The Influence of Seasonal Snow on Soil Thermal and Water Dynamics under Different Vegetation Covers in a Permafrost Region
Seasonal snow is one of the most important influences on the development and distribution of permafrost and the hydrothermal regime in surface soil. Alpine meadow, which constitutes the main land type in permafrost regions of the Qinghai-Tibet Plateau, was selected to study the influence of seasonal...
Saved in:
Published in | Journal of mountain science Vol. 11; no. 3; pp. 727 - 745 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Science Press
01.05.2014
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Seasonal snow is one of the most important influences on the development and distribution of permafrost and the hydrothermal regime in surface soil. Alpine meadow, which constitutes the main land type in permafrost regions of the Qinghai-Tibet Plateau, was selected to study the influence of seasonal snow on the temperature and moisture in active soil layers under different vegetation coverage. Monitoring sites for soil moisture and temperature were constructed to observe the hydrothermal processes in active soil layers under different vegetation cover with seasonal snow cover variation for three years from 2010 to 2012. Differences in soil temperature and moisture in areas of diverse vegetation coverage with varying levels of snow cover were analyzed using active soil layer water and temperature indices. The results indicated that snow cover greatly influenced the hydrothermal dynamics of the active soil layer in alpine meadows. In the snow manipulation experiment with a snow depth greater than 15 cm, the snow cover postponed both the freeze-fall and thawrise onset times of soil temperature and moisture in alpine LC (lower vegetation coverage) meadows and of soil moisture in alpine HC (higher vegetation coverage) meadows; however, the opposite response occurred for soil temperatures of alpine HC meadows,where the entire melting period was extended by advancing the thaw-rise and delaying the freeze-fall onset time of the soil temperature. Snow cover resulted in a decreased amplitude and rate of variation in soil temperature, for both alpine HC meadows and alpine LC meadows, whereas the distinct influence of snow cover on the amplitude and rate of soil moisture variation occurred at different soil layers with different vegetation coverages. Snow cover increased the soil moisture of alpine grasslands during thawing periods. The results confirmed that the annual hydrothermal dynamics of active layers in permafrost were subject to the synergistic actions of both snow cover and vegetation coverage. |
---|---|
AbstractList | Seasonal snow is one of the most important influences on the development and distribution of permafrost and the hydrothermal regime in surface soil. Alpine meadow, which constitutes the main land type in permafrost regions of the Qinghai-Tibet Plateau, was selected to study the influence of seasonal snow on the temperature and moisture in active soil layers under different vegetation coverage. Monitoring sites for soil moisture and temperature were constructed to observe the hydrothermal processes in active soil layers under different vegetation cover with seasonal snow cover variation for three years from 2010 to 2012. Differences in soil temperature and moisture in areas of diverse vegetation coverage with varying levels of snow cover were analyzed using active soil layer water and temperature indices. The results indicated that snow cover greatly influenced the hydrothermal dynamics of the active soil layer in alpine meadows. In the snow manipulation experiment with a snow depth greater than 15 cm, the snow cover postponed both the freeze-fall and thawrise onset times of soil temperature and moisture in alpine LC (lower vegetation coverage) meadows and of soil moisture in alpine HC (higher vegetation coverage) meadows; however, the opposite response occurred for soil temperatures of alpine HC meadows, where the entire melting period was extended by advancing the thaw-rise and delaying the freeze-fall onset time of the soil temperature. Snow cover resulted in a decreased amplitude and rate of variation in soil temperature, for both alpine HC meadows and alpine LC meadows, whereas the distinct influence of snow cover on the amplitude and rate of soil moisture variation occurred at different soil layers with different vegetation coverages. Snow cover increased the soil moisture of alpine grasslands during thawing periods. The results confirmed that the annual hydrothermal dynamics of active layers in permafrost were subject to the synergistic actions of both snow cover and vegetation coverage.[PUBLICATION ABSTRACT] Seasonal snow is one of the most important influences on the development and distribution of permafrost and the hydrothermal regime in surface soil. Alpine meadow, which constitutes the main land type in permafrost regions of the Qinghai-Tibet Plateau, was selected to study the influence of seasonal snow on the temperature and moisture in active soil layers under different vegetation coverage. Monitoring sites for soil moisture and temperature were constructed to observe the hydrothermal processes in active soil layers under different vegetation cover with seasonal snow cover variation for three years from 2010 to 2012. Differences in soil temperature and moisture in areas of diverse vegetation coverage with varying levels of snow cover were analyzed using active soil layer water and temperature indices. The results indicated that snow cover greatly influenced the hydrothermal dynamics of the active soil layer in alpine meadows. In the snow manipulation experiment with a snow depth greater than 15 cm, the snow cover postponed both the freeze-fall and thawrise onset times of soil temperature and moisture in alpine LC (lower vegetation coverage) meadows and of soil moisture in alpine HC (higher vegetation coverage) meadows; however, the opposite response occurred for soil temperatures of alpine HC meadows, where the entire melting period was extended by advancing the thaw-rise and delaying the freeze-fall onset time of the soil temperature. Snow cover resulted in a decreased amplitude and rate of variation in soil temperature, for both alpine HC meadows and alpine LC meadows, whereas the distinct influence of snow cover on the amplitude and rate of soil moisture variation occurred at different soil layers with different vegetation coverages. Snow cover increased the soil moisture of alpine grasslands during thawing periods. The results confirmed that the annual hydrothermal dynamics of active layers in permafrost were subject to the synergistic actions of both snow cover and vegetation coverage. Seasonal snow is one of the most important influences on the development and distribution of permafrost and the hydrothermal regime in surface soil. Alpine meadow, which constitutes the main land type in permafrost regions of the Qinghai-Tibet Plateau, was selected to study the influence of seasonal snow on the temperature and moisture in active soil layers under different vegetation coverage. Monitoring sites for soil moisture and temperature were constructed to observe the hydrothermal processes in active soil layers under different vegetation cover with seasonal snow cover variation for three years from 2010 to 2012. Differences in soil temperature and moisture in areas of diverse vegetation coverage with varying levels of snow cover were analyzed using active soil layer water and temperature indices. The results indicated that snow cover greatly influenced the hydrothermal dynamics of the active soil layer in alpine meadows. In the snow manipulation experiment with a snow depth greater than 15 cm, the snow cover postponed both the freeze-fall and thawrise onset times of soil temperature and moisture in alpine LC (lower vegetation coverage) meadows and of soil moisture in alpine HC (higher vegetation coverage) meadows; however, the opposite response occurred for soil temperatures of alpine HC meadows,where the entire melting period was extended by advancing the thaw-rise and delaying the freeze-fall onset time of the soil temperature. Snow cover resulted in a decreased amplitude and rate of variation in soil temperature, for both alpine HC meadows and alpine LC meadows, whereas the distinct influence of snow cover on the amplitude and rate of soil moisture variation occurred at different soil layers with different vegetation coverages. Snow cover increased the soil moisture of alpine grasslands during thawing periods. The results confirmed that the annual hydrothermal dynamics of active layers in permafrost were subject to the synergistic actions of both snow cover and vegetation coverage. |
Author | CHANG Juan WANG Gen-xu GAO Yong-heng WANG Yi-bo |
AuthorAffiliation | College of Earth and Environmental Sciences, Lanzhou University, Lanhou 730000, China Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China |
Author_xml | – sequence: 1 givenname: Juan surname: Chang fullname: Chang, Juan email: changjuan@lzu.edu.cn organization: College of Earth and Environmental Sciences, Lanzhou University – sequence: 2 givenname: Gen-xu surname: Wang fullname: Wang, Gen-xu organization: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences – sequence: 3 givenname: Yong-heng surname: Gao fullname: Gao, Yong-heng organization: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences – sequence: 4 givenname: Yi-bo surname: Wang fullname: Wang, Yi-bo organization: College of Earth and Environmental Sciences, Lanzhou University |
BookMark | eNp9kUFPHSEQx0ljk6rtB-iN2Esvqwyw7HJsXrWamNj02fZIcHd4YvaBwq6NfnrZrGmMB08Mw_83M8x_j-yEGJCQz8AOgbHmKAMorisGouKtFhV7R3ZBz4HgsFNi1fBKCVAfyF7ON4ypRrewSx4vr5GeBTdMGDqk0dE12hyDHeg6xH80BrqOfqBFlrYlaUNP_9oRE_3-EOzWd5lOoZ-v3jlMGEb6Bzc42tEXdBXvMWXqA7X051zApZhH-gs35fUjee_skPHT87lPfp8cX65Oq_OLH2erb-dVJ0GPlWxYf9VKENI1Ta06V6OQyjGLogdmW6Ub4Fd9ra1QmqMWQrSMCWgdcK1dJ_bJ16XubYp3E-bRbH3ucBhswDhlA7VkXOi2FkX65ZX0Jk6pLGNWcSl4C2pWwaLqym9yQmduk9_a9GCAmdkNs7hhihtmdsOwwjSvmM4vSxqT9cObJF_IXLqEDaYXM70BHTy3u45hc1e4_zMqBZozKZl4AlCLqkg |
CitedBy_id | crossref_primary_10_1016_j_coldregions_2021_103402 crossref_primary_10_1016_j_agrformet_2018_01_010 crossref_primary_10_1016_j_jhydrol_2024_132301 crossref_primary_10_1016_j_agrformet_2021_108744 crossref_primary_10_1002_hyp_13931 crossref_primary_10_1007_s11629_020_6335_5 crossref_primary_10_1016_j_agrformet_2017_09_013 crossref_primary_10_1016_j_heliyon_2024_e33652 crossref_primary_10_1016_j_catena_2021_105375 crossref_primary_10_1016_j_catena_2024_107911 crossref_primary_10_3389_feart_2021_704901 crossref_primary_10_3390_su142013115 crossref_primary_10_1175_JCLI_D_20_0827_1 crossref_primary_10_1007_s11104_025_07243_7 crossref_primary_10_1111_gcb_12954 crossref_primary_10_1007_s11629_014_3384_7 crossref_primary_10_3389_fenvs_2022_929309 crossref_primary_10_1016_j_geoderma_2019_113892 crossref_primary_10_1080_15230430_2022_2097156 crossref_primary_10_1007_s11629_018_4856_y crossref_primary_10_1002_eco_2603 crossref_primary_10_1007_s00704_024_05286_x crossref_primary_10_3389_feart_2020_576838 crossref_primary_10_1111_sum_12910 crossref_primary_10_1111_geb_13100 crossref_primary_10_1007_s11069_016_2606_4 |
Cites_doi | 10.1029/2008JD011063 10.1360/csb2009-54-2-242 10.1029/2010JD013975 10.1126/science.263.5144.198 10.1007/s10661-010-1781-0 10.1016/j.coldregions.2007.07.001 10.1007/s10584-009-9546-x 10.1080/07055900.2001.9649665 10.1016/j.gloplacha.2006.11.009 10.1175/1520-0493(1985)113<0756:IOSCAS>2.0.CO;2 10.1002/(SICI)1099-1530(199807/09)9:3<229::AID-PPP286>3.0.CO;2-T 10.1016/j.actao.2007.01.001 10.1002/ppp.445 10.1016/j.geoderma.2008.12.008 10.1023/A:1010790203146 10.1029/2006GL026451 10.1029/2001JD000489 10.1029/2005JC002975 10.1002/ppp.582 10.1111/j.1751-8369.2010.00153.x 10.1139/e75-129 10.1002/j.1477-8696.1994.tb05997.x 10.1007/BF02886326 10.1029/2006JG000297 10.1002/(SICI)1099-1530(199701)8:1<45::AID-PPP240>3.0.CO;2-K 10.1007/s007040170007 10.1029/2004RG000157 10.1007/s10584-005-5352-2 10.1002/hyp.6787 10.1175/1520-0442(1992)005<1441:IVOWSC>2.0.CO;2 10.1002/(SICI)1099-1085(199910)13:14/15<2315::AID-HYP888>3.0.CO;2-A |
ContentType | Journal Article |
Copyright | Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2014 |
Copyright_xml | – notice: Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2014 |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 3V. 7ST 7UA 7XB 88I 8FK ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G M2P PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U SOI 7TG KL. |
DOI | 10.1007/s11629-013-2893-0 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Environment Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Environment Abstracts Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Ecology |
DocumentTitleAlternate | The Influence of Seasonal Snow on Soil Thermal and Water Dynamics under Different Vegetation Covers in a Permafrost Region |
EISSN | 1993-0321 1008-2786 |
EndPage | 745 |
ExternalDocumentID | 3303526741 10_1007_s11629_013_2893_0 661920440 |
Genre | Feature |
GeographicLocations | Asia, Qinghai-Tibet Plateau |
GeographicLocations_xml | – name: Asia, Qinghai-Tibet Plateau |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 29L 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 40E 5VR 5VS 67M 6NX 88I 8FE 8FH 8TC 92E 92I 92L 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTV ABHQN ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ CAG CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CSCUP CW9 DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EDH EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV L8X LK5 LLZTM M2P M4Y M7R MA- NPVJJ NQJWS NU0 O9- O9J PCBAR PF0 PQQKQ PROAC PT4 Q2X QOS R89 R9I ROL RPX RSV S.. S16 S1Z S27 S3B SAP SCL SDH SEV SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGP TSG TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 W94 WK8 YLTOR ZMTXR ~02 ~A9 ~WA -SA -S~ AACDK AAJBT AASML AAXDM AAYZH ABAKF ABJNI ACDTI ACPIV AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU CAJEA H13 Q-- SJYHP U1G U5K AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7UA 7XB 8FK ABRTQ C1K F1W H96 L.G PKEHL PQEST PQUKI Q9U SOI 7TG KL. |
ID | FETCH-LOGICAL-c419t-470db84134f7756cf5e346f0ae3d10a869712bd59a3692e9333800318f1299fc3 |
IEDL.DBID | U2A |
ISSN | 1672-6316 |
IngestDate | Fri Jul 11 15:12:38 EDT 2025 Sat Jul 26 01:34:23 EDT 2025 Tue Jul 01 03:19:18 EDT 2025 Thu Apr 24 23:02:41 EDT 2025 Fri Feb 21 02:36:48 EST 2025 Wed Feb 14 10:36:44 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Synergistic action Permafrost Active soil layer Snow cover Vegetation cover Hydrothermal dynamics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-470db84134f7756cf5e346f0ae3d10a869712bd59a3692e9333800318f1299fc3 |
Notes | Seasonal snow is one of the most important influences on the development and distribution of permafrost and the hydrothermal regime in surface soil. Alpine meadow, which constitutes the main land type in permafrost regions of the Qinghai-Tibet Plateau, was selected to study the influence of seasonal snow on the temperature and moisture in active soil layers under different vegetation coverage. Monitoring sites for soil moisture and temperature were constructed to observe the hydrothermal processes in active soil layers under different vegetation cover with seasonal snow cover variation for three years from 2010 to 2012. Differences in soil temperature and moisture in areas of diverse vegetation coverage with varying levels of snow cover were analyzed using active soil layer water and temperature indices. The results indicated that snow cover greatly influenced the hydrothermal dynamics of the active soil layer in alpine meadows. In the snow manipulation experiment with a snow depth greater than 15 cm, the snow cover postponed both the freeze-fall and thawrise onset times of soil temperature and moisture in alpine LC (lower vegetation coverage) meadows and of soil moisture in alpine HC (higher vegetation coverage) meadows; however, the opposite response occurred for soil temperatures of alpine HC meadows,where the entire melting period was extended by advancing the thaw-rise and delaying the freeze-fall onset time of the soil temperature. Snow cover resulted in a decreased amplitude and rate of variation in soil temperature, for both alpine HC meadows and alpine LC meadows, whereas the distinct influence of snow cover on the amplitude and rate of soil moisture variation occurred at different soil layers with different vegetation coverages. Snow cover increased the soil moisture of alpine grasslands during thawing periods. The results confirmed that the annual hydrothermal dynamics of active layers in permafrost were subject to the synergistic actions of both snow cover and vegetation coverage. 51-1668/P Permafrost; Snow cover; Vegetationcover; Active soil layer; Hydrothermal dynamics;Synergistic action SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://ir.lzu.edu.cn/handle/262010/120434 |
PQID | 1524328163 |
PQPubID | 54491 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1540239853 proquest_journals_1524328163 crossref_primary_10_1007_s11629_013_2893_0 crossref_citationtrail_10_1007_s11629_013_2893_0 springer_journals_10_1007_s11629_013_2893_0 chongqing_primary_661920440 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg – name: Dordrecht |
PublicationTitle | Journal of mountain science |
PublicationTitleAbbrev | J. Mt. Sci |
PublicationTitleAlternate | Journal of Mountain Science |
PublicationYear | 2014 |
Publisher | Science Press Springer Nature B.V |
Publisher_xml | – name: Science Press – name: Springer Nature B.V |
References | CohenJSnow cover and climateWeather19944915015610.1002/j.1477-8696.1994.tb05997.x ShurYLJorgensonMTPatterns of permafrost formation and degradation in relation to climate and ecosystemsPermafrost Periglac Process200718171910.1002/ppp.582 ZhangTJOsterkampTEStamnesKEffects of climate on the active layer and permafrost on the North Slope of Alaska, U.S.A.Permafrost Periglacial Processes19978456710.1002/(SICI)1099-1530(199701)8:1<45::AID-PPP240>3.0.CO;2-K ZhenZJLiuYJZhangBCImproved remote sense monitoring on snow cover of China in winterJournal of Applied Meteorological20047584 LiSXNanZTZhaoLImpact of soil freezing and thawing process on thermal exchange between atmosphere and ground surfaceJournal of Glaciology and Geocryology2002245506511 GroismanPYKarlTRKnightRWObserved impact of snow cover on the heat balance and the rise of continental spring temperatureScience199426319820010.1126/science.263.5144.198 SokratovSABarryRGIntraseasonal variation in the thermoinsulation effect of snow cover on soil temperatures and energy balanceJournal of Geophysical Research2002107D10409310.1029/2001JD000489 SmithMWMicroclimatic influence on ground temperatures and permafrost distribution, Mackenzie Delta, Northwest TerritoriesCanadian Journal of Earth Sciences1975121421143810.1139/e75-129 WangCHWangZLCuiYSnow cover of China during the last 40 years: Spatial distribution and inter annual variationJournal of Glaciology and Geocryology2009312301310 ZhangYMunkhtsetsegEOhataTAn observational study of ecohydrology of a sparse grassland at the edge of the Eurasian cryosphere in MongoliaJournal of Geophysical Research: Atmospheres (1984-2012)2005110110^(D14)10.1029/2005JC002975 WipfSRixenCA review of snow manipulation experiments in Arctic and alpine tundra ecosystemsPolar Research2010299510910.1111/j.1751-8369.2010.00153.x MenardEAllardMMichaudYLewkowiczAGAllardMMonitoring of ground surface temperatures in various biophysical microenvironments near Umiujaq, eastern Hudson Bay, CanadaProceedings of the 7th International Conference on Permafrost, June 23–27, 1998, Yellowknife, Canada, Nordicana, vol. 571998Quebec, CanadaUniv. Laval723729 ZhangTJBarryRGGilichinskyDAn amplified signal of climatic change in soil temperatures during the last century at Irkutsk, RussiaClimate Change200149417610.1023/A:1010790203146 LiYSStudy of the Hydrological Cycle Observing the Impact of Experimental of Alpine Meadows Coverage Changes of Permafrost Zone of the Qinghai-Tibet Plateau2007Beijing, ChinaChinese Academy of Sciences GarcíaHTarrasónDMayolMPatterns of variability in soil properties and vegetation cover following abandonment of olive groves in Catalonia (NE Spain)Acta Oecol20073131632410.1016/j.actao.2007.01.001 LiuWZhouHKZhouLBiomass distribution pattern of degraded grassland in alpine meadowGrassland of China2005272915 WalkerMDWalkerDAWelkerJMLong-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundraHydrological Processes1999132315233010.1002/(SICI)1099-1085(199910)13:14/15<2315::AID-HYP888>3.0.CO;2-A ZhangYWangGXWangYBChanges in alpine wetland ecosystems of the Qinghai-Tibetan plateau from 1967 to 2004Environmental Monitoring and Assessment201118018919910.1007/s10661-010-1781-0 GustafssonDStahliMJanssonPEThe surface energy balance of a snow cover: comparing measurements to two different simulation modelsTheoretical and Applied Climatology200170819610.1007/s007040170007 WangGXLiSNHuHCWater regime shifts in the active soil layer of the Qinghai-Tibet Plateau permafrost region, under different levels of vegetationGeoderma200914928028910.1016/j.geoderma.2008.12.014 AMAP(2011) Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Oslo: Arctic Monitoring and Assessment Programme (AMAP). GutzlerDSRosenRDInternational variability of wintertime snow cover across the Northern HemisphereJournal of Climate199251441144710.1175/1520-0442(1992)005<1441:IVOWSC>2.0.CO;2 GaoRWeiZGDongWJAnalysis of the cause of the differentia in interannual variation between snow cover and seasonal frozen soil in the Tibetan PlateauJournal of Glaciology and Geocryology2004262153158 StrackJEPielkeRASrListonGEArctic tundra shrub invasion and soot deposition: consequences for spring snowmelt and near-surface air temperaturesJournal of Geophysical Research2007112G04S4410.1029/2006JG000297 PomeroyJWGrayDMBrownTThe cold regions hydrological process representation and model: a platform for basing model structure on physical evidenceHydrological Processes2007212650266710.1002/hyp.6787 HinzmanLDBettezNDBoltonWREvidence and implications of recent climate change in terrestrial regions of the ArcticClimatic Change20057225129810.1007/s10584-005-5352-2 ZhangTJInfluence of the seasonal snow cover on the ground thermal regime: An overviewReviews of Geophysics2005434RG400210.1029/2004RG000157 SahaSKRinkeADethloffKFuture winter extreme temperature and precipitation events in the ArcticGeophysical Research Letters200633L1581810.1029/2006GL026451 BrownRDerksenCWangLA multi-dataset analysis of variability and change in Arctic spring snow cover extent, 1967–2008Journal of Geophysical Research Atmospheres2010115D1611110.1029/2010JD013975 WipfSStoeckliVBebiPWinter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timingClimatic Change20099410512110.1007/s10584-009-9546-x HuHCWangGXWangYBResponse of soil heat-water processes to vegetation cover on the typical permafrost and seasonally frozen soil in the headwaters of the Yangtze and Yellow RiversChinese Science Bulletin200954224225010.1007/s11434-008-0548-2 GaoWDWeiWSZhangLXClimate changes and seasonal snow cover variability in the western Tianshan mountains, Xinjiang in 1967–2000Journal of Glaciology and Geocryology20052716873 National Soil Survey Office NSSOSoil of China1998Beijing, ChinaChina Agriculture Press RutterNEsseryRPomeroyJEvaluation of forest snow processes models (SnowMIP2)Journal of Geophysical Research-Atmospheres2009114D0611110.1029/2008JD011063 WangGXDingYJWangJLand ecological changes and evolutional patterns in the source regions of the Yangtze and Yellow River in recent 15 yearsActa Geographica Sinica-Chinese Edition2004592163173 ZhangTJStamnesKImpact of climatic factors on the active layer and permafrost at Barrow, AlaskaPermafrost Periglacial Processes1998922924610.1002/(SICI)1099-1530(199807/09)9:3<229::AID-PPP286>3.0.CO;2-T WangGXLiuGSLiCJThe variability of soil thermal and hydrological dynamics with vegetation cover in a permafrost regionAgricultural and Forest Meteorology20121624457 WalshJWJaspersonHRossBInfluences of snow cover and soil moisture on monthly air temperatureMonthly Weather Review198511375676910.1175/1520-0493(1985)113<0756:IOSCAS>2.0.CO;2 ZhangYSWangSBarrAGImpact of snow cover on soil temperature and its simulation in a boreal aspen forestCold Regions Science and Technology20085235537010.1016/j.coldregions.2007.07.001 CohenJEntekhabiDThe influence of snow cover on Northern Hemisphere climate variabilityAtmosphere-Ocean2001391355310.1080/07055900.2001.9649665 ZhaoLChengGDLiSXThawing and freezing processes of active layer in Wudaoliang Region of Tibetan PlateauChinese Science Bulletin2000452321812 18610.1007/BF02886326 LingFZhangTJImpact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan arcticPermafrost Periglac20031414115010.1002/ppp.445 LingFZhangTJModeled impacts of changes in tundra snow thickness on ground thermal regime and heat flow to the atmosphere in Northernmost AlaskaGlobal and Planetary Change20075723524610.1016/j.gloplacha.2006.11.009 YiSMcGuireADHardenJInteractions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbanceJournal of Geophysical Research: Biogeosciences (2005–2012)2009114G02015 BurnCRLewkowiczAGAllardMField investigations of permafrost and climate change in northwest North AmericaProceedings of the 7th International Conference on Permafrost, Yellowknife, Canada, Nordicana, vol. 57. Univ. Laval, Quebec, Que., Canada1998107120 Phil-EzePOVariability of soil properties related to vegetation cover in a tropical rainforest landscapeJournal of Geography and Regional Planning201037177184 GX Wang (2893_CR34) 2012; 162 Y Zhang (2893_CR43) 2011; 180 F Ling (2893_CR16) 2003; 14 PO Phil-Eze (2893_CR21) 2010; 3 HC Hu (2893_CR13) 2009; 54 W Liu (2893_CR18) 2005; 27 WD Gao (2893_CR7) 2005; 27 JE Strack (2893_CR28) 2007; 112 S Yi (2893_CR37) 2009; 114 2893_CR1 Y Zhang (2893_CR42) 2005; 110 JW Walsh (2893_CR30) 1985; 113 MD Walker (2893_CR29) 1999; 13 N Rutter (2893_CR23) 2009; 114 SX Li (2893_CR14) 2002; 24 SK Saha (2893_CR24) 2006; 33 JW Pomeroy (2893_CR22) 2007; 21 TJ Zhang (2893_CR39) 2001; 49 F Ling (2893_CR17) 2007; 57 SA Sokratov (2893_CR27) 2002; 107 GX Wang (2893_CR32) 2004; 59 S Wipf (2893_CR35) 2010; 29 E Menard (2893_CR19) 1998 L Zhao (2893_CR45) 2000; 45 GX Wang (2893_CR33) 2009; 149 TJ Zhang (2893_CR40) 1997; 8 ZJ Zhen (2893_CR46) 2004 R Gao (2893_CR6) 2004; 26 YS Li (2893_CR15) 2007 TJ Zhang (2893_CR41) 1998; 9 LD Hinzman (2893_CR12) 2005; 72 National Soil Survey Office NSSO (2893_CR20) 1998 YS Zhang (2893_CR44) 2008; 52 H García (2893_CR8) 2007; 31 YL Shur (2893_CR25) 2007; 18 R Brown (2893_CR2) 2010; 115 MW Smith (2893_CR26) 1975; 12 S Wipf (2893_CR36) 2009; 94 DS Gutzler (2893_CR11) 1992; 5 PY Groisman (2893_CR9) 1994; 263 CH Wang (2893_CR31) 2009; 31 CR Burn (2893_CR3) 1998 J Cohen (2893_CR4) 1994; 49 D Gustafsson (2893_CR10) 2001; 70 TJ Zhang (2893_CR38) 2005; 43 J Cohen (2893_CR5) 2001; 39 |
References_xml | – reference: WalshJWJaspersonHRossBInfluences of snow cover and soil moisture on monthly air temperatureMonthly Weather Review198511375676910.1175/1520-0493(1985)113<0756:IOSCAS>2.0.CO;2 – reference: ZhangYMunkhtsetsegEOhataTAn observational study of ecohydrology of a sparse grassland at the edge of the Eurasian cryosphere in MongoliaJournal of Geophysical Research: Atmospheres (1984-2012)2005110110^(D14)10.1029/2005JC002975 – reference: GutzlerDSRosenRDInternational variability of wintertime snow cover across the Northern HemisphereJournal of Climate199251441144710.1175/1520-0442(1992)005<1441:IVOWSC>2.0.CO;2 – reference: ShurYLJorgensonMTPatterns of permafrost formation and degradation in relation to climate and ecosystemsPermafrost Periglac Process200718171910.1002/ppp.582 – reference: Phil-EzePOVariability of soil properties related to vegetation cover in a tropical rainforest landscapeJournal of Geography and Regional Planning201037177184 – reference: HinzmanLDBettezNDBoltonWREvidence and implications of recent climate change in terrestrial regions of the ArcticClimatic Change20057225129810.1007/s10584-005-5352-2 – reference: WipfSRixenCA review of snow manipulation experiments in Arctic and alpine tundra ecosystemsPolar Research2010299510910.1111/j.1751-8369.2010.00153.x – reference: WipfSStoeckliVBebiPWinter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timingClimatic Change20099410512110.1007/s10584-009-9546-x – reference: GaoRWeiZGDongWJAnalysis of the cause of the differentia in interannual variation between snow cover and seasonal frozen soil in the Tibetan PlateauJournal of Glaciology and Geocryology2004262153158 – reference: AMAP(2011) Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Oslo: Arctic Monitoring and Assessment Programme (AMAP). – reference: BurnCRLewkowiczAGAllardMField investigations of permafrost and climate change in northwest North AmericaProceedings of the 7th International Conference on Permafrost, Yellowknife, Canada, Nordicana, vol. 57. Univ. Laval, Quebec, Que., Canada1998107120 – reference: National Soil Survey Office NSSOSoil of China1998Beijing, ChinaChina Agriculture Press – reference: SmithMWMicroclimatic influence on ground temperatures and permafrost distribution, Mackenzie Delta, Northwest TerritoriesCanadian Journal of Earth Sciences1975121421143810.1139/e75-129 – reference: CohenJEntekhabiDThe influence of snow cover on Northern Hemisphere climate variabilityAtmosphere-Ocean2001391355310.1080/07055900.2001.9649665 – reference: LiSXNanZTZhaoLImpact of soil freezing and thawing process on thermal exchange between atmosphere and ground surfaceJournal of Glaciology and Geocryology2002245506511 – reference: BrownRDerksenCWangLA multi-dataset analysis of variability and change in Arctic spring snow cover extent, 1967–2008Journal of Geophysical Research Atmospheres2010115D1611110.1029/2010JD013975 – reference: GaoWDWeiWSZhangLXClimate changes and seasonal snow cover variability in the western Tianshan mountains, Xinjiang in 1967–2000Journal of Glaciology and Geocryology20052716873 – reference: ZhangTJBarryRGGilichinskyDAn amplified signal of climatic change in soil temperatures during the last century at Irkutsk, RussiaClimate Change200149417610.1023/A:1010790203146 – reference: ZhangTJStamnesKImpact of climatic factors on the active layer and permafrost at Barrow, AlaskaPermafrost Periglacial Processes1998922924610.1002/(SICI)1099-1530(199807/09)9:3<229::AID-PPP286>3.0.CO;2-T – reference: GustafssonDStahliMJanssonPEThe surface energy balance of a snow cover: comparing measurements to two different simulation modelsTheoretical and Applied Climatology200170819610.1007/s007040170007 – reference: MenardEAllardMMichaudYLewkowiczAGAllardMMonitoring of ground surface temperatures in various biophysical microenvironments near Umiujaq, eastern Hudson Bay, CanadaProceedings of the 7th International Conference on Permafrost, June 23–27, 1998, Yellowknife, Canada, Nordicana, vol. 571998Quebec, CanadaUniv. Laval723729 – reference: ZhangTJOsterkampTEStamnesKEffects of climate on the active layer and permafrost on the North Slope of Alaska, U.S.A.Permafrost Periglacial Processes19978456710.1002/(SICI)1099-1530(199701)8:1<45::AID-PPP240>3.0.CO;2-K – reference: WangCHWangZLCuiYSnow cover of China during the last 40 years: Spatial distribution and inter annual variationJournal of Glaciology and Geocryology2009312301310 – reference: ZhangYSWangSBarrAGImpact of snow cover on soil temperature and its simulation in a boreal aspen forestCold Regions Science and Technology20085235537010.1016/j.coldregions.2007.07.001 – reference: ZhenZJLiuYJZhangBCImproved remote sense monitoring on snow cover of China in winterJournal of Applied Meteorological20047584 – reference: WangGXDingYJWangJLand ecological changes and evolutional patterns in the source regions of the Yangtze and Yellow River in recent 15 yearsActa Geographica Sinica-Chinese Edition2004592163173 – reference: LingFZhangTJImpact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan arcticPermafrost Periglac20031414115010.1002/ppp.445 – reference: PomeroyJWGrayDMBrownTThe cold regions hydrological process representation and model: a platform for basing model structure on physical evidenceHydrological Processes2007212650266710.1002/hyp.6787 – reference: RutterNEsseryRPomeroyJEvaluation of forest snow processes models (SnowMIP2)Journal of Geophysical Research-Atmospheres2009114D0611110.1029/2008JD011063 – reference: WangGXLiuGSLiCJThe variability of soil thermal and hydrological dynamics with vegetation cover in a permafrost regionAgricultural and Forest Meteorology20121624457 – reference: ZhangYWangGXWangYBChanges in alpine wetland ecosystems of the Qinghai-Tibetan plateau from 1967 to 2004Environmental Monitoring and Assessment201118018919910.1007/s10661-010-1781-0 – reference: HuHCWangGXWangYBResponse of soil heat-water processes to vegetation cover on the typical permafrost and seasonally frozen soil in the headwaters of the Yangtze and Yellow RiversChinese Science Bulletin200954224225010.1007/s11434-008-0548-2 – reference: StrackJEPielkeRASrListonGEArctic tundra shrub invasion and soot deposition: consequences for spring snowmelt and near-surface air temperaturesJournal of Geophysical Research2007112G04S4410.1029/2006JG000297 – reference: LiYSStudy of the Hydrological Cycle Observing the Impact of Experimental of Alpine Meadows Coverage Changes of Permafrost Zone of the Qinghai-Tibet Plateau2007Beijing, ChinaChinese Academy of Sciences – reference: SahaSKRinkeADethloffKFuture winter extreme temperature and precipitation events in the ArcticGeophysical Research Letters200633L1581810.1029/2006GL026451 – reference: YiSMcGuireADHardenJInteractions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbanceJournal of Geophysical Research: Biogeosciences (2005–2012)2009114G02015 – reference: CohenJSnow cover and climateWeather19944915015610.1002/j.1477-8696.1994.tb05997.x – reference: WalkerMDWalkerDAWelkerJMLong-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundraHydrological Processes1999132315233010.1002/(SICI)1099-1085(199910)13:14/15<2315::AID-HYP888>3.0.CO;2-A – reference: GarcíaHTarrasónDMayolMPatterns of variability in soil properties and vegetation cover following abandonment of olive groves in Catalonia (NE Spain)Acta Oecol20073131632410.1016/j.actao.2007.01.001 – reference: ZhaoLChengGDLiSXThawing and freezing processes of active layer in Wudaoliang Region of Tibetan PlateauChinese Science Bulletin2000452321812 18610.1007/BF02886326 – reference: SokratovSABarryRGIntraseasonal variation in the thermoinsulation effect of snow cover on soil temperatures and energy balanceJournal of Geophysical Research2002107D10409310.1029/2001JD000489 – reference: LiuWZhouHKZhouLBiomass distribution pattern of degraded grassland in alpine meadowGrassland of China2005272915 – reference: GroismanPYKarlTRKnightRWObserved impact of snow cover on the heat balance and the rise of continental spring temperatureScience199426319820010.1126/science.263.5144.198 – reference: WangGXLiSNHuHCWater regime shifts in the active soil layer of the Qinghai-Tibet Plateau permafrost region, under different levels of vegetationGeoderma200914928028910.1016/j.geoderma.2008.12.014 – reference: LingFZhangTJModeled impacts of changes in tundra snow thickness on ground thermal regime and heat flow to the atmosphere in Northernmost AlaskaGlobal and Planetary Change20075723524610.1016/j.gloplacha.2006.11.009 – reference: ZhangTJInfluence of the seasonal snow cover on the ground thermal regime: An overviewReviews of Geophysics2005434RG400210.1029/2004RG000157 – volume: 114 start-page: D06111 year: 2009 ident: 2893_CR23 publication-title: Journal of Geophysical Research-Atmospheres doi: 10.1029/2008JD011063 – volume: 54 start-page: 242 issue: 2 year: 2009 ident: 2893_CR13 publication-title: Chinese Science Bulletin doi: 10.1360/csb2009-54-2-242 – volume: 27 start-page: 68 issue: 1 year: 2005 ident: 2893_CR7 publication-title: Journal of Glaciology and Geocryology – volume: 115 start-page: D16111 year: 2010 ident: 2893_CR2 publication-title: Journal of Geophysical Research Atmospheres doi: 10.1029/2010JD013975 – volume: 263 start-page: 198 year: 1994 ident: 2893_CR9 publication-title: Science doi: 10.1126/science.263.5144.198 – volume: 180 start-page: 189 year: 2011 ident: 2893_CR43 publication-title: Environmental Monitoring and Assessment doi: 10.1007/s10661-010-1781-0 – volume: 52 start-page: 355 year: 2008 ident: 2893_CR44 publication-title: Cold Regions Science and Technology doi: 10.1016/j.coldregions.2007.07.001 – volume: 94 start-page: 105 year: 2009 ident: 2893_CR36 publication-title: Climatic Change doi: 10.1007/s10584-009-9546-x – volume: 26 start-page: 153 issue: 2 year: 2004 ident: 2893_CR6 publication-title: Journal of Glaciology and Geocryology – volume: 162 start-page: 44 year: 2012 ident: 2893_CR34 publication-title: Agricultural and Forest Meteorology – volume: 39 start-page: 35 issue: 1 year: 2001 ident: 2893_CR5 publication-title: Atmosphere-Ocean doi: 10.1080/07055900.2001.9649665 – volume: 57 start-page: 235 year: 2007 ident: 2893_CR17 publication-title: Global and Planetary Change doi: 10.1016/j.gloplacha.2006.11.009 – volume: 113 start-page: 756 year: 1985 ident: 2893_CR30 publication-title: Monthly Weather Review doi: 10.1175/1520-0493(1985)113<0756:IOSCAS>2.0.CO;2 – volume: 9 start-page: 229 year: 1998 ident: 2893_CR41 publication-title: Permafrost Periglacial Processes doi: 10.1002/(SICI)1099-1530(199807/09)9:3<229::AID-PPP286>3.0.CO;2-T – volume: 31 start-page: 316 year: 2007 ident: 2893_CR8 publication-title: Acta Oecol doi: 10.1016/j.actao.2007.01.001 – volume: 31 start-page: 301 issue: 2 year: 2009 ident: 2893_CR31 publication-title: Journal of Glaciology and Geocryology – volume: 14 start-page: 141 year: 2003 ident: 2893_CR16 publication-title: Permafrost Periglac doi: 10.1002/ppp.445 – volume: 149 start-page: 280 year: 2009 ident: 2893_CR33 publication-title: Geoderma doi: 10.1016/j.geoderma.2008.12.008 – volume: 49 start-page: 41 year: 2001 ident: 2893_CR39 publication-title: Climate Change doi: 10.1023/A:1010790203146 – volume-title: Soil of China year: 1998 ident: 2893_CR20 – volume: 33 start-page: L15818 year: 2006 ident: 2893_CR24 publication-title: Geophysical Research Letters doi: 10.1029/2006GL026451 – volume: 3 start-page: 177 issue: 7 year: 2010 ident: 2893_CR21 publication-title: Journal of Geography and Regional Planning – volume: 107 start-page: 4093 issue: D10 year: 2002 ident: 2893_CR27 publication-title: Journal of Geophysical Research doi: 10.1029/2001JD000489 – volume: 110 start-page: 110^(D14) year: 2005 ident: 2893_CR42 publication-title: Journal of Geophysical Research: Atmospheres (1984-2012) doi: 10.1029/2005JC002975 – start-page: 723 volume-title: Proceedings of the 7th International Conference on Permafrost, June 23–27, 1998, Yellowknife, Canada, Nordicana, vol. 57 year: 1998 ident: 2893_CR19 – volume: 27 start-page: 9 issue: 2 year: 2005 ident: 2893_CR18 publication-title: Grassland of China – volume: 18 start-page: 7 issue: 1 year: 2007 ident: 2893_CR25 publication-title: Permafrost Periglac Process doi: 10.1002/ppp.582 – volume: 29 start-page: 95 year: 2010 ident: 2893_CR35 publication-title: Polar Research doi: 10.1111/j.1751-8369.2010.00153.x – start-page: 107 volume-title: Proceedings of the 7th International Conference on Permafrost, Yellowknife, Canada, Nordicana, vol. 57. Univ. Laval, Quebec, Que., Canada year: 1998 ident: 2893_CR3 – volume: 12 start-page: 1421 year: 1975 ident: 2893_CR26 publication-title: Canadian Journal of Earth Sciences doi: 10.1139/e75-129 – volume: 49 start-page: 150 year: 1994 ident: 2893_CR4 publication-title: Weather doi: 10.1002/j.1477-8696.1994.tb05997.x – start-page: 75 volume-title: Journal of Applied Meteorological year: 2004 ident: 2893_CR46 – volume: 45 start-page: 2181 issue: 23 year: 2000 ident: 2893_CR45 publication-title: Chinese Science Bulletin doi: 10.1007/BF02886326 – volume: 24 start-page: 506 issue: 5 year: 2002 ident: 2893_CR14 publication-title: Journal of Glaciology and Geocryology – volume: 112 start-page: G04S44 year: 2007 ident: 2893_CR28 publication-title: Journal of Geophysical Research doi: 10.1029/2006JG000297 – volume: 8 start-page: 45 year: 1997 ident: 2893_CR40 publication-title: Permafrost Periglacial Processes doi: 10.1002/(SICI)1099-1530(199701)8:1<45::AID-PPP240>3.0.CO;2-K – volume: 70 start-page: 81 year: 2001 ident: 2893_CR10 publication-title: Theoretical and Applied Climatology doi: 10.1007/s007040170007 – ident: 2893_CR1 – volume: 43 start-page: RG4002 issue: 4 year: 2005 ident: 2893_CR38 publication-title: Reviews of Geophysics doi: 10.1029/2004RG000157 – volume: 114 start-page: G02015 year: 2009 ident: 2893_CR37 publication-title: Journal of Geophysical Research: Biogeosciences (2005–2012) – volume: 72 start-page: 251 year: 2005 ident: 2893_CR12 publication-title: Climatic Change doi: 10.1007/s10584-005-5352-2 – volume-title: Study of the Hydrological Cycle Observing the Impact of Experimental of Alpine Meadows Coverage Changes of Permafrost Zone of the Qinghai-Tibet Plateau year: 2007 ident: 2893_CR15 – volume: 21 start-page: 2650 year: 2007 ident: 2893_CR22 publication-title: Hydrological Processes doi: 10.1002/hyp.6787 – volume: 5 start-page: 1441 year: 1992 ident: 2893_CR11 publication-title: Journal of Climate doi: 10.1175/1520-0442(1992)005<1441:IVOWSC>2.0.CO;2 – volume: 13 start-page: 2315 year: 1999 ident: 2893_CR29 publication-title: Hydrological Processes doi: 10.1002/(SICI)1099-1085(199910)13:14/15<2315::AID-HYP888>3.0.CO;2-A – volume: 59 start-page: 163 issue: 2 year: 2004 ident: 2893_CR32 publication-title: Acta Geographica Sinica-Chinese Edition |
SSID | ssj0067981 ssib051371794 ssib006568172 ssib000862251 ssib036356720 ssib000969690 ssib041262273 |
Score | 2.0892758 |
Snippet | Seasonal snow is one of the most important influences on the development and distribution of permafrost and the hydrothermal regime in surface soil. Alpine... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 727 |
SubjectTerms | Alpine environments Earth and Environmental Science Earth Sciences Ecology Environment Environmental monitoring Fluid mechanics Geography Grasslands Meadows Permafrost Snow cover Snow depth Soil mechanics Soil moisture Soil surfaces Soil temperature Thawing Vegetation Vegetation cover 土壤水分变化 土壤温度 多年冻土地区 季节性 植被覆盖度 水分动态 积雪变化 高原多年冻土区 |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbt5tBeSp90m6So0FOLqGzJsnUKTUkIhYZSGsjNaGUpWUikTbxJSH59Zmx5vSk0Rz8kg2Y880nz-Aj5LLg1XgrHbMUlk8ZVDLsXMpcrr13OFe-SMX8dqoMj-fO4OE4Hbm1KqxxsYmeom2jxjPwb-Bkp8grgw87igiFrFEZXE4XGU7IBJriqJmRjd-_w958HgD1fj3thM5i1uJDC_ltj5ajAbm3lCKBklsP40cEXmSh7De5tPYYwui0dDGJKZGqIm3bFeZnKMRdJMNjUCMaxe8NpDCcX4JMeesER2v4Tje2c3P5L8iKhU_q9V6dX5IkLr8mzRJR-evuG3IFa0flAbEKjp3jIiGietiHe0BhoG-dnFGHlOdw0oaE3AGcvaXMbzPncthSr1uAyEbMs6bU7SSmP1GI-aQvzU0MXOIHHmhSK5BExvCVH-3t_fxywRN_ArMz0ksmSN7MKnKT0ZVko6wsnpPLcONFk3FRKl1k-awpthNK50wJ2y52N8YBBtLfiHZmEGNx7Qr10ylppActYCbqlZ1VhlSyNd1zbhk_J5mpp60XfpqNWuDdERu0p4cNi1zZ1PkcCjrN67NmMsqpBVjXKqoYhX1ZDhvkeeXlrkGCdLEBbj_o6JZ9Wj-HfxYCMCS5e4TsSa4sBMU3J10Hya1P874MfHv_gJnkOsE72aZlbZLK8vHLbAJ2Ws4_p_7gHpOoJ_w priority: 102 providerName: ProQuest |
Title | The Influence of Seasonal Snow on Soil Thermal and Water Dynamics under Different Vegetation Covers in a Permafrost Region |
URI | http://lib.cqvip.com/qk/87799X/201403/661920440.html https://link.springer.com/article/10.1007/s11629-013-2893-0 https://www.proquest.com/docview/1524328163 https://www.proquest.com/docview/1540239853 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS90wFA-ijO1FnNvYnR9ksKeNQNqkafN4letkQ5GxC-4p5KaJCpo6e1X0r_ec3ubeOdzAp9I2PYGcfPxOz8ePkE-COxuk8MxVXDJpfcWweiHzuQra51zxLhjz4FDtj-W34-K4z-NuU7R7ckl2O_Ui2S1TOcb2CAZGgmBgp68UYLpjHNc4H6btF70KnZWlypwpkankynxKBBZUOG3iyW_o7vHBtECbfzlIu3Nnb42s9oCRDmcafk2WfFwnL0Zdsem7dfKyZzE_vXtD7kHn9CyxjtAmUPwDiFCbtrG5pU2kbXN2ThHzXcBDG2t6C1jzitYzXvqWYkoZ3PasKVN640_6eETqMNizBfnU0ksUEDBhhCKzQxPfkvHe6OfuPuu5FZiTmZ4yWfJ6UsEJJkNZFsqFwgupArde1Bm3ldJllk_qQluhdO61AFO22wACAAQdnHhHlmMT_XtCg_TKOekAaDgJiteTqnBKljZ4rl3NB2RjPsjmclZDwyg03JDuekB4Gnbj-rLkyI5xbhYFlVFrBrRmUGsGPvk8_yTJ-0_jzaRL0y_P1gBokSKvAIsOyMf5a1hY6C2x0TfX2EZi4i_AmQH5kubAHyL-1eGHZ7XeIK8AgslZCOUmWZ5eXfstgDnTyTZZGX799X0E153R4dGP7W6aPwCjjfXH |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbocqCXqk91C21dqb20surYjpMcKtQHaCmwqiqQuLlZx4aVIFnI0tXyo_iNzOSxWSqVG8c8PJEy45lvPC9C3ktuU6-kYzbmiqnUxQy7FzIntE-c4JpXyZj7Qz04VD-PwqMVct3WwmBaZasTK0WdFRbPyD-DnVFSxAAfNifnDKdGYXS1HaFRi8Wum8_AZSu_7PwA_n4QYnvr4PuANVMFmFVBMmUq4tkoBt2tfBSF2vrQSaU9T53MAp7GOokCMcrCJJU6EQ4cfhlXou_BNCbeSqD7gKwqqbnokdVvW8Nfv285CGI5zobNZ5biUBr7fXWVqhK7w0UdYFOBgPUdoAgDGdU7prYtGDKpXEhYxLQMdBunrYoBAy0w90kycKIk49gt4qTIj8_BBt62uh2U_if6WxnV7cfkUYOG6ddafJ-QFZc_JWvNYPaT-TNyBWJMx-0gFVp4ioea6D3QMi9mtMhpWYxPKcLYM7iZ5hmdAXy-oNk8T8_GtqRYJQeXzSCYKf3rjpsUS2oxf7UE-jSlEyTgsQaG4rCKIn9ODu-FsS9ILy9y95JQr5y2VlnATlaBLCejOLRaRal3PLEZ75P1xa81k7otiNHoi-IE7z7h7c82tum0jgM_Tk3XIxp5ZYBXBnllYMnHxZKW3h0vb7QcNI3GKU23P_rk3eIx6AoMAKW5Ky7xHYW1zIDQ-uRTy_klEv_74Ku7P_iWrA0O9vfM3s5wd508BEip6pTQDdKbXly61wDbpqM3zV6h5M99b88bVp5EgA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEY8LggJiaQEjwQVk1bEdJzlwqGhXLYWKAyv1ZryO3a7UOkuTslr-FH-RmWyyCwiQOPSYxJ44nrH9TeZFyAvJnQ1KeuZyrpiyPmeYvZB5oUPhBde8dcb8cKT3R-rdcXq8Rr73sTCtt3tvklzENGCWpthsT8uwvQp8S7RAPx_JQGGQjHdelYd-PgOdrX5zsAsMfinEcO_T233WlRVgTiVFw1TGy3EOm7cKWZZqF1IvlQ7celkm3Oa6yBIxLtPCSl0IDxq_zFvZD3A2FsFJoHuNXFcYfAwLaCR2-q0fLRqthqczwbRMdG9G_dOQMZnDaRVPvsCn_noorpDub8bZ9swb3iV3OrBKdxbSdY-s-bhBbuy1ia7nG-RWV0H9dH6ffAN5o5O-4gmtAsW_jwjzaR2rGa0iravJGUW8eQ43bSzpDHDuBS3n0Z5PXE0xnA0uu4otDf3qTzpfSOrQ0bQG-tTSKRIIGKxCsapEFR-Q0ZUw4CFZj1X0jwgNymvnlAOQ4xQIXTHOU6dVZoPnhSv5gGwuJ9lMF_k7jEalEUttDwjvp924LiU6VuY4M6tkzsg1A1wzyDUDXV4tu_T0_tF4q-el6baG2gBgUlLkgIMH5PnyMSxqtNTY6KtLbKMw6Big1IC87mXgJxJ_e-Hj_2r9jNz8uDs07w-ODjfJbUCCauHJuUXWm4tL_wTQVjN-2ko4JZ-vekn9AMPzMYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+seasonal+snow+on+soil+thermal+and+water+dynamics+under+different+vegetation+covers+in+a+permafrost+region&rft.jtitle=Journal+of+mountain+science&rft.au=Chang%2C+Juan&rft.au=Wang%2C+Gen-xu&rft.au=Gao%2C+Yong-heng&rft.au=Wang%2C+Yi-bo&rft.date=2014-05-01&rft.pub=Science+Press&rft.issn=1672-6316&rft.eissn=1993-0321&rft.volume=11&rft.issue=3&rft.spage=727&rft.epage=745&rft_id=info:doi/10.1007%2Fs11629-013-2893-0&rft.externalDocID=10_1007_s11629_013_2893_0 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F87799X%2F87799X.jpg |