Improved optical transmittance of Al-doped ZnO thin films by use of ZnO nanorods

► The optical transmittance of Al-doped ZnO thin films can be improved by the use of ZnO nanorods prepared by the aqueous chemical growth method (ACG). ► In this study, the resultant refractive index of ZnO nanorods layer with varied rods diameter is evaluated by using the effective medium approxima...

Full description

Saved in:
Bibliographic Details
Published inMaterials chemistry and physics Vol. 130; no. 1; pp. 619 - 623
Main Authors Lu, Wei-Lun, Hung, Pin-Kun, Hung, Chen-I, Yeh, Chih-Hung, Houng, Mau-Phon
Format Journal Article
LanguageEnglish
Published Elsevier B.V 17.10.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► The optical transmittance of Al-doped ZnO thin films can be improved by the use of ZnO nanorods prepared by the aqueous chemical growth method (ACG). ► In this study, the resultant refractive index of ZnO nanorods layer with varied rods diameter is evaluated by using the effective medium approximation. ► This approach may be used to improve the optical transmittance of the transparent conducting electrodes used in optoelectronics, such as amorphous Si thin film solar cells, for increasing the short-circuit current density at the specific wavelength region. We have investigated the optical transmittance of Al-doped ZnO films improved by the use of ZnO nanorods prepared by the aqueous chemical growth method. In this study, ZnO nanorods were synthesized on the Al doped ZnO transparent conducting oxide layer. The length and diameter of the rods were controlled by the OH − concentration of hexa-methenamine in the solution. The transmittance of Al-doped ZnO films with post-grown ZnO nanorods is clearly improved at wavelengths between 400 and 850 nm by modulating the air volume ratio of the rod densities and by the variation in the diameter of the rods. In this study, the resultant refractive index of ZnO nanorods with varied diameters is also evaluated by using the effective medium approximation. In our further study, this approach may be used to improve the optical transmittance of the transparent conducting electrodes used in optoelectronics, such as amorphous Si thin film solar cells, for increasing the short-circuit current density at the specific wavelength region.
AbstractList We have investigated the optical transmittance of Al-doped ZnO films improved by the use of ZnO nanorods prepared by the aqueous chemical growth method. In this study, ZnO nanorods were synthesized on the Al doped ZnO transparent conducting oxide layer. The length and diameter of the rods were controlled by the OH- concentration of hexa-methenamine in the solution. The transmittance of Al-doped ZnO films with post-grown ZnO nanorods is clearly improved at wavelengths between 400 and 850nm by modulating the air volume ratio of the rod densities and by the variation in the diameter of the rods. In this study, the resultant refractive index of ZnO nanorods with varied diameters is also evaluated by using the effective medium approximation. In our further study, this approach may be used to improve the optical transmittance of the transparent conducting electrodes used in optoelectronics, such as amorphous Si thin film solar cells, for increasing the short-circuit current density at the specific wavelength region.
► The optical transmittance of Al-doped ZnO thin films can be improved by the use of ZnO nanorods prepared by the aqueous chemical growth method (ACG). ► In this study, the resultant refractive index of ZnO nanorods layer with varied rods diameter is evaluated by using the effective medium approximation. ► This approach may be used to improve the optical transmittance of the transparent conducting electrodes used in optoelectronics, such as amorphous Si thin film solar cells, for increasing the short-circuit current density at the specific wavelength region. We have investigated the optical transmittance of Al-doped ZnO films improved by the use of ZnO nanorods prepared by the aqueous chemical growth method. In this study, ZnO nanorods were synthesized on the Al doped ZnO transparent conducting oxide layer. The length and diameter of the rods were controlled by the OH − concentration of hexa-methenamine in the solution. The transmittance of Al-doped ZnO films with post-grown ZnO nanorods is clearly improved at wavelengths between 400 and 850 nm by modulating the air volume ratio of the rod densities and by the variation in the diameter of the rods. In this study, the resultant refractive index of ZnO nanorods with varied diameters is also evaluated by using the effective medium approximation. In our further study, this approach may be used to improve the optical transmittance of the transparent conducting electrodes used in optoelectronics, such as amorphous Si thin film solar cells, for increasing the short-circuit current density at the specific wavelength region.
Author Hung, Chen-I
Houng, Mau-Phon
Lu, Wei-Lun
Hung, Pin-Kun
Yeh, Chih-Hung
Author_xml – sequence: 1
  givenname: Wei-Lun
  surname: Lu
  fullname: Lu, Wei-Lun
  organization: Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, No. 1, University Road, Tainan City 701, Taiwan, ROC
– sequence: 2
  givenname: Pin-Kun
  surname: Hung
  fullname: Hung, Pin-Kun
  organization: Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, No. 1, University Road, Tainan City 701, Taiwan, ROC
– sequence: 3
  givenname: Chen-I
  surname: Hung
  fullname: Hung, Chen-I
  organization: Department of Mechanical Engineering, National Cheng-Kung University, Tainan City 701, Taiwan, ROC
– sequence: 4
  givenname: Chih-Hung
  surname: Yeh
  fullname: Yeh, Chih-Hung
  organization: R&D Center, NexPower Technology Corporation, Taichung 421, Taiwan, ROC
– sequence: 5
  givenname: Mau-Phon
  surname: Houng
  fullname: Houng, Mau-Phon
  email: mphoung@eembox.ncku.edu.tw
  organization: Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, No. 1, University Road, Tainan City 701, Taiwan, ROC
BookMark eNqNkD1PwzAQhi1UJNrCfwgTU8LZTuJkrCo-KlUqAywslutcVFeJHWy3Uv89KWVgZDrp7nlPd8-MTKyzSMg9hYwCLR_3Wa-i3mE_7E4hY0BpBiIDnl-RKa1EnXJO2YRMgRV5CkWV35BZCHsAKijlU_K26gfvjtgkbohGqy6JXtnQmxiV1Zi4Nll0aeOGkfi0myTujE1a0_Uh2Z6SQ_ghzgOrrPOuCbfkulVdwLvfOicfz0_vy9d0vXlZLRfrVOe0jmleUlBMaAYFgK4rzreiEUILIaDOKY6NSiAKXpSaCYYMOFdFy7DaioJVDZ-Th8ve8fyvA4YoexM0dp2y6A5B1qzkAJDnI1lfSO1dCB5bOXjTK3-SFORZotzLPxLlWaIEIUeJY3Z5yeL4ytGgl0EbHMU0xqOOsnHmH1u-AebpgXM
CitedBy_id crossref_primary_10_1186_1556_276X_8_107
crossref_primary_10_1016_j_optmat_2022_112652
crossref_primary_10_1016_j_ceramint_2012_08_075
crossref_primary_10_1007_s10854_017_7535_9
crossref_primary_10_1016_j_ceramint_2020_11_150
crossref_primary_10_1016_j_tsf_2012_10_079
crossref_primary_10_1016_j_optmat_2013_06_048
crossref_primary_10_1039_C5TC04001A
crossref_primary_10_1143_JJAP_51_06FE04
crossref_primary_10_7567_JJAP_51_06FE04
crossref_primary_10_1007_s10854_020_03745_5
crossref_primary_10_1016_j_jmst_2017_07_006
crossref_primary_10_5012_bkcs_2013_34_11_3335
crossref_primary_10_1021_acsanm_0c00888
Cites_doi 10.1016/j.physb.2008.06.020
10.1103/PhysRevB.70.195207
10.1063/1.1811797
10.1063/1.2159097
10.1021/jp0655017
10.1021/j100834a511
10.1016/j.mseb.2006.01.003
10.1088/0268-1242/24/10/105017
10.1088/0957-4484/18/11/115603
10.1063/1.2214137
10.1063/1.2390548
10.1143/JJAP.49.04DG12
10.1021/jp010026s
10.1002/adma.200390108
10.1063/1.1632017
10.1088/0957-4484/16/2/021
10.1021/jp0538767
10.1002/adma.200290015
10.1063/1.2113418
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright_xml – notice: 2011 Elsevier B.V.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.matchemphys.2011.07.034
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3312
EndPage 623
ExternalDocumentID 10_1016_j_matchemphys_2011_07_034
S0254058411006286
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M24
M37
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c419t-4610a27c20500c9833b7d77c7770941e83387ee7356c272e2033a5f2e8b7528d3
IEDL.DBID AIKHN
ISSN 0254-0584
IngestDate Fri Oct 25 21:08:37 EDT 2024
Thu Sep 26 17:58:36 EDT 2024
Fri Feb 23 02:26:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Thin films
Nucleation
Optical properties
Sputtering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-4610a27c20500c9833b7d77c7770941e83387ee7356c272e2033a5f2e8b7528d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 926300044
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_926300044
crossref_primary_10_1016_j_matchemphys_2011_07_034
elsevier_sciencedirect_doi_10_1016_j_matchemphys_2011_07_034
PublicationCentury 2000
PublicationDate 2011-10-17
PublicationDateYYYYMMDD 2011-10-17
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-17
  day: 17
PublicationDecade 2010
PublicationTitle Materials chemistry and physics
PublicationYear 2011
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tak, Yong (bib0075) 2005; 109
Bekeny (bib0020) 2006; 100
Vayssieres, Keis (bib0040) 2001; 105
Teke, Özgür, Dogan, Gu, Morkoc, Nemeth, Nause, Everitt (bib0015) 2004; 70
Hirano, Tekeuchi, Sshimada, Masuya, Ibe, Tsunakawa, Kuwabara (bib0100) 2005; 98
Wu, Yang (bib0005) 2001; 123
Park, Yi, Kim, Pennycook (bib0030) 2002; 14
Lee, Uang, Chen, Kuo, Wang, Wang, Wang (bib0035) 2010; 49
Liu, Jin, Bu, Zhao, Yu (bib0065) 2006; 129
Laudise, Ballman (bib0060) 1960; 64
Gu, Kuskovsky, Yin, O’Brien, Neumark (bib0025) 2004; 85
Hsu, Cheng, Chang, Yang, Chang, Hsieh (bib0085) 2005; 16
Polsongkram, Chamninok, Pukird, Chow, Lupan, Chai, Khallaf, Park, Schulte (bib0070) 2008; 403
Vayssieres (bib0045) 2003; 15
Song, Lim (bib0055) 2007; 111
Ding, Kong, Wang (bib0080) 2004; 95
Chao, Lin, Chen, Changjean, Lin (bib0090) 2009; 24
Kim, Gessmann, Schubert, Xi, Luo, Cho, Sone, Park (bib0095) 2006; 88
Hsu, Tallant, Simpson, Missert, Copeland (bib0010) 2006; 88
Ahsanulhaq, Umar, Hahn (bib0050) 2007; 18
Hsu (10.1016/j.matchemphys.2011.07.034_bib0010) 2006; 88
Vayssieres (10.1016/j.matchemphys.2011.07.034_bib0045) 2003; 15
Ahsanulhaq (10.1016/j.matchemphys.2011.07.034_bib0050) 2007; 18
Polsongkram (10.1016/j.matchemphys.2011.07.034_bib0070) 2008; 403
Hirano (10.1016/j.matchemphys.2011.07.034_bib0100) 2005; 98
Lee (10.1016/j.matchemphys.2011.07.034_bib0035) 2010; 49
Bekeny (10.1016/j.matchemphys.2011.07.034_bib0020) 2006; 100
Chao (10.1016/j.matchemphys.2011.07.034_bib0090) 2009; 24
Wu (10.1016/j.matchemphys.2011.07.034_bib0005) 2001; 123
Hsu (10.1016/j.matchemphys.2011.07.034_bib0085) 2005; 16
Liu (10.1016/j.matchemphys.2011.07.034_bib0065) 2006; 129
Tak (10.1016/j.matchemphys.2011.07.034_bib0075) 2005; 109
Ding (10.1016/j.matchemphys.2011.07.034_bib0080) 2004; 95
Gu (10.1016/j.matchemphys.2011.07.034_bib0025) 2004; 85
Laudise (10.1016/j.matchemphys.2011.07.034_bib0060) 1960; 64
Vayssieres (10.1016/j.matchemphys.2011.07.034_bib0040) 2001; 105
Kim (10.1016/j.matchemphys.2011.07.034_bib0095) 2006; 88
Park (10.1016/j.matchemphys.2011.07.034_bib0030) 2002; 14
Song (10.1016/j.matchemphys.2011.07.034_bib0055) 2007; 111
Teke (10.1016/j.matchemphys.2011.07.034_bib0015) 2004; 70
References_xml – volume: 100
  start-page: 104317
  year: 2006
  ident: bib0020
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Bekeny
– volume: 49
  start-page: 04DG12
  year: 2010
  ident: bib0035
  publication-title: Jpn. J. Appl. Phys.
  contributor:
    fullname: Wang
– volume: 15
  start-page: 464
  year: 2003
  ident: bib0045
  publication-title: Adv. Mater.
  contributor:
    fullname: Vayssieres
– volume: 85
  start-page: 3833
  year: 2004
  ident: bib0025
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Neumark
– volume: 111
  start-page: 596
  year: 2007
  ident: bib0055
  publication-title: J. Phys. Chem. C
  contributor:
    fullname: Lim
– volume: 88
  start-page: 013501
  year: 2006
  ident: bib0095
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Park
– volume: 98
  start-page: 094305
  year: 2005
  ident: bib0100
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Kuwabara
– volume: 70
  start-page: 195207
  year: 2004
  ident: bib0015
  publication-title: Phys. Rev. B
  contributor:
    fullname: Everitt
– volume: 123
  start-page: 3156
  year: 2001
  ident: bib0005
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Yang
– volume: 24
  start-page: 105017
  year: 2009
  ident: bib0090
  publication-title: Semicond. Sci. Technol.
  contributor:
    fullname: Lin
– volume: 105
  start-page: 3350
  year: 2001
  ident: bib0040
  publication-title: J. Phys. Chem. B
  contributor:
    fullname: Keis
– volume: 16
  start-page: 297
  year: 2005
  ident: bib0085
  publication-title: Nanotechnology
  contributor:
    fullname: Hsieh
– volume: 14
  start-page: 1841
  year: 2002
  ident: bib0030
  publication-title: Adv. Mater.
  contributor:
    fullname: Pennycook
– volume: 18
  start-page: 115603
  year: 2007
  ident: bib0050
  publication-title: Nanotechnology
  contributor:
    fullname: Hahn
– volume: 403
  start-page: 3713
  year: 2008
  ident: bib0070
  publication-title: Physica B
  contributor:
    fullname: Schulte
– volume: 109
  start-page: 19263
  year: 2005
  ident: bib0075
  publication-title: J. Phys. Chem. B
  contributor:
    fullname: Yong
– volume: 88
  start-page: 252103
  year: 2006
  ident: bib0010
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Copeland
– volume: 64
  start-page: 688
  year: 1960
  ident: bib0060
  publication-title: J. Phys. Chem.
  contributor:
    fullname: Ballman
– volume: 95
  start-page: 306
  year: 2004
  ident: bib0080
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Wang
– volume: 129
  start-page: 139
  year: 2006
  ident: bib0065
  publication-title: Mater. Sci. Eng. B
  contributor:
    fullname: Yu
– volume: 403
  start-page: 3713
  year: 2008
  ident: 10.1016/j.matchemphys.2011.07.034_bib0070
  publication-title: Physica B
  doi: 10.1016/j.physb.2008.06.020
  contributor:
    fullname: Polsongkram
– volume: 70
  start-page: 195207
  year: 2004
  ident: 10.1016/j.matchemphys.2011.07.034_bib0015
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.195207
  contributor:
    fullname: Teke
– volume: 85
  start-page: 3833
  year: 2004
  ident: 10.1016/j.matchemphys.2011.07.034_bib0025
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1811797
  contributor:
    fullname: Gu
– volume: 88
  start-page: 013501
  year: 2006
  ident: 10.1016/j.matchemphys.2011.07.034_bib0095
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2159097
  contributor:
    fullname: Kim
– volume: 111
  start-page: 596
  year: 2007
  ident: 10.1016/j.matchemphys.2011.07.034_bib0055
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0655017
  contributor:
    fullname: Song
– volume: 64
  start-page: 688
  year: 1960
  ident: 10.1016/j.matchemphys.2011.07.034_bib0060
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100834a511
  contributor:
    fullname: Laudise
– volume: 129
  start-page: 139
  year: 2006
  ident: 10.1016/j.matchemphys.2011.07.034_bib0065
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2006.01.003
  contributor:
    fullname: Liu
– volume: 24
  start-page: 105017
  year: 2009
  ident: 10.1016/j.matchemphys.2011.07.034_bib0090
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/24/10/105017
  contributor:
    fullname: Chao
– volume: 18
  start-page: 115603
  year: 2007
  ident: 10.1016/j.matchemphys.2011.07.034_bib0050
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/11/115603
  contributor:
    fullname: Ahsanulhaq
– volume: 88
  start-page: 252103
  year: 2006
  ident: 10.1016/j.matchemphys.2011.07.034_bib0010
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2214137
  contributor:
    fullname: Hsu
– volume: 100
  start-page: 104317
  year: 2006
  ident: 10.1016/j.matchemphys.2011.07.034_bib0020
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2390548
  contributor:
    fullname: Bekeny
– volume: 49
  start-page: 04DG12
  year: 2010
  ident: 10.1016/j.matchemphys.2011.07.034_bib0035
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.49.04DG12
  contributor:
    fullname: Lee
– volume: 105
  start-page: 3350
  year: 2001
  ident: 10.1016/j.matchemphys.2011.07.034_bib0040
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp010026s
  contributor:
    fullname: Vayssieres
– volume: 15
  start-page: 464
  year: 2003
  ident: 10.1016/j.matchemphys.2011.07.034_bib0045
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200390108
  contributor:
    fullname: Vayssieres
– volume: 95
  start-page: 306
  year: 2004
  ident: 10.1016/j.matchemphys.2011.07.034_bib0080
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1632017
  contributor:
    fullname: Ding
– volume: 16
  start-page: 297
  year: 2005
  ident: 10.1016/j.matchemphys.2011.07.034_bib0085
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/16/2/021
  contributor:
    fullname: Hsu
– volume: 123
  start-page: 3156
  year: 2001
  ident: 10.1016/j.matchemphys.2011.07.034_bib0005
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Wu
– volume: 109
  start-page: 19263
  year: 2005
  ident: 10.1016/j.matchemphys.2011.07.034_bib0075
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0538767
  contributor:
    fullname: Tak
– volume: 14
  start-page: 1841
  year: 2002
  ident: 10.1016/j.matchemphys.2011.07.034_bib0030
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200290015
  contributor:
    fullname: Park
– volume: 98
  start-page: 094305
  year: 2005
  ident: 10.1016/j.matchemphys.2011.07.034_bib0100
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2113418
  contributor:
    fullname: Hirano
SSID ssj0017113
Score 2.1305747
Snippet ► The optical transmittance of Al-doped ZnO thin films can be improved by the use of ZnO nanorods prepared by the aqueous chemical growth method (ACG). ► In...
We have investigated the optical transmittance of Al-doped ZnO films improved by the use of ZnO nanorods prepared by the aqueous chemical growth method. In...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 619
SubjectTerms Aluminum
Conduction
Nanorods
Nucleation
Opacity
Optical properties
Rods
Sputtering
Thin films
Wavelengths
Zinc oxide
Title Improved optical transmittance of Al-doped ZnO thin films by use of ZnO nanorods
URI https://dx.doi.org/10.1016/j.matchemphys.2011.07.034
https://search.proquest.com/docview/926300044
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ri9NAEB56Laj3IF5V7J2WPbjXtMnuppPAvZRiqYpV0ELxZclmN1zkmpRr-nAv_nZnm0TrgSD4upllwzfLN7OzszMAV9JElluDHmotPBlPpJdol2IVkb02xpCH7A6KH5eTxUq-X4frDszatzAurbLh_prTD2zdjIwbNMfbPB9_ce-4fbKfruiZe2B5Aj0yR5y2dm_67sNi-esyAYO6SzLJe27CI7j8neZFfiGhs3FxhKagJ458If9mph4Q9sEKzZ_B08Z9ZNP6D8-gY4s-PJ61Xdv6cHpUYPA5fK5jBtawcnsIWrPK2aZNXlVO26zM2PTWM-WWJL4Vn1h1kxcsy283O6bv2X53kHAfiqQoiWp3L2A1f_t1tvCaHgpeKoO48lw59YRjyv3Q99M4EkKjQUwRkQ52gaWBCK1FEU5SjtxyX4gkzLiNNIY8MuIldIuysK-AoRaW_AmMM8llmuqYp4mILOoQY_JT5AB4C5na1qUyVJtD9l0d4awczspHRTgP4LoFV_2hd0WU_i_TWasQRUC7y46ksOV-p2Luion5Up7_3woX8IQ3aX8BvoZudbe3b8gPqfQQTkY_gmGz234CXUvcSg
link.rule.ids 315,783,787,4510,24129,27937,27938,45598,45692
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6FNb2oXTdxrJ-TIO9OrElOWdDX0JoSdu0G6yFsBdhWQrzSOzQOA976d_ekz-2dDAY7FU-YfM7cXc63_0O4JM0keXWoIdaC0_GA-kl2pVYReSvjTEUIbuL4s3tYHwvr6bhdAtGbS-MK6tsbH9t0ytr3az0GzT7yyzrf3V93D75T0d65hosX8C2dHTjdKh7j7_qPAIM6hnJJO058Zfw8XeRF0WFhM3CZREaOk_s-UL-zUn9Ya4rH3RxAPtN8MiG9fe9gi2bH8LOqJ3Zdgh7G_SCr-FLnTGwhhXLKmXNSueZFllZOl2zYsaGc88US5L4ln9m5fcsZ7Nsvlgx_ZOtV5WEe5AneUGGdvUG7i_O70Zjr5mg4KUyiEvPkaknHFPuh76fxpEQGg1iioh0rQssLURoLYpwkHLklvtCJOGM20hjyCMj3kInL3L7DhhqYSmawHgmuUxTHfM0EZFFHWJMUYrsAm8hU8uaKEO1FWQ_1AbOyuGsfFSEcxfOWnDVM60rMuj_sp21ClEEtPvVkeS2WK9UzB2VmC_l-_97wwfYGd_dTNTk8vb6CHZ5UwAY4DF0yoe1PaGIpNSn1Yl7Almn3SM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+optical+transmittance+of+Al-doped+ZnO+thin+films+by+use+of+ZnO+nanorods&rft.jtitle=Materials+chemistry+and+physics&rft.au=Lu%2C+Wei-Lun&rft.au=Hung%2C+Pin-Kun&rft.au=Hung%2C+Chen-I&rft.au=Yeh%2C+Chih-Hung&rft.date=2011-10-17&rft.issn=0254-0584&rft.volume=130&rft.issue=1-2&rft.spage=619&rft.epage=623&rft_id=info:doi/10.1016%2Fj.matchemphys.2011.07.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matchemphys_2011_07_034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon