Improved optical transmittance of Al-doped ZnO thin films by use of ZnO nanorods
► The optical transmittance of Al-doped ZnO thin films can be improved by the use of ZnO nanorods prepared by the aqueous chemical growth method (ACG). ► In this study, the resultant refractive index of ZnO nanorods layer with varied rods diameter is evaluated by using the effective medium approxima...
Saved in:
Published in | Materials chemistry and physics Vol. 130; no. 1; pp. 619 - 623 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
17.10.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► The optical transmittance of Al-doped ZnO thin films can be improved by the use of ZnO nanorods prepared by the aqueous chemical growth method (ACG). ► In this study, the resultant refractive index of ZnO nanorods layer with varied rods diameter is evaluated by using the effective medium approximation. ► This approach may be used to improve the optical transmittance of the transparent conducting electrodes used in optoelectronics, such as amorphous Si thin film solar cells, for increasing the short-circuit current density at the specific wavelength region.
We have investigated the optical transmittance of Al-doped ZnO films improved by the use of ZnO nanorods prepared by the aqueous chemical growth method. In this study, ZnO nanorods were synthesized on the Al doped ZnO transparent conducting oxide layer. The length and diameter of the rods were controlled by the OH
− concentration of hexa-methenamine in the solution. The transmittance of Al-doped ZnO films with post-grown ZnO nanorods is clearly improved at wavelengths between 400 and 850
nm by modulating the air volume ratio of the rod densities and by the variation in the diameter of the rods. In this study, the resultant refractive index of ZnO nanorods with varied diameters is also evaluated by using the effective medium approximation. In our further study, this approach may be used to improve the optical transmittance of the transparent conducting electrodes used in optoelectronics, such as amorphous Si thin film solar cells, for increasing the short-circuit current density at the specific wavelength region. |
---|---|
AbstractList | We have investigated the optical transmittance of Al-doped ZnO films improved by the use of ZnO nanorods prepared by the aqueous chemical growth method. In this study, ZnO nanorods were synthesized on the Al doped ZnO transparent conducting oxide layer. The length and diameter of the rods were controlled by the OH- concentration of hexa-methenamine in the solution. The transmittance of Al-doped ZnO films with post-grown ZnO nanorods is clearly improved at wavelengths between 400 and 850nm by modulating the air volume ratio of the rod densities and by the variation in the diameter of the rods. In this study, the resultant refractive index of ZnO nanorods with varied diameters is also evaluated by using the effective medium approximation. In our further study, this approach may be used to improve the optical transmittance of the transparent conducting electrodes used in optoelectronics, such as amorphous Si thin film solar cells, for increasing the short-circuit current density at the specific wavelength region. ► The optical transmittance of Al-doped ZnO thin films can be improved by the use of ZnO nanorods prepared by the aqueous chemical growth method (ACG). ► In this study, the resultant refractive index of ZnO nanorods layer with varied rods diameter is evaluated by using the effective medium approximation. ► This approach may be used to improve the optical transmittance of the transparent conducting electrodes used in optoelectronics, such as amorphous Si thin film solar cells, for increasing the short-circuit current density at the specific wavelength region. We have investigated the optical transmittance of Al-doped ZnO films improved by the use of ZnO nanorods prepared by the aqueous chemical growth method. In this study, ZnO nanorods were synthesized on the Al doped ZnO transparent conducting oxide layer. The length and diameter of the rods were controlled by the OH − concentration of hexa-methenamine in the solution. The transmittance of Al-doped ZnO films with post-grown ZnO nanorods is clearly improved at wavelengths between 400 and 850 nm by modulating the air volume ratio of the rod densities and by the variation in the diameter of the rods. In this study, the resultant refractive index of ZnO nanorods with varied diameters is also evaluated by using the effective medium approximation. In our further study, this approach may be used to improve the optical transmittance of the transparent conducting electrodes used in optoelectronics, such as amorphous Si thin film solar cells, for increasing the short-circuit current density at the specific wavelength region. |
Author | Hung, Chen-I Houng, Mau-Phon Lu, Wei-Lun Hung, Pin-Kun Yeh, Chih-Hung |
Author_xml | – sequence: 1 givenname: Wei-Lun surname: Lu fullname: Lu, Wei-Lun organization: Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, No. 1, University Road, Tainan City 701, Taiwan, ROC – sequence: 2 givenname: Pin-Kun surname: Hung fullname: Hung, Pin-Kun organization: Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, No. 1, University Road, Tainan City 701, Taiwan, ROC – sequence: 3 givenname: Chen-I surname: Hung fullname: Hung, Chen-I organization: Department of Mechanical Engineering, National Cheng-Kung University, Tainan City 701, Taiwan, ROC – sequence: 4 givenname: Chih-Hung surname: Yeh fullname: Yeh, Chih-Hung organization: R&D Center, NexPower Technology Corporation, Taichung 421, Taiwan, ROC – sequence: 5 givenname: Mau-Phon surname: Houng fullname: Houng, Mau-Phon email: mphoung@eembox.ncku.edu.tw organization: Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, No. 1, University Road, Tainan City 701, Taiwan, ROC |
BookMark | eNqNkD1PwzAQhi1UJNrCfwgTU8LZTuJkrCo-KlUqAywslutcVFeJHWy3Uv89KWVgZDrp7nlPd8-MTKyzSMg9hYwCLR_3Wa-i3mE_7E4hY0BpBiIDnl-RKa1EnXJO2YRMgRV5CkWV35BZCHsAKijlU_K26gfvjtgkbohGqy6JXtnQmxiV1Zi4Nll0aeOGkfi0myTujE1a0_Uh2Z6SQ_ghzgOrrPOuCbfkulVdwLvfOicfz0_vy9d0vXlZLRfrVOe0jmleUlBMaAYFgK4rzreiEUILIaDOKY6NSiAKXpSaCYYMOFdFy7DaioJVDZ-Th8ve8fyvA4YoexM0dp2y6A5B1qzkAJDnI1lfSO1dCB5bOXjTK3-SFORZotzLPxLlWaIEIUeJY3Z5yeL4ytGgl0EbHMU0xqOOsnHmH1u-AebpgXM |
CitedBy_id | crossref_primary_10_1186_1556_276X_8_107 crossref_primary_10_1016_j_optmat_2022_112652 crossref_primary_10_1016_j_ceramint_2012_08_075 crossref_primary_10_1007_s10854_017_7535_9 crossref_primary_10_1016_j_ceramint_2020_11_150 crossref_primary_10_1016_j_tsf_2012_10_079 crossref_primary_10_1016_j_optmat_2013_06_048 crossref_primary_10_1039_C5TC04001A crossref_primary_10_1143_JJAP_51_06FE04 crossref_primary_10_7567_JJAP_51_06FE04 crossref_primary_10_1007_s10854_020_03745_5 crossref_primary_10_1016_j_jmst_2017_07_006 crossref_primary_10_5012_bkcs_2013_34_11_3335 crossref_primary_10_1021_acsanm_0c00888 |
Cites_doi | 10.1016/j.physb.2008.06.020 10.1103/PhysRevB.70.195207 10.1063/1.1811797 10.1063/1.2159097 10.1021/jp0655017 10.1021/j100834a511 10.1016/j.mseb.2006.01.003 10.1088/0268-1242/24/10/105017 10.1088/0957-4484/18/11/115603 10.1063/1.2214137 10.1063/1.2390548 10.1143/JJAP.49.04DG12 10.1021/jp010026s 10.1002/adma.200390108 10.1063/1.1632017 10.1088/0957-4484/16/2/021 10.1021/jp0538767 10.1002/adma.200290015 10.1063/1.2113418 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. |
Copyright_xml | – notice: 2011 Elsevier B.V. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.matchemphys.2011.07.034 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3312 |
EndPage | 623 |
ExternalDocumentID | 10_1016_j_matchemphys_2011_07_034 S0254058411006286 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M24 M37 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K WUQ XPP ZMT ~02 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c419t-4610a27c20500c9833b7d77c7770941e83387ee7356c272e2033a5f2e8b7528d3 |
IEDL.DBID | AIKHN |
ISSN | 0254-0584 |
IngestDate | Fri Oct 25 21:08:37 EDT 2024 Thu Sep 26 17:58:36 EDT 2024 Fri Feb 23 02:26:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Thin films Nucleation Optical properties Sputtering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-4610a27c20500c9833b7d77c7770941e83387ee7356c272e2033a5f2e8b7528d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 926300044 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_926300044 crossref_primary_10_1016_j_matchemphys_2011_07_034 elsevier_sciencedirect_doi_10_1016_j_matchemphys_2011_07_034 |
PublicationCentury | 2000 |
PublicationDate | 2011-10-17 |
PublicationDateYYYYMMDD | 2011-10-17 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-17 day: 17 |
PublicationDecade | 2010 |
PublicationTitle | Materials chemistry and physics |
PublicationYear | 2011 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tak, Yong (bib0075) 2005; 109 Bekeny (bib0020) 2006; 100 Vayssieres, Keis (bib0040) 2001; 105 Teke, Özgür, Dogan, Gu, Morkoc, Nemeth, Nause, Everitt (bib0015) 2004; 70 Hirano, Tekeuchi, Sshimada, Masuya, Ibe, Tsunakawa, Kuwabara (bib0100) 2005; 98 Wu, Yang (bib0005) 2001; 123 Park, Yi, Kim, Pennycook (bib0030) 2002; 14 Lee, Uang, Chen, Kuo, Wang, Wang, Wang (bib0035) 2010; 49 Liu, Jin, Bu, Zhao, Yu (bib0065) 2006; 129 Laudise, Ballman (bib0060) 1960; 64 Gu, Kuskovsky, Yin, O’Brien, Neumark (bib0025) 2004; 85 Hsu, Cheng, Chang, Yang, Chang, Hsieh (bib0085) 2005; 16 Polsongkram, Chamninok, Pukird, Chow, Lupan, Chai, Khallaf, Park, Schulte (bib0070) 2008; 403 Vayssieres (bib0045) 2003; 15 Song, Lim (bib0055) 2007; 111 Ding, Kong, Wang (bib0080) 2004; 95 Chao, Lin, Chen, Changjean, Lin (bib0090) 2009; 24 Kim, Gessmann, Schubert, Xi, Luo, Cho, Sone, Park (bib0095) 2006; 88 Hsu, Tallant, Simpson, Missert, Copeland (bib0010) 2006; 88 Ahsanulhaq, Umar, Hahn (bib0050) 2007; 18 Hsu (10.1016/j.matchemphys.2011.07.034_bib0010) 2006; 88 Vayssieres (10.1016/j.matchemphys.2011.07.034_bib0045) 2003; 15 Ahsanulhaq (10.1016/j.matchemphys.2011.07.034_bib0050) 2007; 18 Polsongkram (10.1016/j.matchemphys.2011.07.034_bib0070) 2008; 403 Hirano (10.1016/j.matchemphys.2011.07.034_bib0100) 2005; 98 Lee (10.1016/j.matchemphys.2011.07.034_bib0035) 2010; 49 Bekeny (10.1016/j.matchemphys.2011.07.034_bib0020) 2006; 100 Chao (10.1016/j.matchemphys.2011.07.034_bib0090) 2009; 24 Wu (10.1016/j.matchemphys.2011.07.034_bib0005) 2001; 123 Hsu (10.1016/j.matchemphys.2011.07.034_bib0085) 2005; 16 Liu (10.1016/j.matchemphys.2011.07.034_bib0065) 2006; 129 Tak (10.1016/j.matchemphys.2011.07.034_bib0075) 2005; 109 Ding (10.1016/j.matchemphys.2011.07.034_bib0080) 2004; 95 Gu (10.1016/j.matchemphys.2011.07.034_bib0025) 2004; 85 Laudise (10.1016/j.matchemphys.2011.07.034_bib0060) 1960; 64 Vayssieres (10.1016/j.matchemphys.2011.07.034_bib0040) 2001; 105 Kim (10.1016/j.matchemphys.2011.07.034_bib0095) 2006; 88 Park (10.1016/j.matchemphys.2011.07.034_bib0030) 2002; 14 Song (10.1016/j.matchemphys.2011.07.034_bib0055) 2007; 111 Teke (10.1016/j.matchemphys.2011.07.034_bib0015) 2004; 70 |
References_xml | – volume: 100 start-page: 104317 year: 2006 ident: bib0020 publication-title: J. Appl. Phys. contributor: fullname: Bekeny – volume: 49 start-page: 04DG12 year: 2010 ident: bib0035 publication-title: Jpn. J. Appl. Phys. contributor: fullname: Wang – volume: 15 start-page: 464 year: 2003 ident: bib0045 publication-title: Adv. Mater. contributor: fullname: Vayssieres – volume: 85 start-page: 3833 year: 2004 ident: bib0025 publication-title: Appl. Phys. Lett. contributor: fullname: Neumark – volume: 111 start-page: 596 year: 2007 ident: bib0055 publication-title: J. Phys. Chem. C contributor: fullname: Lim – volume: 88 start-page: 013501 year: 2006 ident: bib0095 publication-title: Appl. Phys. Lett. contributor: fullname: Park – volume: 98 start-page: 094305 year: 2005 ident: bib0100 publication-title: J. Appl. Phys. contributor: fullname: Kuwabara – volume: 70 start-page: 195207 year: 2004 ident: bib0015 publication-title: Phys. Rev. B contributor: fullname: Everitt – volume: 123 start-page: 3156 year: 2001 ident: bib0005 publication-title: J. Am. Chem. Soc. contributor: fullname: Yang – volume: 24 start-page: 105017 year: 2009 ident: bib0090 publication-title: Semicond. Sci. Technol. contributor: fullname: Lin – volume: 105 start-page: 3350 year: 2001 ident: bib0040 publication-title: J. Phys. Chem. B contributor: fullname: Keis – volume: 16 start-page: 297 year: 2005 ident: bib0085 publication-title: Nanotechnology contributor: fullname: Hsieh – volume: 14 start-page: 1841 year: 2002 ident: bib0030 publication-title: Adv. Mater. contributor: fullname: Pennycook – volume: 18 start-page: 115603 year: 2007 ident: bib0050 publication-title: Nanotechnology contributor: fullname: Hahn – volume: 403 start-page: 3713 year: 2008 ident: bib0070 publication-title: Physica B contributor: fullname: Schulte – volume: 109 start-page: 19263 year: 2005 ident: bib0075 publication-title: J. Phys. Chem. B contributor: fullname: Yong – volume: 88 start-page: 252103 year: 2006 ident: bib0010 publication-title: Appl. Phys. Lett. contributor: fullname: Copeland – volume: 64 start-page: 688 year: 1960 ident: bib0060 publication-title: J. Phys. Chem. contributor: fullname: Ballman – volume: 95 start-page: 306 year: 2004 ident: bib0080 publication-title: J. Appl. Phys. contributor: fullname: Wang – volume: 129 start-page: 139 year: 2006 ident: bib0065 publication-title: Mater. Sci. Eng. B contributor: fullname: Yu – volume: 403 start-page: 3713 year: 2008 ident: 10.1016/j.matchemphys.2011.07.034_bib0070 publication-title: Physica B doi: 10.1016/j.physb.2008.06.020 contributor: fullname: Polsongkram – volume: 70 start-page: 195207 year: 2004 ident: 10.1016/j.matchemphys.2011.07.034_bib0015 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.195207 contributor: fullname: Teke – volume: 85 start-page: 3833 year: 2004 ident: 10.1016/j.matchemphys.2011.07.034_bib0025 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1811797 contributor: fullname: Gu – volume: 88 start-page: 013501 year: 2006 ident: 10.1016/j.matchemphys.2011.07.034_bib0095 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2159097 contributor: fullname: Kim – volume: 111 start-page: 596 year: 2007 ident: 10.1016/j.matchemphys.2011.07.034_bib0055 publication-title: J. Phys. Chem. C doi: 10.1021/jp0655017 contributor: fullname: Song – volume: 64 start-page: 688 year: 1960 ident: 10.1016/j.matchemphys.2011.07.034_bib0060 publication-title: J. Phys. Chem. doi: 10.1021/j100834a511 contributor: fullname: Laudise – volume: 129 start-page: 139 year: 2006 ident: 10.1016/j.matchemphys.2011.07.034_bib0065 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2006.01.003 contributor: fullname: Liu – volume: 24 start-page: 105017 year: 2009 ident: 10.1016/j.matchemphys.2011.07.034_bib0090 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/24/10/105017 contributor: fullname: Chao – volume: 18 start-page: 115603 year: 2007 ident: 10.1016/j.matchemphys.2011.07.034_bib0050 publication-title: Nanotechnology doi: 10.1088/0957-4484/18/11/115603 contributor: fullname: Ahsanulhaq – volume: 88 start-page: 252103 year: 2006 ident: 10.1016/j.matchemphys.2011.07.034_bib0010 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2214137 contributor: fullname: Hsu – volume: 100 start-page: 104317 year: 2006 ident: 10.1016/j.matchemphys.2011.07.034_bib0020 publication-title: J. Appl. Phys. doi: 10.1063/1.2390548 contributor: fullname: Bekeny – volume: 49 start-page: 04DG12 year: 2010 ident: 10.1016/j.matchemphys.2011.07.034_bib0035 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.49.04DG12 contributor: fullname: Lee – volume: 105 start-page: 3350 year: 2001 ident: 10.1016/j.matchemphys.2011.07.034_bib0040 publication-title: J. Phys. Chem. B doi: 10.1021/jp010026s contributor: fullname: Vayssieres – volume: 15 start-page: 464 year: 2003 ident: 10.1016/j.matchemphys.2011.07.034_bib0045 publication-title: Adv. Mater. doi: 10.1002/adma.200390108 contributor: fullname: Vayssieres – volume: 95 start-page: 306 year: 2004 ident: 10.1016/j.matchemphys.2011.07.034_bib0080 publication-title: J. Appl. Phys. doi: 10.1063/1.1632017 contributor: fullname: Ding – volume: 16 start-page: 297 year: 2005 ident: 10.1016/j.matchemphys.2011.07.034_bib0085 publication-title: Nanotechnology doi: 10.1088/0957-4484/16/2/021 contributor: fullname: Hsu – volume: 123 start-page: 3156 year: 2001 ident: 10.1016/j.matchemphys.2011.07.034_bib0005 publication-title: J. Am. Chem. Soc. contributor: fullname: Wu – volume: 109 start-page: 19263 year: 2005 ident: 10.1016/j.matchemphys.2011.07.034_bib0075 publication-title: J. Phys. Chem. B doi: 10.1021/jp0538767 contributor: fullname: Tak – volume: 14 start-page: 1841 year: 2002 ident: 10.1016/j.matchemphys.2011.07.034_bib0030 publication-title: Adv. Mater. doi: 10.1002/adma.200290015 contributor: fullname: Park – volume: 98 start-page: 094305 year: 2005 ident: 10.1016/j.matchemphys.2011.07.034_bib0100 publication-title: J. Appl. Phys. doi: 10.1063/1.2113418 contributor: fullname: Hirano |
SSID | ssj0017113 |
Score | 2.1305747 |
Snippet | ► The optical transmittance of Al-doped ZnO thin films can be improved by the use of ZnO nanorods prepared by the aqueous chemical growth method (ACG). ► In... We have investigated the optical transmittance of Al-doped ZnO films improved by the use of ZnO nanorods prepared by the aqueous chemical growth method. In... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 619 |
SubjectTerms | Aluminum Conduction Nanorods Nucleation Opacity Optical properties Rods Sputtering Thin films Wavelengths Zinc oxide |
Title | Improved optical transmittance of Al-doped ZnO thin films by use of ZnO nanorods |
URI | https://dx.doi.org/10.1016/j.matchemphys.2011.07.034 https://search.proquest.com/docview/926300044 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ri9NAEB56Laj3IF5V7J2WPbjXtMnuppPAvZRiqYpV0ELxZclmN1zkmpRr-nAv_nZnm0TrgSD4upllwzfLN7OzszMAV9JElluDHmotPBlPpJdol2IVkb02xpCH7A6KH5eTxUq-X4frDszatzAurbLh_prTD2zdjIwbNMfbPB9_ce-4fbKfruiZe2B5Aj0yR5y2dm_67sNi-esyAYO6SzLJe27CI7j8neZFfiGhs3FxhKagJ458If9mph4Q9sEKzZ_B08Z9ZNP6D8-gY4s-PJ61Xdv6cHpUYPA5fK5jBtawcnsIWrPK2aZNXlVO26zM2PTWM-WWJL4Vn1h1kxcsy283O6bv2X53kHAfiqQoiWp3L2A1f_t1tvCaHgpeKoO48lw59YRjyv3Q99M4EkKjQUwRkQ52gaWBCK1FEU5SjtxyX4gkzLiNNIY8MuIldIuysK-AoRaW_AmMM8llmuqYp4mILOoQY_JT5AB4C5na1qUyVJtD9l0d4awczspHRTgP4LoFV_2hd0WU_i_TWasQRUC7y46ksOV-p2Luion5Up7_3woX8IQ3aX8BvoZudbe3b8gPqfQQTkY_gmGz234CXUvcSg |
link.rule.ids | 315,783,787,4510,24129,27937,27938,45598,45692 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6FNb2oXTdxrJ-TIO9OrElOWdDX0JoSdu0G6yFsBdhWQrzSOzQOA976d_ekz-2dDAY7FU-YfM7cXc63_0O4JM0keXWoIdaC0_GA-kl2pVYReSvjTEUIbuL4s3tYHwvr6bhdAtGbS-MK6tsbH9t0ytr3az0GzT7yyzrf3V93D75T0d65hosX8C2dHTjdKh7j7_qPAIM6hnJJO058Zfw8XeRF0WFhM3CZREaOk_s-UL-zUn9Ya4rH3RxAPtN8MiG9fe9gi2bH8LOqJ3Zdgh7G_SCr-FLnTGwhhXLKmXNSueZFllZOl2zYsaGc88US5L4ln9m5fcsZ7Nsvlgx_ZOtV5WEe5AneUGGdvUG7i_O70Zjr5mg4KUyiEvPkaknHFPuh76fxpEQGg1iioh0rQssLURoLYpwkHLklvtCJOGM20hjyCMj3kInL3L7DhhqYSmawHgmuUxTHfM0EZFFHWJMUYrsAm8hU8uaKEO1FWQ_1AbOyuGsfFSEcxfOWnDVM60rMuj_sp21ClEEtPvVkeS2WK9UzB2VmC_l-_97wwfYGd_dTNTk8vb6CHZ5UwAY4DF0yoe1PaGIpNSn1Yl7Almn3SM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+optical+transmittance+of+Al-doped+ZnO+thin+films+by+use+of+ZnO+nanorods&rft.jtitle=Materials+chemistry+and+physics&rft.au=Lu%2C+Wei-Lun&rft.au=Hung%2C+Pin-Kun&rft.au=Hung%2C+Chen-I&rft.au=Yeh%2C+Chih-Hung&rft.date=2011-10-17&rft.issn=0254-0584&rft.volume=130&rft.issue=1-2&rft.spage=619&rft.epage=623&rft_id=info:doi/10.1016%2Fj.matchemphys.2011.07.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matchemphys_2011_07_034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon |