RF-INDUCED TEMPERATURE INCREASE IN A STRATIFIED MODEL OF THE SKIN FOR PLANE-WAVE EXPOSURE AT 6–100 GHZ
Abstract This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin with four or five layers under plane wave incidence. The skin model distinguishes the stratum corneum (SC) and the viable epidermis a...
Saved in:
Published in | Radiation protection dosimetry Vol. 188; no. 3; pp. 350 - 360 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
24.06.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin with four or five layers under plane wave incidence. The skin model distinguishes the stratum corneum (SC) and the viable epidermis as the outermost layers of the skin. The analysis identifies the tissue layer structures that minimize reflection and maximize the temperature increase induced by the electromagnetic field. The maximum observed temperature increase is 0.4°C for exposure at the present power density limit for the general population of 10 W m −2 . This result is more than twice as high as the findings reported in a previous study. The reasons for this difference are identified as impedance matching effects in the SC and less conservative thermal parameters. Modeling the skin as homogeneous dermis tissue can underestimate the induced temperature increase by more than a factor of three. |
---|---|
AbstractList | Abstract
This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin with four or five layers under plane wave incidence. The skin model distinguishes the stratum corneum (SC) and the viable epidermis as the outermost layers of the skin. The analysis identifies the tissue layer structures that minimize reflection and maximize the temperature increase induced by the electromagnetic field. The maximum observed temperature increase is 0.4°C for exposure at the present power density limit for the general population of 10 W m −2 . This result is more than twice as high as the findings reported in a previous study. The reasons for this difference are identified as impedance matching effects in the SC and less conservative thermal parameters. Modeling the skin as homogeneous dermis tissue can underestimate the induced temperature increase by more than a factor of three. This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin with four or five layers under plane wave incidence. The skin model distinguishes the stratum corneum (SC) and the viable epidermis as the outermost layers of the skin. The analysis identifies the tissue layer structures that minimize reflection and maximize the temperature increase induced by the electromagnetic field. The maximum observed temperature increase is 0.4°C for exposure at the present power density limit for the general population of 10 W m -2 . This result is more than twice as high as the findings reported in a previous study. The reasons for this difference are identified as impedance matching effects in the SC and less conservative thermal parameters. Modeling the skin as homogeneous dermis tissue can underestimate the induced temperature increase by more than a factor of three.This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin with four or five layers under plane wave incidence. The skin model distinguishes the stratum corneum (SC) and the viable epidermis as the outermost layers of the skin. The analysis identifies the tissue layer structures that minimize reflection and maximize the temperature increase induced by the electromagnetic field. The maximum observed temperature increase is 0.4°C for exposure at the present power density limit for the general population of 10 W m -2 . This result is more than twice as high as the findings reported in a previous study. The reasons for this difference are identified as impedance matching effects in the SC and less conservative thermal parameters. Modeling the skin as homogeneous dermis tissue can underestimate the induced temperature increase by more than a factor of three. This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin with four or five layers under plane wave incidence. The skin model distinguishes the stratum corneum (SC) and the viable epidermis as the outermost layers of the skin. The analysis identifies the tissue layer structures that minimize reflection and maximize the temperature increase induced by the electromagnetic field. The maximum observed temperature increase is 0.4°C for exposure at the present power density limit for the general population of 10 W m -2 . This result is more than twice as high as the findings reported in a previous study. The reasons for this difference are identified as impedance matching effects in the SC and less conservative thermal parameters. Modeling the skin as homogeneous dermis tissue can underestimate the induced temperature increase by more than a factor of three. This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin with four or five layers under plane wave incidence. The skin model distinguishes the stratum corneum (SC) and the viable epidermis as the outermost layers of the skin. The analysis identifies the tissue layer structures that minimize reflection and maximize the temperature increase induced by the electromagnetic field. The maximum observed temperature increase is 0.4°C for exposure at the present power density limit for the general population of 10 W m −2 . This result is more than twice as high as the findings reported in a previous study. The reasons for this difference are identified as impedance matching effects in the SC and less conservative thermal parameters. Modeling the skin as homogeneous dermis tissue can underestimate the induced temperature increase by more than a factor of three. |
Author | Samaras, Theodoros Christ, Andreas Kuster, Niels Neufeld, Esra |
Author_xml | – sequence: 1 givenname: Andreas surname: Christ fullname: Christ, Andreas email: christ@itis.swiss organization: IT’IS Foundation, Zürich, Switzerland – sequence: 2 givenname: Theodoros surname: Samaras fullname: Samaras, Theodoros organization: Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 3 givenname: Esra surname: Neufeld fullname: Neufeld, Esra organization: IT’IS Foundation, Zürich, Switzerland – sequence: 4 givenname: Niels surname: Kuster fullname: Kuster, Niels organization: IT’IS Foundation, Zürich, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31950182$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1Kw0AUhQdRtK1ufACZjSBCdP4yTZahnbTB2pQ0VXEzTCYTjLRJTdKFrnwH39AnMaW6EXF1L_d-5yzO6YL9oiwMAKcYXWHk0utqnV4X-o24dA90cJ8RizLE90EHYcYshxF0BLp1_YwQ6bs2OwRHFLs2wg7pgKfIt4LpcDEQQxiL25mIvHgRCRhMB5Hw5tsFenAet-fAD1roNhyKCQx9GI8FnN-0bz-M4GziTYV1790JKB5m4Xxr4cWQf75_YITgaPx4DA4ytazNyffsgYUv4sHYmoSjYOBNLM2w21hMU9vYtqYsZRnitpMR5TDeVzhxnIQbnaQ8sVHmIkelnGU8awUpURppom3CaQ9c7HzXVfmyMXUjV3mtzXKpClNuakkow5zivsta9Owb3SQrk8p1la9U9Sp_0mkBtAN0VdZ1ZTKp80Y1eVk0lcqXEiO5LUC2BchdAa3k8pfkx_VP-HwHl5v1f9wXa6WLsQ |
CitedBy_id | crossref_primary_10_1088_2057_1976_ad488e crossref_primary_10_1109_ACCESS_2024_3438625 crossref_primary_10_3390_electronics13091630 crossref_primary_10_1109_ACCESS_2024_3408955 crossref_primary_10_1109_JMW_2023_3345133 crossref_primary_10_1002_bem_22362 crossref_primary_10_3390_ijerph19031546 crossref_primary_10_1109_JERM_2020_3042390 crossref_primary_10_1002_bem_22268 crossref_primary_10_1002_bem_22422 crossref_primary_10_1109_JERM_2022_3178604 crossref_primary_10_1109_TMTT_2023_3267568 crossref_primary_10_1109_ACCESS_2023_3238582 crossref_primary_10_1109_JMW_2022_3199989 crossref_primary_10_3390_ijerph20227031 crossref_primary_10_1109_TEMC_2022_3166787 crossref_primary_10_1038_s41598_021_82458_z crossref_primary_10_1088_1361_6560_abf1b7 crossref_primary_10_1109_ACCESS_2021_3105608 crossref_primary_10_1097_HP_0000000000001447 crossref_primary_10_1109_JMW_2024_3407712 crossref_primary_10_1109_JERM_2022_3203576 crossref_primary_10_1109_TAP_2021_3070725 crossref_primary_10_1093_rpd_ncaa179 crossref_primary_10_1109_TEMC_2023_3289450 crossref_primary_10_3390_ijerph20075267 crossref_primary_10_3389_fpubh_2022_795414 |
Cites_doi | 10.1002/bem.22110 10.1152/jappl.1948.1.2.93 10.1002/bem.22147 10.1111/j.1365-2133.1968.tb11978.x 10.1109/TMTT.2006.872789 10.1016/j.expthermflusci.2016.04.015 10.1111/j.1365-2133.1969.tb16204.x 10.1109/22.644237 10.1109/22.884187 10.1088/1361-6560/aa81fe 10.1109/TTHZ.2012.2227476 10.1088/0031-9155/51/19/014 10.1109/20.996201 10.1097/HP.0000000000000571 10.1097/HP.0000000000000930 10.1088/1361-6560/aa5f21 10.1111/j.1365-2133.1987.tb05873.x 10.1109/TBME.2006.890498 10.1002/bem.22170 10.1088/1361-6560/ab057a 10.1088/0031-9155/41/11/003 10.1186/s12938-017-0432-x 10.1111/j.1365-2133.2004.05810.x 10.1111/1523-1747.ep12701670 10.1088/0031-9155/54/16/002 10.1109/JRPROC.1956.274876 10.1016/j.buildenv.2007.12.012 10.2340/00015555-0183 10.1002/0471704091 10.1111/1523-1747.ep12507488 10.1088/1361-6560/aa81fc 10.1002/bem.20308 10.1088/0031-9155/55/16/003 10.1002/bem.20444 10.21105/joss.00026 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1093/rpd/ncz293 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1742-3406 |
EndPage | 360 |
ExternalDocumentID | 31950182 10_1093_rpd_ncz293 10.1093/rpd/ncz293 |
Genre | Journal Article |
GroupedDBID | --- -E4 .2P .I3 .ZR 0R~ 123 1TH 29P 4.4 48X 53G 5VS 5WA 5WD 70D AABZA AACZT AAIJN AAJKP AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP ABDTM ABEUO ABIXL ABJNI ABKDP ABNHQ ABNKS ABPTD ABQLI ABQNK ABWST ABXVV ABZBJ ACGFS ACUFI ACUTJ ACUTO ACYHN ACYTK ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXAL AFXEN AGINJ AGKEF AGQXC AGSYK AGUTN AHXPO AIJHB AJEEA AJEUX AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ATGXG AXUDD AZVOD BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN BTRTY BVRKM C45 CDBKE CS3 CZ4 DAKXR DILTD DU5 D~K EBD EBS EE~ EMOBN ENERS F5P F9B FECEO FLIZI FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 KAQDR KBUDW KOP KSI KSN M-Z M49 MHKGH N9A NGC NMDNZ NOMLY NOYVH NU- O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OPAEJ OVD OWPYF P2P PAFKI PEELM Q1. Q5Y RD5 RNS ROL ROX ROZ RUSNO RW1 RXO SV3 TEORI TJP TJX X7H YAYTL YKOAZ YXANX ZKX ~91 AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ACUXJ ADMLS ADNBA ADYJX AEMQT AFYAG AGORE AHGBF AHMMS AJBYB AJNCP ALXQX ANAKG CITATION JXSIZ NPM 7X8 |
ID | FETCH-LOGICAL-c419t-4c35e55c34d4f0658f2a8467a1b88b6ecbd6b50f908ad64f6fc35d2ac0c2c5263 |
ISSN | 0144-8420 1742-3406 |
IngestDate | Fri Jul 11 15:38:15 EDT 2025 Wed Feb 19 02:31:49 EST 2025 Tue Jul 01 01:29:30 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Wed Sep 11 04:54:44 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c419t-4c35e55c34d4f0658f2a8467a1b88b6ecbd6b50f908ad64f6fc35d2ac0c2c5263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/rpd/article-pdf/188/3/350/33423057/ncz293.pdf |
PMID | 31950182 |
PQID | 2341631794 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2341631794 pubmed_primary_31950182 crossref_citationtrail_10_1093_rpd_ncz293 crossref_primary_10_1093_rpd_ncz293 oup_primary_10_1093_rpd_ncz293 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-24 |
PublicationDateYYYYMMDD | 2020-06-24 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Radiation protection dosimetry |
PublicationTitleAlternate | Radiat Prot Dosimetry |
PublicationYear | 2020 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Samaras (2020062503235540900_ref10) 2007; 54 Alekseev (2020062503235540900_ref15) 2007; 28 Sanderson (2020062503235540900_ref28) 2016; 1 Welzel (2020062503235540900_ref33) 2004; 150 Meier (2020062503235540900_ref6) 1997; 45 Christ (2020062503235540900_ref8) 2006; 54 Neufeld (2020062503235540900_ref18) 2018; 115 Egawa (2020062503235540900_ref40) 2007; 87 Bloom (2020062503235540900_ref34) 1968 Ziskin (2020062503235540900_ref14) 2018; 39 Weisberg (2020062503235540900_ref50) 2005 Dykes (2020062503235540900_ref43) 1977; 69 Holbrook (2020062503235540900_ref38) 1974; 62 Kodera (2020062503235540900_ref32) 2018; 17 Foster (2020062503235540900_ref16) 2016; 111 Gabriel (2020062503235540900_ref45) 1996; 41 ICNIRP (2020062503235540900_ref1) 1998; 74 Gabriel (2020062503235540900_ref49) 2009; 54 Stephens (2020062503235540900_ref31) 2001; 281 Christ (2020062503235540900_ref9) 2006; 51 Li (2020062503235540900_ref22) 2019; 64 Kong (2020062503235540900_ref25) 2000 Sasaki (2020062503235540900_ref13) 2017; 62 IEEE C95.1 (2020062503235540900_ref4) 2019 Schwan (2020062503235540900_ref5) 1956; 44 Christ (2020062503235540900_ref23) 2019 Laakso (2020062503235540900_ref17) 2017; 62 ICNIRP (2020062503235540900_ref3) 2019 Neufeld (2020062503235540900_ref20) 2018; 39 Hasgall (2020062503235540900_ref46) 2018 Anderson (2020062503235540900_ref11) 2010; 31 Kanezaki (2020062503235540900_ref12) 2010; 55 Yioultsis (2020062503235540900_ref30) 2002; 38 Odland (2020062503235540900_ref35) 1968 Blair (2020062503235540900_ref37) 1968; 80 Alekseev (2020062503235540900_ref44) 2009; 30 Jadassohn (2020062503235540900_ref36) 1979 Kurazumi (2020062503235540900_ref47) 2008; 43 IEEE C95.1 (2020062503235540900_ref2) 2010 Pennes (2020062503235540900_ref26) 1948; 1 Octave Community (2020062503235540900_ref29) 2014 Black (2020062503235540900_ref42) 1969; 81 Snyder (2020062503235540900_ref41) 1975 Hashimoto (2020062503235540900_ref19) 2017; 62 Fojtlín (2020062503235540900_ref48) 2016; 77 White (2020062503235540900_ref39) 1987; 116 Drossos (2020062503235540900_ref7) 2000; 48 Samaras (2020062503235540900_ref21) 2019; 40 Hayut (2020062503235540900_ref24) 2013; 3 Mayers (2020062503235540900_ref27) 1994 |
References_xml | – volume: 39 start-page: 173 year: 2018 ident: 2020062503235540900_ref14 article-title: Tissue models for RF exposure evaluation at frequencies above 6 GHz publication-title: Bioelectromagnetics doi: 10.1002/bem.22110 – volume: 74 start-page: 494 year: 1998 ident: 2020062503235540900_ref1 article-title: Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz) publication-title: Health Phys. – volume-title: Numerical Solutions of Partial Differential Equations: Finite Difference Methods year: 1994 ident: 2020062503235540900_ref27 – volume-title: GNU Octave 4.1.0+ year: 2014 ident: 2020062503235540900_ref29 – volume: 31 start-page: 454 year: 2010 ident: 2020062503235540900_ref11 article-title: SAR versus Sinc: What is the appropriate RF exposure metric in the range 1–10 GHz? Part I: Using planar body models publication-title: Bioelectromagnetics – volume: 1 start-page: 93 year: 1948 ident: 2020062503235540900_ref26 article-title: Analysis of tissue and arterial blood temperatures in the restung human forearm publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1948.1.2.93 – volume: 39 start-page: 617 year: 2018 ident: 2020062503235540900_ref20 article-title: Theoretical and numerical assessment of maximally allowable power-density averaging area for conservative electromagnetic exposure assessment above 6 GHz publication-title: Bioelectromagnetics doi: 10.1002/bem.22147 – year: 2019 ident: 2020062503235540900_ref3 article-title: Draft guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz) – volume: 80 start-page: 430 year: 1968 ident: 2020062503235540900_ref37 article-title: Morphology and thickness of the human stratum corneum publication-title: Br. J. Dermatol. doi: 10.1111/j.1365-2133.1968.tb11978.x – volume: 54 start-page: 2188 year: 2006 ident: 2020062503235540900_ref8 article-title: The dependence of electromagnetic far-field absorption on body tissue composition in the frequency range from 300 MHz to 6 GHz publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2006.872789 – volume: 77 start-page: 257 year: 2016 ident: 2020062503235540900_ref48 article-title: Determination of convective and radiative heat transfer coefficients using 34-zones thermal manikin: Uncertainty and reproducibility evaluation publication-title: Exp. Thermal Fluid Sci. doi: 10.1016/j.expthermflusci.2016.04.015 – volume: 81 start-page: 661 year: 1969 ident: 2020062503235540900_ref42 article-title: A modified radiographic method for measuring skin thickness publication-title: Br. J. Dermatol. doi: 10.1111/j.1365-2133.1969.tb16204.x – start-page: 479 volume-title: A Textbook of Histology year: 1968 ident: 2020062503235540900_ref34 – volume: 45 start-page: 2058 year: 1997 ident: 2020062503235540900_ref6 article-title: The dependence of EM energy absorption upon human head modeling at 1800 MHz publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/22.644237 – volume: 48 start-page: 1988 year: 2000 ident: 2020062503235540900_ref7 article-title: The dependence of electromagnetic energy absorption upon human head tissue composition in the frequency range of 300–3000 MHz publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/22.884187 – volume-title: Report of the Task Group on Reference Man year: 1975 ident: 2020062503235540900_ref41 – volume: 62 start-page: 6980 year: 2017 ident: 2020062503235540900_ref17 article-title: Human exposure to pulsed fields in the frequency range from 6 to 100 GHz publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa81fe – volume: 3 start-page: 207 year: 2013 ident: 2020062503235540900_ref24 article-title: The helical structure of sweat ducts: their influence on the electromagnetic reflection spectrum of the skin publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2012.2227476 – volume: 51 start-page: 4951 year: 2006 ident: 2020062503235540900_ref9 article-title: Characterization of the electromagnetic near-field absorption in layered biological tissue in the frequency range from 30 MHz to 6000 MHz publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/19/014 – volume: 38 start-page: 777 year: 2002 ident: 2020062503235540900_ref30 article-title: A comparative study of the biological effects of various mobile phone and wireless lan antennas publication-title: IEEE Trans. Magn. doi: 10.1109/20.996201 – volume: 111 start-page: 528 year: 2016 ident: 2020062503235540900_ref16 article-title: Thermal response of human skin to microwave energy: a critical review publication-title: Health Phys. doi: 10.1097/HP.0000000000000571 – volume: 115 start-page: 705 year: 2018 ident: 2020062503235540900_ref18 article-title: Systematic derivation of safety limits for time-varying 5G radiofrequency exposure based on analytical models and thermal dose publication-title: Health Phys. doi: 10.1097/HP.0000000000000930 – volume: 62 start-page: 3124 year: 2017 ident: 2020062503235540900_ref19 article-title: On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa5f21 – volume: 116 start-page: 525 year: 1987 ident: 2020062503235540900_ref39 article-title: The effect of washing on the thickness of the stratum corneum in normal and atopic individuals publication-title: Br. J. Dermatol. doi: 10.1111/j.1365-2133.1987.tb05873.x – volume-title: IEEE Std C95.1a IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, Amendment 1: Specifies Ceiling Limits for Induced and Contact Current, Clarifies Distinctions between Localized Exposure and Spatial Peak Power Density year: 2010 ident: 2020062503235540900_ref2 – volume: 54 start-page: 492 year: 2007 ident: 2020062503235540900_ref10 article-title: Worst case temperature rise in a one-dimensional tissue model exposed to radiofrequency radiation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.890498 – volume: 40 start-page: 136 year: 2019 ident: 2020062503235540900_ref21 article-title: Theoretical evaluation of the power transmitted to the body as a function of angle of incidence and polarization at frequencies >6 GHz and its relevance for standardization publication-title: Bioelectromagnetics doi: 10.1002/bem.22170 – volume-title: Electromagnetic Wave Theory year: 2000 ident: 2020062503235540900_ref25 – volume: 64 year: 2019 ident: 2020062503235540900_ref22 article-title: Relationship between power density and surface temperature elevation for human skin exposure to electromagnetic waves with oblique incidence angle from 6 GHz to 1 THz publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab057a – volume: 41 start-page: 2271 year: 1996 ident: 2020062503235540900_ref45 article-title: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/41/11/003 – volume-title: Handbuch der Haut- und Geschlechtskrankheiten Ergänzungswerk, Erster Band, 4. Teil. Vol. 1 year: 1979 ident: 2020062503235540900_ref36 – volume: 17 start-page: 1 year: 2018 ident: 2020062503235540900_ref32 article-title: Temperature elevation in the human brain and skin with thermoregulation during exposure to RF energy publication-title: Biomed. Eng. Online doi: 10.1186/s12938-017-0432-x – volume: 150 start-page: 220 year: 2004 ident: 2020062503235540900_ref33 article-title: Changes in function and morphology of normal human skin: evaluation using optical coherence tomography publication-title: Br. J. Dermatol. doi: 10.1111/j.1365-2133.2004.05810.x – volume: 62 start-page: 415 year: 1974 ident: 2020062503235540900_ref38 article-title: Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis publication-title: J. Investig. Dermatol. doi: 10.1111/1523-1747.ep12701670 – volume-title: IT’ÍS database for thermal and electromagnetic parameters of biological tissues year: 2018 ident: 2020062503235540900_ref46 – volume: 54 start-page: 4863 year: 2009 ident: 2020062503235540900_ref49 article-title: Electrical conductivity of tissue at frequencies below 1 MHz publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/16/002 – volume: 44 start-page: 2058 year: 1956 ident: 2020062503235540900_ref5 article-title: Hazards due to total body irradiation publication-title: Proc. IRE doi: 10.1109/JRPROC.1956.274876 – year: 2019 ident: 2020062503235540900_ref23 article-title: Limitations of incident power density as a proxy for induced electromagnetic fields – volume: 43 start-page: 2142 year: 2008 ident: 2020062503235540900_ref47 article-title: Radiative and convective heat transfer coefficients of the human body in natural convection publication-title: Build. Environ. doi: 10.1016/j.buildenv.2007.12.012 – volume: 87 start-page: 4 year: 2007 ident: 2020062503235540900_ref40 article-title: In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopy publication-title: Acta Derm. Venereol. doi: 10.2340/00015555-0183 – volume-title: Applied Linear Regression year: 2005 ident: 2020062503235540900_ref50 doi: 10.1002/0471704091 – volume: 69 start-page: 275 year: 1977 ident: 2020062503235540900_ref43 article-title: Measurement of skin thickness: a comparison of two in vivo techniques with a conventional histometric method publication-title: J. Investig. Dermatol. doi: 10.1111/1523-1747.ep12507488 – volume: 62 start-page: 6993 year: 2017 ident: 2020062503235540900_ref13 article-title: Monte carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa81fc – volume: 281 start-page: R894 year: 2001 ident: 2020062503235540900_ref31 article-title: The influence of topical capsaicin on the local thermal control of skin blood flow in humans publication-title: Am. J. Phys. Regul. Integr. Comp. Phys. – volume: 28 start-page: 331 year: 2007 ident: 2020062503235540900_ref15 article-title: Human skin permittivity determined by millimeter wave reflection measurements publication-title: Bioelectromagnetics doi: 10.1002/bem.20308 – volume-title: IEEE PC95.1/D3.3 Standard 14. for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz year: 2019 ident: 2020062503235540900_ref4 – start-page: 28 volume-title: The Skin year: 1968 ident: 2020062503235540900_ref35 – volume: 55 start-page: 4647 year: 2010 ident: 2020062503235540900_ref12 article-title: Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one-and three-layer human tissue publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/55/16/003 – volume: 30 start-page: 52 year: 2009 ident: 2020062503235540900_ref44 article-title: Influence of blood flow and millimeter wave exposure on skin temperature in different thermal models publication-title: Bioelectromagnetics doi: 10.1002/bem.20444 – volume: 1 start-page: 26 year: 2016 ident: 2020062503235540900_ref28 article-title: Armadillo: a template-based C++ library for linear algebra publication-title: J. Open Source Softw. doi: 10.21105/joss.00026 |
SSID | ssj0027954 |
Score | 2.436434 |
Snippet | Abstract
This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of... This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin... This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 350 |
Title | RF-INDUCED TEMPERATURE INCREASE IN A STRATIFIED MODEL OF THE SKIN FOR PLANE-WAVE EXPOSURE AT 6–100 GHZ |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31950182 https://www.proquest.com/docview/2341631794 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKroS4IN6Ux8oILigKm9qOkxyjbUoL24faFKq9RInjiJXYdtXHZU_8B_4Gv4pfwrjOq2x5XiLLsi3F89kznz2eQeiVLVX4am6ZSeY4QFBgKSYp8cyMOw5NQcXaQj1O7g94d8rezexZo_Gt5rW0WSdvxNXedyX_I1WoA7mqV7L_INlyUKiAMsgXviBh-P6VjMcdszdoT0-CthEG_VEw1k4MQNTHgT9RBVj3Kity2Ov0oFF_2A5KP58JEHcDOKAxOvUHgfnR_xAYwWw0nKgh_NDghR-EOpw33nbP6nbsWIU02EInD_SgiulidX4h15VjsY5cUPpNxqX9Pokv4mWceyhJYMagq6tj6U2Wp80OVstSa7zfFDlEBuc6BHR5WkFUUhuTVKeVv3gFuXPAyUyXEX1XI_WmDPTdpMziu7u2W4Mnre3B1LZq6pzqdAXXNIWOorW8VMiYiyui8zT-FHt7f8Mb6JAAKYFd9dBv908nFcH3bB1LPv-HIhyuR4-h_7HuvWMA7TyqvMZttjZOeAfdzskJ9jXS7qKGnN9DN_u5-8V99KkCHK4BDheAgwL2cQU4vAUcHnYwAA4rwGEAHK4AhwvAYT_E_PuXrwA1DFB7gKadIDzpmnmqDlOwlrc2maC2tG1BWcoyZdVmJFaWbdxKXDfhUiQpT2wr8yw3TjnLeAYdUhILSxBhE04fooP5Yi4fI6xyIog4hnruMWE5CeOeaJG0JYVDXZc30eti_iKRx7FX6VQ-R9qfgkYw15Ge6yZ6Wba91NFb9rY6AjH8tsGLQkIR7L7qSi2ey8VmFRGqCI1Sak30SIuuHIeqDMtA35_8afin6Fa1VJ6hg_VyI5-DqbtOjnKE_QDj-ZsB |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RF-INDUCED+TEMPERATURE+INCREASE+IN+A+STRATIFIED+MODEL+OF+THE+SKIN+FOR+PLANE-WAVE+EXPOSURE+AT+6%E2%80%93100+GHZ&rft.jtitle=Radiation+protection+dosimetry&rft.au=Christ%2C+Andreas&rft.au=Samaras%2C+Theodoros&rft.au=Neufeld%2C+Esra&rft.au=Kuster%2C+Niels&rft.date=2020-06-24&rft.pub=Oxford+University+Press&rft.issn=0144-8420&rft.eissn=1742-3406&rft.volume=188&rft.issue=3&rft.spage=350&rft.epage=360&rft_id=info:doi/10.1093%2Frpd%2Fncz293&rft.externalDocID=10.1093%2Frpd%2Fncz293 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8420&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8420&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8420&client=summon |