Complementation of intramolecular interactions for structural–functional stability of plant serine proteinase inhibitors
Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, an...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1830; no. 11; pp. 5087 - 5094 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions.
The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs.
The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop.
Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications.
[Display omitted]
•Disulfide bond network and alliance of weak interactions provides stability to SPIs.•Selective loss of a disulfide bond is associated with functional differentiation in SPIs.•Interplay of intramolecular interactions might have evolutionary significance. |
---|---|
AbstractList | Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions.
The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs.
The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop.
Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications. Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions.BACKGROUNDPlant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions.The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs.SCOPE OF REVIEWThe significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs.The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop.MAJOR CONCLUSIONSThe selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop.Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications.GENERAL SIGNIFICANCEStructural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications. BACKGROUND: Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions. SCOPE OF REVIEW: The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs. MAJOR CONCLUSIONS: The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop. GENERAL SIGNIFICANCE: Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications. Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions. The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs. The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop. Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications. [Display omitted] •Disulfide bond network and alliance of weak interactions provides stability to SPIs.•Selective loss of a disulfide bond is associated with functional differentiation in SPIs.•Interplay of intramolecular interactions might have evolutionary significance. Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions.The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs.The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop.Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications. |
Author | Suresh, C.G. Gupta, Vidya S. Joshi, Rakesh S. Giri, Ashok P. Mishra, Manasi |
Author_xml | – sequence: 1 givenname: Rakesh S. surname: Joshi fullname: Joshi, Rakesh S. – sequence: 2 givenname: Manasi surname: Mishra fullname: Mishra, Manasi – sequence: 3 givenname: C.G. surname: Suresh fullname: Suresh, C.G. – sequence: 4 givenname: Vidya S. surname: Gupta fullname: Gupta, Vidya S. – sequence: 5 givenname: Ashok P. surname: Giri fullname: Giri, Ashok P. email: ap.giri@ncl.res.in |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23891708$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtu1TAUhi1URG8LO0CQIZMEv2InDJDQVXlIlRhAx5bjnBRfOfbFdpDKiD2ww64EhxQGDKgnln2-_7z-M3TigweEnhLcEEzEy0MzDPoafEMxYQ2WDSb9A7QjnaR1h7E4QTvMMK85Ee0pOkvpgMtp-_YROqWs64nE3Q5934f56GAGn3W2wVdhqqzPUc_BgVmcjusTojZrNFVTiFXKcTF5idrd_vg5Lf53SLvyrwfrbL5Zkxyd9rlKEK2H6hhDBut1gpLtix1sDjE9Rg8n7RI8ubvP0dXbi8_79_Xlx3cf9m8ua8NJn2sOlGNsdBmDgewlI6OYWCdNqymmptfTaAQexcCwJtQY2g5MgNQc-pbRdmTn6MWWt3TxdYGU1WyTAVcahLAkRde9yI7x7l6UcCZawSTBBX12hy7DDKM6RjvreKP-rLYAfANMDClFmP4iBKvVQXVQm4NqdVBhqYqDRfbqH5mxmzXFFOvuEz_fxJMOSl9Hm9TVpwKIdUQquCjE642AsvFvFqJKxoI3MNoIJqsx2P-X-AVMy8W2 |
CitedBy_id | crossref_primary_10_1016_j_phytochem_2014_01_011 crossref_primary_10_1371_journal_pone_0187643 crossref_primary_10_1016_j_ijbiomac_2016_12_018 crossref_primary_10_1002_iub_1447 crossref_primary_10_3390_ijms20061345 crossref_primary_10_1007_s00425_016_2611_6 crossref_primary_10_2174_1389203724666230908114115 crossref_primary_10_1038_s41598_019_53495_6 crossref_primary_10_18097_PBMC20166204353 crossref_primary_10_1002_ange_201609517 crossref_primary_10_3389_fpls_2020_00266 crossref_primary_10_1007_s13562_021_00685_x crossref_primary_10_1016_j_biochi_2016_02_002 crossref_primary_10_3390_toxins8080229 crossref_primary_10_1016_j_procbio_2017_03_015 crossref_primary_10_3389_fpls_2021_772046 crossref_primary_10_1007_s40415_024_01047_2 crossref_primary_10_1016_j_procbio_2016_03_008 crossref_primary_10_1002_arch_21407 crossref_primary_10_1016_j_ibmb_2018_02_001 crossref_primary_10_1007_s12602_023_10194_z crossref_primary_10_1007_s12602_022_09979_5 crossref_primary_10_1007_s00284_015_0970_z crossref_primary_10_1186_1471_2164_15_812 crossref_primary_10_3390_ijms22020892 crossref_primary_10_1021_acs_jafc_7b04159 crossref_primary_10_1002_anie_201609517 |
Cites_doi | 10.1021/bi9625612 10.1016/S1055-7903(02)00373-1 10.2174/138161211798999393 10.1371/journal.pone.0018615 10.2174/0929866054395266 10.1021/bi00044a007 10.1016/j.gene.2009.04.012 10.1146/annurev.biophys.35.040405.102134 10.1146/annurev.py.28.090190.002233 10.2174/0929866054395329 10.1016/j.jmb.2009.11.031 10.1111/j.1432-1033.1993.tb17692.x 10.1111/j.1432-1033.1996.0122r.x 10.1021/bi00119a008 10.1074/jbc.M109.022095 10.1016/j.abb.2009.11.008 10.1021/bi00164a009 10.18388/abp.2001_3926 10.2174/138920311796391115 10.1016/j.tibs.2006.03.005 10.1105/tpc.109.073395 10.1002/prot.10291 10.1006/bbrc.2002.6436 10.2174/138920311796391124 10.1371/journal.pone.0019302 10.1016/S0959-440X(00)00176-7 10.1096/fasebj.10.1.8566551 10.1074/jbc.M304562200 10.1146/annurev.bi.49.070180.003113 10.1016/j.bbrc.2007.06.144 10.1007/s00018-003-3120-x 10.1016/j.bbapap.2007.07.009 10.1016/0022-2836(89)90376-8 10.1021/bi00375a036 10.1046/j.1432-1327.1998.2510854.x 10.1111/j.1432-1033.1992.tb16654.x 10.1016/S0968-0004(03)00057-4 10.1111/j.1745-7270.2005.00048.x 10.1074/jbc.M302020200 10.1126/science.175.4023.776 10.1016/S1360-1385(97)90052-2 10.1110/ps.26801 10.18388/abp.1996_4475 10.1089/ars.2010.3456 10.1016/S0167-7799(00)88896-4 10.1021/jp0575299 10.1146/annurev.bi.62.070193.003253 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2013. |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2013. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2013.07.019 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 5094 |
ExternalDocumentID | 23891708 10_1016_j_bbagen_2013_07_019 US201600002646 S030441651300322X |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI ABWVN ACRPL ADNMO AEIPS AFJKZ AKRWK ANKPU FBQ SSH AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c419t-4e2400ca1653e79731d6f387c5a202c9afdc60d6b30a12cc25b36e7a4e95325d3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Thu Aug 07 14:58:34 EDT 2025 Fri Jul 11 09:10:01 EDT 2025 Mon Jul 21 05:23:15 EDT 2025 Tue Jul 01 00:22:01 EDT 2025 Thu Apr 24 23:07:35 EDT 2025 Thu Apr 03 09:46:07 EDT 2025 Fri Feb 23 02:34:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Intramolecular weak interaction Protease Disulfide bond Reactive site loop PI RSL MI SPI Hydrogen bonding Serine proteinase inhibitor MEROPS Database ID Proteinase inhibitor |
Language | English |
License | 2013. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-4e2400ca1653e79731d6f387c5a202c9afdc60d6b30a12cc25b36e7a4e95325d3 |
Notes | http://dx.doi.org/10.1016/j.bbagen.2013.07.019 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 23891708 |
PQID | 1436563710 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000078348 proquest_miscellaneous_1436563710 pubmed_primary_23891708 crossref_primary_10_1016_j_bbagen_2013_07_019 crossref_citationtrail_10_1016_j_bbagen_2013_07_019 fao_agris_US201600002646 elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_07_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Otlewski, Jaskolski, Buczek, Cierpicki, Czapinska, Krowarsch, Smalas, Stachowiak, Szpineta, Dadlez (bb0115) 2001; 48 Fazili (bb0025) 2007; 2 Greenblatt, Ryan, James (bb0050) 1989; 205 Lesner, Legowska, Wysocka, Rolka (bb0265) 2011; 17 Zavodszky, Chen, Huang, Zolkiewski, Wen, Krishnamoorthi (bb0120) 2001; 10 Schirra, Craik (bb0180) 2005; 12 Christeller, Laing (bb0040) 2005; 12 Gottfried, Haas (bb0210) 1992; 31 Hansen, Macedo-Ribeiro, Verssimo, YooIm, Sam-paio, Oliva (bb0150) 2007; 360 Creighton, Zapun, Darby (bb0125) 1995; 13 Gonzalez, Neira, Ventura, Bronsoms, Rico, Aviles (bb0205) 2003; 50 Grantcharova, Alm, Baker, Horwich (bb0080) 2001; 11 Ryan (bb0015) 1990; 28 Gahloth, Selvakumar, Shee, Kumar, Sharma (bb0130) 2010; 494 Otlewski, Krowarsch (bb0185) 1996; 43 Hogg (bb0250) 2003; 28 Arolas, Aviles, Chang, Ventura (bb0095) 2006; 31 Green, Ryan (bb0005) 2005; 175 Ken, Dill, Banu, Scott Shell, Thomas (bb0105) 2008; 9 Werner, Wemmer (bb0155) 1992; 31 Philipp, Kim, Durr, Wenzl, Vogt, Flecker (bb0235) 1998; 251 McPhalen, James (bb0195) 1987; 26 Rao, Suresh (bb0170) 2007; 1774 Joshi, Mishra, Tamhane, Ghosh, Sonawane, Joshi, Suresh, Gupta, Giri (bb0230) 2013 Voss, Ermler, Essen, Wenzl, Kim, Flecker (bb0165) 1996; 242 do Socorro, Oliva, Fritz, Jochum, Mentele, Sampaio, Coelho, Batista, Sampaio (bb0145) 2002; 291 Nielsen, Heath, Anderson, Craik (bb0175) 1995; 34 Bao, Zhou, Jiang, Lin, Chi, Chen (bb0135) 2009; 284 Levy, Onuchic (bb0110) 2006; 35 Hartl, Giri, Kaur, Baldwin (bb0045) 2010; 22 Barrette-Ng, Ng, Cherney, Pearce, Ghani, Ryan, James (bb0055) 2003; 278 Krowarsch, Cierpicki, Jelen, Otlewski (bb0070) 2003; 60 Arajo, Hansen, Vieira, Oliveira, Santana, Beltramini, Sampaio, Sampaio, Oliva (bb0140) 2005; 386 Bateman, James (bb0075) 2011; 12 Laskowski, Kato (bb0010) 1980; 49 Pace, Shirley, McNutt, Gajiwala (bb0190) 1996; 10 Tamhane, Giri, Kumar, Gupta (bb0225) 2009; 442 Lawrence, Koundal (bb0035) 2002; 5 Jongsma, Beekwilder (bb0020) 2011; 12 Bode, Huber (bb0065) 1992; 204 Qi, Song, Chi (bb0245) 2005; 37 Lin, Bode, Huber, Chi, Engh (bb0160) 1993; 212 Lu, Qasim, Laskowski, Kent (bb0200) 1997; 36 Matthews (bb0100) 1993; 62 Schirra, Guarino, Anderson, Craik (bb0215) 2010; 395 Barrette-Ng, Ng, Cherney, Pearce, Ryan (bb0060) 2003; 278 Li, Zhang, Donnelly (bb0220) 2011; 6 Costa, Yaliraki (bb0255) 2006; 110 Koiwa, Bressan, Hasegawa (bb0030) 1997; 2 Swedberg, de Veer, Sit, Reboul, Buckle, Harris (bb0260) 2011; 6 Arolas, Ventura (bb0090) 2011; 14 Mello, Tanaka, Silva-filho (bb0240) 2003; 27 Lin (10.1016/j.bbagen.2013.07.019_bb0160) 1993; 212 Levy (10.1016/j.bbagen.2013.07.019_bb0110) 2006; 35 Mello (10.1016/j.bbagen.2013.07.019_bb0240) 2003; 27 Laskowski (10.1016/j.bbagen.2013.07.019_bb0010) 1980; 49 McPhalen (10.1016/j.bbagen.2013.07.019_bb0195) 1987; 26 Fazili (10.1016/j.bbagen.2013.07.019_bb0025) 2007; 2 Schirra (10.1016/j.bbagen.2013.07.019_bb0215) 2010; 395 Bateman (10.1016/j.bbagen.2013.07.019_bb0075) 2011; 12 Lu (10.1016/j.bbagen.2013.07.019_bb0200) 1997; 36 Hogg (10.1016/j.bbagen.2013.07.019_bb0250) 2003; 28 Matthews (10.1016/j.bbagen.2013.07.019_bb0100) 1993; 62 Hansen (10.1016/j.bbagen.2013.07.019_bb0150) 2007; 360 Nielsen (10.1016/j.bbagen.2013.07.019_bb0175) 1995; 34 Barrette-Ng (10.1016/j.bbagen.2013.07.019_bb0055) 2003; 278 Green (10.1016/j.bbagen.2013.07.019_bb0005) 2005; 175 Koiwa (10.1016/j.bbagen.2013.07.019_bb0030) 1997; 2 Costa (10.1016/j.bbagen.2013.07.019_bb0255) 2006; 110 Creighton (10.1016/j.bbagen.2013.07.019_bb0125) 1995; 13 Bao (10.1016/j.bbagen.2013.07.019_bb0135) 2009; 284 Werner (10.1016/j.bbagen.2013.07.019_bb0155) 1992; 31 Otlewski (10.1016/j.bbagen.2013.07.019_bb0115) 2001; 48 Gottfried (10.1016/j.bbagen.2013.07.019_bb0210) 1992; 31 Qi (10.1016/j.bbagen.2013.07.019_bb0245) 2005; 37 Christeller (10.1016/j.bbagen.2013.07.019_bb0040) 2005; 12 Rao (10.1016/j.bbagen.2013.07.019_bb0170) 2007; 1774 Schirra (10.1016/j.bbagen.2013.07.019_bb0180) 2005; 12 Arolas (10.1016/j.bbagen.2013.07.019_bb0095) 2006; 31 Gonzalez (10.1016/j.bbagen.2013.07.019_bb0205) 2003; 50 Krowarsch (10.1016/j.bbagen.2013.07.019_bb0070) 2003; 60 do Socorro (10.1016/j.bbagen.2013.07.019_bb0145) 2002; 291 Tamhane (10.1016/j.bbagen.2013.07.019_bb0225) 2009; 442 Swedberg (10.1016/j.bbagen.2013.07.019_bb0260) 2011; 6 Hartl (10.1016/j.bbagen.2013.07.019_bb0045) 2010; 22 Barrette-Ng (10.1016/j.bbagen.2013.07.019_bb0060) 2003; 278 Ryan (10.1016/j.bbagen.2013.07.019_bb0015) 1990; 28 Bode (10.1016/j.bbagen.2013.07.019_bb0065) 1992; 204 Arajo (10.1016/j.bbagen.2013.07.019_bb0140) 2005; 386 Philipp (10.1016/j.bbagen.2013.07.019_bb0235) 1998; 251 Pace (10.1016/j.bbagen.2013.07.019_bb0190) 1996; 10 Grantcharova (10.1016/j.bbagen.2013.07.019_bb0080) 2001; 11 Joshi (10.1016/j.bbagen.2013.07.019_bb0230) 2013 Lesner (10.1016/j.bbagen.2013.07.019_bb0265) 2011; 17 Li (10.1016/j.bbagen.2013.07.019_bb0220) 2011; 6 Lawrence (10.1016/j.bbagen.2013.07.019_bb0035) 2002; 5 Zavodszky (10.1016/j.bbagen.2013.07.019_bb0120) 2001; 10 Gahloth (10.1016/j.bbagen.2013.07.019_bb0130) 2010; 494 Voss (10.1016/j.bbagen.2013.07.019_bb0165) 1996; 242 Otlewski (10.1016/j.bbagen.2013.07.019_bb0185) 1996; 43 Jongsma (10.1016/j.bbagen.2013.07.019_bb0020) 2011; 12 Greenblatt (10.1016/j.bbagen.2013.07.019_bb0050) 1989; 205 Arolas (10.1016/j.bbagen.2013.07.019_bb0090) 2011; 14 Ken (10.1016/j.bbagen.2013.07.019_bb0105) 2008; 9 |
References_xml | – volume: 34 start-page: 14304 year: 1995 end-page: 14311 ident: bb0175 article-title: Structures of a series of 6-kDa trypsin inhibitors isolated from the stigma of publication-title: Biochemistry – volume: 291 start-page: 635 year: 2002 end-page: 639 ident: bb0145 article-title: Characterization of a Kunitz-type trypsin inhibitor with one disulfide bridge purified from publication-title: Biochem. Biophys. Res. Commun. – volume: 205 start-page: 201 year: 1989 end-page: 228 ident: bb0050 article-title: Structure of the complex of publication-title: J. Mol. Biol. – volume: 1774 start-page: 1264 year: 2007 end-page: 1273 ident: bb0170 article-title: Bowman–Birk protease inhibitor from the seeds of publication-title: Biochim. Biophys. Acta – volume: 60 start-page: 2427 year: 2003 end-page: 2444 ident: bb0070 article-title: Canonical protein inhibitors of serine proteases publication-title: Cell. Mol. Life Sci. – volume: 242 start-page: 122 year: 1996 end-page: 131 ident: bb0165 article-title: Crystal structure of the bifunctional soybean Bowman–Birk inhibitor at 0.28-nm resolution. Structural peculiarities in a folded protein conformation publication-title: Eur. J. Biochem. – volume: 251 start-page: 854 year: 1998 end-page: 862 ident: bb0235 article-title: Mutational analysis of disulfide bonds in the trypsin-reactive subdomain of a Bowman–Birk-type inhibitor of trypsin and chymotrypsin-cooperative versus autonomous refolding of subdomains publication-title: Eur. J. Biochem. – year: 2013 ident: bb0230 article-title: The remarkable efficiency of a Pin-II proteinase inhibitor sans two conserved disulfide bonds is due to enhanced flexibility and hydrogen bond density in the reactive site loop publication-title: J. Biomol. Struct. Dyn. – volume: 26 start-page: 261 year: 1987 end-page: 269 ident: bb0195 article-title: Crystal and molecular structure of the serine proteinase inhibitor CI-2 from barley seeds publication-title: Biochemistry – volume: 28 start-page: 210 year: 2003 end-page: 214 ident: bb0250 article-title: Disulfide bonds as switches for protein function publication-title: Trends Biochem. Sci. – volume: 35 start-page: 389 year: 2006 end-page: 415 ident: bb0110 article-title: Water mediation in protein folding and molecular recognition publication-title: Annu. Rev. Biophys. Biomol. Struct. – volume: 48 start-page: 419 year: 2001 end-page: 428 ident: bb0115 article-title: Structure–function relationship of serine protease–protein inhibitor interaction publication-title: Acta Biochim. Pol. – volume: 212 start-page: 549 year: 1993 end-page: 555 ident: bb0160 article-title: The 0.25-nm X-ray structure of the Bowman–Birk-type inhibitor from mung bean in ternary complex with porcine trypsin publication-title: Eur. J. Biochem. – volume: 28 start-page: 425 year: 1990 end-page: 449 ident: bb0015 article-title: Protease inhibitors in plants: genes for improving defenses against insects and pathogens publication-title: Annu. Rev. Phytopathol. – volume: 13 start-page: 18 year: 1995 end-page: 23 ident: bb0125 article-title: Mechanisms and catalysts of disulfide bond formation in proteins publication-title: Trends Biotechnol. – volume: 204 start-page: 433 year: 1992 end-page: 451 ident: bb0065 article-title: Natural protein proteinase inhibitors and their interaction with proteinases publication-title: Eur. J. Biochem. – volume: 12 start-page: 421 year: 2005 end-page: 431 ident: bb0180 article-title: Structure and folding of potato type II proteinase inhibitors: circular permutation and intramolecular domain swapping publication-title: Protein Pept. Lett. – volume: 360 start-page: 735 year: 2007 end-page: 740 ident: bb0150 article-title: Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor publication-title: Biochem. Biophys. Res. Commun. – volume: 31 start-page: 999 year: 1992 end-page: 1010 ident: bb0155 article-title: Three-dimensional structure of soybean trypsin/chymo-trypsin Bowman–Birk inhibitor in solution publication-title: Biochemistry – volume: 110 start-page: 18981 year: 2006 end-page: 18988 ident: bb0255 article-title: Role of rigidity on the activity of proteinase inhibitors and their peptide mimics publication-title: J. Phys. Chem. – volume: 494 start-page: 15 year: 2010 end-page: 22 ident: bb0130 article-title: Cloning, sequence analysis and crystal structure determination of a miraculin-like protein from publication-title: Arch. Biochem. Biophys. – volume: 386 start-page: 561 year: 2005 end-page: 568 ident: bb0140 article-title: Kunitz-type publication-title: J. Biol. Chem. – volume: 12 start-page: 340 year: 2011 end-page: 347 ident: bb0075 article-title: Plant protein proteinase inhibitors: structure and mechanism of inhibition publication-title: Curr. Protein Pept. Sci. – volume: 50 start-page: 410 year: 2003 end-page: 422 ident: bb0205 article-title: Structure and dynamics of the potato carboxy-peptidase inhibitor by publication-title: Proteins – volume: 2 start-page: 379 year: 1997 end-page: 384 ident: bb0030 article-title: Regulation of protease inhibitors and plant defense publication-title: Trends Plant Sci. – volume: 31 start-page: 12353 year: 1992 end-page: 12362 ident: bb0210 article-title: Nonlocal interactions stabilize compact folding intermediates in reduced unfolded bovine pancreatic trypsin inhibitor publication-title: Biochemistry – volume: 6 start-page: e19302 year: 2011 ident: bb0260 article-title: Mastering the canonical loop of serine protease inhibitors: enhancing potency by optimizing the internal hydrogen bond network publication-title: PLoS One – volume: 9 start-page: 289 year: 2008 end-page: 316 ident: bb0105 article-title: The protein folding problem publication-title: Annu. Rev. Biophys. – volume: 175 start-page: 776 year: 2005 end-page: 777 ident: bb0005 article-title: Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects publication-title: Science – volume: 37 start-page: 283 year: 2005 end-page: 292 ident: bb0245 article-title: Structural features and molecular evolution of Bowman–Birk protease inhibitors and their potential application publication-title: Acta Biochim. Biophys. Sin. – volume: 62 start-page: 653 year: 1993 end-page: 683 ident: bb0100 article-title: Pathways of protein folding publication-title: Annu. Rev. Biochem. – volume: 31 start-page: 292 year: 2006 end-page: 301 ident: bb0095 article-title: Folding of small disulfide-rich proteins: clarifying the puzzle publication-title: Trends Biochem. Sci. – volume: 12 start-page: 437 year: 2011 end-page: 447 ident: bb0020 article-title: Co-evolution of insect proteases and plant protease inhibitors publication-title: Curr. Protein Pept. Sci. – volume: 12 start-page: 439 year: 2005 end-page: 447 ident: bb0040 article-title: Plant serine proteinase inhibitors publication-title: Protein Pept. Lett. – volume: 284 start-page: 26676 year: 2009 end-page: 26684 ident: bb0135 article-title: The ternary structure of the double-headed arrowhead protease inhibitor API-A complexed with two trypsins reveals a novel reactive site conformation publication-title: J. Biol. Chem. – volume: 2 start-page: 68 year: 2007 end-page: 85 ident: bb0025 article-title: Plant protease inhibitors: a defense strategy in plants publication-title: Biotechnol. Mol. Biol. Rev. – volume: 17 start-page: 4308 year: 2011 end-page: 4317 ident: bb0265 article-title: Sunflower trypsin inhibitor 1 as a molecular scaffold for drug discovery publication-title: Curr. Pharm. Des. – volume: 49 start-page: 593 year: 1980 end-page: 626 ident: bb0010 article-title: Protein inhibitors of proteinases publication-title: Annu. Rev. Biochem. – volume: 395 start-page: 609 year: 2010 end-page: 626 ident: bb0215 article-title: Selective removal of individual disulfide bonds within a potato type II serine proteinase inhibitor from publication-title: J. Mol. Biol. – volume: 27 start-page: 103 year: 2003 end-page: 112 ident: bb0240 article-title: Molecular evolution of Bowman–Birk type proteinase inhibitors in flowering plants publication-title: Mol. Phylogenet. Evol. – volume: 11 start-page: 70 year: 2001 end-page: 82 ident: bb0080 article-title: Mechanisms of protein folding publication-title: Curr. Opin. Struct. Biol. – volume: 278 start-page: 31391 year: 2003 end-page: 31400 ident: bb0055 article-title: Unbound form of tomato inhibitor-II reveals interdomain flexibility and conformational variability in the reactive site loops publication-title: J. Biol. Chem. – volume: 278 start-page: 24062 year: 2003 end-page: 24071 ident: bb0060 article-title: Structural basis of inhibition revealed by a 1,2 complex of the two-headed tomato inhibitor-II and subtilisin Carlsberg publication-title: J. Biol. Chem. – volume: 36 start-page: 673 year: 1997 end-page: 679 ident: bb0200 article-title: Probing intermolecular main chain hydrogen bonding in serine proteinase–protein inhibitor complexes: chemical synthesis of backbone-engineered turkey ovomucoid third domain publication-title: Biochemistry – volume: 22 start-page: 4158 year: 2010 end-page: 4175 ident: bb0045 article-title: Serine protease inhibitors specifically defend publication-title: Plant Cell – volume: 6 start-page: e18615 year: 2011 ident: bb0220 article-title: Selective loss of cysteine residues and disulphide bonds in a potato proteinase inhibitor II family publication-title: PLoS One – volume: 14 start-page: 97 year: 2011 end-page: 112 ident: bb0090 article-title: Protease inhibitors as models for the study of oxidative folding publication-title: Antioxid. Redox Signal. – volume: 10 start-page: 75 year: 1996 end-page: 83 ident: bb0190 article-title: Forces contributing to the conformational stability of proteins publication-title: FASEB J. – volume: 442 start-page: 88 year: 2009 end-page: 98 ident: bb0225 article-title: Spatial and temporal expression patterns of diverse Pin-II proteinase inhibitor genes in publication-title: Gene – volume: 5 year: 2002 ident: bb0035 article-title: Plant protease inhibitors in control of phytophagous insects publication-title: Electron. J. Biotechnol. – volume: 10 start-page: 149 year: 2001 end-page: 160 ident: bb0120 article-title: Disulfide bond effects on protein stability: designed variants of publication-title: Protein Sci. – volume: 43 start-page: 431 year: 1996 end-page: 444 ident: bb0185 article-title: Squash inhibitor family of serine proteinases publication-title: Acta Biochim. Pol. – volume: 36 start-page: 673 year: 1997 ident: 10.1016/j.bbagen.2013.07.019_bb0200 article-title: Probing intermolecular main chain hydrogen bonding in serine proteinase–protein inhibitor complexes: chemical synthesis of backbone-engineered turkey ovomucoid third domain publication-title: Biochemistry doi: 10.1021/bi9625612 – volume: 27 start-page: 103 year: 2003 ident: 10.1016/j.bbagen.2013.07.019_bb0240 article-title: Molecular evolution of Bowman–Birk type proteinase inhibitors in flowering plants publication-title: Mol. Phylogenet. Evol. doi: 10.1016/S1055-7903(02)00373-1 – volume: 17 start-page: 4308 year: 2011 ident: 10.1016/j.bbagen.2013.07.019_bb0265 article-title: Sunflower trypsin inhibitor 1 as a molecular scaffold for drug discovery publication-title: Curr. Pharm. Des. doi: 10.2174/138161211798999393 – volume: 6 start-page: e18615 year: 2011 ident: 10.1016/j.bbagen.2013.07.019_bb0220 article-title: Selective loss of cysteine residues and disulphide bonds in a potato proteinase inhibitor II family publication-title: PLoS One doi: 10.1371/journal.pone.0018615 – volume: 12 start-page: 421 year: 2005 ident: 10.1016/j.bbagen.2013.07.019_bb0180 article-title: Structure and folding of potato type II proteinase inhibitors: circular permutation and intramolecular domain swapping publication-title: Protein Pept. Lett. doi: 10.2174/0929866054395266 – volume: 34 start-page: 14304 year: 1995 ident: 10.1016/j.bbagen.2013.07.019_bb0175 article-title: Structures of a series of 6-kDa trypsin inhibitors isolated from the stigma of Nicotiana alata publication-title: Biochemistry doi: 10.1021/bi00044a007 – volume: 442 start-page: 88 year: 2009 ident: 10.1016/j.bbagen.2013.07.019_bb0225 article-title: Spatial and temporal expression patterns of diverse Pin-II proteinase inhibitor genes in Capsicum annuum Linn publication-title: Gene doi: 10.1016/j.gene.2009.04.012 – volume: 35 start-page: 389 year: 2006 ident: 10.1016/j.bbagen.2013.07.019_bb0110 article-title: Water mediation in protein folding and molecular recognition publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.35.040405.102134 – volume: 28 start-page: 425 year: 1990 ident: 10.1016/j.bbagen.2013.07.019_bb0015 article-title: Protease inhibitors in plants: genes for improving defenses against insects and pathogens publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.py.28.090190.002233 – volume: 12 start-page: 439 year: 2005 ident: 10.1016/j.bbagen.2013.07.019_bb0040 article-title: Plant serine proteinase inhibitors publication-title: Protein Pept. Lett. doi: 10.2174/0929866054395329 – volume: 395 start-page: 609 year: 2010 ident: 10.1016/j.bbagen.2013.07.019_bb0215 article-title: Selective removal of individual disulfide bonds within a potato type II serine proteinase inhibitor from Nicotiana alata reveals differential stabilization of the reactive-site loop publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.11.031 – volume: 212 start-page: 549 year: 1993 ident: 10.1016/j.bbagen.2013.07.019_bb0160 article-title: The 0.25-nm X-ray structure of the Bowman–Birk-type inhibitor from mung bean in ternary complex with porcine trypsin publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1993.tb17692.x – volume: 2 start-page: 68 year: 2007 ident: 10.1016/j.bbagen.2013.07.019_bb0025 article-title: Plant protease inhibitors: a defense strategy in plants publication-title: Biotechnol. Mol. Biol. Rev. – volume: 242 start-page: 122 year: 1996 ident: 10.1016/j.bbagen.2013.07.019_bb0165 article-title: Crystal structure of the bifunctional soybean Bowman–Birk inhibitor at 0.28-nm resolution. Structural peculiarities in a folded protein conformation publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1996.0122r.x – volume: 31 start-page: 999 year: 1992 ident: 10.1016/j.bbagen.2013.07.019_bb0155 article-title: Three-dimensional structure of soybean trypsin/chymo-trypsin Bowman–Birk inhibitor in solution publication-title: Biochemistry doi: 10.1021/bi00119a008 – year: 2013 ident: 10.1016/j.bbagen.2013.07.019_bb0230 article-title: The remarkable efficiency of a Pin-II proteinase inhibitor sans two conserved disulfide bonds is due to enhanced flexibility and hydrogen bond density in the reactive site loop publication-title: J. Biomol. Struct. Dyn. – volume: 284 start-page: 26676 year: 2009 ident: 10.1016/j.bbagen.2013.07.019_bb0135 article-title: The ternary structure of the double-headed arrowhead protease inhibitor API-A complexed with two trypsins reveals a novel reactive site conformation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.022095 – volume: 494 start-page: 15 year: 2010 ident: 10.1016/j.bbagen.2013.07.019_bb0130 article-title: Cloning, sequence analysis and crystal structure determination of a miraculin-like protein from Murrayakoenigii publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2009.11.008 – volume: 31 start-page: 12353 year: 1992 ident: 10.1016/j.bbagen.2013.07.019_bb0210 article-title: Nonlocal interactions stabilize compact folding intermediates in reduced unfolded bovine pancreatic trypsin inhibitor publication-title: Biochemistry doi: 10.1021/bi00164a009 – volume: 48 start-page: 419 year: 2001 ident: 10.1016/j.bbagen.2013.07.019_bb0115 article-title: Structure–function relationship of serine protease–protein inhibitor interaction publication-title: Acta Biochim. Pol. doi: 10.18388/abp.2001_3926 – volume: 12 start-page: 437 year: 2011 ident: 10.1016/j.bbagen.2013.07.019_bb0020 article-title: Co-evolution of insect proteases and plant protease inhibitors publication-title: Curr. Protein Pept. Sci. doi: 10.2174/138920311796391115 – volume: 31 start-page: 292 year: 2006 ident: 10.1016/j.bbagen.2013.07.019_bb0095 article-title: Folding of small disulfide-rich proteins: clarifying the puzzle publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2006.03.005 – volume: 5 issue: 1[3] year: 2002 ident: 10.1016/j.bbagen.2013.07.019_bb0035 article-title: Plant protease inhibitors in control of phytophagous insects publication-title: Electron. J. Biotechnol. – volume: 22 start-page: 4158 year: 2010 ident: 10.1016/j.bbagen.2013.07.019_bb0045 article-title: Serine protease inhibitors specifically defend Solanum nigrum against generalist herbivores but do not influence plant growth and development publication-title: Plant Cell doi: 10.1105/tpc.109.073395 – volume: 50 start-page: 410 year: 2003 ident: 10.1016/j.bbagen.2013.07.019_bb0205 article-title: Structure and dynamics of the potato carboxy-peptidase inhibitor by 1H and 15N NMR publication-title: Proteins doi: 10.1002/prot.10291 – volume: 291 start-page: 635 year: 2002 ident: 10.1016/j.bbagen.2013.07.019_bb0145 article-title: Characterization of a Kunitz-type trypsin inhibitor with one disulfide bridge purified from Swartziapickellii publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2002.6436 – volume: 9 start-page: 289 year: 2008 ident: 10.1016/j.bbagen.2013.07.019_bb0105 article-title: The protein folding problem publication-title: Annu. Rev. Biophys. – volume: 12 start-page: 340 year: 2011 ident: 10.1016/j.bbagen.2013.07.019_bb0075 article-title: Plant protein proteinase inhibitors: structure and mechanism of inhibition publication-title: Curr. Protein Pept. Sci. doi: 10.2174/138920311796391124 – volume: 6 start-page: e19302 year: 2011 ident: 10.1016/j.bbagen.2013.07.019_bb0260 article-title: Mastering the canonical loop of serine protease inhibitors: enhancing potency by optimizing the internal hydrogen bond network publication-title: PLoS One doi: 10.1371/journal.pone.0019302 – volume: 11 start-page: 70 year: 2001 ident: 10.1016/j.bbagen.2013.07.019_bb0080 article-title: Mechanisms of protein folding publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(00)00176-7 – volume: 10 start-page: 75 year: 1996 ident: 10.1016/j.bbagen.2013.07.019_bb0190 article-title: Forces contributing to the conformational stability of proteins publication-title: FASEB J. doi: 10.1096/fasebj.10.1.8566551 – volume: 278 start-page: 31391 year: 2003 ident: 10.1016/j.bbagen.2013.07.019_bb0055 article-title: Unbound form of tomato inhibitor-II reveals interdomain flexibility and conformational variability in the reactive site loops publication-title: J. Biol. Chem. doi: 10.1074/jbc.M304562200 – volume: 49 start-page: 593 year: 1980 ident: 10.1016/j.bbagen.2013.07.019_bb0010 article-title: Protein inhibitors of proteinases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.49.070180.003113 – volume: 360 start-page: 735 year: 2007 ident: 10.1016/j.bbagen.2013.07.019_bb0150 article-title: Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.06.144 – volume: 60 start-page: 2427 year: 2003 ident: 10.1016/j.bbagen.2013.07.019_bb0070 article-title: Canonical protein inhibitors of serine proteases publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-003-3120-x – volume: 1774 start-page: 1264 year: 2007 ident: 10.1016/j.bbagen.2013.07.019_bb0170 article-title: Bowman–Birk protease inhibitor from the seeds of Vigna unguiculata forms a highly stable dimeric structure publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2007.07.009 – volume: 205 start-page: 201 year: 1989 ident: 10.1016/j.bbagen.2013.07.019_bb0050 article-title: Structure of the complex of Streptomyces griseus proteinase B and polypeptide chymotrypsin inhibitor-1 from Russet Burbank potato tubers at 2.1 A resolution publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(89)90376-8 – volume: 26 start-page: 261 year: 1987 ident: 10.1016/j.bbagen.2013.07.019_bb0195 article-title: Crystal and molecular structure of the serine proteinase inhibitor CI-2 from barley seeds publication-title: Biochemistry doi: 10.1021/bi00375a036 – volume: 251 start-page: 854 year: 1998 ident: 10.1016/j.bbagen.2013.07.019_bb0235 article-title: Mutational analysis of disulfide bonds in the trypsin-reactive subdomain of a Bowman–Birk-type inhibitor of trypsin and chymotrypsin-cooperative versus autonomous refolding of subdomains publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1998.2510854.x – volume: 204 start-page: 433 year: 1992 ident: 10.1016/j.bbagen.2013.07.019_bb0065 article-title: Natural protein proteinase inhibitors and their interaction with proteinases publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1992.tb16654.x – volume: 386 start-page: 561 year: 2005 ident: 10.1016/j.bbagen.2013.07.019_bb0140 article-title: Kunitz-type Bauhinia bauhinioides inhibitors devoid of disulfide bridges: isolation of the cDNAs, heterologous expression and structural studies publication-title: J. Biol. Chem. – volume: 28 start-page: 210 year: 2003 ident: 10.1016/j.bbagen.2013.07.019_bb0250 article-title: Disulfide bonds as switches for protein function publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(03)00057-4 – volume: 37 start-page: 283 year: 2005 ident: 10.1016/j.bbagen.2013.07.019_bb0245 article-title: Structural features and molecular evolution of Bowman–Birk protease inhibitors and their potential application publication-title: Acta Biochim. Biophys. Sin. doi: 10.1111/j.1745-7270.2005.00048.x – volume: 278 start-page: 24062 year: 2003 ident: 10.1016/j.bbagen.2013.07.019_bb0060 article-title: Structural basis of inhibition revealed by a 1,2 complex of the two-headed tomato inhibitor-II and subtilisin Carlsberg publication-title: J. Biol. Chem. doi: 10.1074/jbc.M302020200 – volume: 175 start-page: 776 year: 2005 ident: 10.1016/j.bbagen.2013.07.019_bb0005 article-title: Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects publication-title: Science doi: 10.1126/science.175.4023.776 – volume: 2 start-page: 379 year: 1997 ident: 10.1016/j.bbagen.2013.07.019_bb0030 article-title: Regulation of protease inhibitors and plant defense publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(97)90052-2 – volume: 10 start-page: 149 year: 2001 ident: 10.1016/j.bbagen.2013.07.019_bb0120 article-title: Disulfide bond effects on protein stability: designed variants of Cucurbita maxima trypsin inhibitor-V publication-title: Protein Sci. doi: 10.1110/ps.26801 – volume: 43 start-page: 431 year: 1996 ident: 10.1016/j.bbagen.2013.07.019_bb0185 article-title: Squash inhibitor family of serine proteinases publication-title: Acta Biochim. Pol. doi: 10.18388/abp.1996_4475 – volume: 14 start-page: 97 year: 2011 ident: 10.1016/j.bbagen.2013.07.019_bb0090 article-title: Protease inhibitors as models for the study of oxidative folding publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3456 – volume: 13 start-page: 18 year: 1995 ident: 10.1016/j.bbagen.2013.07.019_bb0125 article-title: Mechanisms and catalysts of disulfide bond formation in proteins publication-title: Trends Biotechnol. doi: 10.1016/S0167-7799(00)88896-4 – volume: 110 start-page: 18981 year: 2006 ident: 10.1016/j.bbagen.2013.07.019_bb0255 article-title: Role of rigidity on the activity of proteinase inhibitors and their peptide mimics publication-title: J. Phys. Chem. doi: 10.1021/jp0575299 – volume: 62 start-page: 653 year: 1993 ident: 10.1016/j.bbagen.2013.07.019_bb0100 article-title: Pathways of protein folding publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.62.070193.003253 |
SSID | ssj0000595 ssj0025309 |
Score | 2.2241094 |
SecondaryResourceType | review_article |
Snippet | Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and... BACKGROUND: Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5087 |
SubjectTerms | active sites Catalytic Domain Disulfide bond disulfide bonds electrostatic interactions Hydrogen bonding Intramolecular weak interaction Plant Proteins - antagonists & inhibitors Plant Proteins - metabolism Protease Protein Folding proteinase inhibitors proteins Reactive site loop serine Serine - metabolism Serine Proteases - metabolism Serine proteinase inhibitor Serine Proteinase Inhibitors - pharmacology serine proteinases Structure-Activity Relationship thermodynamics |
Title | Complementation of intramolecular interactions for structural–functional stability of plant serine proteinase inhibitors |
URI | https://dx.doi.org/10.1016/j.bbagen.2013.07.019 https://www.ncbi.nlm.nih.gov/pubmed/23891708 https://www.proquest.com/docview/1436563710 https://www.proquest.com/docview/2000078348 |
Volume | 1830 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIgSXCspPl0IVJK5mE_9mj9WKamGlHigr9mbZjgOpSnbFlkM5IN6BN-yTdCZOipCoKnGKEjlR4hnPfM7MfAPwWngTnOM1U3XUTIoQmKu0ZMrVJXoTT6CDsi2O9Wwh3y_VcgumQy0MpVX2tj_Z9M5a91fG_WyO100zPqGgHsIJRQEZVMslVbBLQ1r-5uefNA-EDypFEiSj0UP5XJfj5T0uWmJBLURH4Ul8O_92T3dqt7oZhHbO6Ogh7PQoMjtML_oItmK7C_dSX8mLXbg_Hdq4PYYftOL7HHESQraqs4b-6H4dGuPSafyWChw2GYLYLJHKEiHH5a_f5PnSD0O8nli9L-gh6zMUSrbpygezju6hadEl4tO-NL6hJj5PYHH09uN0xvqGCyzIYnLOZKSM0uBwmkQ01NSq0rUoTVCO5zxMXF0FnVfai9wVPASuvNDROBknSnBViaew3a7auAdZ4IX0ArdfharRLFSli6gWMXo3KctYmRGIYZ5t6NnIqSnGmR3Szk5tko4l6djcWJTOCNj1XevExnHLeDOI0P6lVRYdxi137qHErfuMptYuTjgR8ZH30FKP4NWgBhZlSQEW18bV9w1uowTCY4Gg7eYxvAsel0KWI3iWdOj6UzgFjU1ePv_v196HB3SWiiVfwDaqS3yJqOncH3TL4gDuHr6bz47pOP_waX4FWUUZ1g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BoopeqpY-2NJHKvVqbeJXske0Ai2F7gVW2ptlO04bRLOrLhzg1P_Qf9hf0pk4oUICIfUYx7YSz3hm7Jn5BuCzcLm3lldMVUEzKbxnttSSKVsVqE0cGR0UbTHT07n8slCLDZj0uTAUVtnJ_ijTW2ndtYy61Ryt6np0Sk49NCcUOWSQLRebsEXoVGoAW_tHx9PZP4Gs2uIr1J_RgD6Drg3zcg73LQGhZqJF8STInfs11GZllw_boa0-OnwOzzpDMtmP3_oCNkKzA09iacnrHdie9JXcXsINbfouTJzokCyrpKZL3R99bVx6DD9jjsM6QTs2ibiyhMnx59dvUn7xzhDbI7D3NU2yukC6JOs2gzBpER_qBrUizva9djXV8XkF88ODs8mUdTUXmJfZ-JLJQEGl3uIyiZBTXatSV6LIvbI85X5sq9LrtNROpDbj3nPlhA65lWGsBFeleA2DZtmEXUg8z6QTeALLVIWSoSxsQM4IwdlxUYQyH4Lo19n4DpCc6mJcmD7y7NxE6hiijklzg9QZArsdtYqAHI_0z3sSmjuMZVBnPDJyFylu7DeUtmZ-ygmLjxSIlnoIn3o2MEhL8rHYJiyv1niSEmghC7TbHu7DW_9xIWQxhDeRh25_hZPfOE-Lt__92R9he3r29cScHM2O9-ApvYm5k-9ggKwT3qMRdek-dJvkLxnzGuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complementation+of+intramolecular+interactions+for+structural%E2%80%93functional+stability+of+plant+serine+proteinase+inhibitors&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Joshi%2C+Rakesh+S.&rft.au=Mishra%2C+Manasi&rft.au=Suresh%2C+C.G.&rft.au=Gupta%2C+Vidya+S.&rft.date=2013-11-01&rft.issn=0304-4165&rft.volume=1830&rft.issue=11&rft.spage=5087&rft.epage=5094&rft_id=info:doi/10.1016%2Fj.bbagen.2013.07.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2013_07_019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |