Effects of silver nanoparticles and various forms of silver on nitrogen removal by the denitrifier Pseudomonas stutzeri and their toxicity mechanisms

Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in various forms, such as Ag , Ag SO , Ag CO , Ag S, Ag O, and AgCl. To assess the potential environmental risk of AgNPs and various forms of Ag,...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 269; p. 115785
Main Authors Fan, Zengzeng, Huang, Yahui, Duan, Ying, Tang, Zhu, Yang, Xinping
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in various forms, such as Ag , Ag SO , Ag CO , Ag S, Ag O, and AgCl. To assess the potential environmental risk of AgNPs and various forms of Ag, their toxic effects were investigated using the common denitrifier species Pseudomonas stutzeri (P. stutzeri). The inhibitory effect of AgNPs and various forms of Ag on P. stutzeri growth and its denitrification performance occurred in a concentration-dependent manner. The denitrification efficiency of P. stutzeri decreased from 95%∼97% to 89∼95%, 74∼95%, and 56∼85% under low, medium, and high exposure doses, respectively, of AgNPs and various forms of Ag. The changes in cell membrane morphology and increases in lactate dehydrogenase (LDH) release indicated that AgNPs and various forms of Ag damaged the cell membrane of P. stutzeri. Oxidative stress caused by excessive accumulation of reactive oxygen species (ROS) increased superoxide dismutase (SOD) and catalase (CAT) activities and decreased glutathione (GSH) levels. Overall, this study will help elucidate the impact of AgNPs and their transformation products on nitrogen removal efficiency in wastewater biological treatment systems.
AbstractList Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in various forms, such as Ag+, Ag2SO4, Ag2CO3, Ag2S, Ag2O, and AgCl. To assess the potential environmental risk of AgNPs and various forms of Ag, their toxic effects were investigated using the common denitrifier species Pseudomonas stutzeri (P. stutzeri). The inhibitory effect of AgNPs and various forms of Ag on P. stutzeri growth and its denitrification performance occurred in a concentration-dependent manner. The denitrification efficiency of P. stutzeri decreased from 95%∼97% to 89∼95%, 74∼95%, and 56∼85% under low, medium, and high exposure doses, respectively, of AgNPs and various forms of Ag. The changes in cell membrane morphology and increases in lactate dehydrogenase (LDH) release indicated that AgNPs and various forms of Ag damaged the cell membrane of P. stutzeri. Oxidative stress caused by excessive accumulation of reactive oxygen species (ROS) increased superoxide dismutase (SOD) and catalase (CAT) activities and decreased glutathione (GSH) levels. Overall, this study will help elucidate the impact of AgNPs and their transformation products on nitrogen removal efficiency in wastewater biological treatment systems.Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in various forms, such as Ag+, Ag2SO4, Ag2CO3, Ag2S, Ag2O, and AgCl. To assess the potential environmental risk of AgNPs and various forms of Ag, their toxic effects were investigated using the common denitrifier species Pseudomonas stutzeri (P. stutzeri). The inhibitory effect of AgNPs and various forms of Ag on P. stutzeri growth and its denitrification performance occurred in a concentration-dependent manner. The denitrification efficiency of P. stutzeri decreased from 95%∼97% to 89∼95%, 74∼95%, and 56∼85% under low, medium, and high exposure doses, respectively, of AgNPs and various forms of Ag. The changes in cell membrane morphology and increases in lactate dehydrogenase (LDH) release indicated that AgNPs and various forms of Ag damaged the cell membrane of P. stutzeri. Oxidative stress caused by excessive accumulation of reactive oxygen species (ROS) increased superoxide dismutase (SOD) and catalase (CAT) activities and decreased glutathione (GSH) levels. Overall, this study will help elucidate the impact of AgNPs and their transformation products on nitrogen removal efficiency in wastewater biological treatment systems.
Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in various forms, such as Ag+, Ag2SO4, Ag2CO3, Ag2S, Ag2O, and AgCl. To assess the potential environmental risk of AgNPs and various forms of Ag, their toxic effects were investigated using the common denitrifier species Pseudomonas stutzeri (P. stutzeri). The inhibitory effect of AgNPs and various forms of Ag on P. stutzeri growth and its denitrification performance occurred in a concentration-dependent manner. The denitrification efficiency of P. stutzeri decreased from 95%∼97% to 89∼95%, 74∼95%, and 56∼85% under low, medium, and high exposure doses, respectively, of AgNPs and various forms of Ag. The changes in cell membrane morphology and increases in lactate dehydrogenase (LDH) release indicated that AgNPs and various forms of Ag damaged the cell membrane of P. stutzeri. Oxidative stress caused by excessive accumulation of reactive oxygen species (ROS) increased superoxide dismutase (SOD) and catalase (CAT) activities and decreased glutathione (GSH) levels. Overall, this study will help elucidate the impact of AgNPs and their transformation products on nitrogen removal efficiency in wastewater biological treatment systems.
Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in various forms, such as Ag , Ag SO , Ag CO , Ag S, Ag O, and AgCl. To assess the potential environmental risk of AgNPs and various forms of Ag, their toxic effects were investigated using the common denitrifier species Pseudomonas stutzeri (P. stutzeri). The inhibitory effect of AgNPs and various forms of Ag on P. stutzeri growth and its denitrification performance occurred in a concentration-dependent manner. The denitrification efficiency of P. stutzeri decreased from 95%∼97% to 89∼95%, 74∼95%, and 56∼85% under low, medium, and high exposure doses, respectively, of AgNPs and various forms of Ag. The changes in cell membrane morphology and increases in lactate dehydrogenase (LDH) release indicated that AgNPs and various forms of Ag damaged the cell membrane of P. stutzeri. Oxidative stress caused by excessive accumulation of reactive oxygen species (ROS) increased superoxide dismutase (SOD) and catalase (CAT) activities and decreased glutathione (GSH) levels. Overall, this study will help elucidate the impact of AgNPs and their transformation products on nitrogen removal efficiency in wastewater biological treatment systems.
ArticleNumber 115785
Author Yang, Xinping
Fan, Zengzeng
Duan, Ying
Huang, Yahui
Tang, Zhu
Author_xml – sequence: 1
  givenname: Zengzeng
  surname: Fan
  fullname: Fan, Zengzeng
– sequence: 2
  givenname: Yahui
  surname: Huang
  fullname: Huang, Yahui
– sequence: 3
  givenname: Ying
  surname: Duan
  fullname: Duan, Ying
– sequence: 4
  givenname: Zhu
  surname: Tang
  fullname: Tang, Zhu
– sequence: 5
  givenname: Xinping
  surname: Yang
  fullname: Yang, Xinping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38056119$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu1DAURS1URKeFP0DISzYZbCeeJOxQVaBSJVjA2nqxn1uPEnuwnVGH_-B_8TRDhViwsmSfey3dc0HOfPBIyGvO1pzxzbvtGnVAv18LJuo157Lt5DOy4qxnlWh4c0ZWjDdttZG8PicXKW0ZYzWT8gU5rzsmN5z3K_Lr2lrUOdFgaXLjHiP14MMOYnZ6xETBG7qH6MKcqA1x-psMnnqXY7hDTyNOYQ8jHQ403yM1eHxx1hXsa8LZhCl4SDTlOf_E6B57C-gizeHBaZcPdEJ9D96lKb0kzy2MCV-dzkvy_eP1t6vP1e2XTzdXH24r3fA-V7JG0Q8Dx3YwRgs5DIyZvretBcFqaGFomGUGTY_QCSl0Z8pK3JSIFlxifUlull4TYKt20U0QDyqAU48XId6p0xCKS2mbpt2gNdgYyaHVcuiZNIADwxZK19ulaxfDjxlTVpNLGscRPJbxlOj6vm65aLqCvjmh8zChefr4j5YCNAugY0gpon1COFNH-2qrFvvqaF8t9kvs_T-xsitkF3yO4Mb_h38Dhna8xw
CitedBy_id crossref_primary_10_1016_j_biortech_2024_130780
crossref_primary_10_1016_j_jece_2025_115934
Cites_doi 10.1007/s11356-017-8561-0
10.1016/j.ibiod.2017.07.015
10.1021/acsami.0c17867
10.1038/s41467-021-25561-z
10.1021/es2007758
10.1021/es2037405
10.1021/acsami.7b17274
10.1080/10934529.2020.1735852
10.1016/j.jhazmat.2017.10.028
10.1002/etc.719
10.1021/jp712087m
10.1016/j.scitotenv.2019.135711
10.1016/j.biortech.2022.127192
10.1007/s11356-021-15486-x
10.1021/acsanm.9b01049
10.1016/j.talanta.2012.11.048
10.1016/j.chroma.2012.02.011
10.1016/j.chemosphere.2018.07.192
10.1111/1574-6968.12460
10.1039/C7RA05943D
10.1016/j.jclepro.2019.117984
10.1039/C6RA17569D
10.1002/tox.21880
10.1111/1758-2229.12147
10.1007/s00253-009-2159-5
10.1016/j.watres.2022.119269
10.1021/es3041658
10.1186/s12951-019-0502-2
10.1155/2019/3150145
10.1371/journal.pone.0209020
10.3390/ma9070528
10.1016/S0021-9258(19)50881-X
10.1111/j.1432-1033.1974.tb03714.x
10.1016/j.biortech.2020.124445
10.1016/j.envpol.2019.113274
10.1186/s12906-023-03982-1
10.2166/wst.2022.365
10.1016/j.aquatox.2018.03.020
10.1016/j.envint.2015.10.014
10.1016/j.watres.2018.02.067
10.1002/etc.2230
10.1016/j.chemosphere.2012.08.032
ContentType Journal Article
Copyright Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.ecoenv.2023.115785
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Ecology
EISSN 1090-2414
ExternalDocumentID oai_doaj_org_article_155f4476efde4d51a7c5b905daeb0e7a
38056119
10_1016_j_ecoenv_2023_115785
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
AEBSH
AEGFY
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPKN
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CAG
CITATION
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMC
HVGLF
HZ~
H~9
IHE
J1W
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSH
SSJ
SSZ
T5K
VH1
WUQ
XPP
ZMT
ZU3
ZXP
~G-
~KM
AACTN
AFKWA
AJOXV
AMFUW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c419t-53e29bb1e7bddc25bb00d99f7fa203a7ab40f0ded9ea8252c8d5781dbb1c215e3
IEDL.DBID DOA
ISSN 0147-6513
1090-2414
IngestDate Wed Aug 27 01:20:12 EDT 2025
Fri Jul 11 11:22:04 EDT 2025
Wed Feb 19 02:07:21 EST 2025
Tue Jul 01 02:09:14 EDT 2025
Thu Apr 24 23:07:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords P. stutzeri
Denitrification
Silver forms
Toxic mechanism
Silver nanoparticles
Language English
License Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-53e29bb1e7bddc25bb00d99f7fa203a7ab40f0ded9ea8252c8d5781dbb1c215e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/155f4476efde4d51a7c5b905daeb0e7a
PMID 38056119
PQID 2899371248
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_155f4476efde4d51a7c5b905daeb0e7a
proquest_miscellaneous_2899371248
pubmed_primary_38056119
crossref_primary_10_1016_j_ecoenv_2023_115785
crossref_citationtrail_10_1016_j_ecoenv_2023_115785
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-00
2024-Jan-01
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-00
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ecotoxicology and environmental safety
PublicationTitleAlternate Ecotoxicol Environ Saf
PublicationYear 2024
Publisher Elsevier
Publisher_xml – name: Elsevier
References Li (10.1016/j.ecoenv.2023.115785_bib26) 2013; 47
Beddow (10.1016/j.ecoenv.2023.115785_bib5) 2014; 6
Zheng (10.1016/j.ecoenv.2023.115785_bib45) 2018; 344
Wu (10.1016/j.ecoenv.2023.115785_bib39) 2020; 706
Fan (10.1016/j.ecoenv.2023.115785_bib9) 2019; 238
Kumar (10.1016/j.ecoenv.2023.115785_bib21) 2023; 23
Li (10.1016/j.ecoenv.2023.115785_bib29) 2020; 55
Jemec (10.1016/j.ecoenv.2023.115785_bib19) 2016; 87
Beers (10.1016/j.ecoenv.2023.115785_bib6) 1952; 195
Bhakya (10.1016/j.ecoenv.2023.115785_bib7) 2016; 6
Carlson (10.1016/j.ecoenv.2023.115785_bib8) 2008; 112
Ali (10.1016/j.ecoenv.2023.115785_bib2) 2023; 13
Yang (10.1016/j.ecoenv.2023.115785_bib40) 2021; 13
Li (10.1016/j.ecoenv.2023.115785_bib25) 2021; 32
Al (10.1016/j.ecoenv.2023.115785_bib1) 2015; 30
Hoque (10.1016/j.ecoenv.2023.115785_bib17) 2012; 1233
Li (10.1016/j.ecoenv.2023.115785_bib30) 2022; 86
Marklund (10.1016/j.ecoenv.2023.115785_bib33) 1974; 47
Hadioui (10.1016/j.ecoenv.2023.115785_bib15) 2013; 105
Levard (10.1016/j.ecoenv.2023.115785_bib22) 2011; 45
Forstner (10.1016/j.ecoenv.2023.115785_bib11) 2019; 255
Mitrano (10.1016/j.ecoenv.2023.115785_bib34) 2012; 31
Hong (10.1016/j.ecoenv.2023.115785_bib16) 2022; 354
Tian (10.1016/j.ecoenv.2023.115785_bib37) 2018; 10
Balout (10.1016/j.ecoenv.2023.115785_bib4) 2019; 2
Lv (10.1016/j.ecoenv.2023.115785_bib32) 2019; 2019
Liu (10.1016/j.ecoenv.2023.115785_bib31) 2018; 137
Zhang (10.1016/j.ecoenv.2023.115785_bib44) 2022; 226
APHA (10.1016/j.ecoenv.2023.115785_bib3) 2005
Giao (10.1016/j.ecoenv.2023.115785_bib13) 2017; 24
Huang (10.1016/j.ecoenv.2023.115785_bib18) 2018; 211
Li (10.1016/j.ecoenv.2023.115785_bib28) 2010; 85
Yang (10.1016/j.ecoenv.2023.115785_bib41) 2013; 32
Zhang (10.1016/j.ecoenv.2023.115785_bib43) 2018; 13
Hachicho (10.1016/j.ecoenv.2023.115785_bib14) 2014; 355
Levard (10.1016/j.ecoenv.2023.115785_bib23) 2012; 46
Li (10.1016/j.ecoenv.2023.115785_bib24) 2021; 321
Verma (10.1016/j.ecoenv.2023.115785_bib38) 2017; 7
Yuan (10.1016/j.ecoenv.2023.115785_bib42) 2013; 90
Li (10.1016/j.ecoenv.2023.115785_bib27) 2017; 123
Kim (10.1016/j.ecoenv.2023.115785_bib20) 2018; 199
Qin (10.1016/j.ecoenv.2023.115785_bib35) 2021; 12
Gagnon (10.1016/j.ecoenv.2023.115785_bib12) 2021; 28
Fang (10.1016/j.ecoenv.2023.115785_bib10) 2019; 17
Rasulov (10.1016/j.ecoenv.2023.115785_bib36) 2016; 9
References_xml – volume: 24
  start-page: 9229
  year: 2017
  ident: 10.1016/j.ecoenv.2023.115785_bib13
  article-title: Influence of silver nanoparticles and liberated silver ions on nitrifying sludge: ammonia oxidation inhibitory kinetics and mechanism
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-8561-0
– volume: 123
  start-page: 304
  year: 2017
  ident: 10.1016/j.ecoenv.2023.115785_bib27
  article-title: A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2017.07.015
– volume: 13
  start-page: 1398
  year: 2021
  ident: 10.1016/j.ecoenv.2023.115785_bib40
  article-title: Food and beverage ingredients induce the formation of silver nanoparticles in products stored within nanotechnology-enabled packaging
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c17867
– volume: 12
  year: 2021
  ident: 10.1016/j.ecoenv.2023.115785_bib35
  article-title: Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25561-z
– volume: 45
  start-page: 5260
  year: 2011
  ident: 10.1016/j.ecoenv.2023.115785_bib22
  article-title: Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2007758
– volume: 46
  start-page: 6900
  year: 2012
  ident: 10.1016/j.ecoenv.2023.115785_bib23
  article-title: Environmental transformations of silver nanoparticles: impact on stability and toxicity
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2037405
– volume: 10
  start-page: 8443
  year: 2018
  ident: 10.1016/j.ecoenv.2023.115785_bib37
  article-title: Bactericidal effects of silver nanoparticles on lactobacilli and the underlying mechanism
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17274
– volume: 55
  start-page: 704
  year: 2020
  ident: 10.1016/j.ecoenv.2023.115785_bib29
  article-title: Hazard characterization of silver nanoparticles for human exposure routes
  publication-title: J. Environ. Sci. Health Part A.
  doi: 10.1080/10934529.2020.1735852
– volume: 344
  start-page: 291
  year: 2018
  ident: 10.1016/j.ecoenv.2023.115785_bib45
  article-title: Comprehensive analysis of transcriptional and proteomic profiling reveals silver nanoparticles-induced toxicity to bacterial denitrification
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.10.028
– volume: 32
  year: 2021
  ident: 10.1016/j.ecoenv.2023.115785_bib25
  article-title: An anti-biofilm material: polysaccharides prevent the precipitation reaction of silver ions and chloride ions and lead to the synthesis of nano silver chloride
  publication-title: Nanotechnology
– year: 2005
  ident: 10.1016/j.ecoenv.2023.115785_bib3
– volume: 31
  start-page: 115
  year: 2012
  ident: 10.1016/j.ecoenv.2023.115785_bib34
  article-title: Detecting nanoparticulate silver using single-particle inductively coupled plasma–mass spectrometry
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.719
– volume: 112
  start-page: 13608
  year: 2008
  ident: 10.1016/j.ecoenv.2023.115785_bib8
  article-title: Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp712087m
– volume: 706
  year: 2020
  ident: 10.1016/j.ecoenv.2023.115785_bib39
  article-title: Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135711
– volume: 354
  year: 2022
  ident: 10.1016/j.ecoenv.2023.115785_bib16
  article-title: Application of aerobic denitrifier for simultaneous removal of nitrogen, zinc, and bisphenol A from wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127192
– volume: 28
  start-page: 65952
  year: 2021
  ident: 10.1016/j.ecoenv.2023.115785_bib12
  article-title: Occurrence and size distribution of silver nanoparticles in wastewater effluents from various treatment processes in Canada
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-15486-x
– volume: 2
  start-page: 5179
  year: 2019
  ident: 10.1016/j.ecoenv.2023.115785_bib4
  article-title: Density functional theory study of the spontaneous formation of covalent bonds at the silver/silica interface in silver nanoparticles embedded in SiO2: implications for Ag+ release
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b01049
– volume: 105
  start-page: 15
  year: 2013
  ident: 10.1016/j.ecoenv.2023.115785_bib15
  article-title: Multimethod quantification of Ag+ release from nanosilver
  publication-title: Talanta
  doi: 10.1016/j.talanta.2012.11.048
– volume: 1233
  start-page: 109
  year: 2012
  ident: 10.1016/j.ecoenv.2023.115785_bib17
  article-title: Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry
  publication-title: J. Chromatogr. A.
  doi: 10.1016/j.chroma.2012.02.011
– volume: 211
  start-page: 573
  year: 2018
  ident: 10.1016/j.ecoenv.2023.115785_bib18
  article-title: Antioxidative response of Phanerochaete chrysosporium against silver nanoparticle-induced toxicity and its potential mechanism
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.07.192
– volume: 355
  start-page: 71
  year: 2014
  ident: 10.1016/j.ecoenv.2023.115785_bib14
  article-title: Effect of silver nanoparticles and silver ions on growth and adaptive response mechanisms of Pseudomonas putida mt-2
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/1574-6968.12460
– volume: 7
  start-page: 40034
  year: 2017
  ident: 10.1016/j.ecoenv.2023.115785_bib38
  article-title: Mechanistic insight into the rapid one-step facile biofabrication of antibacterial silver nanoparticles from bacterial release and their biogenicity and concentration-dependent in vitro cytotoxicity to colon cells
  publication-title: RSC Adv.
  doi: 10.1039/C7RA05943D
– volume: 238
  year: 2019
  ident: 10.1016/j.ecoenv.2023.115785_bib9
  article-title: Transformation of silver nanoparticles in coagulation processes and subsequent thermal sludge treatments
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.117984
– volume: 6
  start-page: 81436
  year: 2016
  ident: 10.1016/j.ecoenv.2023.115785_bib7
  article-title: Antimicrobial, antioxidant and anticancer activity of biogenic silver nanoparticles–an experimental report
  publication-title: RSC Adv.
  doi: 10.1039/C6RA17569D
– volume: 30
  start-page: 149
  year: 2015
  ident: 10.1016/j.ecoenv.2023.115785_bib1
  article-title: Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells
  publication-title: Environ. Toxicol.
  doi: 10.1002/tox.21880
– volume: 6
  start-page: 448
  year: 2014
  ident: 10.1016/j.ecoenv.2023.115785_bib5
  article-title: Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes
  publication-title: Environ. MicroBiol. Rep.
  doi: 10.1111/1758-2229.12147
– volume: 85
  start-page: 1115
  year: 2010
  ident: 10.1016/j.ecoenv.2023.115785_bib28
  article-title: Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-2159-5
– volume: 226
  year: 2022
  ident: 10.1016/j.ecoenv.2023.115785_bib44
  article-title: The mixed/mixotrophic nitrogen removal for the effective and sustainable treatment of wastewater: from treatment process to microbial mechanism
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.119269
– volume: 47
  start-page: 7317
  year: 2013
  ident: 10.1016/j.ecoenv.2023.115785_bib26
  article-title: Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3041658
– volume: 13
  year: 2023
  ident: 10.1016/j.ecoenv.2023.115785_bib2
  article-title: Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin
  publication-title: Sci. Rep.
– volume: 17
  year: 2019
  ident: 10.1016/j.ecoenv.2023.115785_bib10
  article-title: Comparative study on the toxic mechanisms of medical nanosilver and silver ions on the antioxidant system of erythrocytes: from the aspects of antioxidant enzyme activities and molecular interaction mechanisms
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-019-0502-2
– volume: 2019
  year: 2019
  ident: 10.1016/j.ecoenv.2023.115785_bib32
  article-title: Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2019/3150145
– volume: 13
  year: 2018
  ident: 10.1016/j.ecoenv.2023.115785_bib43
  article-title: Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: growth inhibition, cell injury, oxidative stress and internalization
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0209020
– volume: 9
  start-page: 528
  year: 2016
  ident: 10.1016/j.ecoenv.2023.115785_bib36
  article-title: Exopolysaccharide-based bioflocculant matrix of Azotobacter chroococcum XU1 for synthesis of AgCl nanoparticles and its application as a novel biocidal nanobiomaterial
  publication-title: Materials
  doi: 10.3390/ma9070528
– volume: 195
  start-page: 133
  year: 1952
  ident: 10.1016/j.ecoenv.2023.115785_bib6
  article-title: A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)50881-X
– volume: 47
  start-page: 469
  year: 1974
  ident: 10.1016/j.ecoenv.2023.115785_bib33
  article-title: Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1974.tb03714.x
– volume: 321
  year: 2021
  ident: 10.1016/j.ecoenv.2023.115785_bib24
  article-title: Simultaneous removal of nitrogen and phosphorus by a novel aerobic denitrifying phosphorus-accumulating bacterium, Pseudomonas stutzeri ADP-19
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124445
– volume: 255
  year: 2019
  ident: 10.1016/j.ecoenv.2023.115785_bib11
  article-title: Soil chloride content influences the response of bacterial but not fungal diversity to silver nanoparticles entering soil via wastewater treatment processing
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113274
– volume: 23
  year: 2023
  ident: 10.1016/j.ecoenv.2023.115785_bib21
  article-title: Assessment of antimicrobial and anthelmintic activity of silver nanoparticles bio-synthesized from Viscum orientale leaf extract
  publication-title: BMC Complement Med Ther.
  doi: 10.1186/s12906-023-03982-1
– volume: 86
  start-page: 2570
  year: 2022
  ident: 10.1016/j.ecoenv.2023.115785_bib30
  article-title: Toxicity of silver nanoparticles on Achromobacter denitrificans: effect of concentration, temperature and coexisting anions
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2022.365
– volume: 199
  start-page: 296
  year: 2018
  ident: 10.1016/j.ecoenv.2023.115785_bib20
  article-title: Identification and molecular characterization of two Cu/Zn-SODs and Mn-SOD in the marine ciliate Euplotes crassus: modulation of enzyme activity and transcripts in response to copper and cadmium
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2018.03.020
– volume: 87
  start-page: 20
  year: 2016
  ident: 10.1016/j.ecoenv.2023.115785_bib19
  article-title: An interlaboratory comparison of nanosilver characterisation and hazard identification: harmonising techniques for high quality data
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2015.10.014
– volume: 137
  start-page: 28
  year: 2018
  ident: 10.1016/j.ecoenv.2023.115785_bib31
  article-title: Effects of Ag and Ag2S nanoparticles on denitrification in sediments
  publication-title: Water Res
  doi: 10.1016/j.watres.2018.02.067
– volume: 32
  start-page: 1488
  year: 2013
  ident: 10.1016/j.ecoenv.2023.115785_bib41
  article-title: Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.2230
– volume: 90
  start-page: 1404
  year: 2013
  ident: 10.1016/j.ecoenv.2023.115785_bib42
  article-title: Interaction of silver nanoparticles with pure nitrifying bacteria
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.08.032
SSID ssj0003055
Score 2.4239721
Snippet Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 115785
SubjectTerms Antioxidants - metabolism
Denitrification
Metal Nanoparticles - toxicity
Nitrogen
P. stutzeri
Pseudomonas stutzeri - metabolism
Silver - toxicity
Silver forms
Silver nanoparticles
Toxic mechanism
Wastewater
Title Effects of silver nanoparticles and various forms of silver on nitrogen removal by the denitrifier Pseudomonas stutzeri and their toxicity mechanisms
URI https://www.ncbi.nlm.nih.gov/pubmed/38056119
https://www.proquest.com/docview/2899371248
https://doaj.org/article/155f4476efde4d51a7c5b905daeb0e7a
Volume 269
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUCiU0qav7QsVenVqW9LKOiYhIRRaemggN6HHCLZ05bD2hqb_o_-3I8le9hJy6dWWX5qR5_uk0TeEfOosKOk9r2TwquKWicqmlULugHELzMqsW_D12_Likn-5Eld7pb5STliRBy4d9xnjXeBcLiF44F40RjphVS28AVuDzNAIY95MpqZ_cNKxKsmLslqKhs2b5nJmF_I6iDdHqXD4UdKaSXWU94JS1u6_G3DmwHP-lDyZECM9Lm_6jDyAeEgenmW16dtD8rhMvNGyn-g5-Vv0iAfaBzqsUt4zjSYiNZ4y4KiJnt4gQ0bKTxNi3W_ZR4pDfNOjV9ENrHt0Q2pvKYJEiv8nPLMKGEbp9wG2vkcHNgMdxu34B9043zcvO9Cx_71yiO7pGtK-4tWwHl6Qy_OzH6cX1VR7oXK8UWMlGLTK2gak9d61wuLw9EoFGUxbMyON5XWoPXgFBklm6zqPHdl4vMQhigD2khzEPsJrQnlovUMGLixL-7yc7QKzXrGOQ808qAVhc-drNwmTp_oYv_ScgfZTF5PpZDJdTLYg1e6q6yLMcU_7k2TXXdskq50PoLPpyQT6PmdbkI-zV2gchmltxURAe-nEW5lEsNQtyKviLrtHsS7RtEa9-R-v8JY8wq_iZRboHTkYN1t4j7hotB_yEPgHG00PKg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+silver+nanoparticles+and+various+forms+of+silver+on+nitrogen+removal+by+the+denitrifier+Pseudomonas+stutzeri+and+their+toxicity+mechanisms&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Fan%2C+Zengzeng&rft.au=Huang%2C+Yahui&rft.au=Duan%2C+Ying&rft.au=Tang%2C+Zhu&rft.date=2024-01-01&rft.issn=0147-6513&rft.volume=269&rft.spage=115785&rft_id=info:doi/10.1016%2Fj.ecoenv.2023.115785&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecoenv_2023_115785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon