RF-INDUCED TEMPERATURE INCREASE IN A STRATIFIED MODEL OF THE SKIN FOR PLANE-WAVE EXPOSURE AT 6–100 GHZ

Abstract This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin with four or five layers under plane wave incidence. The skin model distinguishes the stratum corneum (SC) and the viable epidermis a...

Full description

Saved in:
Bibliographic Details
Published inRadiation protection dosimetry Vol. 188; no. 3; pp. 350 - 360
Main Authors Christ, Andreas, Samaras, Theodoros, Neufeld, Esra, Kuster, Niels
Format Journal Article
LanguageEnglish
Published England Oxford University Press 24.06.2020
Online AccessGet full text

Cover

Loading…
Abstract Abstract This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin with four or five layers under plane wave incidence. The skin model distinguishes the stratum corneum (SC) and the viable epidermis as the outermost layers of the skin. The analysis identifies the tissue layer structures that minimize reflection and maximize the temperature increase induced by the electromagnetic field. The maximum observed temperature increase is 0.4°C for exposure at the present power density limit for the general population of 10 W m −2 . This result is more than twice as high as the findings reported in a previous study. The reasons for this difference are identified as impedance matching effects in the SC and less conservative thermal parameters. Modeling the skin as homogeneous dermis tissue can underestimate the induced temperature increase by more than a factor of three.
AbstractList Abstract This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin with four or five layers under plane wave incidence. The skin model distinguishes the stratum corneum (SC) and the viable epidermis as the outermost layers of the skin. The analysis identifies the tissue layer structures that minimize reflection and maximize the temperature increase induced by the electromagnetic field. The maximum observed temperature increase is 0.4°C for exposure at the present power density limit for the general population of 10 W m −2 . This result is more than twice as high as the findings reported in a previous study. The reasons for this difference are identified as impedance matching effects in the SC and less conservative thermal parameters. Modeling the skin as homogeneous dermis tissue can underestimate the induced temperature increase by more than a factor of three.
This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin with four or five layers under plane wave incidence. The skin model distinguishes the stratum corneum (SC) and the viable epidermis as the outermost layers of the skin. The analysis identifies the tissue layer structures that minimize reflection and maximize the temperature increase induced by the electromagnetic field. The maximum observed temperature increase is 0.4°C for exposure at the present power density limit for the general population of 10 W m -2 . This result is more than twice as high as the findings reported in a previous study. The reasons for this difference are identified as impedance matching effects in the SC and less conservative thermal parameters. Modeling the skin as homogeneous dermis tissue can underestimate the induced temperature increase by more than a factor of three.This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin with four or five layers under plane wave incidence. The skin model distinguishes the stratum corneum (SC) and the viable epidermis as the outermost layers of the skin. The analysis identifies the tissue layer structures that minimize reflection and maximize the temperature increase induced by the electromagnetic field. The maximum observed temperature increase is 0.4°C for exposure at the present power density limit for the general population of 10 W m -2 . This result is more than twice as high as the findings reported in a previous study. The reasons for this difference are identified as impedance matching effects in the SC and less conservative thermal parameters. Modeling the skin as homogeneous dermis tissue can underestimate the induced temperature increase by more than a factor of three.
This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin with four or five layers under plane wave incidence. The skin model distinguishes the stratum corneum (SC) and the viable epidermis as the outermost layers of the skin. The analysis identifies the tissue layer structures that minimize reflection and maximize the temperature increase induced by the electromagnetic field. The maximum observed temperature increase is 0.4°C for exposure at the present power density limit for the general population of 10 W m -2 . This result is more than twice as high as the findings reported in a previous study. The reasons for this difference are identified as impedance matching effects in the SC and less conservative thermal parameters. Modeling the skin as homogeneous dermis tissue can underestimate the induced temperature increase by more than a factor of three.
This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin with four or five layers under plane wave incidence. The skin model distinguishes the stratum corneum (SC) and the viable epidermis as the outermost layers of the skin. The analysis identifies the tissue layer structures that minimize reflection and maximize the temperature increase induced by the electromagnetic field. The maximum observed temperature increase is 0.4°C for exposure at the present power density limit for the general population of 10 W m −2 . This result is more than twice as high as the findings reported in a previous study. The reasons for this difference are identified as impedance matching effects in the SC and less conservative thermal parameters. Modeling the skin as homogeneous dermis tissue can underestimate the induced temperature increase by more than a factor of three.
Author Samaras, Theodoros
Christ, Andreas
Kuster, Niels
Neufeld, Esra
Author_xml – sequence: 1
  givenname: Andreas
  surname: Christ
  fullname: Christ, Andreas
  email: christ@itis.swiss
  organization: IT’IS Foundation, Zürich, Switzerland
– sequence: 2
  givenname: Theodoros
  surname: Samaras
  fullname: Samaras, Theodoros
  organization: Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 3
  givenname: Esra
  surname: Neufeld
  fullname: Neufeld, Esra
  organization: IT’IS Foundation, Zürich, Switzerland
– sequence: 4
  givenname: Niels
  surname: Kuster
  fullname: Kuster, Niels
  organization: IT’IS Foundation, Zürich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31950182$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1Kw0AUhQdRtK1ufACZjSBCdP4yTZahnbTB2pQ0VXEzTCYTjLRJTdKFrnwH39AnMaW6EXF1L_d-5yzO6YL9oiwMAKcYXWHk0utqnV4X-o24dA90cJ8RizLE90EHYcYshxF0BLp1_YwQ6bs2OwRHFLs2wg7pgKfIt4LpcDEQQxiL25mIvHgRCRhMB5Hw5tsFenAet-fAD1roNhyKCQx9GI8FnN-0bz-M4GziTYV1790JKB5m4Xxr4cWQf75_YITgaPx4DA4ytazNyffsgYUv4sHYmoSjYOBNLM2w21hMU9vYtqYsZRnitpMR5TDeVzhxnIQbnaQ8sVHmIkelnGU8awUpURppom3CaQ9c7HzXVfmyMXUjV3mtzXKpClNuakkow5zivsta9Owb3SQrk8p1la9U9Sp_0mkBtAN0VdZ1ZTKp80Y1eVk0lcqXEiO5LUC2BchdAa3k8pfkx_VP-HwHl5v1f9wXa6WLsQ
CitedBy_id crossref_primary_10_1088_2057_1976_ad488e
crossref_primary_10_1109_ACCESS_2024_3438625
crossref_primary_10_3390_electronics13091630
crossref_primary_10_1109_ACCESS_2024_3408955
crossref_primary_10_1109_JMW_2023_3345133
crossref_primary_10_1002_bem_22362
crossref_primary_10_3390_ijerph19031546
crossref_primary_10_1109_JERM_2020_3042390
crossref_primary_10_1002_bem_22268
crossref_primary_10_1002_bem_22422
crossref_primary_10_1109_JERM_2022_3178604
crossref_primary_10_1109_TMTT_2023_3267568
crossref_primary_10_1109_ACCESS_2023_3238582
crossref_primary_10_1109_JMW_2022_3199989
crossref_primary_10_3390_ijerph20227031
crossref_primary_10_1109_TEMC_2022_3166787
crossref_primary_10_1038_s41598_021_82458_z
crossref_primary_10_1088_1361_6560_abf1b7
crossref_primary_10_1109_ACCESS_2021_3105608
crossref_primary_10_1097_HP_0000000000001447
crossref_primary_10_1109_JMW_2024_3407712
crossref_primary_10_1109_JERM_2022_3203576
crossref_primary_10_1109_TAP_2021_3070725
crossref_primary_10_1093_rpd_ncaa179
crossref_primary_10_1109_TEMC_2023_3289450
crossref_primary_10_3390_ijerph20075267
crossref_primary_10_3389_fpubh_2022_795414
Cites_doi 10.1002/bem.22110
10.1152/jappl.1948.1.2.93
10.1002/bem.22147
10.1111/j.1365-2133.1968.tb11978.x
10.1109/TMTT.2006.872789
10.1016/j.expthermflusci.2016.04.015
10.1111/j.1365-2133.1969.tb16204.x
10.1109/22.644237
10.1109/22.884187
10.1088/1361-6560/aa81fe
10.1109/TTHZ.2012.2227476
10.1088/0031-9155/51/19/014
10.1109/20.996201
10.1097/HP.0000000000000571
10.1097/HP.0000000000000930
10.1088/1361-6560/aa5f21
10.1111/j.1365-2133.1987.tb05873.x
10.1109/TBME.2006.890498
10.1002/bem.22170
10.1088/1361-6560/ab057a
10.1088/0031-9155/41/11/003
10.1186/s12938-017-0432-x
10.1111/j.1365-2133.2004.05810.x
10.1111/1523-1747.ep12701670
10.1088/0031-9155/54/16/002
10.1109/JRPROC.1956.274876
10.1016/j.buildenv.2007.12.012
10.2340/00015555-0183
10.1002/0471704091
10.1111/1523-1747.ep12507488
10.1088/1361-6560/aa81fc
10.1002/bem.20308
10.1088/0031-9155/55/16/003
10.1002/bem.20444
10.21105/joss.00026
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1093/rpd/ncz293
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1742-3406
EndPage 360
ExternalDocumentID 31950182
10_1093_rpd_ncz293
10.1093/rpd/ncz293
Genre Journal Article
GroupedDBID ---
-E4
.2P
.I3
.ZR
0R~
123
1TH
29P
4.4
48X
53G
5VS
5WA
5WD
70D
AABZA
AACZT
AAIJN
AAJKP
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
ABDTM
ABEUO
ABIXL
ABJNI
ABKDP
ABNHQ
ABNKS
ABPTD
ABQLI
ABQNK
ABWST
ABXVV
ABZBJ
ACGFS
ACUFI
ACUTJ
ACUTO
ACYHN
ACYTK
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXAL
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AGUTN
AHXPO
AIJHB
AJEEA
AJEUX
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
BTRTY
BVRKM
C45
CDBKE
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
ENERS
F5P
F9B
FECEO
FLIZI
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
M49
MHKGH
N9A
NGC
NMDNZ
NOMLY
NOYVH
NU-
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
Q1.
Q5Y
RD5
RNS
ROL
ROX
ROZ
RUSNO
RW1
RXO
SV3
TEORI
TJP
TJX
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ACUXJ
ADMLS
ADNBA
ADYJX
AEMQT
AFYAG
AGORE
AHGBF
AHMMS
AJBYB
AJNCP
ALXQX
ANAKG
CITATION
JXSIZ
NPM
7X8
ID FETCH-LOGICAL-c419t-4c35e55c34d4f0658f2a8467a1b88b6ecbd6b50f908ad64f6fc35d2ac0c2c5263
ISSN 0144-8420
1742-3406
IngestDate Fri Jul 11 15:38:15 EDT 2025
Wed Feb 19 02:31:49 EST 2025
Tue Jul 01 01:29:30 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Wed Sep 11 04:54:44 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c419t-4c35e55c34d4f0658f2a8467a1b88b6ecbd6b50f908ad64f6fc35d2ac0c2c5263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/rpd/article-pdf/188/3/350/33423057/ncz293.pdf
PMID 31950182
PQID 2341631794
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2341631794
pubmed_primary_31950182
crossref_citationtrail_10_1093_rpd_ncz293
crossref_primary_10_1093_rpd_ncz293
oup_primary_10_1093_rpd_ncz293
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-24
PublicationDateYYYYMMDD 2020-06-24
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-24
  day: 24
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Radiation protection dosimetry
PublicationTitleAlternate Radiat Prot Dosimetry
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Samaras (2020062503235540900_ref10) 2007; 54
Alekseev (2020062503235540900_ref15) 2007; 28
Sanderson (2020062503235540900_ref28) 2016; 1
Welzel (2020062503235540900_ref33) 2004; 150
Meier (2020062503235540900_ref6) 1997; 45
Christ (2020062503235540900_ref8) 2006; 54
Neufeld (2020062503235540900_ref18) 2018; 115
Egawa (2020062503235540900_ref40) 2007; 87
Bloom (2020062503235540900_ref34) 1968
Ziskin (2020062503235540900_ref14) 2018; 39
Weisberg (2020062503235540900_ref50) 2005
Dykes (2020062503235540900_ref43) 1977; 69
Holbrook (2020062503235540900_ref38) 1974; 62
Kodera (2020062503235540900_ref32) 2018; 17
Foster (2020062503235540900_ref16) 2016; 111
Gabriel (2020062503235540900_ref45) 1996; 41
ICNIRP (2020062503235540900_ref1) 1998; 74
Gabriel (2020062503235540900_ref49) 2009; 54
Stephens (2020062503235540900_ref31) 2001; 281
Christ (2020062503235540900_ref9) 2006; 51
Li (2020062503235540900_ref22) 2019; 64
Kong (2020062503235540900_ref25) 2000
Sasaki (2020062503235540900_ref13) 2017; 62
IEEE C95.1 (2020062503235540900_ref4) 2019
Schwan (2020062503235540900_ref5) 1956; 44
Christ (2020062503235540900_ref23) 2019
Laakso (2020062503235540900_ref17) 2017; 62
ICNIRP (2020062503235540900_ref3) 2019
Neufeld (2020062503235540900_ref20) 2018; 39
Hasgall (2020062503235540900_ref46) 2018
Anderson (2020062503235540900_ref11) 2010; 31
Kanezaki (2020062503235540900_ref12) 2010; 55
Yioultsis (2020062503235540900_ref30) 2002; 38
Odland (2020062503235540900_ref35) 1968
Blair (2020062503235540900_ref37) 1968; 80
Alekseev (2020062503235540900_ref44) 2009; 30
Jadassohn (2020062503235540900_ref36) 1979
Kurazumi (2020062503235540900_ref47) 2008; 43
IEEE C95.1 (2020062503235540900_ref2) 2010
Pennes (2020062503235540900_ref26) 1948; 1
Octave Community (2020062503235540900_ref29) 2014
Black (2020062503235540900_ref42) 1969; 81
Snyder (2020062503235540900_ref41) 1975
Hashimoto (2020062503235540900_ref19) 2017; 62
Fojtlín (2020062503235540900_ref48) 2016; 77
White (2020062503235540900_ref39) 1987; 116
Drossos (2020062503235540900_ref7) 2000; 48
Samaras (2020062503235540900_ref21) 2019; 40
Hayut (2020062503235540900_ref24) 2013; 3
Mayers (2020062503235540900_ref27) 1994
References_xml – volume: 39
  start-page: 173
  year: 2018
  ident: 2020062503235540900_ref14
  article-title: Tissue models for RF exposure evaluation at frequencies above 6 GHz
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.22110
– volume: 74
  start-page: 494
  year: 1998
  ident: 2020062503235540900_ref1
  article-title: Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)
  publication-title: Health Phys.
– volume-title: Numerical Solutions of Partial Differential Equations: Finite Difference Methods
  year: 1994
  ident: 2020062503235540900_ref27
– volume-title: GNU Octave 4.1.0+
  year: 2014
  ident: 2020062503235540900_ref29
– volume: 31
  start-page: 454
  year: 2010
  ident: 2020062503235540900_ref11
  article-title: SAR versus Sinc: What is the appropriate RF exposure metric in the range 1–10 GHz? Part I: Using planar body models
  publication-title: Bioelectromagnetics
– volume: 1
  start-page: 93
  year: 1948
  ident: 2020062503235540900_ref26
  article-title: Analysis of tissue and arterial blood temperatures in the restung human forearm
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1948.1.2.93
– volume: 39
  start-page: 617
  year: 2018
  ident: 2020062503235540900_ref20
  article-title: Theoretical and numerical assessment of maximally allowable power-density averaging area for conservative electromagnetic exposure assessment above 6 GHz
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.22147
– year: 2019
  ident: 2020062503235540900_ref3
  article-title: Draft guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)
– volume: 80
  start-page: 430
  year: 1968
  ident: 2020062503235540900_ref37
  article-title: Morphology and thickness of the human stratum corneum
  publication-title: Br. J. Dermatol.
  doi: 10.1111/j.1365-2133.1968.tb11978.x
– volume: 54
  start-page: 2188
  year: 2006
  ident: 2020062503235540900_ref8
  article-title: The dependence of electromagnetic far-field absorption on body tissue composition in the frequency range from 300 MHz to 6 GHz
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2006.872789
– volume: 77
  start-page: 257
  year: 2016
  ident: 2020062503235540900_ref48
  article-title: Determination of convective and radiative heat transfer coefficients using 34-zones thermal manikin: Uncertainty and reproducibility evaluation
  publication-title: Exp. Thermal Fluid Sci.
  doi: 10.1016/j.expthermflusci.2016.04.015
– volume: 81
  start-page: 661
  year: 1969
  ident: 2020062503235540900_ref42
  article-title: A modified radiographic method for measuring skin thickness
  publication-title: Br. J. Dermatol.
  doi: 10.1111/j.1365-2133.1969.tb16204.x
– start-page: 479
  volume-title: A Textbook of Histology
  year: 1968
  ident: 2020062503235540900_ref34
– volume: 45
  start-page: 2058
  year: 1997
  ident: 2020062503235540900_ref6
  article-title: The dependence of EM energy absorption upon human head modeling at 1800 MHz
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/22.644237
– volume: 48
  start-page: 1988
  year: 2000
  ident: 2020062503235540900_ref7
  article-title: The dependence of electromagnetic energy absorption upon human head tissue composition in the frequency range of 300–3000 MHz
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/22.884187
– volume-title: Report of the Task Group on Reference Man
  year: 1975
  ident: 2020062503235540900_ref41
– volume: 62
  start-page: 6980
  year: 2017
  ident: 2020062503235540900_ref17
  article-title: Human exposure to pulsed fields in the frequency range from 6 to 100 GHz
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa81fe
– volume: 3
  start-page: 207
  year: 2013
  ident: 2020062503235540900_ref24
  article-title: The helical structure of sweat ducts: their influence on the electromagnetic reflection spectrum of the skin
  publication-title: IEEE Trans. Terahertz Sci. Technol.
  doi: 10.1109/TTHZ.2012.2227476
– volume: 51
  start-page: 4951
  year: 2006
  ident: 2020062503235540900_ref9
  article-title: Characterization of the electromagnetic near-field absorption in layered biological tissue in the frequency range from 30 MHz to 6000 MHz
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/19/014
– volume: 38
  start-page: 777
  year: 2002
  ident: 2020062503235540900_ref30
  article-title: A comparative study of the biological effects of various mobile phone and wireless lan antennas
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.996201
– volume: 111
  start-page: 528
  year: 2016
  ident: 2020062503235540900_ref16
  article-title: Thermal response of human skin to microwave energy: a critical review
  publication-title: Health Phys.
  doi: 10.1097/HP.0000000000000571
– volume: 115
  start-page: 705
  year: 2018
  ident: 2020062503235540900_ref18
  article-title: Systematic derivation of safety limits for time-varying 5G radiofrequency exposure based on analytical models and thermal dose
  publication-title: Health Phys.
  doi: 10.1097/HP.0000000000000930
– volume: 62
  start-page: 3124
  year: 2017
  ident: 2020062503235540900_ref19
  article-title: On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa5f21
– volume: 116
  start-page: 525
  year: 1987
  ident: 2020062503235540900_ref39
  article-title: The effect of washing on the thickness of the stratum corneum in normal and atopic individuals
  publication-title: Br. J. Dermatol.
  doi: 10.1111/j.1365-2133.1987.tb05873.x
– volume-title: IEEE Std C95.1a IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, Amendment 1: Specifies Ceiling Limits for Induced and Contact Current, Clarifies Distinctions between Localized Exposure and Spatial Peak Power Density
  year: 2010
  ident: 2020062503235540900_ref2
– volume: 54
  start-page: 492
  year: 2007
  ident: 2020062503235540900_ref10
  article-title: Worst case temperature rise in a one-dimensional tissue model exposed to radiofrequency radiation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.890498
– volume: 40
  start-page: 136
  year: 2019
  ident: 2020062503235540900_ref21
  article-title: Theoretical evaluation of the power transmitted to the body as a function of angle of incidence and polarization at frequencies >6 GHz and its relevance for standardization
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.22170
– volume-title: Electromagnetic Wave Theory
  year: 2000
  ident: 2020062503235540900_ref25
– volume: 64
  year: 2019
  ident: 2020062503235540900_ref22
  article-title: Relationship between power density and surface temperature elevation for human skin exposure to electromagnetic waves with oblique incidence angle from 6 GHz to 1 THz
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab057a
– volume: 41
  start-page: 2271
  year: 1996
  ident: 2020062503235540900_ref45
  article-title: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/41/11/003
– volume-title: Handbuch der Haut- und Geschlechtskrankheiten Ergänzungswerk, Erster Band, 4. Teil. Vol. 1
  year: 1979
  ident: 2020062503235540900_ref36
– volume: 17
  start-page: 1
  year: 2018
  ident: 2020062503235540900_ref32
  article-title: Temperature elevation in the human brain and skin with thermoregulation during exposure to RF energy
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-017-0432-x
– volume: 150
  start-page: 220
  year: 2004
  ident: 2020062503235540900_ref33
  article-title: Changes in function and morphology of normal human skin: evaluation using optical coherence tomography
  publication-title: Br. J. Dermatol.
  doi: 10.1111/j.1365-2133.2004.05810.x
– volume: 62
  start-page: 415
  year: 1974
  ident: 2020062503235540900_ref38
  article-title: Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis
  publication-title: J. Investig. Dermatol.
  doi: 10.1111/1523-1747.ep12701670
– volume-title: IT’ÍS database for thermal and electromagnetic parameters of biological tissues
  year: 2018
  ident: 2020062503235540900_ref46
– volume: 54
  start-page: 4863
  year: 2009
  ident: 2020062503235540900_ref49
  article-title: Electrical conductivity of tissue at frequencies below 1 MHz
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/16/002
– volume: 44
  start-page: 2058
  year: 1956
  ident: 2020062503235540900_ref5
  article-title: Hazards due to total body irradiation
  publication-title: Proc. IRE
  doi: 10.1109/JRPROC.1956.274876
– year: 2019
  ident: 2020062503235540900_ref23
  article-title: Limitations of incident power density as a proxy for induced electromagnetic fields
– volume: 43
  start-page: 2142
  year: 2008
  ident: 2020062503235540900_ref47
  article-title: Radiative and convective heat transfer coefficients of the human body in natural convection
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2007.12.012
– volume: 87
  start-page: 4
  year: 2007
  ident: 2020062503235540900_ref40
  article-title: In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopy
  publication-title: Acta Derm. Venereol.
  doi: 10.2340/00015555-0183
– volume-title: Applied Linear Regression
  year: 2005
  ident: 2020062503235540900_ref50
  doi: 10.1002/0471704091
– volume: 69
  start-page: 275
  year: 1977
  ident: 2020062503235540900_ref43
  article-title: Measurement of skin thickness: a comparison of two in vivo techniques with a conventional histometric method
  publication-title: J. Investig. Dermatol.
  doi: 10.1111/1523-1747.ep12507488
– volume: 62
  start-page: 6993
  year: 2017
  ident: 2020062503235540900_ref13
  article-title: Monte carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa81fc
– volume: 281
  start-page: R894
  year: 2001
  ident: 2020062503235540900_ref31
  article-title: The influence of topical capsaicin on the local thermal control of skin blood flow in humans
  publication-title: Am. J. Phys. Regul. Integr. Comp. Phys.
– volume: 28
  start-page: 331
  year: 2007
  ident: 2020062503235540900_ref15
  article-title: Human skin permittivity determined by millimeter wave reflection measurements
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.20308
– volume-title: IEEE PC95.1/D3.3 Standard 14. for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
  year: 2019
  ident: 2020062503235540900_ref4
– start-page: 28
  volume-title: The Skin
  year: 1968
  ident: 2020062503235540900_ref35
– volume: 55
  start-page: 4647
  year: 2010
  ident: 2020062503235540900_ref12
  article-title: Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one-and three-layer human tissue
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/55/16/003
– volume: 30
  start-page: 52
  year: 2009
  ident: 2020062503235540900_ref44
  article-title: Influence of blood flow and millimeter wave exposure on skin temperature in different thermal models
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.20444
– volume: 1
  start-page: 26
  year: 2016
  ident: 2020062503235540900_ref28
  article-title: Armadillo: a template-based C++ library for linear algebra
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00026
SSID ssj0027954
Score 2.436434
Snippet Abstract This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of...
This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin...
This study assesses the maximum temperature increase induced by exposure to electromagnetic fields between 6 and 100 GHz using a stratified model of the skin...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 350
Title RF-INDUCED TEMPERATURE INCREASE IN A STRATIFIED MODEL OF THE SKIN FOR PLANE-WAVE EXPOSURE AT 6–100 GHZ
URI https://www.ncbi.nlm.nih.gov/pubmed/31950182
https://www.proquest.com/docview/2341631794
Volume 188
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKroS4IN6Ux8oILigKm9qOkxyjbUoL24faFKq9RInjiJXYdtXHZU_8B_4Gv4pfwrjOq2x5XiLLsi3F89kznz2eQeiVLVX4am6ZSeY4QFBgKSYp8cyMOw5NQcXaQj1O7g94d8rezexZo_Gt5rW0WSdvxNXedyX_I1WoA7mqV7L_INlyUKiAMsgXviBh-P6VjMcdszdoT0-CthEG_VEw1k4MQNTHgT9RBVj3Kity2Ov0oFF_2A5KP58JEHcDOKAxOvUHgfnR_xAYwWw0nKgh_NDghR-EOpw33nbP6nbsWIU02EInD_SgiulidX4h15VjsY5cUPpNxqX9Pokv4mWceyhJYMagq6tj6U2Wp80OVstSa7zfFDlEBuc6BHR5WkFUUhuTVKeVv3gFuXPAyUyXEX1XI_WmDPTdpMziu7u2W4Mnre3B1LZq6pzqdAXXNIWOorW8VMiYiyui8zT-FHt7f8Mb6JAAKYFd9dBv908nFcH3bB1LPv-HIhyuR4-h_7HuvWMA7TyqvMZttjZOeAfdzskJ9jXS7qKGnN9DN_u5-8V99KkCHK4BDheAgwL2cQU4vAUcHnYwAA4rwGEAHK4AhwvAYT_E_PuXrwA1DFB7gKadIDzpmnmqDlOwlrc2maC2tG1BWcoyZdVmJFaWbdxKXDfhUiQpT2wr8yw3TjnLeAYdUhILSxBhE04fooP5Yi4fI6xyIog4hnruMWE5CeOeaJG0JYVDXZc30eti_iKRx7FX6VQ-R9qfgkYw15Ge6yZ6Wba91NFb9rY6AjH8tsGLQkIR7L7qSi2ey8VmFRGqCI1Sak30SIuuHIeqDMtA35_8afin6Fa1VJ6hg_VyI5-DqbtOjnKE_QDj-ZsB
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RF-INDUCED+TEMPERATURE+INCREASE+IN+A+STRATIFIED+MODEL+OF+THE+SKIN+FOR+PLANE-WAVE+EXPOSURE+AT+6%E2%80%93100+GHZ&rft.jtitle=Radiation+protection+dosimetry&rft.au=Christ%2C+Andreas&rft.au=Samaras%2C+Theodoros&rft.au=Neufeld%2C+Esra&rft.au=Kuster%2C+Niels&rft.date=2020-06-24&rft.pub=Oxford+University+Press&rft.issn=0144-8420&rft.eissn=1742-3406&rft.volume=188&rft.issue=3&rft.spage=350&rft.epage=360&rft_id=info:doi/10.1093%2Frpd%2Fncz293&rft.externalDocID=10.1093%2Frpd%2Fncz293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8420&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8420&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8420&client=summon