446 (2014). https://doi.org/10.1109/ICRA.2014.6907659 – reference: M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Convolutional features for correlation filter based visual tracking, in 2015 IEEE International Conference on Computer Vision Workshop, ICCV Workshops 2015, Santiago, Chile, December 7–13, 2015, p. 621–629 (2015). https://doi.org/10.1109/ICCVW.2015.84 – reference: HenriquesJFCaseiroRMartinsPBatistaJHigh-speed tracking with kernelized correlation filtersIEEE Trans. Pattern Anal. Mach. Intell.201537358359610.1109/TPAMI.2014.2345390 – reference: C. Fu, F. Ding, Y. Li, J. Jin, C. Feng, Dr2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{\text{2}}$$\end{document}track: towards real-time visual tracking for UAV via distractor repressed dynamic regression, in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020, Las Vegas, NV, USA, October 24, 2020–January 24, 2021, p. 1597–1604 (2020). https://doi.org/10.1109/IROS45743.2020.9341761 – reference: J.F. Henriques, R. Caseiro, P. Martins, J.P. Batista, Exploiting the circulant structure of tracking-by-detection with kernels, in Computer Vision—ECCV 2012—12th European Conference on Computer Vision, Florence, Italy, October 7–13, 2012, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 7575, p. 702–715 (2012). https://doi.org/10.1007/978-3-642-33765-9_50 – reference: Z. Huang, C. Fu, Y. Li, F. Lin, P. Lu, Learning aberrance repressed correlation filters for real-time UAV tracking, in 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27–November 2, 2019, p. 2891–2900 (2019). https://doi.org/10.1109/ICCV.2019.00298 – reference: F.S. Khan, R.M. Anwer, J. van de Weijer, A.D. Bagdanov, M. Vanrell, A.M. López, Color attributes for object detection, in 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16–21, 2012, p. 3306–3313 (2012). https://doi.org/10.1109/CVPR.2012.6248068 – reference: KalalZMikolajczykKMatasJTracking-learning-detectionIEEE Trans. Pattern Anal. Mach. Intell.20123471409142210.1109/TPAMI.2011.239 – reference: D.S. Bolme, J.R. Beveridge, B.A. Draper, Y.M. Lui, Visual object tracking using adaptive correlation filters, in The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13–18 June 2010, p. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 – reference: K.B. Petersen, M.S. Pedersen, The Matrix Cookbook. Technical University of Denmark (2012). http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html – reference: M. Mueller, N. Smith, B. Ghanem, A benchmark and simulator for UAV tracking, in Computer Vision—ECCV 2016—14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9905, p. 445–461 (2016). https://doi.org/10.1007/978-3-319-46448-0_27 – reference: C. Ma, X. Yang, C. Zhang, M. Yang, Long-term correlation tracking, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 5388–5396 (2015). https://doi.org/10.1109/CVPR.2015.7299177 – reference: T. Liu, G. Wang, Q. Yang, Real-time part-based visual tracking via adaptive correlation filters, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 4902–4912 (2015). https://doi.org/10.1109/CVPR.2015.7299124 – reference: Y. Li, C. Fu, F. Ding, Z. Huang, J. Pan, Augmented memory for correlation filters in real-time UAV tracking, in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020, Las Vegas, NV, USA, October 24, 2020–January 24, 2021, p. 1559–1566 (2020). https://doi.org/10.1109/IROS45743.2020.9341595 – reference: N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20–26 June 2005, San Diego, CA, USA, p. 886–893 (2005). https://doi.org/10.1109/CVPR.2005.177 – reference: R. Li, M. Pang, C. Zhao, G. Zhou, L. Fang, Monocular long-term target following on uavs, in 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2016, Las Vegas, NV, USA, June 26–July 1, 2016, p. 29–37 (2016). https://doi.org/10.1109/CVPRW.2016.11 – reference: M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Accurate scale estimation for robust visual tracking, in British Machine Vision Conference, BMVC 2014, Nottingham, UK, September 1–5, 2014 (2014). http://www.bmva.org/bmvc/2014/papers/paper038/index.html – reference: M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Learning spatially regularized correlation filters for visual tracking, in 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7–13, 2015, p. 4310–4318 (2015). https://doi.org/10.1109/ICCV.2015.490 – reference: J. Zhang, S. Ma, S. Sclaroff, MEEM: robust tracking via multiple experts using entropy minimization, in Computer Vision—ECCV 2014—13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part VI. Lecture Notes in Computer Science, vol. 8694, p. 188–203 (2014). https://doi.org/10.1007/978-3-319-10599-4_13 – reference: H.K. Galoogahi, T. Sim, S. Lucey, Correlation filters with limited boundaries, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 4630–4638 (2015). https://doi.org/10.1109/CVPR.2015.7299094 – reference: FuCZhangYHuangZDuanRXieZPart-based background-aware tracking for UAV with convolutional featuresIEEE Access20197799978001010.1109/ACCESS.2019.2922703 – reference: F. Li, C. Tian, W. Zuo, L. Zhang, M. Yang, Learning spatial-temporal regularized correlation filters for visual tracking, in 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22, 2018, p. 4904–4913 (2018). https://doi.org/10.1109/CVPR.2018.00515 – reference: LiYFuCHuangZZhangYPanJIntermittent contextual learning for keyfilter-aware UAV object tracking using deep convolutional featureIEEE Trans. Multimed.20212381082210.1109/TMM.2020.2990064 – reference: M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking, in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016, p. 1430–1438 (2016). https://doi.org/10.1109/CVPR.2016.159 – reference: ZhangWKangBZhangSEnhanced occlusion handling and multipeak redetection for long-term object trackingJ. Electron. Imaging2018270303300510.1117/1.JEI.27.3.033005 – reference: LukezicAVojírTZajcLCMatasJKristanMDiscriminative correlation filter tracker with channel and spatial reliabilityInt. J. Comput. Vis.20181267671688380588810.1007/s11263-017-1061-3 – reference: H.K. Galoogahi, A. Fagg, S. Lucey, Learning background-aware correlation filters for visual tracking, in IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22–29, 2017, p. 1144–1152 (2017). https://doi.org/10.1109/ICCV.2017.129 – reference: L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, P.H.S. Torr, Staple: complementary learners for real-time tracking, in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016, p. 1401–1409 (2016). https://doi.org/10.1109/CVPR.2016.156 – ident: 998_CR15 doi: 10.1109/CVPR.2015.7298632 – volume: 37 start-page: 583 issue: 3 year: 2015 ident: 998_CR7 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2345390 – volume: 7 start-page: 79997 year: 2019 ident: 998_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922703 – ident: 998_CR2 doi: 10.1109/ICUAS.2014.6842309 – volume: 23 start-page: 810 year: 2021 ident: 998_CR21 publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.2990064 – ident: 998_CR30 doi: 10.1109/CVPR.2005.177 – ident: 998_CR12 doi: 10.1109/IROS45743.2020.9341761 – ident: 998_CR13 doi: 10.1007/978-3-642-33765-9_50 – ident: 998_CR19 doi: 10.1109/CVPR.2016.156 – ident: 998_CR25 doi: 10.1109/CVPR.2016.159 – ident: 998_CR4 doi: 10.1109/ICRA.2014.6907659 – ident: 998_CR26 doi: 10.1109/IROS45743.2020.9341595 – ident: 998_CR28 – ident: 998_CR11 doi: 10.1109/ICCV.2019.00298 – volume: 37 start-page: 1834 issue: 9 year: 2015 ident: 998_CR32 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2388226 – volume: 126 start-page: 671 issue: 7 year: 2018 ident: 998_CR24 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-017-1061-3 – ident: 998_CR14 doi: 10.1109/CVPR.2015.7299124 – ident: 998_CR10 doi: 10.1109/CVPR.2018.00515 – ident: 998_CR8 doi: 10.1109/ICCV.2015.490 – ident: 998_CR29 doi: 10.1109/CVPR.2012.6248068 – ident: 998_CR31 doi: 10.1007/978-3-319-46448-0_27 – ident: 998_CR1 doi: 10.1109/CVPRW.2016.11 – ident: 998_CR17 doi: 10.1007/978-3-319-16181-5_18 – ident: 998_CR20 doi: 10.1109/ICCVW.2015.84 – volume: 41 start-page: 881 issue: 4 year: 2017 ident: 998_CR3 publication-title: Auton. Robots doi: 10.1007/s10514-016-9564-2 – ident: 998_CR18 doi: 10.5244/C.28.65 – ident: 998_CR35 doi: 10.1007/978-3-319-10599-4_13 – ident: 998_CR6 doi: 10.1109/CVPR.2010.5539960 – volume: 27 start-page: 033005 issue: 03 year: 2018 ident: 998_CR27 publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.27.3.033005 – volume: 10 start-page: 125 issue: 1 year: 2021 ident: 998_CR5 publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2021.3072992 – ident: 998_CR22 doi: 10.1109/CVPR.2015.7299177 – volume: 34 start-page: 1409 issue: 7 year: 2012 ident: 998_CR33 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.239 – ident: 998_CR23 doi: 10.1109/CVPR.2015.7299094 – ident: 998_CR9 doi: 10.1109/ICCV.2017.129 – volume: 38 start-page: 2096 issue: 10 year: 2016 ident: 998_CR34 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2509974 |
SSID | ssj0056202 |
Score | 2.3633223 |
Snippet | Correlation filter-based trackers have made significant progress in visual object tracking for various types of unmanned aerial vehicle (UAV) applications due... Abstract Correlation filter-based trackers have made significant progress in visual object tracking for various types of unmanned aerial vehicle (UAV)... |
SourceID | doaj proquest gale crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 35 |
SubjectTerms | Algorithms Background noise Consistency Correlation Correlation filter Drone aircraft Engineering Optical tracking Quantum Information Technology Regularization Response map Signal,Image and Speech Processing Spatial–temporal information Spintronics Unmanned aerial vehicle (UAV) Unmanned aerial vehicles Visual object tracking |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR09b9Uw0EKdyoD4FIEWeUBigKi24zj2-IpaVZVg4qFulh2fUZeAXl4Xfj13dgJFFWLpFCW-SKf7Pvt8x9jbYEUUILpWJdFjgpJQpWzJeaKBPsEIpRjz02dzsdWXV_3VrVFfVBNW2wNXwp2YoJSwEIZRRN3TDegcjU056KQAcsnW0eetyVS1wejUqW6nXpGx5mSWnel0i_6ppZDItuIvN1S69d-1yXcOR4vPOX_MHi3BIt9UJJ-wBzA9ZQ9vtRB8xm6WBqnf-Ey10Qi9K9Pld9c_IfGRZm_Uajeer-lgfOa084pApTQWEGKaidNoY3mYEk-lkS7t5PPdWiSL_-LrdvOV0xLtrT9n2_OzLx8v2mWUQjtq6fZtr-UAOcDgFIYEzoVOBeNCP8qYeieD0xjpoGojlbsUx0E7JULOwkCO0tnYvWAH0_cJXjI-GpeliyBAB3TvIQ4yWTFGfGI2KVzD3q-U9T9qxwxfMg1rfOWDRz74wgcvGnZKxP8NSd2uyweUAb_IgP-fDDTsHbHOk04SIcJytQARpu5WfkNhJ6bLvWzY0cpdvyjr7BUZLYeRmWrYh5Xjf5b_jfyr-0D-NTukEfa1ROaIHex3N3CMgc4-viky_QvCovr3 priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29b9UwELdQWWBA5Uu8UpAHJAaIsB3bscdHRVUhwcRD3Sw7PlddUpS8Lv3ruXOSAqo6MEWJz5Hln-_Lvjsz9i46kQSItlFZGHRQMrKUqz5PsmAy9FCDMb99t2c7_fXcnC9JYdMa7b4eSVZJXdna2U-TbG2rG9QxDZk1rkFH_aFB353W9QnlOMzyFxU6xewc3d_vHxVUK_Xflcd3Dkarvjk9ZE8WQ5FvZ2SfsgcwPGOP_yof-JxdL8VRL_hEcdFIPdab5cfLG8i8p3s35kg3Xi7pUHzitOuKRDUsFpBimAhllK88DpnnWkSXdvH5uAbIYl983W1_cmqiffUXbHf65cfJWbNco9D0Wvp9Y7TsoETovEJzwPvYqmh9NL1M2XgZvUYrB9m660WbU99pr0QsRVgoSXqX2pfsYLga4BXjvfVF-gQCdETVHlMnsxN9wid6ksJv2Id1ZsOvuVpGqF6Gs2HGISAOoeIQxIZ9psm_paRK1_XD1XgRFsYJNiolHEQcXdKGMuBLsi6XqLMCKPiT9wRdIH6kiYhLWgEOmCpbhS2ZnOgqG7lhxyu6YWHUKSgSWB6tMrVhH1fE_zTfP_ij_yN_zR7RRfVzIMwxO9iP1_AGzZl9eltX729MYe56 priority: 102 providerName: Springer Nature |
Title | Learning spatial regularized correlation filters with response consistency and distractor repression for UAV tracking |
URI | https://link.springer.com/article/10.1186/s13634-023-00998-0 https://www.proquest.com/docview/2787094392 https://doaj.org/article/6a2208ea7c0b450480fb68dfa4d2eef0 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0KLtBQ6Ip1golQ9IHCCq4ziOfULbVZcKiQohFvVm-Vn1ki3J9sLXM-M4FFTBxVFix7JmPE-PZwh5YxVzLLKm4oG1YKAEICmVbR4nYxuijzkY8_O5PNuITxftRXG4jSWscuaJmVGHrUcf-THHnaVBfPIP1z8qrBqFp6ulhMYeOQAWrMD4Ojg5Pf_ydebFINynqEOp8mU4Pl-bUfJ4rBvZiApkVoVqkqrYX6IpZ_C_y6fvHJhmObR-RB4WBZIuJ4w_Jvdi_4Q8-COt4FNyU5KmXtIR46Vh9JArzg9XP2OgHutxTBFwNF3hYflI0RsLg3K4bIQR_YjYB75LbR9oyMl10btPhzlwFv6F183yO8Uu9Lc_I5v16bfVWVXKK1Re1HpXtaLuYrKx0wBbkEq24VZq2_rahVbXVgvQfoDcO8-a4HwnNGc2JSZjcrVWrnlO9vttH18Q6qVOtXaRRWFB5FvX1UEx7-AJFibTC_Juhqy5nrJomGx9KGkmPBjAg8l4MGxBThD4v0diBuz8YTtcmkJQRlrOmYoWVudEizfjk5MqJCsCjzHBJG8RdQbpFAFhy3UDWDBmvDJLVEXBhG7rBTmcsWsKAY_mdrstyPsZ47fd_178y__P9orcx4L1U0DMIdnfDTfxNag1O3dE9gT7CK1aQzvtY3hbcYGtXB1ldwG0G778Bcp1-kk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKATggnmKhgA8gDhDVcRyvfUBoeSxb-jh1UW_Gjp2ql2xJtkLwUXwjM05CQRXceooSTyzL87bnAfDMae555EUmAi_RQQnIUjr5PF7FMsQqpmDM_QO1WMpPR-XRBvwcc2EorHKUiUlQh1VFZ-TbgijLoPoUb06_ZtQ1im5XxxYaPVnsxu_f0GXrXu-8R_w-F2L-4fDdIhu6CmSVzM06K2U-jbWLU4NTojB2hXDKuLLKfShN7oxEpY9UPq14EXw1lUZwV9dcxdqjh-4LnPcKXJVFYYij9PzjKPnRlOhjHJVOqXdiTNLRarvLC1XIDDVkRkaZzvhfijD1C7ioFS5czyatN78FNwdzlc16-roNG7G5Azf-KGJ4F86GEq3HrKPobIRuU3_79uRHDKyi7h99vB2rT-hqvmN09otAKTg3IkTTEa2hlGeuCSykUr50l8DaMUwX_8XX5ewzoyE63b8Hy0vZ9vuw2aya-ABYpUydGx95lA4NDOenedC88vhEf5abCbwcd9ae9jU7bPJ1tLI9HiziwSY8WD6Bt7T5vyGp3nb6sGqP7cC-VjkhuI4OV-dlSXn4tVc61E4GEWONk7wg1FmSCrQRbkhuwAVTfS07I8MXHfYyn8DWiF07iIvOnhP3BF6NGD8f_vfiH_5_tqdwbXG4v2f3dg52H8F1QeSXQnG2YHPdnsXHaFCt_ZNExQy-XDbb_AIJCC-5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKhQI-gDhAtI6TOPEBoS3tqqWwqhCLenPt2K56yZbNVgh-Gr-OGSehoApuPUWJHcvyjOdhfzMD8NxU3HLPs0Q4XqCD4nBLVdHnsdIXztc-gjE_zuXeIn9_VBxtwM8hFoZglYNMjILaLWs6I58I4iyF6lNMQg-LONyZvT37mlAFKbppHcppdCxy4L9_Q_etfbO_g7R-IcRs9_O7vaSvMJDUearWSZGnpQ_GlwqHR8FsMmGkMkWdWleo1KgcDQDk-LLmmbN1mSvBTQhc-mDRW7cZjnsNNkv0ivgINrd354efBj2AhkWHeJRVDMQTQ8hOJSdtmsksT1BfJmSiVQn_Sy3G6gGXdcSly9qoA2e34VZvvLJpx213YMM3d-HmHykN78F5n7D1hLWE1cbeq1jtfnX6wztWUy2QDn3Hwild1LeMToKxU4TqeuzRtMR5KPOZaRxzMbEv3Syw1QDaxX_xdTH9wqiJzvrvw-JKFv4BjJpl4x8Cq6UKqbKe-9yguWFsmbqK1xaf6N1yNYZXw8rqsy6Dh46eTyV1RweNdNCRDpqPYZsW_3dPyr4dPyxXJ7rfzFoaIXjlDc7O5gVF5QcrKxdM7oT3AQd5SaTTJCNoIUwf6oATpmxbekpmMLrvRTqGrYG6uhcerb5g9TG8Hih-0fzvyT_6_2jP4DpuGf1hf37wGG4I4r6Iy9mC0Xp17p-gdbW2T3s2ZnB81TvnF1kYNUs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+spatial+regularized+correlation+filters+with+response+consistency+and+distractor+repression+for+UAV+tracking&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Zhang%2C+Wei&rft.date=2023-12-01&rft.issn=1687-6180&rft.eissn=1687-6180&rft.volume=2023&rft.issue=1&rft_id=info:doi/10.1186%2Fs13634-023-00998-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13634_023_00998_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon |