Complementation of intramolecular interactions for structural–functional stability of plant serine proteinase inhibitors

Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, an...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1830; no. 11; pp. 5087 - 5094
Main Authors Joshi, Rakesh S., Mishra, Manasi, Suresh, C.G., Gupta, Vidya S., Giri, Ashok P.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions. The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs. The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop. Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications. [Display omitted] •Disulfide bond network and alliance of weak interactions provides stability to SPIs.•Selective loss of a disulfide bond is associated with functional differentiation in SPIs.•Interplay of intramolecular interactions might have evolutionary significance.
AbstractList Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions. The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs. The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop. Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications.
Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions.BACKGROUNDPlant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions.The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs.SCOPE OF REVIEWThe significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs.The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop.MAJOR CONCLUSIONSThe selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop.Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications.GENERAL SIGNIFICANCEStructural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications.
BACKGROUND: Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions. SCOPE OF REVIEW: The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs. MAJOR CONCLUSIONS: The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop. GENERAL SIGNIFICANCE: Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications.
Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions. The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs. The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop. Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications. [Display omitted] •Disulfide bond network and alliance of weak interactions provides stability to SPIs.•Selective loss of a disulfide bond is associated with functional differentiation in SPIs.•Interplay of intramolecular interactions might have evolutionary significance.
Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions.The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs.The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop.Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications.
Author Suresh, C.G.
Gupta, Vidya S.
Joshi, Rakesh S.
Giri, Ashok P.
Mishra, Manasi
Author_xml – sequence: 1
  givenname: Rakesh S.
  surname: Joshi
  fullname: Joshi, Rakesh S.
– sequence: 2
  givenname: Manasi
  surname: Mishra
  fullname: Mishra, Manasi
– sequence: 3
  givenname: C.G.
  surname: Suresh
  fullname: Suresh, C.G.
– sequence: 4
  givenname: Vidya S.
  surname: Gupta
  fullname: Gupta, Vidya S.
– sequence: 5
  givenname: Ashok P.
  surname: Giri
  fullname: Giri, Ashok P.
  email: ap.giri@ncl.res.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23891708$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtu1TAUhi1URG8LO0CQIZMEv2InDJDQVXlIlRhAx5bjnBRfOfbFdpDKiD2ww64EhxQGDKgnln2-_7z-M3TigweEnhLcEEzEy0MzDPoafEMxYQ2WDSb9A7QjnaR1h7E4QTvMMK85Ee0pOkvpgMtp-_YROqWs64nE3Q5934f56GAGn3W2wVdhqqzPUc_BgVmcjusTojZrNFVTiFXKcTF5idrd_vg5Lf53SLvyrwfrbL5Zkxyd9rlKEK2H6hhDBut1gpLtix1sDjE9Rg8n7RI8ubvP0dXbi8_79_Xlx3cf9m8ua8NJn2sOlGNsdBmDgewlI6OYWCdNqymmptfTaAQexcCwJtQY2g5MgNQc-pbRdmTn6MWWt3TxdYGU1WyTAVcahLAkRde9yI7x7l6UcCZawSTBBX12hy7DDKM6RjvreKP-rLYAfANMDClFmP4iBKvVQXVQm4NqdVBhqYqDRfbqH5mxmzXFFOvuEz_fxJMOSl9Hm9TVpwKIdUQquCjE642AsvFvFqJKxoI3MNoIJqsx2P-X-AVMy8W2
CitedBy_id crossref_primary_10_1016_j_phytochem_2014_01_011
crossref_primary_10_1371_journal_pone_0187643
crossref_primary_10_1016_j_ijbiomac_2016_12_018
crossref_primary_10_1002_iub_1447
crossref_primary_10_3390_ijms20061345
crossref_primary_10_1007_s00425_016_2611_6
crossref_primary_10_2174_1389203724666230908114115
crossref_primary_10_1038_s41598_019_53495_6
crossref_primary_10_18097_PBMC20166204353
crossref_primary_10_1002_ange_201609517
crossref_primary_10_3389_fpls_2020_00266
crossref_primary_10_1007_s13562_021_00685_x
crossref_primary_10_1016_j_biochi_2016_02_002
crossref_primary_10_3390_toxins8080229
crossref_primary_10_1016_j_procbio_2017_03_015
crossref_primary_10_3389_fpls_2021_772046
crossref_primary_10_1007_s40415_024_01047_2
crossref_primary_10_1016_j_procbio_2016_03_008
crossref_primary_10_1002_arch_21407
crossref_primary_10_1016_j_ibmb_2018_02_001
crossref_primary_10_1007_s12602_023_10194_z
crossref_primary_10_1007_s12602_022_09979_5
crossref_primary_10_1007_s00284_015_0970_z
crossref_primary_10_1186_1471_2164_15_812
crossref_primary_10_3390_ijms22020892
crossref_primary_10_1021_acs_jafc_7b04159
crossref_primary_10_1002_anie_201609517
Cites_doi 10.1021/bi9625612
10.1016/S1055-7903(02)00373-1
10.2174/138161211798999393
10.1371/journal.pone.0018615
10.2174/0929866054395266
10.1021/bi00044a007
10.1016/j.gene.2009.04.012
10.1146/annurev.biophys.35.040405.102134
10.1146/annurev.py.28.090190.002233
10.2174/0929866054395329
10.1016/j.jmb.2009.11.031
10.1111/j.1432-1033.1993.tb17692.x
10.1111/j.1432-1033.1996.0122r.x
10.1021/bi00119a008
10.1074/jbc.M109.022095
10.1016/j.abb.2009.11.008
10.1021/bi00164a009
10.18388/abp.2001_3926
10.2174/138920311796391115
10.1016/j.tibs.2006.03.005
10.1105/tpc.109.073395
10.1002/prot.10291
10.1006/bbrc.2002.6436
10.2174/138920311796391124
10.1371/journal.pone.0019302
10.1016/S0959-440X(00)00176-7
10.1096/fasebj.10.1.8566551
10.1074/jbc.M304562200
10.1146/annurev.bi.49.070180.003113
10.1016/j.bbrc.2007.06.144
10.1007/s00018-003-3120-x
10.1016/j.bbapap.2007.07.009
10.1016/0022-2836(89)90376-8
10.1021/bi00375a036
10.1046/j.1432-1327.1998.2510854.x
10.1111/j.1432-1033.1992.tb16654.x
10.1016/S0968-0004(03)00057-4
10.1111/j.1745-7270.2005.00048.x
10.1074/jbc.M302020200
10.1126/science.175.4023.776
10.1016/S1360-1385(97)90052-2
10.1110/ps.26801
10.18388/abp.1996_4475
10.1089/ars.2010.3456
10.1016/S0167-7799(00)88896-4
10.1021/jp0575299
10.1146/annurev.bi.62.070193.003253
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2013.
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2013.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2013.07.019
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 5094
ExternalDocumentID 23891708
10_1016_j_bbagen_2013_07_019
US201600002646
S030441651300322X
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AKRWK
ANKPU
FBQ
SSH
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c419t-4e2400ca1653e79731d6f387c5a202c9afdc60d6b30a12cc25b36e7a4e95325d3
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Thu Aug 07 14:58:34 EDT 2025
Fri Jul 11 09:10:01 EDT 2025
Mon Jul 21 05:23:15 EDT 2025
Tue Jul 01 00:22:01 EDT 2025
Thu Apr 24 23:07:35 EDT 2025
Thu Apr 03 09:46:07 EDT 2025
Fri Feb 23 02:34:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Intramolecular weak interaction
Protease
Disulfide bond
Reactive site loop
PI
RSL
MI
SPI
Hydrogen bonding
Serine proteinase inhibitor
MEROPS Database ID
Proteinase inhibitor
Language English
License 2013.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-4e2400ca1653e79731d6f387c5a202c9afdc60d6b30a12cc25b36e7a4e95325d3
Notes http://dx.doi.org/10.1016/j.bbagen.2013.07.019
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 23891708
PQID 1436563710
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000078348
proquest_miscellaneous_1436563710
pubmed_primary_23891708
crossref_primary_10_1016_j_bbagen_2013_07_019
crossref_citationtrail_10_1016_j_bbagen_2013_07_019
fao_agris_US201600002646
elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_07_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Otlewski, Jaskolski, Buczek, Cierpicki, Czapinska, Krowarsch, Smalas, Stachowiak, Szpineta, Dadlez (bb0115) 2001; 48
Fazili (bb0025) 2007; 2
Greenblatt, Ryan, James (bb0050) 1989; 205
Lesner, Legowska, Wysocka, Rolka (bb0265) 2011; 17
Zavodszky, Chen, Huang, Zolkiewski, Wen, Krishnamoorthi (bb0120) 2001; 10
Schirra, Craik (bb0180) 2005; 12
Christeller, Laing (bb0040) 2005; 12
Gottfried, Haas (bb0210) 1992; 31
Hansen, Macedo-Ribeiro, Verssimo, YooIm, Sam-paio, Oliva (bb0150) 2007; 360
Creighton, Zapun, Darby (bb0125) 1995; 13
Gonzalez, Neira, Ventura, Bronsoms, Rico, Aviles (bb0205) 2003; 50
Grantcharova, Alm, Baker, Horwich (bb0080) 2001; 11
Ryan (bb0015) 1990; 28
Gahloth, Selvakumar, Shee, Kumar, Sharma (bb0130) 2010; 494
Otlewski, Krowarsch (bb0185) 1996; 43
Hogg (bb0250) 2003; 28
Arolas, Aviles, Chang, Ventura (bb0095) 2006; 31
Green, Ryan (bb0005) 2005; 175
Ken, Dill, Banu, Scott Shell, Thomas (bb0105) 2008; 9
Werner, Wemmer (bb0155) 1992; 31
Philipp, Kim, Durr, Wenzl, Vogt, Flecker (bb0235) 1998; 251
McPhalen, James (bb0195) 1987; 26
Rao, Suresh (bb0170) 2007; 1774
Joshi, Mishra, Tamhane, Ghosh, Sonawane, Joshi, Suresh, Gupta, Giri (bb0230) 2013
Voss, Ermler, Essen, Wenzl, Kim, Flecker (bb0165) 1996; 242
do Socorro, Oliva, Fritz, Jochum, Mentele, Sampaio, Coelho, Batista, Sampaio (bb0145) 2002; 291
Nielsen, Heath, Anderson, Craik (bb0175) 1995; 34
Bao, Zhou, Jiang, Lin, Chi, Chen (bb0135) 2009; 284
Levy, Onuchic (bb0110) 2006; 35
Hartl, Giri, Kaur, Baldwin (bb0045) 2010; 22
Barrette-Ng, Ng, Cherney, Pearce, Ghani, Ryan, James (bb0055) 2003; 278
Krowarsch, Cierpicki, Jelen, Otlewski (bb0070) 2003; 60
Arajo, Hansen, Vieira, Oliveira, Santana, Beltramini, Sampaio, Sampaio, Oliva (bb0140) 2005; 386
Bateman, James (bb0075) 2011; 12
Laskowski, Kato (bb0010) 1980; 49
Pace, Shirley, McNutt, Gajiwala (bb0190) 1996; 10
Tamhane, Giri, Kumar, Gupta (bb0225) 2009; 442
Lawrence, Koundal (bb0035) 2002; 5
Jongsma, Beekwilder (bb0020) 2011; 12
Bode, Huber (bb0065) 1992; 204
Qi, Song, Chi (bb0245) 2005; 37
Lin, Bode, Huber, Chi, Engh (bb0160) 1993; 212
Lu, Qasim, Laskowski, Kent (bb0200) 1997; 36
Matthews (bb0100) 1993; 62
Schirra, Guarino, Anderson, Craik (bb0215) 2010; 395
Barrette-Ng, Ng, Cherney, Pearce, Ryan (bb0060) 2003; 278
Li, Zhang, Donnelly (bb0220) 2011; 6
Costa, Yaliraki (bb0255) 2006; 110
Koiwa, Bressan, Hasegawa (bb0030) 1997; 2
Swedberg, de Veer, Sit, Reboul, Buckle, Harris (bb0260) 2011; 6
Arolas, Ventura (bb0090) 2011; 14
Mello, Tanaka, Silva-filho (bb0240) 2003; 27
Lin (10.1016/j.bbagen.2013.07.019_bb0160) 1993; 212
Levy (10.1016/j.bbagen.2013.07.019_bb0110) 2006; 35
Mello (10.1016/j.bbagen.2013.07.019_bb0240) 2003; 27
Laskowski (10.1016/j.bbagen.2013.07.019_bb0010) 1980; 49
McPhalen (10.1016/j.bbagen.2013.07.019_bb0195) 1987; 26
Fazili (10.1016/j.bbagen.2013.07.019_bb0025) 2007; 2
Schirra (10.1016/j.bbagen.2013.07.019_bb0215) 2010; 395
Bateman (10.1016/j.bbagen.2013.07.019_bb0075) 2011; 12
Lu (10.1016/j.bbagen.2013.07.019_bb0200) 1997; 36
Hogg (10.1016/j.bbagen.2013.07.019_bb0250) 2003; 28
Matthews (10.1016/j.bbagen.2013.07.019_bb0100) 1993; 62
Hansen (10.1016/j.bbagen.2013.07.019_bb0150) 2007; 360
Nielsen (10.1016/j.bbagen.2013.07.019_bb0175) 1995; 34
Barrette-Ng (10.1016/j.bbagen.2013.07.019_bb0055) 2003; 278
Green (10.1016/j.bbagen.2013.07.019_bb0005) 2005; 175
Koiwa (10.1016/j.bbagen.2013.07.019_bb0030) 1997; 2
Costa (10.1016/j.bbagen.2013.07.019_bb0255) 2006; 110
Creighton (10.1016/j.bbagen.2013.07.019_bb0125) 1995; 13
Bao (10.1016/j.bbagen.2013.07.019_bb0135) 2009; 284
Werner (10.1016/j.bbagen.2013.07.019_bb0155) 1992; 31
Otlewski (10.1016/j.bbagen.2013.07.019_bb0115) 2001; 48
Gottfried (10.1016/j.bbagen.2013.07.019_bb0210) 1992; 31
Qi (10.1016/j.bbagen.2013.07.019_bb0245) 2005; 37
Christeller (10.1016/j.bbagen.2013.07.019_bb0040) 2005; 12
Rao (10.1016/j.bbagen.2013.07.019_bb0170) 2007; 1774
Schirra (10.1016/j.bbagen.2013.07.019_bb0180) 2005; 12
Arolas (10.1016/j.bbagen.2013.07.019_bb0095) 2006; 31
Gonzalez (10.1016/j.bbagen.2013.07.019_bb0205) 2003; 50
Krowarsch (10.1016/j.bbagen.2013.07.019_bb0070) 2003; 60
do Socorro (10.1016/j.bbagen.2013.07.019_bb0145) 2002; 291
Tamhane (10.1016/j.bbagen.2013.07.019_bb0225) 2009; 442
Swedberg (10.1016/j.bbagen.2013.07.019_bb0260) 2011; 6
Hartl (10.1016/j.bbagen.2013.07.019_bb0045) 2010; 22
Barrette-Ng (10.1016/j.bbagen.2013.07.019_bb0060) 2003; 278
Ryan (10.1016/j.bbagen.2013.07.019_bb0015) 1990; 28
Bode (10.1016/j.bbagen.2013.07.019_bb0065) 1992; 204
Arajo (10.1016/j.bbagen.2013.07.019_bb0140) 2005; 386
Philipp (10.1016/j.bbagen.2013.07.019_bb0235) 1998; 251
Pace (10.1016/j.bbagen.2013.07.019_bb0190) 1996; 10
Grantcharova (10.1016/j.bbagen.2013.07.019_bb0080) 2001; 11
Joshi (10.1016/j.bbagen.2013.07.019_bb0230) 2013
Lesner (10.1016/j.bbagen.2013.07.019_bb0265) 2011; 17
Li (10.1016/j.bbagen.2013.07.019_bb0220) 2011; 6
Lawrence (10.1016/j.bbagen.2013.07.019_bb0035) 2002; 5
Zavodszky (10.1016/j.bbagen.2013.07.019_bb0120) 2001; 10
Gahloth (10.1016/j.bbagen.2013.07.019_bb0130) 2010; 494
Voss (10.1016/j.bbagen.2013.07.019_bb0165) 1996; 242
Otlewski (10.1016/j.bbagen.2013.07.019_bb0185) 1996; 43
Jongsma (10.1016/j.bbagen.2013.07.019_bb0020) 2011; 12
Greenblatt (10.1016/j.bbagen.2013.07.019_bb0050) 1989; 205
Arolas (10.1016/j.bbagen.2013.07.019_bb0090) 2011; 14
Ken (10.1016/j.bbagen.2013.07.019_bb0105) 2008; 9
References_xml – volume: 34
  start-page: 14304
  year: 1995
  end-page: 14311
  ident: bb0175
  article-title: Structures of a series of 6-kDa trypsin inhibitors isolated from the stigma of
  publication-title: Biochemistry
– volume: 291
  start-page: 635
  year: 2002
  end-page: 639
  ident: bb0145
  article-title: Characterization of a Kunitz-type trypsin inhibitor with one disulfide bridge purified from
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 205
  start-page: 201
  year: 1989
  end-page: 228
  ident: bb0050
  article-title: Structure of the complex of
  publication-title: J. Mol. Biol.
– volume: 1774
  start-page: 1264
  year: 2007
  end-page: 1273
  ident: bb0170
  article-title: Bowman–Birk protease inhibitor from the seeds of
  publication-title: Biochim. Biophys. Acta
– volume: 60
  start-page: 2427
  year: 2003
  end-page: 2444
  ident: bb0070
  article-title: Canonical protein inhibitors of serine proteases
  publication-title: Cell. Mol. Life Sci.
– volume: 242
  start-page: 122
  year: 1996
  end-page: 131
  ident: bb0165
  article-title: Crystal structure of the bifunctional soybean Bowman–Birk inhibitor at 0.28-nm resolution. Structural peculiarities in a folded protein conformation
  publication-title: Eur. J. Biochem.
– volume: 251
  start-page: 854
  year: 1998
  end-page: 862
  ident: bb0235
  article-title: Mutational analysis of disulfide bonds in the trypsin-reactive subdomain of a Bowman–Birk-type inhibitor of trypsin and chymotrypsin-cooperative versus autonomous refolding of subdomains
  publication-title: Eur. J. Biochem.
– year: 2013
  ident: bb0230
  article-title: The remarkable efficiency of a Pin-II proteinase inhibitor sans two conserved disulfide bonds is due to enhanced flexibility and hydrogen bond density in the reactive site loop
  publication-title: J. Biomol. Struct. Dyn.
– volume: 26
  start-page: 261
  year: 1987
  end-page: 269
  ident: bb0195
  article-title: Crystal and molecular structure of the serine proteinase inhibitor CI-2 from barley seeds
  publication-title: Biochemistry
– volume: 28
  start-page: 210
  year: 2003
  end-page: 214
  ident: bb0250
  article-title: Disulfide bonds as switches for protein function
  publication-title: Trends Biochem. Sci.
– volume: 35
  start-page: 389
  year: 2006
  end-page: 415
  ident: bb0110
  article-title: Water mediation in protein folding and molecular recognition
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
– volume: 48
  start-page: 419
  year: 2001
  end-page: 428
  ident: bb0115
  article-title: Structure–function relationship of serine protease–protein inhibitor interaction
  publication-title: Acta Biochim. Pol.
– volume: 212
  start-page: 549
  year: 1993
  end-page: 555
  ident: bb0160
  article-title: The 0.25-nm X-ray structure of the Bowman–Birk-type inhibitor from mung bean in ternary complex with porcine trypsin
  publication-title: Eur. J. Biochem.
– volume: 28
  start-page: 425
  year: 1990
  end-page: 449
  ident: bb0015
  article-title: Protease inhibitors in plants: genes for improving defenses against insects and pathogens
  publication-title: Annu. Rev. Phytopathol.
– volume: 13
  start-page: 18
  year: 1995
  end-page: 23
  ident: bb0125
  article-title: Mechanisms and catalysts of disulfide bond formation in proteins
  publication-title: Trends Biotechnol.
– volume: 204
  start-page: 433
  year: 1992
  end-page: 451
  ident: bb0065
  article-title: Natural protein proteinase inhibitors and their interaction with proteinases
  publication-title: Eur. J. Biochem.
– volume: 12
  start-page: 421
  year: 2005
  end-page: 431
  ident: bb0180
  article-title: Structure and folding of potato type II proteinase inhibitors: circular permutation and intramolecular domain swapping
  publication-title: Protein Pept. Lett.
– volume: 360
  start-page: 735
  year: 2007
  end-page: 740
  ident: bb0150
  article-title: Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 31
  start-page: 999
  year: 1992
  end-page: 1010
  ident: bb0155
  article-title: Three-dimensional structure of soybean trypsin/chymo-trypsin Bowman–Birk inhibitor in solution
  publication-title: Biochemistry
– volume: 110
  start-page: 18981
  year: 2006
  end-page: 18988
  ident: bb0255
  article-title: Role of rigidity on the activity of proteinase inhibitors and their peptide mimics
  publication-title: J. Phys. Chem.
– volume: 494
  start-page: 15
  year: 2010
  end-page: 22
  ident: bb0130
  article-title: Cloning, sequence analysis and crystal structure determination of a miraculin-like protein from
  publication-title: Arch. Biochem. Biophys.
– volume: 386
  start-page: 561
  year: 2005
  end-page: 568
  ident: bb0140
  article-title: Kunitz-type
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 340
  year: 2011
  end-page: 347
  ident: bb0075
  article-title: Plant protein proteinase inhibitors: structure and mechanism of inhibition
  publication-title: Curr. Protein Pept. Sci.
– volume: 50
  start-page: 410
  year: 2003
  end-page: 422
  ident: bb0205
  article-title: Structure and dynamics of the potato carboxy-peptidase inhibitor by
  publication-title: Proteins
– volume: 2
  start-page: 379
  year: 1997
  end-page: 384
  ident: bb0030
  article-title: Regulation of protease inhibitors and plant defense
  publication-title: Trends Plant Sci.
– volume: 31
  start-page: 12353
  year: 1992
  end-page: 12362
  ident: bb0210
  article-title: Nonlocal interactions stabilize compact folding intermediates in reduced unfolded bovine pancreatic trypsin inhibitor
  publication-title: Biochemistry
– volume: 6
  start-page: e19302
  year: 2011
  ident: bb0260
  article-title: Mastering the canonical loop of serine protease inhibitors: enhancing potency by optimizing the internal hydrogen bond network
  publication-title: PLoS One
– volume: 9
  start-page: 289
  year: 2008
  end-page: 316
  ident: bb0105
  article-title: The protein folding problem
  publication-title: Annu. Rev. Biophys.
– volume: 175
  start-page: 776
  year: 2005
  end-page: 777
  ident: bb0005
  article-title: Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects
  publication-title: Science
– volume: 37
  start-page: 283
  year: 2005
  end-page: 292
  ident: bb0245
  article-title: Structural features and molecular evolution of Bowman–Birk protease inhibitors and their potential application
  publication-title: Acta Biochim. Biophys. Sin.
– volume: 62
  start-page: 653
  year: 1993
  end-page: 683
  ident: bb0100
  article-title: Pathways of protein folding
  publication-title: Annu. Rev. Biochem.
– volume: 31
  start-page: 292
  year: 2006
  end-page: 301
  ident: bb0095
  article-title: Folding of small disulfide-rich proteins: clarifying the puzzle
  publication-title: Trends Biochem. Sci.
– volume: 12
  start-page: 437
  year: 2011
  end-page: 447
  ident: bb0020
  article-title: Co-evolution of insect proteases and plant protease inhibitors
  publication-title: Curr. Protein Pept. Sci.
– volume: 12
  start-page: 439
  year: 2005
  end-page: 447
  ident: bb0040
  article-title: Plant serine proteinase inhibitors
  publication-title: Protein Pept. Lett.
– volume: 284
  start-page: 26676
  year: 2009
  end-page: 26684
  ident: bb0135
  article-title: The ternary structure of the double-headed arrowhead protease inhibitor API-A complexed with two trypsins reveals a novel reactive site conformation
  publication-title: J. Biol. Chem.
– volume: 2
  start-page: 68
  year: 2007
  end-page: 85
  ident: bb0025
  article-title: Plant protease inhibitors: a defense strategy in plants
  publication-title: Biotechnol. Mol. Biol. Rev.
– volume: 17
  start-page: 4308
  year: 2011
  end-page: 4317
  ident: bb0265
  article-title: Sunflower trypsin inhibitor 1 as a molecular scaffold for drug discovery
  publication-title: Curr. Pharm. Des.
– volume: 49
  start-page: 593
  year: 1980
  end-page: 626
  ident: bb0010
  article-title: Protein inhibitors of proteinases
  publication-title: Annu. Rev. Biochem.
– volume: 395
  start-page: 609
  year: 2010
  end-page: 626
  ident: bb0215
  article-title: Selective removal of individual disulfide bonds within a potato type II serine proteinase inhibitor from
  publication-title: J. Mol. Biol.
– volume: 27
  start-page: 103
  year: 2003
  end-page: 112
  ident: bb0240
  article-title: Molecular evolution of Bowman–Birk type proteinase inhibitors in flowering plants
  publication-title: Mol. Phylogenet. Evol.
– volume: 11
  start-page: 70
  year: 2001
  end-page: 82
  ident: bb0080
  article-title: Mechanisms of protein folding
  publication-title: Curr. Opin. Struct. Biol.
– volume: 278
  start-page: 31391
  year: 2003
  end-page: 31400
  ident: bb0055
  article-title: Unbound form of tomato inhibitor-II reveals interdomain flexibility and conformational variability in the reactive site loops
  publication-title: J. Biol. Chem.
– volume: 278
  start-page: 24062
  year: 2003
  end-page: 24071
  ident: bb0060
  article-title: Structural basis of inhibition revealed by a 1,2 complex of the two-headed tomato inhibitor-II and subtilisin Carlsberg
  publication-title: J. Biol. Chem.
– volume: 36
  start-page: 673
  year: 1997
  end-page: 679
  ident: bb0200
  article-title: Probing intermolecular main chain hydrogen bonding in serine proteinase–protein inhibitor complexes: chemical synthesis of backbone-engineered turkey ovomucoid third domain
  publication-title: Biochemistry
– volume: 22
  start-page: 4158
  year: 2010
  end-page: 4175
  ident: bb0045
  article-title: Serine protease inhibitors specifically defend
  publication-title: Plant Cell
– volume: 6
  start-page: e18615
  year: 2011
  ident: bb0220
  article-title: Selective loss of cysteine residues and disulphide bonds in a potato proteinase inhibitor II family
  publication-title: PLoS One
– volume: 14
  start-page: 97
  year: 2011
  end-page: 112
  ident: bb0090
  article-title: Protease inhibitors as models for the study of oxidative folding
  publication-title: Antioxid. Redox Signal.
– volume: 10
  start-page: 75
  year: 1996
  end-page: 83
  ident: bb0190
  article-title: Forces contributing to the conformational stability of proteins
  publication-title: FASEB J.
– volume: 442
  start-page: 88
  year: 2009
  end-page: 98
  ident: bb0225
  article-title: Spatial and temporal expression patterns of diverse Pin-II proteinase inhibitor genes in
  publication-title: Gene
– volume: 5
  year: 2002
  ident: bb0035
  article-title: Plant protease inhibitors in control of phytophagous insects
  publication-title: Electron. J. Biotechnol.
– volume: 10
  start-page: 149
  year: 2001
  end-page: 160
  ident: bb0120
  article-title: Disulfide bond effects on protein stability: designed variants of
  publication-title: Protein Sci.
– volume: 43
  start-page: 431
  year: 1996
  end-page: 444
  ident: bb0185
  article-title: Squash inhibitor family of serine proteinases
  publication-title: Acta Biochim. Pol.
– volume: 36
  start-page: 673
  year: 1997
  ident: 10.1016/j.bbagen.2013.07.019_bb0200
  article-title: Probing intermolecular main chain hydrogen bonding in serine proteinase–protein inhibitor complexes: chemical synthesis of backbone-engineered turkey ovomucoid third domain
  publication-title: Biochemistry
  doi: 10.1021/bi9625612
– volume: 27
  start-page: 103
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.019_bb0240
  article-title: Molecular evolution of Bowman–Birk type proteinase inhibitors in flowering plants
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/S1055-7903(02)00373-1
– volume: 17
  start-page: 4308
  year: 2011
  ident: 10.1016/j.bbagen.2013.07.019_bb0265
  article-title: Sunflower trypsin inhibitor 1 as a molecular scaffold for drug discovery
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161211798999393
– volume: 6
  start-page: e18615
  year: 2011
  ident: 10.1016/j.bbagen.2013.07.019_bb0220
  article-title: Selective loss of cysteine residues and disulphide bonds in a potato proteinase inhibitor II family
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018615
– volume: 12
  start-page: 421
  year: 2005
  ident: 10.1016/j.bbagen.2013.07.019_bb0180
  article-title: Structure and folding of potato type II proteinase inhibitors: circular permutation and intramolecular domain swapping
  publication-title: Protein Pept. Lett.
  doi: 10.2174/0929866054395266
– volume: 34
  start-page: 14304
  year: 1995
  ident: 10.1016/j.bbagen.2013.07.019_bb0175
  article-title: Structures of a series of 6-kDa trypsin inhibitors isolated from the stigma of Nicotiana alata
  publication-title: Biochemistry
  doi: 10.1021/bi00044a007
– volume: 442
  start-page: 88
  year: 2009
  ident: 10.1016/j.bbagen.2013.07.019_bb0225
  article-title: Spatial and temporal expression patterns of diverse Pin-II proteinase inhibitor genes in Capsicum annuum Linn
  publication-title: Gene
  doi: 10.1016/j.gene.2009.04.012
– volume: 35
  start-page: 389
  year: 2006
  ident: 10.1016/j.bbagen.2013.07.019_bb0110
  article-title: Water mediation in protein folding and molecular recognition
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.35.040405.102134
– volume: 28
  start-page: 425
  year: 1990
  ident: 10.1016/j.bbagen.2013.07.019_bb0015
  article-title: Protease inhibitors in plants: genes for improving defenses against insects and pathogens
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.py.28.090190.002233
– volume: 12
  start-page: 439
  year: 2005
  ident: 10.1016/j.bbagen.2013.07.019_bb0040
  article-title: Plant serine proteinase inhibitors
  publication-title: Protein Pept. Lett.
  doi: 10.2174/0929866054395329
– volume: 395
  start-page: 609
  year: 2010
  ident: 10.1016/j.bbagen.2013.07.019_bb0215
  article-title: Selective removal of individual disulfide bonds within a potato type II serine proteinase inhibitor from Nicotiana alata reveals differential stabilization of the reactive-site loop
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.11.031
– volume: 212
  start-page: 549
  year: 1993
  ident: 10.1016/j.bbagen.2013.07.019_bb0160
  article-title: The 0.25-nm X-ray structure of the Bowman–Birk-type inhibitor from mung bean in ternary complex with porcine trypsin
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1993.tb17692.x
– volume: 2
  start-page: 68
  year: 2007
  ident: 10.1016/j.bbagen.2013.07.019_bb0025
  article-title: Plant protease inhibitors: a defense strategy in plants
  publication-title: Biotechnol. Mol. Biol. Rev.
– volume: 242
  start-page: 122
  year: 1996
  ident: 10.1016/j.bbagen.2013.07.019_bb0165
  article-title: Crystal structure of the bifunctional soybean Bowman–Birk inhibitor at 0.28-nm resolution. Structural peculiarities in a folded protein conformation
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1996.0122r.x
– volume: 31
  start-page: 999
  year: 1992
  ident: 10.1016/j.bbagen.2013.07.019_bb0155
  article-title: Three-dimensional structure of soybean trypsin/chymo-trypsin Bowman–Birk inhibitor in solution
  publication-title: Biochemistry
  doi: 10.1021/bi00119a008
– year: 2013
  ident: 10.1016/j.bbagen.2013.07.019_bb0230
  article-title: The remarkable efficiency of a Pin-II proteinase inhibitor sans two conserved disulfide bonds is due to enhanced flexibility and hydrogen bond density in the reactive site loop
  publication-title: J. Biomol. Struct. Dyn.
– volume: 284
  start-page: 26676
  year: 2009
  ident: 10.1016/j.bbagen.2013.07.019_bb0135
  article-title: The ternary structure of the double-headed arrowhead protease inhibitor API-A complexed with two trypsins reveals a novel reactive site conformation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.022095
– volume: 494
  start-page: 15
  year: 2010
  ident: 10.1016/j.bbagen.2013.07.019_bb0130
  article-title: Cloning, sequence analysis and crystal structure determination of a miraculin-like protein from Murrayakoenigii
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2009.11.008
– volume: 31
  start-page: 12353
  year: 1992
  ident: 10.1016/j.bbagen.2013.07.019_bb0210
  article-title: Nonlocal interactions stabilize compact folding intermediates in reduced unfolded bovine pancreatic trypsin inhibitor
  publication-title: Biochemistry
  doi: 10.1021/bi00164a009
– volume: 48
  start-page: 419
  year: 2001
  ident: 10.1016/j.bbagen.2013.07.019_bb0115
  article-title: Structure–function relationship of serine protease–protein inhibitor interaction
  publication-title: Acta Biochim. Pol.
  doi: 10.18388/abp.2001_3926
– volume: 12
  start-page: 437
  year: 2011
  ident: 10.1016/j.bbagen.2013.07.019_bb0020
  article-title: Co-evolution of insect proteases and plant protease inhibitors
  publication-title: Curr. Protein Pept. Sci.
  doi: 10.2174/138920311796391115
– volume: 31
  start-page: 292
  year: 2006
  ident: 10.1016/j.bbagen.2013.07.019_bb0095
  article-title: Folding of small disulfide-rich proteins: clarifying the puzzle
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2006.03.005
– volume: 5
  issue: 1[3]
  year: 2002
  ident: 10.1016/j.bbagen.2013.07.019_bb0035
  article-title: Plant protease inhibitors in control of phytophagous insects
  publication-title: Electron. J. Biotechnol.
– volume: 22
  start-page: 4158
  year: 2010
  ident: 10.1016/j.bbagen.2013.07.019_bb0045
  article-title: Serine protease inhibitors specifically defend Solanum nigrum against generalist herbivores but do not influence plant growth and development
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.073395
– volume: 50
  start-page: 410
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.019_bb0205
  article-title: Structure and dynamics of the potato carboxy-peptidase inhibitor by 1H and 15N NMR
  publication-title: Proteins
  doi: 10.1002/prot.10291
– volume: 291
  start-page: 635
  year: 2002
  ident: 10.1016/j.bbagen.2013.07.019_bb0145
  article-title: Characterization of a Kunitz-type trypsin inhibitor with one disulfide bridge purified from Swartziapickellii
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2002.6436
– volume: 9
  start-page: 289
  year: 2008
  ident: 10.1016/j.bbagen.2013.07.019_bb0105
  article-title: The protein folding problem
  publication-title: Annu. Rev. Biophys.
– volume: 12
  start-page: 340
  year: 2011
  ident: 10.1016/j.bbagen.2013.07.019_bb0075
  article-title: Plant protein proteinase inhibitors: structure and mechanism of inhibition
  publication-title: Curr. Protein Pept. Sci.
  doi: 10.2174/138920311796391124
– volume: 6
  start-page: e19302
  year: 2011
  ident: 10.1016/j.bbagen.2013.07.019_bb0260
  article-title: Mastering the canonical loop of serine protease inhibitors: enhancing potency by optimizing the internal hydrogen bond network
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0019302
– volume: 11
  start-page: 70
  year: 2001
  ident: 10.1016/j.bbagen.2013.07.019_bb0080
  article-title: Mechanisms of protein folding
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/S0959-440X(00)00176-7
– volume: 10
  start-page: 75
  year: 1996
  ident: 10.1016/j.bbagen.2013.07.019_bb0190
  article-title: Forces contributing to the conformational stability of proteins
  publication-title: FASEB J.
  doi: 10.1096/fasebj.10.1.8566551
– volume: 278
  start-page: 31391
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.019_bb0055
  article-title: Unbound form of tomato inhibitor-II reveals interdomain flexibility and conformational variability in the reactive site loops
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M304562200
– volume: 49
  start-page: 593
  year: 1980
  ident: 10.1016/j.bbagen.2013.07.019_bb0010
  article-title: Protein inhibitors of proteinases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.49.070180.003113
– volume: 360
  start-page: 735
  year: 2007
  ident: 10.1016/j.bbagen.2013.07.019_bb0150
  article-title: Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.06.144
– volume: 60
  start-page: 2427
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.019_bb0070
  article-title: Canonical protein inhibitors of serine proteases
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-003-3120-x
– volume: 1774
  start-page: 1264
  year: 2007
  ident: 10.1016/j.bbagen.2013.07.019_bb0170
  article-title: Bowman–Birk protease inhibitor from the seeds of Vigna unguiculata forms a highly stable dimeric structure
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2007.07.009
– volume: 205
  start-page: 201
  year: 1989
  ident: 10.1016/j.bbagen.2013.07.019_bb0050
  article-title: Structure of the complex of Streptomyces griseus proteinase B and polypeptide chymotrypsin inhibitor-1 from Russet Burbank potato tubers at 2.1 A resolution
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(89)90376-8
– volume: 26
  start-page: 261
  year: 1987
  ident: 10.1016/j.bbagen.2013.07.019_bb0195
  article-title: Crystal and molecular structure of the serine proteinase inhibitor CI-2 from barley seeds
  publication-title: Biochemistry
  doi: 10.1021/bi00375a036
– volume: 251
  start-page: 854
  year: 1998
  ident: 10.1016/j.bbagen.2013.07.019_bb0235
  article-title: Mutational analysis of disulfide bonds in the trypsin-reactive subdomain of a Bowman–Birk-type inhibitor of trypsin and chymotrypsin-cooperative versus autonomous refolding of subdomains
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1327.1998.2510854.x
– volume: 204
  start-page: 433
  year: 1992
  ident: 10.1016/j.bbagen.2013.07.019_bb0065
  article-title: Natural protein proteinase inhibitors and their interaction with proteinases
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1992.tb16654.x
– volume: 386
  start-page: 561
  year: 2005
  ident: 10.1016/j.bbagen.2013.07.019_bb0140
  article-title: Kunitz-type Bauhinia bauhinioides inhibitors devoid of disulfide bridges: isolation of the cDNAs, heterologous expression and structural studies
  publication-title: J. Biol. Chem.
– volume: 28
  start-page: 210
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.019_bb0250
  article-title: Disulfide bonds as switches for protein function
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(03)00057-4
– volume: 37
  start-page: 283
  year: 2005
  ident: 10.1016/j.bbagen.2013.07.019_bb0245
  article-title: Structural features and molecular evolution of Bowman–Birk protease inhibitors and their potential application
  publication-title: Acta Biochim. Biophys. Sin.
  doi: 10.1111/j.1745-7270.2005.00048.x
– volume: 278
  start-page: 24062
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.019_bb0060
  article-title: Structural basis of inhibition revealed by a 1,2 complex of the two-headed tomato inhibitor-II and subtilisin Carlsberg
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M302020200
– volume: 175
  start-page: 776
  year: 2005
  ident: 10.1016/j.bbagen.2013.07.019_bb0005
  article-title: Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects
  publication-title: Science
  doi: 10.1126/science.175.4023.776
– volume: 2
  start-page: 379
  year: 1997
  ident: 10.1016/j.bbagen.2013.07.019_bb0030
  article-title: Regulation of protease inhibitors and plant defense
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(97)90052-2
– volume: 10
  start-page: 149
  year: 2001
  ident: 10.1016/j.bbagen.2013.07.019_bb0120
  article-title: Disulfide bond effects on protein stability: designed variants of Cucurbita maxima trypsin inhibitor-V
  publication-title: Protein Sci.
  doi: 10.1110/ps.26801
– volume: 43
  start-page: 431
  year: 1996
  ident: 10.1016/j.bbagen.2013.07.019_bb0185
  article-title: Squash inhibitor family of serine proteinases
  publication-title: Acta Biochim. Pol.
  doi: 10.18388/abp.1996_4475
– volume: 14
  start-page: 97
  year: 2011
  ident: 10.1016/j.bbagen.2013.07.019_bb0090
  article-title: Protease inhibitors as models for the study of oxidative folding
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3456
– volume: 13
  start-page: 18
  year: 1995
  ident: 10.1016/j.bbagen.2013.07.019_bb0125
  article-title: Mechanisms and catalysts of disulfide bond formation in proteins
  publication-title: Trends Biotechnol.
  doi: 10.1016/S0167-7799(00)88896-4
– volume: 110
  start-page: 18981
  year: 2006
  ident: 10.1016/j.bbagen.2013.07.019_bb0255
  article-title: Role of rigidity on the activity of proteinase inhibitors and their peptide mimics
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp0575299
– volume: 62
  start-page: 653
  year: 1993
  ident: 10.1016/j.bbagen.2013.07.019_bb0100
  article-title: Pathways of protein folding
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.62.070193.003253
SSID ssj0000595
ssj0025309
Score 2.2241094
SecondaryResourceType review_article
Snippet Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and...
BACKGROUND: Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5087
SubjectTerms active sites
Catalytic Domain
Disulfide bond
disulfide bonds
electrostatic interactions
Hydrogen bonding
Intramolecular weak interaction
Plant Proteins - antagonists & inhibitors
Plant Proteins - metabolism
Protease
Protein Folding
proteinase inhibitors
proteins
Reactive site loop
serine
Serine - metabolism
Serine Proteases - metabolism
Serine proteinase inhibitor
Serine Proteinase Inhibitors - pharmacology
serine proteinases
Structure-Activity Relationship
thermodynamics
Title Complementation of intramolecular interactions for structural–functional stability of plant serine proteinase inhibitors
URI https://dx.doi.org/10.1016/j.bbagen.2013.07.019
https://www.ncbi.nlm.nih.gov/pubmed/23891708
https://www.proquest.com/docview/1436563710
https://www.proquest.com/docview/2000078348
Volume 1830
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIgSXCspPl0IVJK5mE_9mj9WKamGlHigr9mbZjgOpSnbFlkM5IN6BN-yTdCZOipCoKnGKEjlR4hnPfM7MfAPwWngTnOM1U3XUTIoQmKu0ZMrVJXoTT6CDsi2O9Wwh3y_VcgumQy0MpVX2tj_Z9M5a91fG_WyO100zPqGgHsIJRQEZVMslVbBLQ1r-5uefNA-EDypFEiSj0UP5XJfj5T0uWmJBLURH4Ul8O_92T3dqt7oZhHbO6Ogh7PQoMjtML_oItmK7C_dSX8mLXbg_Hdq4PYYftOL7HHESQraqs4b-6H4dGuPSafyWChw2GYLYLJHKEiHH5a_f5PnSD0O8nli9L-gh6zMUSrbpygezju6hadEl4tO-NL6hJj5PYHH09uN0xvqGCyzIYnLOZKSM0uBwmkQ01NSq0rUoTVCO5zxMXF0FnVfai9wVPASuvNDROBknSnBViaew3a7auAdZ4IX0ArdfharRLFSli6gWMXo3KctYmRGIYZ5t6NnIqSnGmR3Szk5tko4l6djcWJTOCNj1XevExnHLeDOI0P6lVRYdxi137qHErfuMptYuTjgR8ZH30FKP4NWgBhZlSQEW18bV9w1uowTCY4Gg7eYxvAsel0KWI3iWdOj6UzgFjU1ePv_v196HB3SWiiVfwDaqS3yJqOncH3TL4gDuHr6bz47pOP_waX4FWUUZ1g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BoopeqpY-2NJHKvVqbeJXske0Ai2F7gVW2ptlO04bRLOrLhzg1P_Qf9hf0pk4oUICIfUYx7YSz3hm7Jn5BuCzcLm3lldMVUEzKbxnttSSKVsVqE0cGR0UbTHT07n8slCLDZj0uTAUVtnJ_ijTW2ndtYy61Ryt6np0Sk49NCcUOWSQLRebsEXoVGoAW_tHx9PZP4Gs2uIr1J_RgD6Drg3zcg73LQGhZqJF8STInfs11GZllw_boa0-OnwOzzpDMtmP3_oCNkKzA09iacnrHdie9JXcXsINbfouTJzokCyrpKZL3R99bVx6DD9jjsM6QTs2ibiyhMnx59dvUn7xzhDbI7D3NU2yukC6JOs2gzBpER_qBrUizva9djXV8XkF88ODs8mUdTUXmJfZ-JLJQEGl3uIyiZBTXatSV6LIvbI85X5sq9LrtNROpDbj3nPlhA65lWGsBFeleA2DZtmEXUg8z6QTeALLVIWSoSxsQM4IwdlxUYQyH4Lo19n4DpCc6mJcmD7y7NxE6hiijklzg9QZArsdtYqAHI_0z3sSmjuMZVBnPDJyFylu7DeUtmZ-ygmLjxSIlnoIn3o2MEhL8rHYJiyv1niSEmghC7TbHu7DW_9xIWQxhDeRh25_hZPfOE-Lt__92R9he3r29cScHM2O9-ApvYm5k-9ggKwT3qMRdek-dJvkLxnzGuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complementation+of+intramolecular+interactions+for+structural%E2%80%93functional+stability+of+plant+serine+proteinase+inhibitors&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Joshi%2C+Rakesh+S.&rft.au=Mishra%2C+Manasi&rft.au=Suresh%2C+C.G.&rft.au=Gupta%2C+Vidya+S.&rft.date=2013-11-01&rft.issn=0304-4165&rft.volume=1830&rft.issue=11&rft.spage=5087&rft.epage=5094&rft_id=info:doi/10.1016%2Fj.bbagen.2013.07.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2013_07_019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon