Efficiency metrics for auditory neuromorphic spike encoding techniques using information theory

Spike encoding of sound consists in converting a sound waveform into spikes. It is of interest in many domains, including the development of audio-based spiking neural network applications, where it is the first and a crucial stage of processing. Many spike encoding techniques exist, but there is no...

Full description

Saved in:
Bibliographic Details
Published inNeuromorphic computing and engineering Vol. 3; no. 2; pp. 24007 - 24020
Main Authors El Ferdaoussi, Ahmad, Rouat, Jean, Plourde, Eric
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spike encoding of sound consists in converting a sound waveform into spikes. It is of interest in many domains, including the development of audio-based spiking neural network applications, where it is the first and a crucial stage of processing. Many spike encoding techniques exist, but there is no systematic approach to quantitatively evaluate their performance. This work proposes the use of three efficiency metrics based on information theory to solve this problem. The first, coding efficiency, measures the fraction of information that the spikes encode on the amplitude of the input signal. The second, computational efficiency, measures the information encoded subject to abstract computational costs imposed on the algorithmic operations of the spike encoding technique. The third, energy efficiency, measures the actual energy expended in the implementation of a spike encoding task. These three efficiency metrics are used to evaluate the performance of four spike encoding techniques for sound on the encoding of a cochleagram representation of speech data. The spike encoding techniques are: Independent Spike Coding, Send-on-Delta coding, Ben’s Spiker Algorithm, and Leaky Integrate-and-Fire (LIF) coding. The results show that LIF coding has the overall best performance in terms of coding, computational, and energy efficiency.
AbstractList Spike encoding of sound consists in converting a sound waveform into spikes. It is of interest in many domains, including the development of audio-based spiking neural network applications, where it is the first and a crucial stage of processing. Many spike encoding techniques exist, but there is no systematic approach to quantitatively evaluate their performance. This work proposes the use of three efficiency metrics based on information theory to solve this problem. The first, coding efficiency, measures the fraction of information that the spikes encode on the amplitude of the input signal. The second, computational efficiency, measures the information encoded subject to abstract computational costs imposed on the algorithmic operations of the spike encoding technique. The third, energy efficiency, measures the actual energy expended in the implementation of a spike encoding task. These three efficiency metrics are used to evaluate the performance of four spike encoding techniques for sound on the encoding of a cochleagram representation of speech data. The spike encoding techniques are: Independent Spike Coding, Send-on-Delta coding, Ben’s Spiker Algorithm, and Leaky Integrate-and-Fire (LIF) coding. The results show that LIF coding has the overall best performance in terms of coding, computational, and energy efficiency.
Author El Ferdaoussi, Ahmad
Rouat, Jean
Plourde, Eric
Author_xml – sequence: 1
  givenname: Ahmad
  orcidid: 0000-0002-9563-1467
  surname: El Ferdaoussi
  fullname: El Ferdaoussi, Ahmad
  organization: Université de Sherbrooke NECOTIS, Department of Electrical and Computer Engineering, Sherbrooke, QC J1K 2R1, Canada
– sequence: 2
  givenname: Jean
  surname: Rouat
  fullname: Rouat, Jean
  organization: Université de Sherbrooke NECOTIS, Department of Electrical and Computer Engineering, Sherbrooke, QC J1K 2R1, Canada
– sequence: 3
  givenname: Eric
  surname: Plourde
  fullname: Plourde, Eric
  organization: Université de Sherbrooke NECOTIS, Department of Electrical and Computer Engineering, Sherbrooke, QC J1K 2R1, Canada
BookMark eNp9kD1PWzEYha2KSgXK3tFTJ1JsX39lrBBQJCSWdrZ87dfEaWLf2r5D_j1OUqGqAia_PjrPM5wzdJJyAoS-UPKNEq2vmBz4gg9aXlnnl4J9QKcv0ck_9yd0UeuaEMKUolSKU2RuQoguQnI7vIVWoqs45ILt7GPLZYcTzCVvc5lW0eE6xd-Aezn7mJ5wA7dK8c8MFc91H8TU2a1tMSfcVtD5z-hjsJsKF3_fc_Tr9ubn9Y_Fw-Pd_fX3h4XjdNkWPIhRSU-kYFxRoQLXsJRCDpINVPH-k6OmPGjSr4GJUWjCiBecjhCIheEc3R-9Ptu1mUrc2rIz2UZzCHJ5Mra06DZg5Ei0VzzA4CnX2lqhxy4H4TyTUonuIkeXK7nWAuHFR4nZ7232g5r9oOa4d0fkf4iL7bBDKzZu3gO_HsGYJ7POc0l9JZMcmMEwQxgnRJnJh168fKX4pvcZxcuiRQ
CODEN NCEECN
CitedBy_id crossref_primary_10_1088_2634_4386_ada8d4
crossref_primary_10_1109_JSEN_2024_3453927
crossref_primary_10_1109_TNSRE_2025_3546682
Cites_doi 10.1016/j.heares.2007.01.012
10.1016/j.neunet.2007.04.003
10.3389/fninf.2011.00009
10.1016/j.neunet.2007.12.009
10.1523/JNEUROSCI.5044-12.2013
10.1038/nrn2578
10.1162/neco.1996.8.3.531
10.1152/jn.00559.2007
10.1038/14731
10.1109/tnnls.2020.3044364
10.3390/s6010049
10.1109/TNNLS.2019.2906158
10.1088/2634-4386/ace737
10.1121/1.393460
10.1016/j.conb.2010.03.007
10.1016/j.ipl.2005.05.019
10.1007/s10827-016-0592-x
10.1162/neco.1995.7.2.399
10.1162/neco_a_01367
10.1109/TBCAS.2013.2281834
10.1371/journal.pcbi.1000180
10.3389/fnins.2018.00524
10.3389/fnins.2022.999029
10.1109/ISCAS.2010.5537164
10.1109/JSSC.2016.2604285
10.1109/TNNLS.2015.2388544
10.1145/3546790.3546803
10.1103/PhysRevLett.80.197
10.1121/1.405620
ContentType Journal Article
Copyright 2023 The Author(s). Published by IOP Publishing Ltd
Copyright_xml – notice: 2023 The Author(s). Published by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOA
DOI 10.1088/2634-4386/acd952
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journals (Activated by CARLI)
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2634-4386
ExternalDocumentID oai_doaj_org_article_6b08d74fe3d1488aa58bb81e5cd26675
10_1088_2634_4386_acd952
nceacd952
GrantInformation_xml – fundername: Fonds de recherche du Québec – Nature et technologies
  funderid: http://dx.doi.org/10.13039/501100003151
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: http://dx.doi.org/10.13039/501100000038
GroupedDBID ABHWH
ACHIP
AKPSB
ALMA_UNASSIGNED_HOLDINGS
CJUJL
GROUPED_DOAJ
M~E
N5L
O3W
OK1
TSCCA
AAYXX
CITATION
AEINN
ID FETCH-LOGICAL-c419t-4f5b76d065247157f48e9656362317448e6b814f808e6325b58020d541bef0ae3
IEDL.DBID DOA
ISSN 2634-4386
IngestDate Wed Aug 27 01:29:26 EDT 2025
Tue Jul 01 01:09:06 EDT 2025
Thu Apr 24 22:51:35 EDT 2025
Wed Aug 21 03:34:32 EDT 2024
Tue Jun 13 23:30:42 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-4f5b76d065247157f48e9656362317448e6b814f808e6325b58020d541bef0ae3
Notes NCE-100199.R1
ORCID 0000-0002-9563-1467
OpenAccessLink https://doaj.org/article/6b08d74fe3d1488aa58bb81e5cd26675
PageCount 14
ParticipantIDs crossref_primary_10_1088_2634_4386_acd952
crossref_citationtrail_10_1088_2634_4386_acd952
doaj_primary_oai_doaj_org_article_6b08d74fe3d1488aa58bb81e5cd26675
iop_journals_10_1088_2634_4386_acd952
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Neuromorphic computing and engineering
PublicationTitleAbbrev NCE
PublicationTitleAlternate Neuromorph. Comput. Eng
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Carney (nceacd952bib3) 1993; 93
Fontaine (nceacd952bib9) 2011; 5
Verstraeten (nceacd952bib42) 2005; 95
Legenstein (nceacd952bib16) 2008; 4
Schrauwen (nceacd952bib32) 2003; vol 4
(nceacd952bib33) 2021
Fog (nceacd952bib8) 2022
Liu (nceacd952bib19) 2014
Zimmer (nceacd952bib47) 2019
Cover (nceacd952bib4) 2006
Timcheck (nceacd952bib37) 2023
Levy (nceacd952bib17) 1996; 8
Treves (nceacd952bib38) 1995; 7
Nelken (nceacd952bib25) 2007; 229
Quiroga (nceacd952bib30) 2013
Cramer (nceacd952bib5) 2020; 33
Strong (nceacd952bib36) 1998; 80
Liu (nceacd952bib20) 2014; 8
Liu (nceacd952bib21) 2010
Zenke (nceacd952bib45) 2021; 33
Forno (nceacd952bib10) 2022; 16
Patterson (nceacd952bib27) 1992
Yang (nceacd952bib43) 2016; 51
Meddis (nceacd952bib22) 1986; 79
Zhang (nceacd952bib46) 2015; 26
Borst (nceacd952bib2) 1999; 2
Srinivasan (nceacd952bib34) 2018; 12
Bellec (nceacd952bib1) 2018
Miskowicz (nceacd952bib24) 2006; 6
Petro (nceacd952bib28) 2020; 31
Quiroga (nceacd952bib29) 2009; 10
El Ferdaoussi (nceacd952bib7) 2022
Meddis (nceacd952bib23) 2010
Stone (nceacd952bib35) 2018
van Schaik (nceacd952bib39) 2010
Hastie (nceacd952bib12) 2009
Verstraeten (nceacd952bib40) 2007; 20
Verstraeten (nceacd952bib41) 2006
Gary Leonard (nceacd952bib11) 1993
Jin (nceacd952bib13) 2018
Johnson (nceacd952bib14) 2016; 40
Klampfl (nceacd952bib15) 2013; 33
Schrauwen (nceacd952bib31) 2008; 21
Yarga (nceacd952bib44) 2022
Dupeyroux (nceacd952bib6) 2022
Liu (nceacd952bib18) 2010; 20
Panzeri (nceacd952bib26) 2007; 98
References_xml – start-page: pp 1
  year: 2022
  ident: nceacd952bib6
  article-title: A toolbox for neuromorphic perception in robotics
– start-page: pp 518
  year: 2009
  ident: nceacd952bib12
– start-page: pp 261
  year: 2010
  ident: nceacd952bib39
  article-title: Silicon models of the auditory pathway
– volume: 229
  start-page: 94
  year: 2007
  ident: nceacd952bib25
  article-title: Information theory in auditory research
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2007.01.012
– volume: 20
  start-page: 391
  year: 2007
  ident: nceacd952bib40
  article-title: An experimental unification of reservoir computing methods
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2007.04.003
– volume: 5
  year: 2011
  ident: nceacd952bib9
  article-title: Brian hears: online auditory processing using vectorization over channels
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2011.00009
– start-page: pp 787
  year: 2018
  ident: nceacd952bib1
  article-title: Long short-term memory and learning-to-learn in networks of spiking neurons
– start-page: pp 156
  year: 2013
  ident: nceacd952bib30
  article-title: Decoding and information theory in neuroscience
– volume: 21
  start-page: 511
  year: 2008
  ident: nceacd952bib31
  article-title: Compact hardware liquid state machines on FPGA for real-time speech recognition
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2007.12.009
– volume: 33
  start-page: 11515
  year: 2013
  ident: nceacd952bib15
  article-title: Emergence of dynamic memory traces in cortical microcircuit models through STDP
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5044-12.2013
– volume: 10
  start-page: 173
  year: 2009
  ident: nceacd952bib29
  article-title: Extracting information from neuronal populations: information theory and decoding approaches
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2578
– volume: 8
  start-page: 531
  year: 1996
  ident: nceacd952bib17
  article-title: Energy efficient neural codes
  publication-title: Neural Comput.
  doi: 10.1162/neco.1996.8.3.531
– start-page: pp 7
  year: 2010
  ident: nceacd952bib23
  article-title: Auditory periphery: from pinna to auditory nerve
– year: 1993
  ident: nceacd952bib11
  article-title: Tidigits ldc93s10
– volume: 98
  start-page: 1064
  year: 2007
  ident: nceacd952bib26
  article-title: Correcting for the sampling bias problem in spike train information measures
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00559.2007
– volume: 2
  start-page: 947
  year: 1999
  ident: nceacd952bib2
  article-title: Information theory and neural coding
  publication-title: Nat. Neurosci.
  doi: 10.1038/14731
– start-page: pp 7005
  year: 2018
  ident: nceacd952bib13
  article-title: Hybrid macro/micro level backpropagation for training deep spiking neural networks
– volume: 33
  start-page: 1
  year: 2020
  ident: nceacd952bib5
  article-title: The Heidelberg spiking data sets for the systematic evaluation of spiking neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/tnnls.2020.3044364
– start-page: pp 71
  year: 2014
  ident: nceacd952bib19
  article-title: Silicon cochleas
– volume: vol 4
  start-page: pp 2825
  year: 2003
  ident: nceacd952bib32
  article-title: BSA, a fast and accurate spike train encoding scheme
– volume: 6
  start-page: 49
  year: 2006
  ident: nceacd952bib24
  article-title: Send-on-delta concept: an event-based data reporting strategy
  publication-title: Sensors
  doi: 10.3390/s6010049
– volume: 31
  start-page: 358
  year: 2020
  ident: nceacd952bib28
  article-title: Selection and optimization of temporal spike encoding methods for spiking neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2906158
– year: 2023
  ident: nceacd952bib37
  article-title: The intel neuromorphic DNS challenge
  doi: 10.1088/2634-4386/ace737
– year: 2019
  ident: nceacd952bib47
  article-title: Technical report: supervised training of convolutional spiking neural networks with Pytorch
– volume: 79
  start-page: 702
  year: 1986
  ident: nceacd952bib22
  article-title: Simulation of mechanical to neural transduction in the auditory receptor
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.393460
– volume: 20
  start-page: 288
  year: 2010
  ident: nceacd952bib18
  article-title: Neuromorphic sensory systems
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2010.03.007
– year: 2021
  ident: nceacd952bib33
  article-title: PyJoules: a Python library to capture the energy consumption of code snippets
– year: 2006
  ident: nceacd952bib4
– volume: 95
  start-page: 521
  year: 2005
  ident: nceacd952bib42
  article-title: Isolated word recognition with the liquid state machine: a case study
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2005.05.019
– volume: 40
  start-page: 193
  year: 2016
  ident: nceacd952bib14
  article-title: A minimum-error, energy-constrained neural code is an instantaneous-rate code
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-016-0592-x
– volume: 7
  start-page: 399
  year: 1995
  ident: nceacd952bib38
  article-title: The upward bias in measures of information derived from limited data samples
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.2.399
– volume: 33
  start-page: 899
  year: 2021
  ident: nceacd952bib45
  article-title: The remarkable robustness of surrogate gradient learning for instilling complex function in spiking neural networks
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01367
– volume: 8
  start-page: 453
  year: 2014
  ident: nceacd952bib20
  article-title: Asynchronous binaural spatial audition sensor with 2×64×4 channel output
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2013.2281834
– year: 2022
  ident: nceacd952bib8
  article-title: Instruction tables
– volume: 4
  year: 2008
  ident: nceacd952bib16
  article-title: A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000180
– volume: 12
  year: 2018
  ident: nceacd952bib34
  article-title: SpiLinC: spiking liquid-ensemble computing for unsupervised speech and image recognition
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00524
– volume: 16
  year: 2022
  ident: nceacd952bib10
  article-title: Spike encoding techniques for IoT time-varying signals benchmarked on a neuromorphic classification task
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.999029
– year: 2010
  ident: nceacd952bib21
  article-title: Event-based 64-channel binaural silicon cochlea with Q enhancement mechanisms
  doi: 10.1109/ISCAS.2010.5537164
– start-page: pp 1050
  year: 2006
  ident: nceacd952bib41
  article-title: Reservoir-based techniques for speech recognition
– volume: 51
  start-page: 2554
  year: 2016
  ident: nceacd952bib43
  article-title: A 0.5v 55µw 64×2-channel binaural silicon cochlea for event-driven stereo-audio sensing
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2016.2604285
– volume: 26
  start-page: 2635
  year: 2015
  ident: nceacd952bib46
  article-title: A digital liquid state machine with biologically inspired learning and its application to speech recognition
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2388544
– start-page: pp 429
  year: 1992
  ident: nceacd952bib27
  article-title: Complex sounds and auditory images
– year: 2022
  ident: nceacd952bib44
  article-title: Efficient spike encoding algorithms for neuromorphic speech recognition
  doi: 10.1145/3546790.3546803
– year: 2022
  ident: nceacd952bib7
  article-title: Evaluation of neuromorphic spike encoding of sound using information theory
– year: 2018
  ident: nceacd952bib35
– volume: 80
  start-page: 197
  year: 1998
  ident: nceacd952bib36
  article-title: Entropy and information in neural spike trains
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.197
– volume: 93
  start-page: 401
  year: 1993
  ident: nceacd952bib3
  article-title: A model for the responses of low-frequency auditory-nerve fibers in cat
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.405620
SSID ssj0002771165
Score 2.2752297
Snippet Spike encoding of sound consists in converting a sound waveform into spikes. It is of interest in many domains, including the development of audio-based...
SourceID doaj
crossref
iop
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 24007
SubjectTerms audio signal processing
mutual information
neural coding
spike encoding
spiking neural networks
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYqWFh4I8rTAwwMoWlsx46YAFFVSMACgs2KXwhBH2rL0H_PXWIiKiHElkR-JOfHfRfffUfICRgmNhMuS3wIJuFFcIkqwXAteO5Sk6VBVUFid_d5_4nfvoiXFrloYmFG47j1n8NlTRRcizA6xKlOljOecKbyTmldIWD_XYYbhZbXA3tufrBkUiK1TDya_K3igiqqGPtBwUCvPxRMb52sRmRIL-v32CAtP9wka99ZF2hchFtE31SsDxgySQeYD8tOKSBPWmJ8xWgypxVF5WAEAnyzdDp-e_cU2SpRSdGGsnVK0eP9lUbiVBweWgU1zrfJU-_m8bqfxDQJieXdYpbwIIwEyeYiA00jZODKFwDTQDUBOADzy-dGdXlQKVyxTBihACM6wbvGh7T0bIcsDUdDv4t-TjZ1QcpcSGhLFmUIpeAsAEiTljnVJp1viWkbOcQxlcWHrs6yldIoY40y1rWM2-SsqTGu-TP-KHuFg9CUQ-br6gHMAh1ngc5NqpzkwTMHlpwqS6EMfJ4X1gHWkKJNTmEIdVyJ0z86O14oByOomc40cr6lUo9d2PtnS_tkBXPQ1_5jB2RpNvn0h4BUZuaompFfwYzh_Q
  priority: 102
  providerName: IOP Publishing
Title Efficiency metrics for auditory neuromorphic spike encoding techniques using information theory
URI https://iopscience.iop.org/article/10.1088/2634-4386/acd952
https://doaj.org/article/6b08d74fe3d1488aa58bb81e5cd26675
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwtvRHl6gIEhahrbsTMCaoWQCgsVbFb8QuXRVm0ZuvDbuXPSql1gYYmiyEmsu7O-z_Ldd4RcwMbEZsJliQ_BJLwILlElbFwLnrvUZGlQsUis-5Df9fj9i3hZavWFOWGVPHBluGZuUuUkD545YO6qLIUyRrW8sA6wRUb1UsC8pc3UWzxOk6grU59LwkpqZjnjCWcqb5bWFSJbwaEo1w_o0h-OltCls002a1pIr6vp7JA1P9glW_OWC7RegXtEt6PkA9ZL0k9shmUnFGgnLbG4Yjie0ahP-TkE6_UtnYz6756iVCUiFF3otU4opru_0lo1FX1DY0XjbJ_0Ou2n27uk7pGQWN4qpgkPwkgway4ygBkhA1e-AI4GuATMAPZePgdr8aBSuGOZMEIBQXSCt4wPaenZAVkfDAf-EJOcbOqClLmQ8C1ZlCGUgrMADE1a5lSDNOcW07YWEMc-Fh86HmQrpdHGGm2sKxs3yNXijVElnvHL2Bt0wmIcyl7HBxAMug4G_VcwNMgluFDXy3Dyy8_OV8aBBzXTmUbBt1TqkQtH_zGdY7KB3emrzLITsj4df_lT4DBTcxbDFa7d7zZcH9nzD48p7o4
linkProvider Directory of Open Access Journals
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZ4SIgLLS91gRYf2kMP6Wb9zhEoK2gL7QFUblb8qhCwu2KXA_--M45ZgVSh3qLIj2TGznwTz3xDyEdwTDyTgVUxJVeJJoXKtOC4NkKF2rE6mZwkdnauTi7Ftyt5Veqc5lyY8aR8-r_AZUcU3ImwBMSZPlNcVIIb1W99aCTrT0JaJMuSK4W1G37y3_OfLExrpJcpx5P_6vzCHGXWfjAyMPMzIzN8S9YKOqQH3bOsk4U42iBvniov0LIRN4k9zswPmDZJ77Amlp9SQJ-0xRyL8f0jzTSVd2MQ4rWn08n1TaTIWImGis5pW6cUo97_0EKeiiqiObHxcYtcDo8vjk6qUiqh8mLQzCqRpNMgXSUZWBupkzCxAagG5gkAArhgUTkzEMnUcMWZdNIATgxSDFxMdRv5NlkajUfxHcY6-TokrZXUMJZu2pRaKXgCoKY9D6ZH-k8Ss77wiGM5i1ubz7ONsShjizK2nYx75PO8x6Tj0Hil7SEqYd4O2a_zDVgJtqwEq1xtghYp8gDenGlbaRy8XpQ-AN7Qskc-gQpt2Y3TVybbf9EONGi5ZRZ532ptYV3t_OdI-2Tl19eh_XF6_n2XrGJJ-i6cbI8sze4f4nsALjP3IS_Ov8AN5ew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiency+metrics+for+auditory+neuromorphic+spike+encoding+techniques+using+information+theory&rft.jtitle=Neuromorphic+computing+and+engineering&rft.au=Ahmad+El+Ferdaoussi&rft.au=Jean+Rouat&rft.au=Eric+Plourde&rft.date=2023-06-01&rft.pub=IOP+Publishing&rft.eissn=2634-4386&rft.volume=3&rft.issue=2&rft.spage=024007&rft_id=info:doi/10.1088%2F2634-4386%2Facd952&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6b08d74fe3d1488aa58bb81e5cd26675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2634-4386&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2634-4386&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2634-4386&client=summon