Learning spatial regularized correlation filters with response consistency and distractor repression for UAV tracking

Correlation filter-based trackers have made significant progress in visual object tracking for various types of unmanned aerial vehicle (UAV) applications due to their promising performance and efficiency. However, the boundary effect remains a challenging problem. Several methods enlarge search are...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on advances in signal processing Vol. 2023; no. 1; pp. 35 - 21
Main Author Zhang, Wei
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2023
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Correlation filter-based trackers have made significant progress in visual object tracking for various types of unmanned aerial vehicle (UAV) applications due to their promising performance and efficiency. However, the boundary effect remains a challenging problem. Several methods enlarge search areas to handle this shortcoming but introduce more background noise, and the filter is prone to learn from distractors. To address this issue, we present spatial regularized correlation filters with response consistency and distractor repression. Specifically, a temporal constraint is introduced to reinforce the consistency across frames by minimizing the difference between consecutive correlation response maps. A dynamic spatial constraint is also integrated by exploiting the local maximum points of the correlation response produced during the detection phase to mitigate the interference from background distractions. The proposed appearance model can optimize the temporal and spatial constraints together with a spatial regularization weight simultaneously. Meanwhile, the proposed appearance model can be solved effectively based on the alternating direction method of multipliers algorithm. The spatial and temporal information concealed in the response maps is fully taken into consideration to boost overall tracking performance. Extensive experiments are conducted on a public UAV benchmark dataset with 123 challenging sequences. The experimental results and analysis demonstrate that the proposed method outperforms 12 state-of-the-art trackers in terms of both accuracy and robustness while efficiently operating in real time.
AbstractList Correlation filter-based trackers have made significant progress in visual object tracking for various types of unmanned aerial vehicle (UAV) applications due to their promising performance and efficiency. However, the boundary effect remains a challenging problem. Several methods enlarge search areas to handle this shortcoming but introduce more background noise, and the filter is prone to learn from distractors. To address this issue, we present spatial regularized correlation filters with response consistency and distractor repression. Specifically, a temporal constraint is introduced to reinforce the consistency across frames by minimizing the difference between consecutive correlation response maps. A dynamic spatial constraint is also integrated by exploiting the local maximum points of the correlation response produced during the detection phase to mitigate the interference from background distractions. The proposed appearance model can optimize the temporal and spatial constraints together with a spatial regularization weight simultaneously. Meanwhile, the proposed appearance model can be solved effectively based on the alternating direction method of multipliers algorithm. The spatial and temporal information concealed in the response maps is fully taken into consideration to boost overall tracking performance. Extensive experiments are conducted on a public UAV benchmark dataset with 123 challenging sequences. The experimental results and analysis demonstrate that the proposed method outperforms 12 state-of-the-art trackers in terms of both accuracy and robustness while efficiently operating in real time.
Abstract Correlation filter-based trackers have made significant progress in visual object tracking for various types of unmanned aerial vehicle (UAV) applications due to their promising performance and efficiency. However, the boundary effect remains a challenging problem. Several methods enlarge search areas to handle this shortcoming but introduce more background noise, and the filter is prone to learn from distractors. To address this issue, we present spatial regularized correlation filters with response consistency and distractor repression. Specifically, a temporal constraint is introduced to reinforce the consistency across frames by minimizing the difference between consecutive correlation response maps. A dynamic spatial constraint is also integrated by exploiting the local maximum points of the correlation response produced during the detection phase to mitigate the interference from background distractions. The proposed appearance model can optimize the temporal and spatial constraints together with a spatial regularization weight simultaneously. Meanwhile, the proposed appearance model can be solved effectively based on the alternating direction method of multipliers algorithm. The spatial and temporal information concealed in the response maps is fully taken into consideration to boost overall tracking performance. Extensive experiments are conducted on a public UAV benchmark dataset with 123 challenging sequences. The experimental results and analysis demonstrate that the proposed method outperforms 12 state-of-the-art trackers in terms of both accuracy and robustness while efficiently operating in real time.
ArticleNumber 35
Audience Academic
Author Zhang, Wei
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-9048-8307
  surname: Zhang
  fullname: Zhang, Wei
  email: zhangwei.personal@163.com
  organization: Department of Computer Science, Baoji University of Arts and Sciences
BookMark eNp9UU1v1DAQjVCRaAt_gFMkzim24zj2cVXxUWmlXihXa-KMg5fUDnZWqPx6ZjeIckI-2DN-7_l53lV1EVPEqnrL2Q3nWr0vvFWtbJhoG8aM0Q17UV1ypftGcc0u_jm_qq5KOTDWKcHEZXXcI-QY4lSXBdYAc51xOs6Qwy8ca5dyxpn6KdY-zCvmUv8M6zcClSXFgoSIJZQVo3uqIY71SEUGt6ZMmIVg5cyl8mH3tT5dfafHXlcvPcwF3_zZr6uHjx--3H5u9vef7m53-8ZJbtamk7xHD9gb0WthDLQClIHO8WHsDAcjFRdCdL1j7Ti4XhrBwHum0A_c6KG9ru423THBwS45PEJ-sgmCPTdSnizkNbgZrQIhmEYgrUF2TGrmB6VHD3IUiJ6R1rtNa8npxxHLag_pmCPZt-SuZ0a2RhDqZkNNQKIh-nT6M60RHwMNC2mMaHe95Mr0uuNEEBvB5VRKRv_XJmf2lK3dsrWUrT1na09e2o1UCBwnzM9e_sP6DeYdqq0
Cites_doi 10.1109/CVPR.2015.7298632
10.1109/TPAMI.2014.2345390
10.1109/ACCESS.2019.2922703
10.1109/ICUAS.2014.6842309
10.1109/TMM.2020.2990064
10.1109/CVPR.2005.177
10.1109/IROS45743.2020.9341761
10.1007/978-3-642-33765-9_50
10.1109/CVPR.2016.156
10.1109/CVPR.2016.159
10.1109/ICRA.2014.6907659
10.1109/IROS45743.2020.9341595
10.1109/ICCV.2019.00298
10.1109/TPAMI.2014.2388226
10.1007/s11263-017-1061-3
10.1109/CVPR.2015.7299124
10.1109/CVPR.2018.00515
10.1109/ICCV.2015.490
10.1109/CVPR.2012.6248068
10.1007/978-3-319-46448-0_27
10.1109/CVPRW.2016.11
10.1007/978-3-319-16181-5_18
10.1109/ICCVW.2015.84
10.1007/s10514-016-9564-2
10.5244/C.28.65
10.1007/978-3-319-10599-4_13
10.1109/CVPR.2010.5539960
10.1117/1.JEI.27.3.033005
10.1109/MGRS.2021.3072992
10.1109/CVPR.2015.7299177
10.1109/TPAMI.2011.239
10.1109/CVPR.2015.7299094
10.1109/ICCV.2017.129
10.1109/TPAMI.2015.2509974
ContentType Journal Article
Copyright The Author(s) 2023
COPYRIGHT 2023 Springer
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1186/s13634-023-00998-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (New)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-6180
EndPage 21
ExternalDocumentID oai_doaj_org_article_6a2208ea7c0b450480fb68dfa4d2eef0
A741697851
10_1186_s13634_023_00998_0
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Key Research and Development Projects of Shaanxi Province
  grantid: 2022GY-071
  funderid: http://dx.doi.org/10.13039/501100015401
– fundername: Natural Science Foundation of Shaanxi Provincial Department of Education
  grantid: 20JK0487
  funderid: http://dx.doi.org/10.13039/501100010228
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABEEZ
ABUWG
ACACY
ACGFO
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ARCSS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DU5
DWQXO
E3Z
EBLON
EBS
EDO
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
M0N
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RNS
RSV
SEG
SOJ
TUS
U2A
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
PMFND
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c419t-5417efae79278299a32a69a5c1bd591a946122257c03dbc74920aff06efb198b3
IEDL.DBID BENPR
ISSN 1687-6180
1687-6172
IngestDate Wed Aug 27 01:16:22 EDT 2025
Fri Jul 25 05:24:26 EDT 2025
Tue Jun 10 20:44:20 EDT 2025
Tue Jul 01 01:54:57 EDT 2025
Fri Feb 21 02:45:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Visual object tracking
Response map
Unmanned aerial vehicle (UAV)
Correlation filter
Spatial–temporal information
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-5417efae79278299a32a69a5c1bd591a946122257c03dbc74920aff06efb198b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9048-8307
OpenAccessLink https://www.proquest.com/docview/2787094392?pq-origsite=%requestingapplication%
PQID 2787094392
PQPubID 237299
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_6a2208ea7c0b450480fb68dfa4d2eef0
proquest_journals_2787094392
gale_infotracacademiconefile_A741697851
crossref_primary_10_1186_s13634_023_00998_0
springer_journals_10_1186_s13634_023_00998_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on advances in signal processing
PublicationTitleAbbrev EURASIP J. Adv. Signal Process
PublicationYear 2023
Publisher Springer International Publishing
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References LiYFuCHuangZZhangYPanJIntermittent contextual learning for keyfilter-aware UAV object tracking using deep convolutional featureIEEE Trans. Multimed.20212381082210.1109/TMM.2020.2990064
M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Learning spatially regularized correlation filters for visual tracking, in 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7–13, 2015, p. 4310–4318 (2015). https://doi.org/10.1109/ICCV.2015.490
J.F. Henriques, R. Caseiro, P. Martins, J.P. Batista, Exploiting the circulant structure of tracking-by-detection with kernels, in Computer Vision—ECCV 2012—12th European Conference on Computer Vision, Florence, Italy, October 7–13, 2012, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 7575, p. 702–715 (2012). https://doi.org/10.1007/978-3-642-33765-9_50
FuCLiBDingFLinFLuGCorrelation filters for unmanned aerial vehicle-based aerial tracking: a review and experimental evaluationIEEE Geosci. Remote Sens. Mag.202110112516010.1109/MGRS.2021.3072992
F. Li, C. Tian, W. Zuo, L. Zhang, M. Yang, Learning spatial-temporal regularized correlation filters for visual tracking, in 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22, 2018, p. 4904–4913 (2018). https://doi.org/10.1109/CVPR.2018.00515
Z. Huang, C. Fu, Y. Li, F. Lin, P. Lu, Learning aberrance repressed correlation filters for real-time UAV tracking, in 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27–November 2, 2019, p. 2891–2900 (2019). https://doi.org/10.1109/ICCV.2019.00298
L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, P.H.S. Torr, Staple: complementary learners for real-time tracking, in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016, p. 1401–1409 (2016). https://doi.org/10.1109/CVPR.2016.156
Y. Li, C. Fu, F. Ding, Z. Huang, J. Pan, Augmented memory for correlation filters in real-time UAV tracking, in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020, Las Vegas, NV, USA, October 24, 2020–January 24, 2021, p. 1559–1566 (2020). https://doi.org/10.1109/IROS45743.2020.9341595
F.S. Khan, R.M. Anwer, J. van de Weijer, A.D. Bagdanov, M. Vanrell, A.M. López, Color attributes for object detection, in 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16–21, 2012, p. 3306–3313 (2012). https://doi.org/10.1109/CVPR.2012.6248068
D.S. Bolme, J.R. Beveridge, B.A. Draper, Y.M. Lui, Visual object tracking using adaptive correlation filters, in The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13–18 June 2010, p. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960
K.B. Petersen, M.S. Pedersen, The Matrix Cookbook. Technical University of Denmark (2012). http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
WuYLimJYangMObject tracking benchmarkIEEE Trans. Pattern Anal. Mach. Intell.20153791834184810.1109/TPAMI.2014.2388226
ZhangWKangBZhangSEnhanced occlusion handling and multipeak redetection for long-term object trackingJ. Electron. Imaging2018270303300510.1117/1.JEI.27.3.033005
M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Convolutional features for correlation filter based visual tracking, in 2015 IEEE International Conference on Computer Vision Workshop, ICCV Workshops 2015, Santiago, Chile, December 7–13, 2015, p. 621–629 (2015). https://doi.org/10.1109/ICCVW.2015.84
C. Fu, F. Ding, Y. Li, J. Jin, C. Feng, Dr2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{\text{2}}$$\end{document}track: towards real-time visual tracking for UAV via distractor repressed dynamic regression, in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020, Las Vegas, NV, USA, October 24, 2020–January 24, 2021, p. 1597–1604 (2020). https://doi.org/10.1109/IROS45743.2020.9341761
HareSGolodetzSSaffariAVineetVChengMHicksSLTorrPHSStruck: structured output tracking with kernelsIEEE Trans. Pattern Anal. Mach. Intell.201638102096210910.1109/TPAMI.2015.2509974
C. Fu, A. Carrio, M.A. Olivares-Méndez, R. Suarez-Fernandez, P.C. Cervera, Robust real-time vision-based aircraft tracking from unmanned aerial vehicles, in 2014 IEEE International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31–June 7, 2014, p. 5441–5446 (2014). https://doi.org/10.1109/ICRA.2014.6907659
T. Liu, G. Wang, Q. Yang, Real-time part-based visual tracking via adaptive correlation filters, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 4902–4912 (2015). https://doi.org/10.1109/CVPR.2015.7299124
Y. Li, J. Zhu, A scale adaptive kernel correlation filter tracker with feature integration, in Computer Vision—ECCV 2014 Workshops—Zurich, Switzerland, September 6–7 and 12, 2014, Proceedings, Part II. Lecture Notes in Computer Science, vol. 8926, p. 254–265 (2014). https://doi.org/10.1007/978-3-319-16181-5_18
LukezicAVojírTZajcLCMatasJKristanMDiscriminative correlation filter tracker with channel and spatial reliabilityInt. J. Comput. Vis.20181267671688380588810.1007/s11263-017-1061-3
M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Accurate scale estimation for robust visual tracking, in British Machine Vision Conference, BMVC 2014, Nottingham, UK, September 1–5, 2014 (2014). http://www.bmva.org/bmvc/2014/papers/paper038/index.html
R. Li, M. Pang, C. Zhao, G. Zhou, L. Fang, Monocular long-term target following on uavs, in 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2016, Las Vegas, NV, USA, June 26–July 1, 2016, p. 29–37 (2016). https://doi.org/10.1109/CVPRW.2016.11
N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20–26 June 2005, San Diego, CA, USA, p. 886–893 (2005). https://doi.org/10.1109/CVPR.2005.177
C. Ma, X. Yang, C. Zhang, M. Yang, Long-term correlation tracking, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 5388–5396 (2015). https://doi.org/10.1109/CVPR.2015.7299177
M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking, in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016, p. 1430–1438 (2016). https://doi.org/10.1109/CVPR.2016.159
KalalZMikolajczykKMatasJTracking-learning-detectionIEEE Trans. Pattern Anal. Mach. Intell.20123471409142210.1109/TPAMI.2011.239
J. Zhang, S. Ma, S. Sclaroff, MEEM: robust tracking via multiple experts using entropy minimization, in Computer Vision—ECCV 2014—13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part VI. Lecture Notes in Computer Science, vol. 8694, p. 188–203 (2014). https://doi.org/10.1007/978-3-319-10599-4_13
HenriquesJFCaseiroRMartinsPBatistaJHigh-speed tracking with kernelized correlation filtersIEEE Trans. Pattern Anal. Mach. Intell.201537358359610.1109/TPAMI.2014.2345390
Y. Li, J. Zhu, S.C.H. Hoi, Reliable patch trackers: Robust visual tracking by exploiting reliable patches, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 353–361 (2015). https://doi.org/10.1109/CVPR.2015.7298632
C. Fu, A. Carrio, M.A. Olivares-Mendez, P. Campoy, Online learning-based robust visual tracking for autonomous landing of unmanned aerial vehicles, in 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, p. 649–655 (2014)
H.K. Galoogahi, A. Fagg, S. Lucey, Learning background-aware correlation filters for visual tracking, in IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22–29, 2017, p. 1144–1152 (2017). https://doi.org/10.1109/ICCV.2017.129
M. Mueller, N. Smith, B. Ghanem, A benchmark and simulator for UAV tracking, in Computer Vision—ECCV 2016—14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9905, p. 445–461 (2016). https://doi.org/10.1007/978-3-319-46448-0_27
FuCZhangYHuangZDuanRXieZPart-based background-aware tracking for UAV with convolutional featuresIEEE Access20197799978001010.1109/ACCESS.2019.2922703
H.K. Galoogahi, T. Sim, S. Lucey, Correlation filters with limited boundaries, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 4630–4638 (2015). https://doi.org/10.1109/CVPR.2015.7299094
LinSGarrattMALambertAJMonocular vision-based real-time target recognition and tracking for autonomously landing an UAV in a cluttered shipboard environmentAuton. Robots201741488190110.1007/s10514-016-9564-2
998_CR6
998_CR8
998_CR9
C Fu (998_CR5) 2021; 10
998_CR19
998_CR18
998_CR17
998_CR15
S Lin (998_CR3) 2017; 41
998_CR14
998_CR13
998_CR35
998_CR12
998_CR11
998_CR10
998_CR31
998_CR30
S Hare (998_CR34) 2016; 38
Y Li (998_CR21) 2021; 23
Y Wu (998_CR32) 2015; 37
C Fu (998_CR16) 2019; 7
998_CR29
998_CR1
998_CR28
998_CR2
998_CR26
998_CR4
998_CR25
W Zhang (998_CR27) 2018; 27
A Lukezic (998_CR24) 2018; 126
998_CR23
998_CR22
Z Kalal (998_CR33) 2012; 34
998_CR20
JF Henriques (998_CR7) 2015; 37
References_xml – reference: FuCLiBDingFLinFLuGCorrelation filters for unmanned aerial vehicle-based aerial tracking: a review and experimental evaluationIEEE Geosci. Remote Sens. Mag.202110112516010.1109/MGRS.2021.3072992
– reference: HareSGolodetzSSaffariAVineetVChengMHicksSLTorrPHSStruck: structured output tracking with kernelsIEEE Trans. Pattern Anal. Mach. Intell.201638102096210910.1109/TPAMI.2015.2509974
– reference: C. Fu, A. Carrio, M.A. Olivares-Mendez, P. Campoy, Online learning-based robust visual tracking for autonomous landing of unmanned aerial vehicles, in 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, p. 649–655 (2014)
– reference: Y. Li, J. Zhu, A scale adaptive kernel correlation filter tracker with feature integration, in Computer Vision—ECCV 2014 Workshops—Zurich, Switzerland, September 6–7 and 12, 2014, Proceedings, Part II. Lecture Notes in Computer Science, vol. 8926, p. 254–265 (2014). https://doi.org/10.1007/978-3-319-16181-5_18
– reference: Y. Li, J. Zhu, S.C.H. Hoi, Reliable patch trackers: Robust visual tracking by exploiting reliable patches, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 353–361 (2015). https://doi.org/10.1109/CVPR.2015.7298632
– reference: WuYLimJYangMObject tracking benchmarkIEEE Trans. Pattern Anal. Mach. Intell.20153791834184810.1109/TPAMI.2014.2388226
– reference: LinSGarrattMALambertAJMonocular vision-based real-time target recognition and tracking for autonomously landing an UAV in a cluttered shipboard environmentAuton. Robots201741488190110.1007/s10514-016-9564-2
– reference: C. Fu, A. Carrio, M.A. Olivares-Méndez, R. Suarez-Fernandez, P.C. Cervera, Robust real-time vision-based aircraft tracking from unmanned aerial vehicles, in 2014 IEEE International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31–June 7, 2014, p. 5441–5446 (2014). https://doi.org/10.1109/ICRA.2014.6907659
– reference: M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Convolutional features for correlation filter based visual tracking, in 2015 IEEE International Conference on Computer Vision Workshop, ICCV Workshops 2015, Santiago, Chile, December 7–13, 2015, p. 621–629 (2015). https://doi.org/10.1109/ICCVW.2015.84
– reference: HenriquesJFCaseiroRMartinsPBatistaJHigh-speed tracking with kernelized correlation filtersIEEE Trans. Pattern Anal. Mach. Intell.201537358359610.1109/TPAMI.2014.2345390
– reference: C. Fu, F. Ding, Y. Li, J. Jin, C. Feng, Dr2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{\text{2}}$$\end{document}track: towards real-time visual tracking for UAV via distractor repressed dynamic regression, in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020, Las Vegas, NV, USA, October 24, 2020–January 24, 2021, p. 1597–1604 (2020). https://doi.org/10.1109/IROS45743.2020.9341761
– reference: J.F. Henriques, R. Caseiro, P. Martins, J.P. Batista, Exploiting the circulant structure of tracking-by-detection with kernels, in Computer Vision—ECCV 2012—12th European Conference on Computer Vision, Florence, Italy, October 7–13, 2012, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 7575, p. 702–715 (2012). https://doi.org/10.1007/978-3-642-33765-9_50
– reference: Z. Huang, C. Fu, Y. Li, F. Lin, P. Lu, Learning aberrance repressed correlation filters for real-time UAV tracking, in 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27–November 2, 2019, p. 2891–2900 (2019). https://doi.org/10.1109/ICCV.2019.00298
– reference: F.S. Khan, R.M. Anwer, J. van de Weijer, A.D. Bagdanov, M. Vanrell, A.M. López, Color attributes for object detection, in 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16–21, 2012, p. 3306–3313 (2012). https://doi.org/10.1109/CVPR.2012.6248068
– reference: KalalZMikolajczykKMatasJTracking-learning-detectionIEEE Trans. Pattern Anal. Mach. Intell.20123471409142210.1109/TPAMI.2011.239
– reference: D.S. Bolme, J.R. Beveridge, B.A. Draper, Y.M. Lui, Visual object tracking using adaptive correlation filters, in The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13–18 June 2010, p. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960
– reference: K.B. Petersen, M.S. Pedersen, The Matrix Cookbook. Technical University of Denmark (2012). http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
– reference: M. Mueller, N. Smith, B. Ghanem, A benchmark and simulator for UAV tracking, in Computer Vision—ECCV 2016—14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9905, p. 445–461 (2016). https://doi.org/10.1007/978-3-319-46448-0_27
– reference: C. Ma, X. Yang, C. Zhang, M. Yang, Long-term correlation tracking, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 5388–5396 (2015). https://doi.org/10.1109/CVPR.2015.7299177
– reference: T. Liu, G. Wang, Q. Yang, Real-time part-based visual tracking via adaptive correlation filters, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 4902–4912 (2015). https://doi.org/10.1109/CVPR.2015.7299124
– reference: Y. Li, C. Fu, F. Ding, Z. Huang, J. Pan, Augmented memory for correlation filters in real-time UAV tracking, in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020, Las Vegas, NV, USA, October 24, 2020–January 24, 2021, p. 1559–1566 (2020). https://doi.org/10.1109/IROS45743.2020.9341595
– reference: N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20–26 June 2005, San Diego, CA, USA, p. 886–893 (2005). https://doi.org/10.1109/CVPR.2005.177
– reference: R. Li, M. Pang, C. Zhao, G. Zhou, L. Fang, Monocular long-term target following on uavs, in 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2016, Las Vegas, NV, USA, June 26–July 1, 2016, p. 29–37 (2016). https://doi.org/10.1109/CVPRW.2016.11
– reference: M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Accurate scale estimation for robust visual tracking, in British Machine Vision Conference, BMVC 2014, Nottingham, UK, September 1–5, 2014 (2014). http://www.bmva.org/bmvc/2014/papers/paper038/index.html
– reference: M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Learning spatially regularized correlation filters for visual tracking, in 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7–13, 2015, p. 4310–4318 (2015). https://doi.org/10.1109/ICCV.2015.490
– reference: J. Zhang, S. Ma, S. Sclaroff, MEEM: robust tracking via multiple experts using entropy minimization, in Computer Vision—ECCV 2014—13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part VI. Lecture Notes in Computer Science, vol. 8694, p. 188–203 (2014). https://doi.org/10.1007/978-3-319-10599-4_13
– reference: H.K. Galoogahi, T. Sim, S. Lucey, Correlation filters with limited boundaries, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, p. 4630–4638 (2015). https://doi.org/10.1109/CVPR.2015.7299094
– reference: FuCZhangYHuangZDuanRXieZPart-based background-aware tracking for UAV with convolutional featuresIEEE Access20197799978001010.1109/ACCESS.2019.2922703
– reference: F. Li, C. Tian, W. Zuo, L. Zhang, M. Yang, Learning spatial-temporal regularized correlation filters for visual tracking, in 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22, 2018, p. 4904–4913 (2018). https://doi.org/10.1109/CVPR.2018.00515
– reference: LiYFuCHuangZZhangYPanJIntermittent contextual learning for keyfilter-aware UAV object tracking using deep convolutional featureIEEE Trans. Multimed.20212381082210.1109/TMM.2020.2990064
– reference: M. Danelljan, G. Häger, F.S. Khan, M. Felsberg, Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking, in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016, p. 1430–1438 (2016). https://doi.org/10.1109/CVPR.2016.159
– reference: ZhangWKangBZhangSEnhanced occlusion handling and multipeak redetection for long-term object trackingJ. Electron. Imaging2018270303300510.1117/1.JEI.27.3.033005
– reference: LukezicAVojírTZajcLCMatasJKristanMDiscriminative correlation filter tracker with channel and spatial reliabilityInt. J. Comput. Vis.20181267671688380588810.1007/s11263-017-1061-3
– reference: H.K. Galoogahi, A. Fagg, S. Lucey, Learning background-aware correlation filters for visual tracking, in IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22–29, 2017, p. 1144–1152 (2017). https://doi.org/10.1109/ICCV.2017.129
– reference: L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, P.H.S. Torr, Staple: complementary learners for real-time tracking, in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016, p. 1401–1409 (2016). https://doi.org/10.1109/CVPR.2016.156
– ident: 998_CR15
  doi: 10.1109/CVPR.2015.7298632
– volume: 37
  start-page: 583
  issue: 3
  year: 2015
  ident: 998_CR7
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2345390
– volume: 7
  start-page: 79997
  year: 2019
  ident: 998_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922703
– ident: 998_CR2
  doi: 10.1109/ICUAS.2014.6842309
– volume: 23
  start-page: 810
  year: 2021
  ident: 998_CR21
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.2990064
– ident: 998_CR30
  doi: 10.1109/CVPR.2005.177
– ident: 998_CR12
  doi: 10.1109/IROS45743.2020.9341761
– ident: 998_CR13
  doi: 10.1007/978-3-642-33765-9_50
– ident: 998_CR19
  doi: 10.1109/CVPR.2016.156
– ident: 998_CR25
  doi: 10.1109/CVPR.2016.159
– ident: 998_CR4
  doi: 10.1109/ICRA.2014.6907659
– ident: 998_CR26
  doi: 10.1109/IROS45743.2020.9341595
– ident: 998_CR28
– ident: 998_CR11
  doi: 10.1109/ICCV.2019.00298
– volume: 37
  start-page: 1834
  issue: 9
  year: 2015
  ident: 998_CR32
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2388226
– volume: 126
  start-page: 671
  issue: 7
  year: 2018
  ident: 998_CR24
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-017-1061-3
– ident: 998_CR14
  doi: 10.1109/CVPR.2015.7299124
– ident: 998_CR10
  doi: 10.1109/CVPR.2018.00515
– ident: 998_CR8
  doi: 10.1109/ICCV.2015.490
– ident: 998_CR29
  doi: 10.1109/CVPR.2012.6248068
– ident: 998_CR31
  doi: 10.1007/978-3-319-46448-0_27
– ident: 998_CR1
  doi: 10.1109/CVPRW.2016.11
– ident: 998_CR17
  doi: 10.1007/978-3-319-16181-5_18
– ident: 998_CR20
  doi: 10.1109/ICCVW.2015.84
– volume: 41
  start-page: 881
  issue: 4
  year: 2017
  ident: 998_CR3
  publication-title: Auton. Robots
  doi: 10.1007/s10514-016-9564-2
– ident: 998_CR18
  doi: 10.5244/C.28.65
– ident: 998_CR35
  doi: 10.1007/978-3-319-10599-4_13
– ident: 998_CR6
  doi: 10.1109/CVPR.2010.5539960
– volume: 27
  start-page: 033005
  issue: 03
  year: 2018
  ident: 998_CR27
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.27.3.033005
– volume: 10
  start-page: 125
  issue: 1
  year: 2021
  ident: 998_CR5
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2021.3072992
– ident: 998_CR22
  doi: 10.1109/CVPR.2015.7299177
– volume: 34
  start-page: 1409
  issue: 7
  year: 2012
  ident: 998_CR33
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.239
– ident: 998_CR23
  doi: 10.1109/CVPR.2015.7299094
– ident: 998_CR9
  doi: 10.1109/ICCV.2017.129
– volume: 38
  start-page: 2096
  issue: 10
  year: 2016
  ident: 998_CR34
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2509974
SSID ssj0056202
Score 2.3633223
Snippet Correlation filter-based trackers have made significant progress in visual object tracking for various types of unmanned aerial vehicle (UAV) applications due...
Abstract Correlation filter-based trackers have made significant progress in visual object tracking for various types of unmanned aerial vehicle (UAV)...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 35
SubjectTerms Algorithms
Background noise
Consistency
Correlation
Correlation filter
Drone aircraft
Engineering
Optical tracking
Quantum Information Technology
Regularization
Response map
Signal,Image and Speech Processing
Spatial–temporal information
Spintronics
Unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Visual object tracking
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR09b9Uw0EKdyoD4FIEWeUBigKi24zj2-IpaVZVg4qFulh2fUZeAXl4Xfj13dgJFFWLpFCW-SKf7Pvt8x9jbYEUUILpWJdFjgpJQpWzJeaKBPsEIpRjz02dzsdWXV_3VrVFfVBNW2wNXwp2YoJSwEIZRRN3TDegcjU056KQAcsnW0eetyVS1wejUqW6nXpGx5mSWnel0i_6ppZDItuIvN1S69d-1yXcOR4vPOX_MHi3BIt9UJJ-wBzA9ZQ9vtRB8xm6WBqnf-Ey10Qi9K9Pld9c_IfGRZm_Uajeer-lgfOa084pApTQWEGKaidNoY3mYEk-lkS7t5PPdWiSL_-LrdvOV0xLtrT9n2_OzLx8v2mWUQjtq6fZtr-UAOcDgFIYEzoVOBeNCP8qYeieD0xjpoGojlbsUx0E7JULOwkCO0tnYvWAH0_cJXjI-GpeliyBAB3TvIQ4yWTFGfGI2KVzD3q-U9T9qxwxfMg1rfOWDRz74wgcvGnZKxP8NSd2uyweUAb_IgP-fDDTsHbHOk04SIcJytQARpu5WfkNhJ6bLvWzY0cpdvyjr7BUZLYeRmWrYh5Xjf5b_jfyr-0D-NTukEfa1ROaIHex3N3CMgc4-viky_QvCovr3
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29b9UwELdQWWBA5Uu8UpAHJAaIsB3bscdHRVUhwcRD3Sw7PlddUpS8Lv3ruXOSAqo6MEWJz5Hln-_Lvjsz9i46kQSItlFZGHRQMrKUqz5PsmAy9FCDMb99t2c7_fXcnC9JYdMa7b4eSVZJXdna2U-TbG2rG9QxDZk1rkFH_aFB353W9QnlOMzyFxU6xewc3d_vHxVUK_Xflcd3Dkarvjk9ZE8WQ5FvZ2SfsgcwPGOP_yof-JxdL8VRL_hEcdFIPdab5cfLG8i8p3s35kg3Xi7pUHzitOuKRDUsFpBimAhllK88DpnnWkSXdvH5uAbIYl983W1_cmqiffUXbHf65cfJWbNco9D0Wvp9Y7TsoETovEJzwPvYqmh9NL1M2XgZvUYrB9m660WbU99pr0QsRVgoSXqX2pfsYLga4BXjvfVF-gQCdETVHlMnsxN9wid6ksJv2Id1ZsOvuVpGqF6Gs2HGISAOoeIQxIZ9psm_paRK1_XD1XgRFsYJNiolHEQcXdKGMuBLsi6XqLMCKPiT9wRdIH6kiYhLWgEOmCpbhS2ZnOgqG7lhxyu6YWHUKSgSWB6tMrVhH1fE_zTfP_ij_yN_zR7RRfVzIMwxO9iP1_AGzZl9eltX729MYe56
  priority: 102
  providerName: Springer Nature
Title Learning spatial regularized correlation filters with response consistency and distractor repression for UAV tracking
URI https://link.springer.com/article/10.1186/s13634-023-00998-0
https://www.proquest.com/docview/2787094392
https://doaj.org/article/6a2208ea7c0b450480fb68dfa4d2eef0
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0KLtBQ6Ip1golQ9IHCCq4ziOfULbVZcKiQohFvVm-Vn1ki3J9sLXM-M4FFTBxVFix7JmPE-PZwh5YxVzLLKm4oG1YKAEICmVbR4nYxuijzkY8_O5PNuITxftRXG4jSWscuaJmVGHrUcf-THHnaVBfPIP1z8qrBqFp6ulhMYeOQAWrMD4Ojg5Pf_ydebFINynqEOp8mU4Pl-bUfJ4rBvZiApkVoVqkqrYX6IpZ_C_y6fvHJhmObR-RB4WBZIuJ4w_Jvdi_4Q8-COt4FNyU5KmXtIR46Vh9JArzg9XP2OgHutxTBFwNF3hYflI0RsLg3K4bIQR_YjYB75LbR9oyMl10btPhzlwFv6F183yO8Uu9Lc_I5v16bfVWVXKK1Re1HpXtaLuYrKx0wBbkEq24VZq2_rahVbXVgvQfoDcO8-a4HwnNGc2JSZjcrVWrnlO9vttH18Q6qVOtXaRRWFB5FvX1UEx7-AJFibTC_Juhqy5nrJomGx9KGkmPBjAg8l4MGxBThD4v0diBuz8YTtcmkJQRlrOmYoWVudEizfjk5MqJCsCjzHBJG8RdQbpFAFhy3UDWDBmvDJLVEXBhG7rBTmcsWsKAY_mdrstyPsZ47fd_178y__P9orcx4L1U0DMIdnfDTfxNag1O3dE9gT7CK1aQzvtY3hbcYGtXB1ldwG0G778Bcp1-kk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKATggnmKhgA8gDhDVcRyvfUBoeSxb-jh1UW_Gjp2ql2xJtkLwUXwjM05CQRXceooSTyzL87bnAfDMae555EUmAi_RQQnIUjr5PF7FMsQqpmDM_QO1WMpPR-XRBvwcc2EorHKUiUlQh1VFZ-TbgijLoPoUb06_ZtQ1im5XxxYaPVnsxu_f0GXrXu-8R_w-F2L-4fDdIhu6CmSVzM06K2U-jbWLU4NTojB2hXDKuLLKfShN7oxEpY9UPq14EXw1lUZwV9dcxdqjh-4LnPcKXJVFYYij9PzjKPnRlOhjHJVOqXdiTNLRarvLC1XIDDVkRkaZzvhfijD1C7ioFS5czyatN78FNwdzlc16-roNG7G5Azf-KGJ4F86GEq3HrKPobIRuU3_79uRHDKyi7h99vB2rT-hqvmN09otAKTg3IkTTEa2hlGeuCSykUr50l8DaMUwX_8XX5ewzoyE63b8Hy0vZ9vuw2aya-ABYpUydGx95lA4NDOenedC88vhEf5abCbwcd9ae9jU7bPJ1tLI9HiziwSY8WD6Bt7T5vyGp3nb6sGqP7cC-VjkhuI4OV-dlSXn4tVc61E4GEWONk7wg1FmSCrQRbkhuwAVTfS07I8MXHfYyn8DWiF07iIvOnhP3BF6NGD8f_vfiH_5_tqdwbXG4v2f3dg52H8F1QeSXQnG2YHPdnsXHaFCt_ZNExQy-XDbb_AIJCC-5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKhQI-gDhAtI6TOPEBoS3tqqWwqhCLenPt2K56yZbNVgh-Gr-OGSehoApuPUWJHcvyjOdhfzMD8NxU3HLPs0Q4XqCD4nBLVdHnsdIXztc-gjE_zuXeIn9_VBxtwM8hFoZglYNMjILaLWs6I58I4iyF6lNMQg-LONyZvT37mlAFKbppHcppdCxy4L9_Q_etfbO_g7R-IcRs9_O7vaSvMJDUearWSZGnpQ_GlwqHR8FsMmGkMkWdWleo1KgcDQDk-LLmmbN1mSvBTQhc-mDRW7cZjnsNNkv0ivgINrd354efBj2AhkWHeJRVDMQTQ8hOJSdtmsksT1BfJmSiVQn_Sy3G6gGXdcSly9qoA2e34VZvvLJpx213YMM3d-HmHykN78F5n7D1hLWE1cbeq1jtfnX6wztWUy2QDn3Hwild1LeMToKxU4TqeuzRtMR5KPOZaRxzMbEv3Syw1QDaxX_xdTH9wqiJzvrvw-JKFv4BjJpl4x8Cq6UKqbKe-9yguWFsmbqK1xaf6N1yNYZXw8rqsy6Dh46eTyV1RweNdNCRDpqPYZsW_3dPyr4dPyxXJ7rfzFoaIXjlDc7O5gVF5QcrKxdM7oT3AQd5SaTTJCNoIUwf6oATpmxbekpmMLrvRTqGrYG6uhcerb5g9TG8Hih-0fzvyT_6_2jP4DpuGf1hf37wGG4I4r6Iy9mC0Xp17p-gdbW2T3s2ZnB81TvnF1kYNUs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+spatial+regularized+correlation+filters+with+response+consistency+and+distractor+repression+for+UAV+tracking&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Zhang%2C+Wei&rft.date=2023-12-01&rft.issn=1687-6180&rft.eissn=1687-6180&rft.volume=2023&rft.issue=1&rft_id=info:doi/10.1186%2Fs13634-023-00998-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13634_023_00998_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon