Effects of silver nanoparticles and various forms of silver on nitrogen removal by the denitrifier Pseudomonas stutzeri and their toxicity mechanisms
Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in various forms, such as Ag , Ag SO , Ag CO , Ag S, Ag O, and AgCl. To assess the potential environmental risk of AgNPs and various forms of Ag,...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 269; p. 115785 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in various forms, such as Ag
, Ag
SO
, Ag
CO
, Ag
S, Ag
O, and AgCl. To assess the potential environmental risk of AgNPs and various forms of Ag, their toxic effects were investigated using the common denitrifier species Pseudomonas stutzeri (P. stutzeri). The inhibitory effect of AgNPs and various forms of Ag on P. stutzeri growth and its denitrification performance occurred in a concentration-dependent manner. The denitrification efficiency of P. stutzeri decreased from 95%∼97% to 89∼95%, 74∼95%, and 56∼85% under low, medium, and high exposure doses, respectively, of AgNPs and various forms of Ag. The changes in cell membrane morphology and increases in lactate dehydrogenase (LDH) release indicated that AgNPs and various forms of Ag damaged the cell membrane of P. stutzeri. Oxidative stress caused by excessive accumulation of reactive oxygen species (ROS) increased superoxide dismutase (SOD) and catalase (CAT) activities and decreased glutathione (GSH) levels. Overall, this study will help elucidate the impact of AgNPs and their transformation products on nitrogen removal efficiency in wastewater biological treatment systems. |
---|---|
AbstractList | Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in various forms, such as Ag+, Ag2SO4, Ag2CO3, Ag2S, Ag2O, and AgCl. To assess the potential environmental risk of AgNPs and various forms of Ag, their toxic effects were investigated using the common denitrifier species Pseudomonas stutzeri (P. stutzeri). The inhibitory effect of AgNPs and various forms of Ag on P. stutzeri growth and its denitrification performance occurred in a concentration-dependent manner. The denitrification efficiency of P. stutzeri decreased from 95%∼97% to 89∼95%, 74∼95%, and 56∼85% under low, medium, and high exposure doses, respectively, of AgNPs and various forms of Ag. The changes in cell membrane morphology and increases in lactate dehydrogenase (LDH) release indicated that AgNPs and various forms of Ag damaged the cell membrane of P. stutzeri. Oxidative stress caused by excessive accumulation of reactive oxygen species (ROS) increased superoxide dismutase (SOD) and catalase (CAT) activities and decreased glutathione (GSH) levels. Overall, this study will help elucidate the impact of AgNPs and their transformation products on nitrogen removal efficiency in wastewater biological treatment systems.Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in various forms, such as Ag+, Ag2SO4, Ag2CO3, Ag2S, Ag2O, and AgCl. To assess the potential environmental risk of AgNPs and various forms of Ag, their toxic effects were investigated using the common denitrifier species Pseudomonas stutzeri (P. stutzeri). The inhibitory effect of AgNPs and various forms of Ag on P. stutzeri growth and its denitrification performance occurred in a concentration-dependent manner. The denitrification efficiency of P. stutzeri decreased from 95%∼97% to 89∼95%, 74∼95%, and 56∼85% under low, medium, and high exposure doses, respectively, of AgNPs and various forms of Ag. The changes in cell membrane morphology and increases in lactate dehydrogenase (LDH) release indicated that AgNPs and various forms of Ag damaged the cell membrane of P. stutzeri. Oxidative stress caused by excessive accumulation of reactive oxygen species (ROS) increased superoxide dismutase (SOD) and catalase (CAT) activities and decreased glutathione (GSH) levels. Overall, this study will help elucidate the impact of AgNPs and their transformation products on nitrogen removal efficiency in wastewater biological treatment systems. Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in various forms, such as Ag+, Ag2SO4, Ag2CO3, Ag2S, Ag2O, and AgCl. To assess the potential environmental risk of AgNPs and various forms of Ag, their toxic effects were investigated using the common denitrifier species Pseudomonas stutzeri (P. stutzeri). The inhibitory effect of AgNPs and various forms of Ag on P. stutzeri growth and its denitrification performance occurred in a concentration-dependent manner. The denitrification efficiency of P. stutzeri decreased from 95%∼97% to 89∼95%, 74∼95%, and 56∼85% under low, medium, and high exposure doses, respectively, of AgNPs and various forms of Ag. The changes in cell membrane morphology and increases in lactate dehydrogenase (LDH) release indicated that AgNPs and various forms of Ag damaged the cell membrane of P. stutzeri. Oxidative stress caused by excessive accumulation of reactive oxygen species (ROS) increased superoxide dismutase (SOD) and catalase (CAT) activities and decreased glutathione (GSH) levels. Overall, this study will help elucidate the impact of AgNPs and their transformation products on nitrogen removal efficiency in wastewater biological treatment systems. Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in various forms, such as Ag , Ag SO , Ag CO , Ag S, Ag O, and AgCl. To assess the potential environmental risk of AgNPs and various forms of Ag, their toxic effects were investigated using the common denitrifier species Pseudomonas stutzeri (P. stutzeri). The inhibitory effect of AgNPs and various forms of Ag on P. stutzeri growth and its denitrification performance occurred in a concentration-dependent manner. The denitrification efficiency of P. stutzeri decreased from 95%∼97% to 89∼95%, 74∼95%, and 56∼85% under low, medium, and high exposure doses, respectively, of AgNPs and various forms of Ag. The changes in cell membrane morphology and increases in lactate dehydrogenase (LDH) release indicated that AgNPs and various forms of Ag damaged the cell membrane of P. stutzeri. Oxidative stress caused by excessive accumulation of reactive oxygen species (ROS) increased superoxide dismutase (SOD) and catalase (CAT) activities and decreased glutathione (GSH) levels. Overall, this study will help elucidate the impact of AgNPs and their transformation products on nitrogen removal efficiency in wastewater biological treatment systems. |
ArticleNumber | 115785 |
Author | Yang, Xinping Fan, Zengzeng Duan, Ying Huang, Yahui Tang, Zhu |
Author_xml | – sequence: 1 givenname: Zengzeng surname: Fan fullname: Fan, Zengzeng – sequence: 2 givenname: Yahui surname: Huang fullname: Huang, Yahui – sequence: 3 givenname: Ying surname: Duan fullname: Duan, Ying – sequence: 4 givenname: Zhu surname: Tang fullname: Tang, Zhu – sequence: 5 givenname: Xinping surname: Yang fullname: Yang, Xinping |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38056119$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFu1DAURS1URKeFP0DISzYZbCeeJOxQVaBSJVjA2nqxn1uPEnuwnVGH_-B_8TRDhViwsmSfey3dc0HOfPBIyGvO1pzxzbvtGnVAv18LJuo157Lt5DOy4qxnlWh4c0ZWjDdttZG8PicXKW0ZYzWT8gU5rzsmN5z3K_Lr2lrUOdFgaXLjHiP14MMOYnZ6xETBG7qH6MKcqA1x-psMnnqXY7hDTyNOYQ8jHQ403yM1eHxx1hXsa8LZhCl4SDTlOf_E6B57C-gizeHBaZcPdEJ9D96lKb0kzy2MCV-dzkvy_eP1t6vP1e2XTzdXH24r3fA-V7JG0Q8Dx3YwRgs5DIyZvretBcFqaGFomGUGTY_QCSl0Z8pK3JSIFlxifUlull4TYKt20U0QDyqAU48XId6p0xCKS2mbpt2gNdgYyaHVcuiZNIADwxZK19ulaxfDjxlTVpNLGscRPJbxlOj6vm65aLqCvjmh8zChefr4j5YCNAugY0gpon1COFNH-2qrFvvqaF8t9kvs_T-xsitkF3yO4Mb_h38Dhna8xw |
CitedBy_id | crossref_primary_10_1016_j_biortech_2024_130780 crossref_primary_10_1016_j_jece_2025_115934 |
Cites_doi | 10.1007/s11356-017-8561-0 10.1016/j.ibiod.2017.07.015 10.1021/acsami.0c17867 10.1038/s41467-021-25561-z 10.1021/es2007758 10.1021/es2037405 10.1021/acsami.7b17274 10.1080/10934529.2020.1735852 10.1016/j.jhazmat.2017.10.028 10.1002/etc.719 10.1021/jp712087m 10.1016/j.scitotenv.2019.135711 10.1016/j.biortech.2022.127192 10.1007/s11356-021-15486-x 10.1021/acsanm.9b01049 10.1016/j.talanta.2012.11.048 10.1016/j.chroma.2012.02.011 10.1016/j.chemosphere.2018.07.192 10.1111/1574-6968.12460 10.1039/C7RA05943D 10.1016/j.jclepro.2019.117984 10.1039/C6RA17569D 10.1002/tox.21880 10.1111/1758-2229.12147 10.1007/s00253-009-2159-5 10.1016/j.watres.2022.119269 10.1021/es3041658 10.1186/s12951-019-0502-2 10.1155/2019/3150145 10.1371/journal.pone.0209020 10.3390/ma9070528 10.1016/S0021-9258(19)50881-X 10.1111/j.1432-1033.1974.tb03714.x 10.1016/j.biortech.2020.124445 10.1016/j.envpol.2019.113274 10.1186/s12906-023-03982-1 10.2166/wst.2022.365 10.1016/j.aquatox.2018.03.020 10.1016/j.envint.2015.10.014 10.1016/j.watres.2018.02.067 10.1002/etc.2230 10.1016/j.chemosphere.2012.08.032 |
ContentType | Journal Article |
Copyright | Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.ecoenv.2023.115785 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
ExternalDocumentID | oai_doaj_org_article_155f4476efde4d51a7c5b905daeb0e7a 38056119 10_1016_j_ecoenv_2023_115785 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADVLN AEBSH AEGFY AEIPS AEKER AENEX AEUPX AFJKZ AFPKN AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CAG CITATION COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMC HVGLF HZ~ H~9 IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SEN SES SEW SPCBC SSH SSJ SSZ T5K VH1 WUQ XPP ZMT ZU3 ZXP ~G- ~KM AACTN AFKWA AJOXV AMFUW CGR CUY CVF ECM EIF NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c419t-53e29bb1e7bddc25bb00d99f7fa203a7ab40f0ded9ea8252c8d5781dbb1c215e3 |
IEDL.DBID | DOA |
ISSN | 0147-6513 1090-2414 |
IngestDate | Wed Aug 27 01:20:12 EDT 2025 Fri Jul 11 11:22:04 EDT 2025 Wed Feb 19 02:07:21 EST 2025 Tue Jul 01 02:09:14 EDT 2025 Thu Apr 24 23:07:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | P. stutzeri Denitrification Silver forms Toxic mechanism Silver nanoparticles |
Language | English |
License | Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-53e29bb1e7bddc25bb00d99f7fa203a7ab40f0ded9ea8252c8d5781dbb1c215e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/155f4476efde4d51a7c5b905daeb0e7a |
PMID | 38056119 |
PQID | 2899371248 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_155f4476efde4d51a7c5b905daeb0e7a proquest_miscellaneous_2899371248 pubmed_primary_38056119 crossref_primary_10_1016_j_ecoenv_2023_115785 crossref_citationtrail_10_1016_j_ecoenv_2023_115785 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-00 2024-Jan-01 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-00 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationTitleAlternate | Ecotoxicol Environ Saf |
PublicationYear | 2024 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Li (10.1016/j.ecoenv.2023.115785_bib26) 2013; 47 Beddow (10.1016/j.ecoenv.2023.115785_bib5) 2014; 6 Zheng (10.1016/j.ecoenv.2023.115785_bib45) 2018; 344 Wu (10.1016/j.ecoenv.2023.115785_bib39) 2020; 706 Fan (10.1016/j.ecoenv.2023.115785_bib9) 2019; 238 Kumar (10.1016/j.ecoenv.2023.115785_bib21) 2023; 23 Li (10.1016/j.ecoenv.2023.115785_bib29) 2020; 55 Jemec (10.1016/j.ecoenv.2023.115785_bib19) 2016; 87 Beers (10.1016/j.ecoenv.2023.115785_bib6) 1952; 195 Bhakya (10.1016/j.ecoenv.2023.115785_bib7) 2016; 6 Carlson (10.1016/j.ecoenv.2023.115785_bib8) 2008; 112 Ali (10.1016/j.ecoenv.2023.115785_bib2) 2023; 13 Yang (10.1016/j.ecoenv.2023.115785_bib40) 2021; 13 Li (10.1016/j.ecoenv.2023.115785_bib25) 2021; 32 Al (10.1016/j.ecoenv.2023.115785_bib1) 2015; 30 Hoque (10.1016/j.ecoenv.2023.115785_bib17) 2012; 1233 Li (10.1016/j.ecoenv.2023.115785_bib30) 2022; 86 Marklund (10.1016/j.ecoenv.2023.115785_bib33) 1974; 47 Hadioui (10.1016/j.ecoenv.2023.115785_bib15) 2013; 105 Levard (10.1016/j.ecoenv.2023.115785_bib22) 2011; 45 Forstner (10.1016/j.ecoenv.2023.115785_bib11) 2019; 255 Mitrano (10.1016/j.ecoenv.2023.115785_bib34) 2012; 31 Hong (10.1016/j.ecoenv.2023.115785_bib16) 2022; 354 Tian (10.1016/j.ecoenv.2023.115785_bib37) 2018; 10 Balout (10.1016/j.ecoenv.2023.115785_bib4) 2019; 2 Lv (10.1016/j.ecoenv.2023.115785_bib32) 2019; 2019 Liu (10.1016/j.ecoenv.2023.115785_bib31) 2018; 137 Zhang (10.1016/j.ecoenv.2023.115785_bib44) 2022; 226 APHA (10.1016/j.ecoenv.2023.115785_bib3) 2005 Giao (10.1016/j.ecoenv.2023.115785_bib13) 2017; 24 Huang (10.1016/j.ecoenv.2023.115785_bib18) 2018; 211 Li (10.1016/j.ecoenv.2023.115785_bib28) 2010; 85 Yang (10.1016/j.ecoenv.2023.115785_bib41) 2013; 32 Zhang (10.1016/j.ecoenv.2023.115785_bib43) 2018; 13 Hachicho (10.1016/j.ecoenv.2023.115785_bib14) 2014; 355 Levard (10.1016/j.ecoenv.2023.115785_bib23) 2012; 46 Li (10.1016/j.ecoenv.2023.115785_bib24) 2021; 321 Verma (10.1016/j.ecoenv.2023.115785_bib38) 2017; 7 Yuan (10.1016/j.ecoenv.2023.115785_bib42) 2013; 90 Li (10.1016/j.ecoenv.2023.115785_bib27) 2017; 123 Kim (10.1016/j.ecoenv.2023.115785_bib20) 2018; 199 Qin (10.1016/j.ecoenv.2023.115785_bib35) 2021; 12 Gagnon (10.1016/j.ecoenv.2023.115785_bib12) 2021; 28 Fang (10.1016/j.ecoenv.2023.115785_bib10) 2019; 17 Rasulov (10.1016/j.ecoenv.2023.115785_bib36) 2016; 9 |
References_xml | – volume: 24 start-page: 9229 year: 2017 ident: 10.1016/j.ecoenv.2023.115785_bib13 article-title: Influence of silver nanoparticles and liberated silver ions on nitrifying sludge: ammonia oxidation inhibitory kinetics and mechanism publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-8561-0 – volume: 123 start-page: 304 year: 2017 ident: 10.1016/j.ecoenv.2023.115785_bib27 article-title: A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2017.07.015 – volume: 13 start-page: 1398 year: 2021 ident: 10.1016/j.ecoenv.2023.115785_bib40 article-title: Food and beverage ingredients induce the formation of silver nanoparticles in products stored within nanotechnology-enabled packaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c17867 – volume: 12 year: 2021 ident: 10.1016/j.ecoenv.2023.115785_bib35 article-title: Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy publication-title: Nat. Commun. doi: 10.1038/s41467-021-25561-z – volume: 45 start-page: 5260 year: 2011 ident: 10.1016/j.ecoenv.2023.115785_bib22 article-title: Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate publication-title: Environ. Sci. Technol. doi: 10.1021/es2007758 – volume: 46 start-page: 6900 year: 2012 ident: 10.1016/j.ecoenv.2023.115785_bib23 article-title: Environmental transformations of silver nanoparticles: impact on stability and toxicity publication-title: Environ. Sci. Technol. doi: 10.1021/es2037405 – volume: 10 start-page: 8443 year: 2018 ident: 10.1016/j.ecoenv.2023.115785_bib37 article-title: Bactericidal effects of silver nanoparticles on lactobacilli and the underlying mechanism publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17274 – volume: 55 start-page: 704 year: 2020 ident: 10.1016/j.ecoenv.2023.115785_bib29 article-title: Hazard characterization of silver nanoparticles for human exposure routes publication-title: J. Environ. Sci. Health Part A. doi: 10.1080/10934529.2020.1735852 – volume: 344 start-page: 291 year: 2018 ident: 10.1016/j.ecoenv.2023.115785_bib45 article-title: Comprehensive analysis of transcriptional and proteomic profiling reveals silver nanoparticles-induced toxicity to bacterial denitrification publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.10.028 – volume: 32 year: 2021 ident: 10.1016/j.ecoenv.2023.115785_bib25 article-title: An anti-biofilm material: polysaccharides prevent the precipitation reaction of silver ions and chloride ions and lead to the synthesis of nano silver chloride publication-title: Nanotechnology – year: 2005 ident: 10.1016/j.ecoenv.2023.115785_bib3 – volume: 31 start-page: 115 year: 2012 ident: 10.1016/j.ecoenv.2023.115785_bib34 article-title: Detecting nanoparticulate silver using single-particle inductively coupled plasma–mass spectrometry publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.719 – volume: 112 start-page: 13608 year: 2008 ident: 10.1016/j.ecoenv.2023.115785_bib8 article-title: Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species publication-title: J. Phys. Chem. B. doi: 10.1021/jp712087m – volume: 706 year: 2020 ident: 10.1016/j.ecoenv.2023.115785_bib39 article-title: Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135711 – volume: 354 year: 2022 ident: 10.1016/j.ecoenv.2023.115785_bib16 article-title: Application of aerobic denitrifier for simultaneous removal of nitrogen, zinc, and bisphenol A from wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.127192 – volume: 28 start-page: 65952 year: 2021 ident: 10.1016/j.ecoenv.2023.115785_bib12 article-title: Occurrence and size distribution of silver nanoparticles in wastewater effluents from various treatment processes in Canada publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-15486-x – volume: 2 start-page: 5179 year: 2019 ident: 10.1016/j.ecoenv.2023.115785_bib4 article-title: Density functional theory study of the spontaneous formation of covalent bonds at the silver/silica interface in silver nanoparticles embedded in SiO2: implications for Ag+ release publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01049 – volume: 105 start-page: 15 year: 2013 ident: 10.1016/j.ecoenv.2023.115785_bib15 article-title: Multimethod quantification of Ag+ release from nanosilver publication-title: Talanta doi: 10.1016/j.talanta.2012.11.048 – volume: 1233 start-page: 109 year: 2012 ident: 10.1016/j.ecoenv.2023.115785_bib17 article-title: Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry publication-title: J. Chromatogr. A. doi: 10.1016/j.chroma.2012.02.011 – volume: 211 start-page: 573 year: 2018 ident: 10.1016/j.ecoenv.2023.115785_bib18 article-title: Antioxidative response of Phanerochaete chrysosporium against silver nanoparticle-induced toxicity and its potential mechanism publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.07.192 – volume: 355 start-page: 71 year: 2014 ident: 10.1016/j.ecoenv.2023.115785_bib14 article-title: Effect of silver nanoparticles and silver ions on growth and adaptive response mechanisms of Pseudomonas putida mt-2 publication-title: FEMS Microbiol. Lett. doi: 10.1111/1574-6968.12460 – volume: 7 start-page: 40034 year: 2017 ident: 10.1016/j.ecoenv.2023.115785_bib38 article-title: Mechanistic insight into the rapid one-step facile biofabrication of antibacterial silver nanoparticles from bacterial release and their biogenicity and concentration-dependent in vitro cytotoxicity to colon cells publication-title: RSC Adv. doi: 10.1039/C7RA05943D – volume: 238 year: 2019 ident: 10.1016/j.ecoenv.2023.115785_bib9 article-title: Transformation of silver nanoparticles in coagulation processes and subsequent thermal sludge treatments publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.117984 – volume: 6 start-page: 81436 year: 2016 ident: 10.1016/j.ecoenv.2023.115785_bib7 article-title: Antimicrobial, antioxidant and anticancer activity of biogenic silver nanoparticles–an experimental report publication-title: RSC Adv. doi: 10.1039/C6RA17569D – volume: 30 start-page: 149 year: 2015 ident: 10.1016/j.ecoenv.2023.115785_bib1 article-title: Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells publication-title: Environ. Toxicol. doi: 10.1002/tox.21880 – volume: 6 start-page: 448 year: 2014 ident: 10.1016/j.ecoenv.2023.115785_bib5 article-title: Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes publication-title: Environ. MicroBiol. Rep. doi: 10.1111/1758-2229.12147 – volume: 85 start-page: 1115 year: 2010 ident: 10.1016/j.ecoenv.2023.115785_bib28 article-title: Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2159-5 – volume: 226 year: 2022 ident: 10.1016/j.ecoenv.2023.115785_bib44 article-title: The mixed/mixotrophic nitrogen removal for the effective and sustainable treatment of wastewater: from treatment process to microbial mechanism publication-title: Water Res. doi: 10.1016/j.watres.2022.119269 – volume: 47 start-page: 7317 year: 2013 ident: 10.1016/j.ecoenv.2023.115785_bib26 article-title: Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany publication-title: Environ. Sci. Technol. doi: 10.1021/es3041658 – volume: 13 year: 2023 ident: 10.1016/j.ecoenv.2023.115785_bib2 article-title: Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin publication-title: Sci. Rep. – volume: 17 year: 2019 ident: 10.1016/j.ecoenv.2023.115785_bib10 article-title: Comparative study on the toxic mechanisms of medical nanosilver and silver ions on the antioxidant system of erythrocytes: from the aspects of antioxidant enzyme activities and molecular interaction mechanisms publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-019-0502-2 – volume: 2019 year: 2019 ident: 10.1016/j.ecoenv.2023.115785_bib32 article-title: Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2019/3150145 – volume: 13 year: 2018 ident: 10.1016/j.ecoenv.2023.115785_bib43 article-title: Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: growth inhibition, cell injury, oxidative stress and internalization publication-title: PLoS One doi: 10.1371/journal.pone.0209020 – volume: 9 start-page: 528 year: 2016 ident: 10.1016/j.ecoenv.2023.115785_bib36 article-title: Exopolysaccharide-based bioflocculant matrix of Azotobacter chroococcum XU1 for synthesis of AgCl nanoparticles and its application as a novel biocidal nanobiomaterial publication-title: Materials doi: 10.3390/ma9070528 – volume: 195 start-page: 133 year: 1952 ident: 10.1016/j.ecoenv.2023.115785_bib6 article-title: A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)50881-X – volume: 47 start-page: 469 year: 1974 ident: 10.1016/j.ecoenv.2023.115785_bib33 article-title: Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1974.tb03714.x – volume: 321 year: 2021 ident: 10.1016/j.ecoenv.2023.115785_bib24 article-title: Simultaneous removal of nitrogen and phosphorus by a novel aerobic denitrifying phosphorus-accumulating bacterium, Pseudomonas stutzeri ADP-19 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124445 – volume: 255 year: 2019 ident: 10.1016/j.ecoenv.2023.115785_bib11 article-title: Soil chloride content influences the response of bacterial but not fungal diversity to silver nanoparticles entering soil via wastewater treatment processing publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113274 – volume: 23 year: 2023 ident: 10.1016/j.ecoenv.2023.115785_bib21 article-title: Assessment of antimicrobial and anthelmintic activity of silver nanoparticles bio-synthesized from Viscum orientale leaf extract publication-title: BMC Complement Med Ther. doi: 10.1186/s12906-023-03982-1 – volume: 86 start-page: 2570 year: 2022 ident: 10.1016/j.ecoenv.2023.115785_bib30 article-title: Toxicity of silver nanoparticles on Achromobacter denitrificans: effect of concentration, temperature and coexisting anions publication-title: Water Sci. Technol. doi: 10.2166/wst.2022.365 – volume: 199 start-page: 296 year: 2018 ident: 10.1016/j.ecoenv.2023.115785_bib20 article-title: Identification and molecular characterization of two Cu/Zn-SODs and Mn-SOD in the marine ciliate Euplotes crassus: modulation of enzyme activity and transcripts in response to copper and cadmium publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2018.03.020 – volume: 87 start-page: 20 year: 2016 ident: 10.1016/j.ecoenv.2023.115785_bib19 article-title: An interlaboratory comparison of nanosilver characterisation and hazard identification: harmonising techniques for high quality data publication-title: Environ. Int. doi: 10.1016/j.envint.2015.10.014 – volume: 137 start-page: 28 year: 2018 ident: 10.1016/j.ecoenv.2023.115785_bib31 article-title: Effects of Ag and Ag2S nanoparticles on denitrification in sediments publication-title: Water Res doi: 10.1016/j.watres.2018.02.067 – volume: 32 start-page: 1488 year: 2013 ident: 10.1016/j.ecoenv.2023.115785_bib41 article-title: Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.2230 – volume: 90 start-page: 1404 year: 2013 ident: 10.1016/j.ecoenv.2023.115785_bib42 article-title: Interaction of silver nanoparticles with pure nitrifying bacteria publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.08.032 |
SSID | ssj0003055 |
Score | 2.4239721 |
Snippet | Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 115785 |
SubjectTerms | Antioxidants - metabolism Denitrification Metal Nanoparticles - toxicity Nitrogen P. stutzeri Pseudomonas stutzeri - metabolism Silver - toxicity Silver forms Silver nanoparticles Toxic mechanism Wastewater |
Title | Effects of silver nanoparticles and various forms of silver on nitrogen removal by the denitrifier Pseudomonas stutzeri and their toxicity mechanisms |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38056119 https://www.proquest.com/docview/2899371248 https://doaj.org/article/155f4476efde4d51a7c5b905daeb0e7a |
Volume | 269 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUCiU0qav7QsVenVqW9LKOiYhIRRaemggN6HHCLZ05bD2hqb_o_-3I8le9hJy6dWWX5qR5_uk0TeEfOosKOk9r2TwquKWicqmlULugHELzMqsW_D12_Likn-5Eld7pb5STliRBy4d9xnjXeBcLiF44F40RjphVS28AVuDzNAIY95MpqZ_cNKxKsmLslqKhs2b5nJmF_I6iDdHqXD4UdKaSXWU94JS1u6_G3DmwHP-lDyZECM9Lm_6jDyAeEgenmW16dtD8rhMvNGyn-g5-Vv0iAfaBzqsUt4zjSYiNZ4y4KiJnt4gQ0bKTxNi3W_ZR4pDfNOjV9ENrHt0Q2pvKYJEiv8nPLMKGEbp9wG2vkcHNgMdxu34B9043zcvO9Cx_71yiO7pGtK-4tWwHl6Qy_OzH6cX1VR7oXK8UWMlGLTK2gak9d61wuLw9EoFGUxbMyON5XWoPXgFBklm6zqPHdl4vMQhigD2khzEPsJrQnlovUMGLixL-7yc7QKzXrGOQ808qAVhc-drNwmTp_oYv_ScgfZTF5PpZDJdTLYg1e6q6yLMcU_7k2TXXdskq50PoLPpyQT6PmdbkI-zV2gchmltxURAe-nEW5lEsNQtyKviLrtHsS7RtEa9-R-v8JY8wq_iZRboHTkYN1t4j7hotB_yEPgHG00PKg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+silver+nanoparticles+and+various+forms+of+silver+on+nitrogen+removal+by+the+denitrifier+Pseudomonas+stutzeri+and+their+toxicity+mechanisms&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Fan%2C+Zengzeng&rft.au=Huang%2C+Yahui&rft.au=Duan%2C+Ying&rft.au=Tang%2C+Zhu&rft.date=2024-01-01&rft.issn=0147-6513&rft.volume=269&rft.spage=115785&rft_id=info:doi/10.1016%2Fj.ecoenv.2023.115785&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecoenv_2023_115785 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |