Efficiency metrics for auditory neuromorphic spike encoding techniques using information theory
Spike encoding of sound consists in converting a sound waveform into spikes. It is of interest in many domains, including the development of audio-based spiking neural network applications, where it is the first and a crucial stage of processing. Many spike encoding techniques exist, but there is no...
Saved in:
Published in | Neuromorphic computing and engineering Vol. 3; no. 2; pp. 24007 - 24020 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spike encoding of sound consists in converting a sound waveform into spikes. It is of interest in many domains, including the development of audio-based spiking neural network applications, where it is the first and a crucial stage of processing. Many spike encoding techniques exist, but there is no systematic approach to quantitatively evaluate their performance. This work proposes the use of three efficiency metrics based on information theory to solve this problem. The first, coding efficiency, measures the fraction of information that the spikes encode on the amplitude of the input signal. The second, computational efficiency, measures the information encoded subject to abstract computational costs imposed on the algorithmic operations of the spike encoding technique. The third, energy efficiency, measures the actual energy expended in the implementation of a spike encoding task. These three efficiency metrics are used to evaluate the performance of four spike encoding techniques for sound on the encoding of a cochleagram representation of speech data. The spike encoding techniques are: Independent Spike Coding, Send-on-Delta coding, Ben’s Spiker Algorithm, and Leaky Integrate-and-Fire (LIF) coding. The results show that LIF coding has the overall best performance in terms of coding, computational, and energy efficiency. |
---|---|
AbstractList | Spike encoding of sound consists in converting a sound waveform into spikes. It is of interest in many domains, including the development of audio-based spiking neural network applications, where it is the first and a crucial stage of processing. Many spike encoding techniques exist, but there is no systematic approach to quantitatively evaluate their performance. This work proposes the use of three efficiency metrics based on information theory to solve this problem. The first, coding efficiency, measures the fraction of information that the spikes encode on the amplitude of the input signal. The second, computational efficiency, measures the information encoded subject to abstract computational costs imposed on the algorithmic operations of the spike encoding technique. The third, energy efficiency, measures the actual energy expended in the implementation of a spike encoding task. These three efficiency metrics are used to evaluate the performance of four spike encoding techniques for sound on the encoding of a cochleagram representation of speech data. The spike encoding techniques are: Independent Spike Coding, Send-on-Delta coding, Ben’s Spiker Algorithm, and Leaky Integrate-and-Fire (LIF) coding. The results show that LIF coding has the overall best performance in terms of coding, computational, and energy efficiency. |
Author | El Ferdaoussi, Ahmad Rouat, Jean Plourde, Eric |
Author_xml | – sequence: 1 givenname: Ahmad orcidid: 0000-0002-9563-1467 surname: El Ferdaoussi fullname: El Ferdaoussi, Ahmad organization: Université de Sherbrooke NECOTIS, Department of Electrical and Computer Engineering, Sherbrooke, QC J1K 2R1, Canada – sequence: 2 givenname: Jean surname: Rouat fullname: Rouat, Jean organization: Université de Sherbrooke NECOTIS, Department of Electrical and Computer Engineering, Sherbrooke, QC J1K 2R1, Canada – sequence: 3 givenname: Eric surname: Plourde fullname: Plourde, Eric organization: Université de Sherbrooke NECOTIS, Department of Electrical and Computer Engineering, Sherbrooke, QC J1K 2R1, Canada |
BookMark | eNp9kD1PWzEYha2KSgXK3tFTJ1JsX39lrBBQJCSWdrZ87dfEaWLf2r5D_j1OUqGqAia_PjrPM5wzdJJyAoS-UPKNEq2vmBz4gg9aXlnnl4J9QKcv0ck_9yd0UeuaEMKUolSKU2RuQoguQnI7vIVWoqs45ILt7GPLZYcTzCVvc5lW0eE6xd-Aezn7mJ5wA7dK8c8MFc91H8TU2a1tMSfcVtD5z-hjsJsKF3_fc_Tr9ubn9Y_Fw-Pd_fX3h4XjdNkWPIhRSU-kYFxRoQLXsJRCDpINVPH-k6OmPGjSr4GJUWjCiBecjhCIheEc3R-9Ptu1mUrc2rIz2UZzCHJ5Mra06DZg5Ei0VzzA4CnX2lqhxy4H4TyTUonuIkeXK7nWAuHFR4nZ7232g5r9oOa4d0fkf4iL7bBDKzZu3gO_HsGYJ7POc0l9JZMcmMEwQxgnRJnJh168fKX4pvcZxcuiRQ |
CODEN | NCEECN |
CitedBy_id | crossref_primary_10_1088_2634_4386_ada8d4 crossref_primary_10_1109_JSEN_2024_3453927 crossref_primary_10_1109_TNSRE_2025_3546682 |
Cites_doi | 10.1016/j.heares.2007.01.012 10.1016/j.neunet.2007.04.003 10.3389/fninf.2011.00009 10.1016/j.neunet.2007.12.009 10.1523/JNEUROSCI.5044-12.2013 10.1038/nrn2578 10.1162/neco.1996.8.3.531 10.1152/jn.00559.2007 10.1038/14731 10.1109/tnnls.2020.3044364 10.3390/s6010049 10.1109/TNNLS.2019.2906158 10.1088/2634-4386/ace737 10.1121/1.393460 10.1016/j.conb.2010.03.007 10.1016/j.ipl.2005.05.019 10.1007/s10827-016-0592-x 10.1162/neco.1995.7.2.399 10.1162/neco_a_01367 10.1109/TBCAS.2013.2281834 10.1371/journal.pcbi.1000180 10.3389/fnins.2018.00524 10.3389/fnins.2022.999029 10.1109/ISCAS.2010.5537164 10.1109/JSSC.2016.2604285 10.1109/TNNLS.2015.2388544 10.1145/3546790.3546803 10.1103/PhysRevLett.80.197 10.1121/1.405620 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published by IOP Publishing Ltd |
Copyright_xml | – notice: 2023 The Author(s). Published by IOP Publishing Ltd |
DBID | O3W TSCCA AAYXX CITATION DOA |
DOI | 10.1088/2634-4386/acd952 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journals (Activated by CARLI) url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2634-4386 |
ExternalDocumentID | oai_doaj_org_article_6b08d74fe3d1488aa58bb81e5cd26675 10_1088_2634_4386_acd952 nceacd952 |
GrantInformation_xml | – fundername: Fonds de recherche du Québec – Nature et technologies funderid: http://dx.doi.org/10.13039/501100003151 – fundername: Natural Sciences and Engineering Research Council of Canada funderid: http://dx.doi.org/10.13039/501100000038 |
GroupedDBID | ABHWH ACHIP AKPSB ALMA_UNASSIGNED_HOLDINGS CJUJL GROUPED_DOAJ M~E N5L O3W OK1 TSCCA AAYXX CITATION AEINN |
ID | FETCH-LOGICAL-c419t-4f5b76d065247157f48e9656362317448e6b814f808e6325b58020d541bef0ae3 |
IEDL.DBID | DOA |
ISSN | 2634-4386 |
IngestDate | Wed Aug 27 01:29:26 EDT 2025 Tue Jul 01 01:09:06 EDT 2025 Thu Apr 24 22:51:35 EDT 2025 Wed Aug 21 03:34:32 EDT 2024 Tue Jun 13 23:30:42 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-4f5b76d065247157f48e9656362317448e6b814f808e6325b58020d541bef0ae3 |
Notes | NCE-100199.R1 |
ORCID | 0000-0002-9563-1467 |
OpenAccessLink | https://doaj.org/article/6b08d74fe3d1488aa58bb81e5cd26675 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1088_2634_4386_acd952 crossref_citationtrail_10_1088_2634_4386_acd952 doaj_primary_oai_doaj_org_article_6b08d74fe3d1488aa58bb81e5cd26675 iop_journals_10_1088_2634_4386_acd952 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Neuromorphic computing and engineering |
PublicationTitleAbbrev | NCE |
PublicationTitleAlternate | Neuromorph. Comput. Eng |
PublicationYear | 2023 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Carney (nceacd952bib3) 1993; 93 Fontaine (nceacd952bib9) 2011; 5 Verstraeten (nceacd952bib42) 2005; 95 Legenstein (nceacd952bib16) 2008; 4 Schrauwen (nceacd952bib32) 2003; vol 4 (nceacd952bib33) 2021 Fog (nceacd952bib8) 2022 Liu (nceacd952bib19) 2014 Zimmer (nceacd952bib47) 2019 Cover (nceacd952bib4) 2006 Timcheck (nceacd952bib37) 2023 Levy (nceacd952bib17) 1996; 8 Treves (nceacd952bib38) 1995; 7 Nelken (nceacd952bib25) 2007; 229 Quiroga (nceacd952bib30) 2013 Cramer (nceacd952bib5) 2020; 33 Strong (nceacd952bib36) 1998; 80 Liu (nceacd952bib20) 2014; 8 Liu (nceacd952bib21) 2010 Zenke (nceacd952bib45) 2021; 33 Forno (nceacd952bib10) 2022; 16 Patterson (nceacd952bib27) 1992 Yang (nceacd952bib43) 2016; 51 Meddis (nceacd952bib22) 1986; 79 Zhang (nceacd952bib46) 2015; 26 Borst (nceacd952bib2) 1999; 2 Srinivasan (nceacd952bib34) 2018; 12 Bellec (nceacd952bib1) 2018 Miskowicz (nceacd952bib24) 2006; 6 Petro (nceacd952bib28) 2020; 31 Quiroga (nceacd952bib29) 2009; 10 El Ferdaoussi (nceacd952bib7) 2022 Meddis (nceacd952bib23) 2010 Stone (nceacd952bib35) 2018 van Schaik (nceacd952bib39) 2010 Hastie (nceacd952bib12) 2009 Verstraeten (nceacd952bib40) 2007; 20 Verstraeten (nceacd952bib41) 2006 Gary Leonard (nceacd952bib11) 1993 Jin (nceacd952bib13) 2018 Johnson (nceacd952bib14) 2016; 40 Klampfl (nceacd952bib15) 2013; 33 Schrauwen (nceacd952bib31) 2008; 21 Yarga (nceacd952bib44) 2022 Dupeyroux (nceacd952bib6) 2022 Liu (nceacd952bib18) 2010; 20 Panzeri (nceacd952bib26) 2007; 98 |
References_xml | – start-page: pp 1 year: 2022 ident: nceacd952bib6 article-title: A toolbox for neuromorphic perception in robotics – start-page: pp 518 year: 2009 ident: nceacd952bib12 – start-page: pp 261 year: 2010 ident: nceacd952bib39 article-title: Silicon models of the auditory pathway – volume: 229 start-page: 94 year: 2007 ident: nceacd952bib25 article-title: Information theory in auditory research publication-title: Hear. Res. doi: 10.1016/j.heares.2007.01.012 – volume: 20 start-page: 391 year: 2007 ident: nceacd952bib40 article-title: An experimental unification of reservoir computing methods publication-title: Neural Netw. doi: 10.1016/j.neunet.2007.04.003 – volume: 5 year: 2011 ident: nceacd952bib9 article-title: Brian hears: online auditory processing using vectorization over channels publication-title: Front. Neuroinform. doi: 10.3389/fninf.2011.00009 – start-page: pp 787 year: 2018 ident: nceacd952bib1 article-title: Long short-term memory and learning-to-learn in networks of spiking neurons – start-page: pp 156 year: 2013 ident: nceacd952bib30 article-title: Decoding and information theory in neuroscience – volume: 21 start-page: 511 year: 2008 ident: nceacd952bib31 article-title: Compact hardware liquid state machines on FPGA for real-time speech recognition publication-title: Neural Netw. doi: 10.1016/j.neunet.2007.12.009 – volume: 33 start-page: 11515 year: 2013 ident: nceacd952bib15 article-title: Emergence of dynamic memory traces in cortical microcircuit models through STDP publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5044-12.2013 – volume: 10 start-page: 173 year: 2009 ident: nceacd952bib29 article-title: Extracting information from neuronal populations: information theory and decoding approaches publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2578 – volume: 8 start-page: 531 year: 1996 ident: nceacd952bib17 article-title: Energy efficient neural codes publication-title: Neural Comput. doi: 10.1162/neco.1996.8.3.531 – start-page: pp 7 year: 2010 ident: nceacd952bib23 article-title: Auditory periphery: from pinna to auditory nerve – year: 1993 ident: nceacd952bib11 article-title: Tidigits ldc93s10 – volume: 98 start-page: 1064 year: 2007 ident: nceacd952bib26 article-title: Correcting for the sampling bias problem in spike train information measures publication-title: J. Neurophysiol. doi: 10.1152/jn.00559.2007 – volume: 2 start-page: 947 year: 1999 ident: nceacd952bib2 article-title: Information theory and neural coding publication-title: Nat. Neurosci. doi: 10.1038/14731 – start-page: pp 7005 year: 2018 ident: nceacd952bib13 article-title: Hybrid macro/micro level backpropagation for training deep spiking neural networks – volume: 33 start-page: 1 year: 2020 ident: nceacd952bib5 article-title: The Heidelberg spiking data sets for the systematic evaluation of spiking neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/tnnls.2020.3044364 – start-page: pp 71 year: 2014 ident: nceacd952bib19 article-title: Silicon cochleas – volume: vol 4 start-page: pp 2825 year: 2003 ident: nceacd952bib32 article-title: BSA, a fast and accurate spike train encoding scheme – volume: 6 start-page: 49 year: 2006 ident: nceacd952bib24 article-title: Send-on-delta concept: an event-based data reporting strategy publication-title: Sensors doi: 10.3390/s6010049 – volume: 31 start-page: 358 year: 2020 ident: nceacd952bib28 article-title: Selection and optimization of temporal spike encoding methods for spiking neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2906158 – year: 2023 ident: nceacd952bib37 article-title: The intel neuromorphic DNS challenge doi: 10.1088/2634-4386/ace737 – year: 2019 ident: nceacd952bib47 article-title: Technical report: supervised training of convolutional spiking neural networks with Pytorch – volume: 79 start-page: 702 year: 1986 ident: nceacd952bib22 article-title: Simulation of mechanical to neural transduction in the auditory receptor publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.393460 – volume: 20 start-page: 288 year: 2010 ident: nceacd952bib18 article-title: Neuromorphic sensory systems publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2010.03.007 – year: 2021 ident: nceacd952bib33 article-title: PyJoules: a Python library to capture the energy consumption of code snippets – year: 2006 ident: nceacd952bib4 – volume: 95 start-page: 521 year: 2005 ident: nceacd952bib42 article-title: Isolated word recognition with the liquid state machine: a case study publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2005.05.019 – volume: 40 start-page: 193 year: 2016 ident: nceacd952bib14 article-title: A minimum-error, energy-constrained neural code is an instantaneous-rate code publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-016-0592-x – volume: 7 start-page: 399 year: 1995 ident: nceacd952bib38 article-title: The upward bias in measures of information derived from limited data samples publication-title: Neural Comput. doi: 10.1162/neco.1995.7.2.399 – volume: 33 start-page: 899 year: 2021 ident: nceacd952bib45 article-title: The remarkable robustness of surrogate gradient learning for instilling complex function in spiking neural networks publication-title: Neural Comput. doi: 10.1162/neco_a_01367 – volume: 8 start-page: 453 year: 2014 ident: nceacd952bib20 article-title: Asynchronous binaural spatial audition sensor with 2×64×4 channel output publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2013.2281834 – year: 2022 ident: nceacd952bib8 article-title: Instruction tables – volume: 4 year: 2008 ident: nceacd952bib16 article-title: A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000180 – volume: 12 year: 2018 ident: nceacd952bib34 article-title: SpiLinC: spiking liquid-ensemble computing for unsupervised speech and image recognition publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00524 – volume: 16 year: 2022 ident: nceacd952bib10 article-title: Spike encoding techniques for IoT time-varying signals benchmarked on a neuromorphic classification task publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.999029 – year: 2010 ident: nceacd952bib21 article-title: Event-based 64-channel binaural silicon cochlea with Q enhancement mechanisms doi: 10.1109/ISCAS.2010.5537164 – start-page: pp 1050 year: 2006 ident: nceacd952bib41 article-title: Reservoir-based techniques for speech recognition – volume: 51 start-page: 2554 year: 2016 ident: nceacd952bib43 article-title: A 0.5v 55µw 64×2-channel binaural silicon cochlea for event-driven stereo-audio sensing publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2016.2604285 – volume: 26 start-page: 2635 year: 2015 ident: nceacd952bib46 article-title: A digital liquid state machine with biologically inspired learning and its application to speech recognition publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2388544 – start-page: pp 429 year: 1992 ident: nceacd952bib27 article-title: Complex sounds and auditory images – year: 2022 ident: nceacd952bib44 article-title: Efficient spike encoding algorithms for neuromorphic speech recognition doi: 10.1145/3546790.3546803 – year: 2022 ident: nceacd952bib7 article-title: Evaluation of neuromorphic spike encoding of sound using information theory – year: 2018 ident: nceacd952bib35 – volume: 80 start-page: 197 year: 1998 ident: nceacd952bib36 article-title: Entropy and information in neural spike trains publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.197 – volume: 93 start-page: 401 year: 1993 ident: nceacd952bib3 article-title: A model for the responses of low-frequency auditory-nerve fibers in cat publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.405620 |
SSID | ssj0002771165 |
Score | 2.2752297 |
Snippet | Spike encoding of sound consists in converting a sound waveform into spikes. It is of interest in many domains, including the development of audio-based... |
SourceID | doaj crossref iop |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 24007 |
SubjectTerms | audio signal processing mutual information neural coding spike encoding spiking neural networks |
SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYqWFh4I8rTAwwMoWlsx46YAFFVSMACgs2KXwhBH2rL0H_PXWIiKiHElkR-JOfHfRfffUfICRgmNhMuS3wIJuFFcIkqwXAteO5Sk6VBVUFid_d5_4nfvoiXFrloYmFG47j1n8NlTRRcizA6xKlOljOecKbyTmldIWD_XYYbhZbXA3tufrBkUiK1TDya_K3igiqqGPtBwUCvPxRMb52sRmRIL-v32CAtP9wka99ZF2hchFtE31SsDxgySQeYD8tOKSBPWmJ8xWgypxVF5WAEAnyzdDp-e_cU2SpRSdGGsnVK0eP9lUbiVBweWgU1zrfJU-_m8bqfxDQJieXdYpbwIIwEyeYiA00jZODKFwDTQDUBOADzy-dGdXlQKVyxTBihACM6wbvGh7T0bIcsDUdDv4t-TjZ1QcpcSGhLFmUIpeAsAEiTljnVJp1viWkbOcQxlcWHrs6yldIoY40y1rWM2-SsqTGu-TP-KHuFg9CUQ-br6gHMAh1ngc5NqpzkwTMHlpwqS6EMfJ4X1gHWkKJNTmEIdVyJ0z86O14oByOomc40cr6lUo9d2PtnS_tkBXPQ1_5jB2RpNvn0h4BUZuaompFfwYzh_Q priority: 102 providerName: IOP Publishing |
Title | Efficiency metrics for auditory neuromorphic spike encoding techniques using information theory |
URI | https://iopscience.iop.org/article/10.1088/2634-4386/acd952 https://doaj.org/article/6b08d74fe3d1488aa58bb81e5cd26675 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwtvRHl6gIEhahrbsTMCaoWQCgsVbFb8QuXRVm0ZuvDbuXPSql1gYYmiyEmsu7O-z_Ldd4RcwMbEZsJliQ_BJLwILlElbFwLnrvUZGlQsUis-5Df9fj9i3hZavWFOWGVPHBluGZuUuUkD545YO6qLIUyRrW8sA6wRUb1UsC8pc3UWzxOk6grU59LwkpqZjnjCWcqb5bWFSJbwaEo1w_o0h-OltCls002a1pIr6vp7JA1P9glW_OWC7RegXtEt6PkA9ZL0k9shmUnFGgnLbG4Yjie0ahP-TkE6_UtnYz6756iVCUiFF3otU4opru_0lo1FX1DY0XjbJ_0Ou2n27uk7pGQWN4qpgkPwkgway4ygBkhA1e-AI4GuATMAPZePgdr8aBSuGOZMEIBQXSCt4wPaenZAVkfDAf-EJOcbOqClLmQ8C1ZlCGUgrMADE1a5lSDNOcW07YWEMc-Fh86HmQrpdHGGm2sKxs3yNXijVElnvHL2Bt0wmIcyl7HBxAMug4G_VcwNMgluFDXy3Dyy8_OV8aBBzXTmUbBt1TqkQtH_zGdY7KB3emrzLITsj4df_lT4DBTcxbDFa7d7zZcH9nzD48p7o4 |
linkProvider | Directory of Open Access Journals |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZ4SIgLLS91gRYf2kMP6Wb9zhEoK2gL7QFUblb8qhCwu2KXA_--M45ZgVSh3qLIj2TGznwTz3xDyEdwTDyTgVUxJVeJJoXKtOC4NkKF2rE6mZwkdnauTi7Ftyt5Veqc5lyY8aR8-r_AZUcU3ImwBMSZPlNcVIIb1W99aCTrT0JaJMuSK4W1G37y3_OfLExrpJcpx5P_6vzCHGXWfjAyMPMzIzN8S9YKOqQH3bOsk4U42iBvniov0LIRN4k9zswPmDZJ77Amlp9SQJ-0xRyL8f0jzTSVd2MQ4rWn08n1TaTIWImGis5pW6cUo97_0EKeiiqiObHxcYtcDo8vjk6qUiqh8mLQzCqRpNMgXSUZWBupkzCxAagG5gkAArhgUTkzEMnUcMWZdNIATgxSDFxMdRv5NlkajUfxHcY6-TokrZXUMJZu2pRaKXgCoKY9D6ZH-k8Ss77wiGM5i1ubz7ONsShjizK2nYx75PO8x6Tj0Hil7SEqYd4O2a_zDVgJtqwEq1xtghYp8gDenGlbaRy8XpQ-AN7Qskc-gQpt2Y3TVybbf9EONGi5ZRZ532ptYV3t_OdI-2Tl19eh_XF6_n2XrGJJ-i6cbI8sze4f4nsALjP3IS_Ov8AN5ew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiency+metrics+for+auditory+neuromorphic+spike+encoding+techniques+using+information+theory&rft.jtitle=Neuromorphic+computing+and+engineering&rft.au=Ahmad+El+Ferdaoussi&rft.au=Jean+Rouat&rft.au=Eric+Plourde&rft.date=2023-06-01&rft.pub=IOP+Publishing&rft.eissn=2634-4386&rft.volume=3&rft.issue=2&rft.spage=024007&rft_id=info:doi/10.1088%2F2634-4386%2Facd952&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6b08d74fe3d1488aa58bb81e5cd26675 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2634-4386&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2634-4386&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2634-4386&client=summon |