Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell

Pore-filling electrolyte membranes have been prepared for use as electrolyte membranes in a direct methanol fuel cell. The pores of a porous substrate were filled with a polymer electrolyte, with the membrane swelling being suppressed by the substrate matrix. Proton conductivity occurred through the...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 214; no. 2; pp. 283 - 292
Main Authors Yamaguchi, Takeo, Miyata, Fusae, Nakao, Shin-ichi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pore-filling electrolyte membranes have been prepared for use as electrolyte membranes in a direct methanol fuel cell. The pores of a porous substrate were filled with a polymer electrolyte, with the membrane swelling being suppressed by the substrate matrix. Proton conductivity occurred through the filling electrolyte polymer. Swelling of the electrolyte polymer was used to control methanol permeation, and the substrate had good mechanical strength at high temperature. We developed a membrane that consisted of a poly(vinylsulfonic acid/acrylic acid) crosslinked gel in a porous polytetrafluoroethylene (PTFE) substrate. This had a high proton conductivity with reduced membrane methanol permeability, and was thermally stable to 130 °C.
AbstractList Pore-filling electrolyte membranes have been prepared for use as electrolyte membranes in a direct methanol fuel cell. The pores of a porous substrate were filled with a polymer electrolyte, with the membrane swelling being suppressed by the substrate matrix. Proton conductivity occurred through the filling electrolyte polymer. Swelling of the electrolyte polymer was used to control methanol permeation, and the substrate had good mechanical strength at high temperature. We developed a membrane that consisted of a poly(vinylsulfonic acid/acrylic acid) crosslinked gel in a porous polytetrafluoroethylene (PTFE) substrate. This had a high proton conductivity with reduced membrane methanol permeability, and was thermally stable to 130 °C.
Pore-filling electrolyte membranes have been prepared for use as electrolyte membranes in a direct methanol fuel cell. The pores of a porous substrate were filled with a polymer electrolyte, with the membrane swelling being suppressed by the substrate matrix. Proton conductivity occurred through the filling electrolyte polymer. Swelling of the electrolyte polymer was used to control methanol permeation, and the substrate had good mechanical strength at high temperature. We developed a membrane that consisted of a poly(vinylsulfonic acid/acrylic acid) crosslinked gel in a porous polytetrafluoroethylene (PTFE) substrate. This had a high proton conductivity with reduced membrane methanol permeability, and was thermally stable to 130 degree C.
Author Yamaguchi, Takeo
Miyata, Fusae
Nakao, Shin-ichi
Author_xml – sequence: 1
  givenname: Takeo
  surname: Yamaguchi
  fullname: Yamaguchi, Takeo
  email: yamag@chemsys.t.u-tokyo.ac.jp
  organization: Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
– sequence: 2
  givenname: Fusae
  surname: Miyata
  fullname: Miyata, Fusae
  organization: Japan Science and Technology Corporation (JST), Kawaguchi, Saitama, Japan
– sequence: 3
  givenname: Shin-ichi
  surname: Nakao
  fullname: Nakao, Shin-ichi
  organization: Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
BookMark eNqFUE1LAzEUDFLBVv0JQk6ih9WXZL9yEil-QaGCeg5p9kUj2U1NtkL_vduuePX0eO_NDDMzI5MudEjIGYMrBqy8fgFRlVkl6voC-CVAUclMHJApqyuRCcbFhEz_IEdkltInAKugllOyfA4RM-u8d9077bdrpOvgty1Gih5NH4elR9piu4q6w0RtiFTTxsXhOZz7D90FT-0GPTXo_Qk5tNonPP2dx-Tt_u51_pgtlg9P89tFZnIm-yxvVkVhoaxkbpta1rlGBkYAoBQMrbaGl5IVJS8RpCgF13UBQkvbMJPDCsUxOR911zF8bTD1qnVpZ2AwGTZJsbqUHDgbgMUINDGkFNGqdXStjlvFQO3qU_v61K4bBVzt61Ni4N2MPBxSfDuMKhmHncExumqC-0fhB_NLeUQ
CitedBy_id crossref_primary_10_1016_j_memsci_2012_05_064
crossref_primary_10_1016_j_ceramint_2014_12_119
crossref_primary_10_1016_j_memsci_2005_06_009
crossref_primary_10_1016_j_memsci_2013_11_051
crossref_primary_10_1039_C6RA07790K
crossref_primary_10_5360_membrane_33_46
crossref_primary_10_1016_j_sna_2007_10_078
crossref_primary_10_5796_electrochemistry_73_12
crossref_primary_10_1016_j_memsci_2013_06_032
crossref_primary_10_1016_j_eurpolymj_2010_05_005
crossref_primary_10_1016_j_jpowsour_2009_08_049
crossref_primary_10_1002_slct_201700167
crossref_primary_10_1246_cl_170609
crossref_primary_10_1016_j_seppur_2015_03_007
crossref_primary_10_1007_s11172_017_2017_z
crossref_primary_10_1016_j_progpolymsci_2011_06_001
crossref_primary_10_3390_membranes11020143
crossref_primary_10_1016_j_jpowsour_2013_07_081
crossref_primary_10_3390_polym10020194
crossref_primary_10_1021_jp710704v
crossref_primary_10_1016_j_memsci_2016_07_006
crossref_primary_10_1016_j_jcis_2011_06_076
crossref_primary_10_1246_cl_180668
crossref_primary_10_1016_j_electacta_2016_10_041
crossref_primary_10_1016_j_jpowsour_2009_12_133
crossref_primary_10_1016_j_jpowsour_2022_232221
crossref_primary_10_1016_j_actamat_2003_08_004
crossref_primary_10_1016_j_memsci_2009_08_035
crossref_primary_10_1016_j_memsci_2013_09_019
crossref_primary_10_1007_s13233_015_3029_x
crossref_primary_10_1002_ppap_200600009
crossref_primary_10_1007_s10800_011_0305_0
crossref_primary_10_1016_j_jpowsour_2012_02_047
crossref_primary_10_1016_j_memsci_2017_07_060
crossref_primary_10_1016_j_memsci_2008_07_036
crossref_primary_10_1016_S1452_3981_23_18417_3
crossref_primary_10_1149_2_0351510jes
crossref_primary_10_1016_j_snb_2017_06_173
crossref_primary_10_1016_j_jpowsour_2012_07_112
crossref_primary_10_3390_en13184761
crossref_primary_10_4325_seikeikakou_31_442
crossref_primary_10_1016_j_jmst_2020_08_032
crossref_primary_10_1016_j_advmem_2021_100005
crossref_primary_10_1016_j_jechem_2023_11_026
crossref_primary_10_1007_s10008_019_04388_1
crossref_primary_10_1016_j_jpowsour_2009_08_027
crossref_primary_10_1016_j_memsci_2013_07_017
crossref_primary_10_1016_j_memsci_2008_11_051
crossref_primary_10_1016_j_memsci_2007_03_057
crossref_primary_10_1016_j_ssi_2011_03_015
crossref_primary_10_1149_1_3305806
crossref_primary_10_1016_j_molstruc_2024_137683
crossref_primary_10_1002_adma_200304926
crossref_primary_10_1002_apj_5500140109
crossref_primary_10_1016_j_memsci_2010_11_020
crossref_primary_10_1002_pen_23320
crossref_primary_10_3390_membranes12020196
crossref_primary_10_1016_j_memsci_2017_05_014
crossref_primary_10_1016_j_electacta_2019_03_189
crossref_primary_10_1016_j_memsci_2011_10_015
crossref_primary_10_1016_j_memsci_2018_06_060
crossref_primary_10_1039_c1jm12246k
crossref_primary_10_5796_electrochemistry_75_115
crossref_primary_10_1016_j_memsci_2009_01_013
crossref_primary_10_1016_j_memsci_2013_06_046
crossref_primary_10_1002_polb_21505
crossref_primary_10_1149_1_2128101
crossref_primary_10_1016_j_jpowsour_2006_11_014
crossref_primary_10_1016_j_memsci_2005_05_003
crossref_primary_10_1039_C5RA04169D
crossref_primary_10_1016_j_memsci_2008_10_031
crossref_primary_10_1016_j_memsci_2015_07_036
crossref_primary_10_1016_j_ssi_2021_115776
crossref_primary_10_1002_pat_4095
crossref_primary_10_1007_s10853_018_2409_y
crossref_primary_10_1016_j_jpowsour_2006_12_102
crossref_primary_10_1016_j_progpolymsci_2016_05_002
crossref_primary_10_3390_polym4020913
crossref_primary_10_1016_j_memsci_2010_11_017
crossref_primary_10_1016_j_ijhydene_2015_04_130
crossref_primary_10_1016_j_jpowsour_2009_07_021
crossref_primary_10_1039_b505843k
crossref_primary_10_1016_j_memsci_2019_04_075
crossref_primary_10_5796_electrochemistry_75_175
crossref_primary_10_1002_adma_200601086
crossref_primary_10_1016_j_elecom_2005_04_030
crossref_primary_10_1016_j_jpowsour_2006_12_111
crossref_primary_10_1016_j_memsci_2009_06_042
crossref_primary_10_5229_JKES_2013_16_4_204
crossref_primary_10_1016_j_jpowsour_2008_06_089
crossref_primary_10_1021_cm050709a
crossref_primary_10_1246_cl_131221
crossref_primary_10_1149_1_3518774
crossref_primary_10_1016_j_jpcs_2009_07_005
crossref_primary_10_1016_j_memsci_2010_11_004
crossref_primary_10_1016_j_jpowsour_2013_06_001
crossref_primary_10_1016_j_jpowsour_2010_10_108
crossref_primary_10_1002_app_32611
crossref_primary_10_1016_j_apenergy_2018_04_111
crossref_primary_10_1016_j_memsci_2012_11_032
crossref_primary_10_1080_01496395_2022_2105721
crossref_primary_10_1016_j_jpowsour_2007_02_074
crossref_primary_10_1016_j_memsci_2007_10_013
crossref_primary_10_1039_C0JM02234A
crossref_primary_10_1016_j_desal_2017_05_008
crossref_primary_10_1039_c3ta13855k
crossref_primary_10_1002_polb_20861
crossref_primary_10_1016_j_polymer_2012_05_049
crossref_primary_10_13005_ojc_370513
crossref_primary_10_1002_fuce_201200226
crossref_primary_10_1021_acsaem_2c02328
crossref_primary_10_1134_S2517751622060026
crossref_primary_10_1002_pola_22021
crossref_primary_10_1246_cl_130382
crossref_primary_10_1016_j_memsci_2014_03_076
crossref_primary_10_1016_j_memsci_2014_02_037
crossref_primary_10_1021_cr4005499
crossref_primary_10_1252_kakoronbunshu_29_159
crossref_primary_10_1016_j_ijhydene_2011_06_085
crossref_primary_10_1246_cl_180560
crossref_primary_10_1021_acs_chemrev_1c00854
crossref_primary_10_1021_acsaem_3c03100
crossref_primary_10_1016_j_jpowsour_2012_05_052
crossref_primary_10_1016_j_mtcomm_2020_101536
crossref_primary_10_1016_j_elecom_2016_02_022
crossref_primary_10_1016_j_jpowsour_2005_05_053
crossref_primary_10_3390_qubs4020023
crossref_primary_10_1016_j_electacta_2015_05_098
crossref_primary_10_1016_j_memsci_2010_06_031
crossref_primary_10_1016_j_reactfunctpolym_2018_09_010
crossref_primary_10_1002_polb_22354
crossref_primary_10_1016_j_jpowsour_2005_03_222
crossref_primary_10_1016_j_memsci_2012_05_038
crossref_primary_10_1016_j_jpowsour_2005_10_001
crossref_primary_10_1002_pola_21168
crossref_primary_10_1295_polymj_PJ2006251
crossref_primary_10_1016_j_jpowsour_2018_05_013
crossref_primary_10_1002_aenm_201400477
crossref_primary_10_1039_C9RA08616A
crossref_primary_10_1039_C4RA07994A
crossref_primary_10_1557_opl_2012_828
crossref_primary_10_1016_j_ijhydene_2023_04_200
crossref_primary_10_1002_wene_48
crossref_primary_10_1149_1_1799932
crossref_primary_10_1016_j_memsci_2008_05_013
crossref_primary_10_1016_j_reactfunctpolym_2015_12_006
crossref_primary_10_1021_acs_iecr_5b03241
crossref_primary_10_1016_j_jpowsour_2019_227664
Cites_doi 10.1016/S0376-7388(99)00382-8
10.1016/S0376-7388(99)00154-4
10.1021/ie9904100
10.1149/1.1512912
10.1016/S0013-4686(97)10005-6
10.1016/S0376-7388(97)00122-1
10.1016/S0376-7388(97)00151-8
10.1021/ie00008a012
10.1016/S0376-7388(01)00545-2
10.1149/1.1353157
10.1016/S0167-2738(98)00562-1
10.1016/S0022-0728(00)00227-8
10.1016/0167-2738(93)90295-E
10.1021/ie00017a012
10.1016/S0376-7388(98)00298-1
10.1016/S0013-4686(99)00346-1
10.1002/(SICI)1099-0488(199702)35:3<469::AID-POLB6>3.0.CO;2-N
10.1016/S0376-7388(00)00502-0
10.1149/1.1837307
10.1149/1.1372215
10.1021/ma00020a006
10.1016/S0167-2738(01)00921-3
10.1016/S0141-3910(98)00123-2
10.1016/S0079-6700(00)00032-0
10.1149/1.1383072
ContentType Journal Article
Copyright 2002 Elsevier Science B.V.
Copyright_xml – notice: 2002 Elsevier Science B.V.
DBID AAYXX
CITATION
7QO
8FD
FR3
P64
DOI 10.1016/S0376-7388(02)00579-3
DatabaseName CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3123
EndPage 292
ExternalDocumentID 10_1016_S0376_7388_02_00579_3
S0376738802005793
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~G-
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c419t-4db55f06794fd8984ae10c300e931efafc26915626e093632a8503a9fd1c40be3
IEDL.DBID .~1
ISSN 0376-7388
IngestDate Fri Oct 25 01:31:34 EDT 2024
Thu Sep 26 18:07:10 EDT 2024
Fri Feb 23 02:30:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Direct methanol fuel cell
Proton conducting membrane
Methanol transport
Pore-filling electrolyte membrane
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-4db55f06794fd8984ae10c300e931efafc26915626e093632a8503a9fd1c40be3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 18692021
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_18692021
crossref_primary_10_1016_S0376_7388_02_00579_3
elsevier_sciencedirect_doi_10_1016_S0376_7388_02_00579_3
PublicationCentury 2000
PublicationDate 2003-04-01
PublicationDateYYYYMMDD 2003-04-01
PublicationDate_xml – month: 04
  year: 2003
  text: 2003-04-01
  day: 01
PublicationDecade 2000
PublicationTitle Journal of membrane science
PublicationYear 2003
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Srinivasan, Arico, Creti, Baglio, Antonucci (BIB4) 2001; 4
Scott, Taama, Argyropoulos (BIB8) 2000; 171
Baradie, Dodelet, Guay (BIB3) 2000; 489
Mika, Childs, Dickson, McCarry, Gagnon (BIB17) 1997; 135
Ulbricht, Schwarz (BIB18) 1997; 136
Jiang, Yao, McKinney, Wilkie (BIB25) 1999; 63
Lehtinen, Sundholm, Holmberg, Sundholm, Bjornbom, Bursell (BIB7) 1998; 43
Yamaguchi, Nakao, Kimura (BIB24) 1997; 35
Honma, Takeda, Bae (BIB10) 1999; 120
Miyake, Wainright, Savinell (BIB5) 2001; 148
Park, Nagai (BIB12) 2001; 148
Yamaguchi, Nakao, Kimura (BIB14) 1992; 31
Yamaguchi, Suzuki, Kai, Nakao (BIB16) 2001; 194
Wang, Tanaka, Kita, Okamoto (BIB19) 1999; 154
Kai, Yamaguchi, Nakao (BIB21) 2000; 39
Jou, Yoshida, Cohen (BIB22) 1999; 162
Zawodzinski, Springer, Uribe, Gottesfeld (BIB1) 1993; 60
Wenzel, Yanagishita, Kitamoto, Endo, Haraya, Nakane, Hanai, Matsuda, Koura, Kamusewitz, Paul (BIB20) 2000; 179
Rikukawa, Sanui (BIB9) 2000; 25
Yamaguchi, Nakao, Kimura (BIB13) 1991; 24
Yamaguchi, Nakao, Kimura (BIB15) 1993; 32
Florjanczyk, Wielgus-Barry, Poltarzewski (BIB6) 2001; 145
Yamaguchi, Ibe, Nair, Nakao (BIB23) 2002; 149
Depre, Ingram, Poinsignon, Popall (BIB11) 2000; 45
Watanabe, Uchida, Seki, Emori, Stonehart (BIB2) 1996; 143
Yamaguchi (10.1016/S0376-7388(02)00579-3_BIB16) 2001; 194
Wenzel (10.1016/S0376-7388(02)00579-3_BIB20) 2000; 179
Depre (10.1016/S0376-7388(02)00579-3_BIB11) 2000; 45
Yamaguchi (10.1016/S0376-7388(02)00579-3_BIB13) 1991; 24
Kai (10.1016/S0376-7388(02)00579-3_BIB21) 2000; 39
Wang (10.1016/S0376-7388(02)00579-3_BIB19) 1999; 154
Park (10.1016/S0376-7388(02)00579-3_BIB12) 2001; 148
Lehtinen (10.1016/S0376-7388(02)00579-3_BIB7) 1998; 43
Yang (10.1016/S0376-7388(02)00579-3_BIB4) 2001; 4
Miyake (10.1016/S0376-7388(02)00579-3_BIB5) 2001; 148
Mika (10.1016/S0376-7388(02)00579-3_BIB17) 1997; 135
Yamaguchi (10.1016/S0376-7388(02)00579-3_BIB23) 2002; 149
Jiang (10.1016/S0376-7388(02)00579-3_BIB25) 1999; 63
Yamaguchi (10.1016/S0376-7388(02)00579-3_BIB15) 1993; 32
Jou (10.1016/S0376-7388(02)00579-3_BIB22) 1999; 162
Zawodzinski (10.1016/S0376-7388(02)00579-3_BIB1) 1993; 60
Scott (10.1016/S0376-7388(02)00579-3_BIB8) 2000; 171
Rikukawa (10.1016/S0376-7388(02)00579-3_BIB9) 2000; 25
Yamaguchi (10.1016/S0376-7388(02)00579-3_BIB14) 1992; 31
Florjanczyk (10.1016/S0376-7388(02)00579-3_BIB6) 2001; 145
Honma (10.1016/S0376-7388(02)00579-3_BIB10) 1999; 120
Watanabe (10.1016/S0376-7388(02)00579-3_BIB2) 1996; 143
Baradie (10.1016/S0376-7388(02)00579-3_BIB3) 2000; 489
Yamaguchi (10.1016/S0376-7388(02)00579-3_BIB24) 1997; 35
Ulbricht (10.1016/S0376-7388(02)00579-3_BIB18) 1997; 136
References_xml – volume: 162
  start-page: 269
  year: 1999
  ident: BIB22
  article-title: A novel ceramic-supported polymer membrane for pervaporation of dilute volatile organic compounds
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Cohen
– volume: 63
  start-page: 423
  year: 1999
  ident: BIB25
  article-title: TGA/FT-IR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts
  publication-title: Polym. Degr. Stab.
  contributor:
    fullname: Wilkie
– volume: 145
  start-page: 119
  year: 2001
  ident: BIB6
  article-title: Radiation-modified Nafion membranes for methanol fuel cells
  publication-title: Solid State Ionics
  contributor:
    fullname: Poltarzewski
– volume: 489
  start-page: 101
  year: 2000
  ident: BIB3
  article-title: Hybrid Nafion (R)-inorganic membrane with potential applications for polymer electrolyte fuel cells
  publication-title: J. Electroanal. Chem.
  contributor:
    fullname: Guay
– volume: 45
  start-page: 1377
  year: 2000
  ident: BIB11
  article-title: Proton conducting sulfon/sulfonamide functionalized materials based on inorganic–organic matrices
  publication-title: Electrochim. Acta
  contributor:
    fullname: Popall
– volume: 25
  start-page: 1463
  year: 2000
  ident: BIB9
  article-title: Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers
  publication-title: Prog. Polym. Sci.
  contributor:
    fullname: Sanui
– volume: 35
  start-page: 469
  year: 1997
  ident: BIB24
  article-title: Swelling behavior of the filling type membrane
  publication-title: J. Polym. Sci., Polym. Phys. Ed.
  contributor:
    fullname: Kimura
– volume: 120
  start-page: 255
  year: 1999
  ident: BIB10
  article-title: Protonic conducting properties of sol–gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules
  publication-title: Solid State Ionics
  contributor:
    fullname: Bae
– volume: 154
  start-page: 221
  year: 1999
  ident: BIB19
  article-title: Pervaporation of aromatic/non-aromatic hydrocarbon mixtures through plasma-grafted membranes
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Okamoto
– volume: 4
  start-page: A31
  year: 2001
  ident: BIB4
  article-title: Composition Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature
  publication-title: Electrochem. Solid State Lett.
  contributor:
    fullname: Antonucci
– volume: 179
  start-page: 69
  year: 2000
  ident: BIB20
  article-title: Effects of preparation condition of photo-induced graft filling-polymerized membranes on pervaporation performance
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Paul
– volume: 43
  start-page: 1881
  year: 1998
  ident: BIB7
  article-title: Electrochemical characterization of PVDF-based proton conducting membranes for fuel cells
  publication-title: Electrochim. Acta
  contributor:
    fullname: Bursell
– volume: 171
  start-page: 119
  year: 2000
  ident: BIB8
  article-title: Performance of the direct methanol fuel cell with radiation-grafted polymer membranes
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Argyropoulos
– volume: 148
  start-page: A905
  year: 2001
  ident: BIB5
  article-title: Evaluation of a sol–gel derived Nafion/silica hybrid membrane for polymer electrolyte membrane fuel cell applications. II. Methanol uptake and methanol permeability
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Savinell
– volume: 60
  start-page: 199
  year: 1993
  ident: BIB1
  article-title: Characterization of polymer electrolytes for fuel-cell applications
  publication-title: Solid State Ionics
  contributor:
    fullname: Gottesfeld
– volume: 31
  start-page: 1914
  year: 1992
  ident: BIB14
  article-title: Solubility and pervaporation properties of the filling polymerized membrane prepared by plasma-graft polymerization for pervaporation of organic–liquid mixtures
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Kimura
– volume: 135
  start-page: 81
  year: 1997
  ident: BIB17
  article-title: Porous polyelectrolyte-filled membranes: effect of crosslinking on flux and separation
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Gagnon
– volume: 136
  start-page: 25
  year: 1997
  ident: BIB18
  article-title: Novel high performance photo-graft composite membranes for separation of organic liquids by pervaporation
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Schwarz
– volume: 32
  start-page: 848
  year: 1993
  ident: BIB15
  article-title: Design of pervaporation membrane for organic–liquid separation based on solubility control by plasma-graft filling polymerization technique
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Kimura
– volume: 149
  start-page: 1448
  year: 2002
  ident: BIB23
  article-title: A pore-filling electrolyte membrane–electrode integrated system for a direct methanol fuel cell application
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Nakao
– volume: 143
  start-page: 3847
  year: 1996
  ident: BIB2
  article-title: Self-humidifying polymer electrolyte membranes for fuel cells
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Stonehart
– volume: 194
  start-page: 217
  year: 2001
  ident: BIB16
  article-title: Hollow fiber type membranes made by plasma-graft filling polymerization for chlorinated organics removal from water
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Nakao
– volume: 24
  start-page: 5522
  year: 1991
  ident: BIB13
  article-title: Plasma-graft filling polymerization: preparation of a new type of pervaporation membrane for organic liquid mixtures
  publication-title: Macromolecules
  contributor:
    fullname: Kimura
– volume: 39
  start-page: 3284
  year: 2000
  ident: BIB21
  article-title: Preparation of organic/inorganic composite membranes by plasma-graft filling polymerization technique for organic-liquid separation
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Nakao
– volume: 148
  start-page: A616
  year: 2001
  ident: BIB12
  article-title: Proton-conducting properties of inorganic-organic nanocomposites proton-exchange nanocomposite membranes based on 3-glycidoxypropyltrimethoxysilane and tetraethylorthosilicate
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Nagai
– volume: 171
  start-page: 119
  year: 2000
  ident: 10.1016/S0376-7388(02)00579-3_BIB8
  article-title: Performance of the direct methanol fuel cell with radiation-grafted polymer membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(99)00382-8
  contributor:
    fullname: Scott
– volume: 162
  start-page: 269
  year: 1999
  ident: 10.1016/S0376-7388(02)00579-3_BIB22
  article-title: A novel ceramic-supported polymer membrane for pervaporation of dilute volatile organic compounds
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(99)00154-4
  contributor:
    fullname: Jou
– volume: 39
  start-page: 3284
  year: 2000
  ident: 10.1016/S0376-7388(02)00579-3_BIB21
  article-title: Preparation of organic/inorganic composite membranes by plasma-graft filling polymerization technique for organic-liquid separation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9904100
  contributor:
    fullname: Kai
– volume: 149
  start-page: 1448
  year: 2002
  ident: 10.1016/S0376-7388(02)00579-3_BIB23
  article-title: A pore-filling electrolyte membrane–electrode integrated system for a direct methanol fuel cell application
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1512912
  contributor:
    fullname: Yamaguchi
– volume: 43
  start-page: 1881
  year: 1998
  ident: 10.1016/S0376-7388(02)00579-3_BIB7
  article-title: Electrochemical characterization of PVDF-based proton conducting membranes for fuel cells
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(97)10005-6
  contributor:
    fullname: Lehtinen
– volume: 135
  start-page: 81
  year: 1997
  ident: 10.1016/S0376-7388(02)00579-3_BIB17
  article-title: Porous polyelectrolyte-filled membranes: effect of crosslinking on flux and separation
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(97)00122-1
  contributor:
    fullname: Mika
– volume: 136
  start-page: 25
  year: 1997
  ident: 10.1016/S0376-7388(02)00579-3_BIB18
  article-title: Novel high performance photo-graft composite membranes for separation of organic liquids by pervaporation
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(97)00151-8
  contributor:
    fullname: Ulbricht
– volume: 31
  start-page: 1914
  year: 1992
  ident: 10.1016/S0376-7388(02)00579-3_BIB14
  article-title: Solubility and pervaporation properties of the filling polymerized membrane prepared by plasma-graft polymerization for pervaporation of organic–liquid mixtures
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00008a012
  contributor:
    fullname: Yamaguchi
– volume: 194
  start-page: 217
  year: 2001
  ident: 10.1016/S0376-7388(02)00579-3_BIB16
  article-title: Hollow fiber type membranes made by plasma-graft filling polymerization for chlorinated organics removal from water
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(01)00545-2
  contributor:
    fullname: Yamaguchi
– volume: 4
  start-page: A31
  year: 2001
  ident: 10.1016/S0376-7388(02)00579-3_BIB4
  article-title: Composition Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature
  publication-title: Electrochem. Solid State Lett.
  doi: 10.1149/1.1353157
  contributor:
    fullname: Yang
– volume: 120
  start-page: 255
  year: 1999
  ident: 10.1016/S0376-7388(02)00579-3_BIB10
  article-title: Protonic conducting properties of sol–gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(98)00562-1
  contributor:
    fullname: Honma
– volume: 489
  start-page: 101
  year: 2000
  ident: 10.1016/S0376-7388(02)00579-3_BIB3
  article-title: Hybrid Nafion (R)-inorganic membrane with potential applications for polymer electrolyte fuel cells
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(00)00227-8
  contributor:
    fullname: Baradie
– volume: 60
  start-page: 199
  year: 1993
  ident: 10.1016/S0376-7388(02)00579-3_BIB1
  article-title: Characterization of polymer electrolytes for fuel-cell applications
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(93)90295-E
  contributor:
    fullname: Zawodzinski
– volume: 32
  start-page: 848
  year: 1993
  ident: 10.1016/S0376-7388(02)00579-3_BIB15
  article-title: Design of pervaporation membrane for organic–liquid separation based on solubility control by plasma-graft filling polymerization technique
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00017a012
  contributor:
    fullname: Yamaguchi
– volume: 154
  start-page: 221
  year: 1999
  ident: 10.1016/S0376-7388(02)00579-3_BIB19
  article-title: Pervaporation of aromatic/non-aromatic hydrocarbon mixtures through plasma-grafted membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(98)00298-1
  contributor:
    fullname: Wang
– volume: 45
  start-page: 1377
  year: 2000
  ident: 10.1016/S0376-7388(02)00579-3_BIB11
  article-title: Proton conducting sulfon/sulfonamide functionalized materials based on inorganic–organic matrices
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(99)00346-1
  contributor:
    fullname: Depre
– volume: 35
  start-page: 469
  year: 1997
  ident: 10.1016/S0376-7388(02)00579-3_BIB24
  article-title: Swelling behavior of the filling type membrane
  publication-title: J. Polym. Sci., Polym. Phys. Ed.
  doi: 10.1002/(SICI)1099-0488(199702)35:3<469::AID-POLB6>3.0.CO;2-N
  contributor:
    fullname: Yamaguchi
– volume: 179
  start-page: 69
  year: 2000
  ident: 10.1016/S0376-7388(02)00579-3_BIB20
  article-title: Effects of preparation condition of photo-induced graft filling-polymerized membranes on pervaporation performance
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)00502-0
  contributor:
    fullname: Wenzel
– volume: 143
  start-page: 3847
  year: 1996
  ident: 10.1016/S0376-7388(02)00579-3_BIB2
  article-title: Self-humidifying polymer electrolyte membranes for fuel cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1837307
  contributor:
    fullname: Watanabe
– volume: 148
  start-page: A616
  year: 2001
  ident: 10.1016/S0376-7388(02)00579-3_BIB12
  article-title: Proton-conducting properties of inorganic-organic nanocomposites proton-exchange nanocomposite membranes based on 3-glycidoxypropyltrimethoxysilane and tetraethylorthosilicate
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1372215
  contributor:
    fullname: Park
– volume: 24
  start-page: 5522
  year: 1991
  ident: 10.1016/S0376-7388(02)00579-3_BIB13
  article-title: Plasma-graft filling polymerization: preparation of a new type of pervaporation membrane for organic liquid mixtures
  publication-title: Macromolecules
  doi: 10.1021/ma00020a006
  contributor:
    fullname: Yamaguchi
– volume: 145
  start-page: 119
  year: 2001
  ident: 10.1016/S0376-7388(02)00579-3_BIB6
  article-title: Radiation-modified Nafion membranes for methanol fuel cells
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(01)00921-3
  contributor:
    fullname: Florjanczyk
– volume: 63
  start-page: 423
  year: 1999
  ident: 10.1016/S0376-7388(02)00579-3_BIB25
  article-title: TGA/FT-IR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts
  publication-title: Polym. Degr. Stab.
  doi: 10.1016/S0141-3910(98)00123-2
  contributor:
    fullname: Jiang
– volume: 25
  start-page: 1463
  year: 2000
  ident: 10.1016/S0376-7388(02)00579-3_BIB9
  article-title: Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/S0079-6700(00)00032-0
  contributor:
    fullname: Rikukawa
– volume: 148
  start-page: A905
  year: 2001
  ident: 10.1016/S0376-7388(02)00579-3_BIB5
  article-title: Evaluation of a sol–gel derived Nafion/silica hybrid membrane for polymer electrolyte membrane fuel cell applications. II. Methanol uptake and methanol permeability
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1383072
  contributor:
    fullname: Miyake
SSID ssj0017089
Score 2.2178721
Snippet Pore-filling electrolyte membranes have been prepared for use as electrolyte membranes in a direct methanol fuel cell. The pores of a porous substrate were...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 283
SubjectTerms Direct methanol fuel cell
Methanol transport
Pore-filling electrolyte membrane
Proton conducting membrane
Title Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell
URI https://dx.doi.org/10.1016/S0376-7388(02)00579-3
https://search.proquest.com/docview/18692021
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sT5Y-bgQQ_ZkibtkuMYjqk4BR3sFtI2gUG3jtkddvFvN0k7p4IIXkMSwtfw5b3X974HwBVhhKmYh8jyAEYsURFSHR2hgCjDOqn78eYC-o_DaDBi9-NwXAO9dS2MS6usuL_kdM_W1Ui7QrM9n0zaL9gJkTgtk8BXVDrFTye2Ze906_0zzYN0sG-D5yYjN3tTxVPu4AevcXDjN0H0t_fpB1P756e_B3YruxF2y6Ptg5qeHYCdL2qCh-DpOV9oZCZeZRu62Cqc59lqqhewanaTrQoNp3pqPWTLcNDaq1DBEgDoWkmrWZ5Bs9QZdPH8IzDq3772Bqjql4ASRkSBWBqHoXGRIWZSLjhTmuCEYqwFJdookwSRsP5aEGksaEQDxUNMlTApSRiONT0G9Vk-0ycAJnYpTXgiiOHMWJeM8jTlkQiFVlqYsAFaa5TkvJTFkJt8MQurdLBKHEgPq6QNwNdYym_fV1rq_mvp5Rp7ae--A8CClC_fpGunFVgj5fT_m5-BbZ-e53NxzkG9WCz1hTUzirjp71ETbHXvHgbDD1BnzOk
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD-rB-Iz4ogcPeqi02-7SHg2RoAKaCAm3puy2CcnCEoQDF3-7bXcRNTEmXpt20nw7-TozOw8ArggjTA15iCwPYMRiFSFV1xEKiDKsnrgfby6g3-lGrT57HISDEmisamFcWmXB_Tmne7YuVmoFmrXpaFR7xa4RietlEviKSroBNpnrn2WV-vb9M8-D1LGfg-d2I7d9XcaTi_CL1zi48VIQ_e2B-kHV_v1p7oHdwnCEd_nd9kFJTw7Azpd2gofg-SWbaWRGvs02dMFVOM3S5VjPYDHtJl3ONRzrsXWRLcVBa7BCBXMEoJslrSZZCs1Cp9AF9I9Av3nfa7RQMTABxYyIOWLJMAyNCw0xk3DBmdIExxRjLSjRRpk4iIR12IJIY0EjGigeYqqESUjM8FDTY1CeZBN9AmBsj9KYx4IYzoz1yShPEh6JUGilhQkr4HaFkpzmfTHkOmHMwiodrBIH0sMqaQXwFZby2weWlrv_OlpdYS-t8jsALEjZ4k26eVqBtVJO_y-8CrZavU5bth-6T2dg2-fq-cScc1Cezxb6wtoc8-Gl16kPYpvOiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pore-filling+type+polymer+electrolyte+membranes+for+a+direct+methanol+fuel+cell&rft.jtitle=Journal+of+membrane+science&rft.au=Yamaguchi%2C+Takeo&rft.au=Miyata%2C+Fusae&rft.au=Nakao%2C+Shin-ichi&rft.date=2003-04-01&rft.pub=Elsevier+B.V&rft.issn=0376-7388&rft.eissn=1873-3123&rft.volume=214&rft.issue=2&rft.spage=283&rft.epage=292&rft_id=info:doi/10.1016%2FS0376-7388%2802%2900579-3&rft.externalDocID=S0376738802005793
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon