Variable cross-sectional effect on bi-directional blades–tower–soil–structure dynamic interaction on offshore wind turbine subject to wind–wave loads
Background This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well as between the nacelle, blades, and the surrounding environment. This simulation accounts for both fore–aft and side-to-side movements....
Saved in:
Published in | Beni-Suef University Journal of Basic and Applied Sciences Vol. 12; no. 1; pp. 107 - 15 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2023
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well as between the nacelle, blades, and the surrounding environment. This simulation accounts for both fore–aft and side-to-side movements. To describe these interactions, the model leverages the Euler–Lagrange equations. It calculates wave loads utilizing the Morison equation, with wave data generated based on the JONSWAP spectrum. Furthermore, aerodynamic loads are determined using the blade element moment theory, and the wind spectrum is generated using the Von Karman turbulence model. The tower is represented as a variable cross-sectional beam, employing a two-noded Euler beam element with two degrees of freedom: transverse displacement and rotation, and utilizing Hermite polynomial shape functions.
Results
In a comparative analysis against experimental data, this modified model demonstrates significant enhancements in accurately reproducing the dynamic behavior of wind turbines with variable cross-sectional towers, outperforming models that approximate the tower with a constant cross section. Our findings reveal that the modified model achieves a remarkable improvement of 15% in replicating the tower's dynamic response when compared to the constant cross-sectional models. As a case study, a 5 MW monopile wind turbine with a flexible foundation, specifically the one provided by the National Renewable Energy Laboratory (NREL), is employed to simulate its dynamic response.
Conclusions
This research presents a robust numerical model for simulating wind turbine behavior in various environmental conditions. The incorporation of variable cross-sectional tower representation significantly improves the model's accuracy, making it a valuable tool for assessing wind turbine dynamics. The study's findings highlight the importance of considering tower flexibility in wind turbine simulations to enhance their real-world applicability. |
---|---|
AbstractList | BackgroundThis study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well as between the nacelle, blades, and the surrounding environment. This simulation accounts for both fore–aft and side-to-side movements. To describe these interactions, the model leverages the Euler–Lagrange equations. It calculates wave loads utilizing the Morison equation, with wave data generated based on the JONSWAP spectrum. Furthermore, aerodynamic loads are determined using the blade element moment theory, and the wind spectrum is generated using the Von Karman turbulence model. The tower is represented as a variable cross-sectional beam, employing a two-noded Euler beam element with two degrees of freedom: transverse displacement and rotation, and utilizing Hermite polynomial shape functions.ResultsIn a comparative analysis against experimental data, this modified model demonstrates significant enhancements in accurately reproducing the dynamic behavior of wind turbines with variable cross-sectional towers, outperforming models that approximate the tower with a constant cross section. Our findings reveal that the modified model achieves a remarkable improvement of 15% in replicating the tower's dynamic response when compared to the constant cross-sectional models. As a case study, a 5 MW monopile wind turbine with a flexible foundation, specifically the one provided by the National Renewable Energy Laboratory (NREL), is employed to simulate its dynamic response.ConclusionsThis research presents a robust numerical model for simulating wind turbine behavior in various environmental conditions. The incorporation of variable cross-sectional tower representation significantly improves the model's accuracy, making it a valuable tool for assessing wind turbine dynamics. The study's findings highlight the importance of considering tower flexibility in wind turbine simulations to enhance their real-world applicability. Abstract Background This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well as between the nacelle, blades, and the surrounding environment. This simulation accounts for both fore–aft and side-to-side movements. To describe these interactions, the model leverages the Euler–Lagrange equations. It calculates wave loads utilizing the Morison equation, with wave data generated based on the JONSWAP spectrum. Furthermore, aerodynamic loads are determined using the blade element moment theory, and the wind spectrum is generated using the Von Karman turbulence model. The tower is represented as a variable cross-sectional beam, employing a two-noded Euler beam element with two degrees of freedom: transverse displacement and rotation, and utilizing Hermite polynomial shape functions. Results In a comparative analysis against experimental data, this modified model demonstrates significant enhancements in accurately reproducing the dynamic behavior of wind turbines with variable cross-sectional towers, outperforming models that approximate the tower with a constant cross section. Our findings reveal that the modified model achieves a remarkable improvement of 15% in replicating the tower's dynamic response when compared to the constant cross-sectional models. As a case study, a 5 MW monopile wind turbine with a flexible foundation, specifically the one provided by the National Renewable Energy Laboratory (NREL), is employed to simulate its dynamic response. Conclusions This research presents a robust numerical model for simulating wind turbine behavior in various environmental conditions. The incorporation of variable cross-sectional tower representation significantly improves the model's accuracy, making it a valuable tool for assessing wind turbine dynamics. The study's findings highlight the importance of considering tower flexibility in wind turbine simulations to enhance their real-world applicability. Background This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well as between the nacelle, blades, and the surrounding environment. This simulation accounts for both fore-aft and side-to-side movements. To describe these interactions, the model leverages the Euler-Lagrange equations. It calculates wave loads utilizing the Morison equation, with wave data generated based on the JONSWAP spectrum. Furthermore, aerodynamic loads are determined using the blade element moment theory, and the wind spectrum is generated using the Von Karman turbulence model. The tower is represented as a variable cross-sectional beam, employing a two-noded Euler beam element with two degrees of freedom: transverse displacement and rotation, and utilizing Hermite polynomial shape functions. Results In a comparative analysis against experimental data, this modified model demonstrates significant enhancements in accurately reproducing the dynamic behavior of wind turbines with variable cross-sectional towers, outperforming models that approximate the tower with a constant cross section. Our findings reveal that the modified model achieves a remarkable improvement of 15% in replicating the tower's dynamic response when compared to the constant cross-sectional models. As a case study, a 5 MW monopile wind turbine with a flexible foundation, specifically the one provided by the National Renewable Energy Laboratory (NREL), is employed to simulate its dynamic response. Conclusions This research presents a robust numerical model for simulating wind turbine behavior in various environmental conditions. The incorporation of variable cross-sectional tower representation significantly improves the model's accuracy, making it a valuable tool for assessing wind turbine dynamics. The study's findings highlight the importance of considering tower flexibility in wind turbine simulations to enhance their real-world applicability. Background This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well as between the nacelle, blades, and the surrounding environment. This simulation accounts for both fore–aft and side-to-side movements. To describe these interactions, the model leverages the Euler–Lagrange equations. It calculates wave loads utilizing the Morison equation, with wave data generated based on the JONSWAP spectrum. Furthermore, aerodynamic loads are determined using the blade element moment theory, and the wind spectrum is generated using the Von Karman turbulence model. The tower is represented as a variable cross-sectional beam, employing a two-noded Euler beam element with two degrees of freedom: transverse displacement and rotation, and utilizing Hermite polynomial shape functions. Results In a comparative analysis against experimental data, this modified model demonstrates significant enhancements in accurately reproducing the dynamic behavior of wind turbines with variable cross-sectional towers, outperforming models that approximate the tower with a constant cross section. Our findings reveal that the modified model achieves a remarkable improvement of 15% in replicating the tower's dynamic response when compared to the constant cross-sectional models. As a case study, a 5 MW monopile wind turbine with a flexible foundation, specifically the one provided by the National Renewable Energy Laboratory (NREL), is employed to simulate its dynamic response. Conclusions This research presents a robust numerical model for simulating wind turbine behavior in various environmental conditions. The incorporation of variable cross-sectional tower representation significantly improves the model's accuracy, making it a valuable tool for assessing wind turbine dynamics. The study's findings highlight the importance of considering tower flexibility in wind turbine simulations to enhance their real-world applicability. |
ArticleNumber | 107 |
Audience | Academic |
Author | El Absawy, Mostafa A. Ibrahim, Hesham H. Taha, M. H. Elnaggar, Zakaria |
Author_xml | – sequence: 1 givenname: Mostafa A. orcidid: 0000-0003-3495-8586 surname: El Absawy fullname: El Absawy, Mostafa A. email: maselabsawy_2011@cu.edu.eg organization: Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University – sequence: 2 givenname: Zakaria surname: Elnaggar fullname: Elnaggar, Zakaria organization: Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University – sequence: 3 givenname: Hesham H. surname: Ibrahim fullname: Ibrahim, Hesham H. organization: Department of Mechatronics, Engineering and Material Sciences School, German University – sequence: 4 givenname: M. H. surname: Taha fullname: Taha, M. H. organization: Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University |
BookMark | eNp9Ustu1TAQjVCRKKU_wCoS6xS_EjvLquJRqRIbYGv5Mb74KrWLnXB1d_wDa36OL2Fuggor5MWMZ-Ycj47P8-Ys5QRN85KSK0rV8LoKTpTqCOMdIUKI7vikOWecik71gp_9kz9rLmvdE0LoyAhl_Lz5-dmUaOwErSu51q6Cm2NOZmohBMzbnFobOx_LY8NOxkP99f3HnA9QMNYcp1OYy-LmpUDrj8ncR9fGNEMxK-7Ek0OoXzL2DzH5FidtTNDWxe5PD815rSPRwXyDdsrG1xfN02CmCpd_4kXz6e2bjzfvu7sP725vru86J-g4d0IMoZd0dIMjfRgEt5R6KYCzMJKhD8GjKkZy3wfeOzaAIj0PVgQu7GD7kV80txuvz2avH0q8N-Wos4l6LeSy06bM0U2gqRfKwcCNBSv8MCpGjJQc8M6dCAa5Xm1cDyV_XaDOep-XgsJVzZRSklAqGU5dbVM7g6QxhTyjUng8oHL4vyFi_VpKJqQkgiOAbYD1nwqExzUp0Scb6M0GGm2gVxvoI4L4Bqo4nHZQ_u7yH9Rv0n--9w |
Cites_doi | 10.1016/j.jsv.2018.02.004 10.1016/j.jfranklin.2010.04.013 10.1002/we.2063 10.1016/j.apm.2013.10.068 10.1680/geng.11.00015 10.1177/1077546309350189 10.1016/j.engstruct.2018.09.032 10.1115/1.3266291 10.1002/stc.404 10.1016/j.engstruct.2017.03.006 10.1016/j.engstruct.2005.03.004 10.1016/j.oceaneng.2018.04.041 10.1016/j.renene.2015.02.058 10.4028/www.scientific.net/AMR.33-37.1169 10.1016/j.soildyn.2015.03.007 10.12989/was.2011.14.2.085 10.1260/030952402321039412 10.1016/j.promfg.2018.03.107 10.1007/s40096-022-00459-z 10.1016/j.rser.2018.02.005 10.1016/j.cap.2009.11.036 10.1016/j.soildyn.2011.01.004 10.1002/mma.9038 10.1016/S0045-7949(99)00079-6 10.1016/j.jrmge.2017.11.010 10.1098/rsta.2014.0069 10.1016/j.ymssp.2017.06.016 10.1016/j.engstruct.2013.06.008 10.36478/jeasci.2018.8489.8493 10.1177/1687814017692940 10.1016/j.rinp.2021.104091 10.1155/2013/982597 10.3390/en10010121 10.2172/947422 10.1142/S0129183121500972 10.2172/1004009 10.1088/1742-6596/1264/1/012049 10.2172/891594 10.1142/S012918312250108X 10.1088/1742-6596/1264/1/012048 10.7712/100016.2117.6772 10.3390/jmse6030102 10.1243/09544062JMES759 10.1016/j.engstruct.2015.12.019 10.1063/1.3515600 10.3390/math11092045 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 COPYRIGHT 2023 Springer The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: COPYRIGHT 2023 Springer – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1186/s43088-023-00444-y |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection ProQuest Biological Science Collection Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2314-8543 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_1d48ce63abeb4d69820a773eabe3c4fa A772477043 10_1186_s43088_023_00444_y |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAFWJ AAIKJ AAKKN ABEEZ ABJCF ABMAC ACACY ACGFS ACULB ADBBV ADEZE AFGXO AFKRA AFPKN AGHFR AKRWK ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI C24 C6C CCPQU EBS FDB GROUPED_DOAJ HCIFZ IAO IGS ITC IXB KQ8 M7P M7S OK1 PIMPY PTHSS RSV SOJ AAYXX CITATION PHGZM PHGZT ARCSS 8FE 8FG 8FH ABUWG AZQEC DWQXO GNUQQ L6V LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c419t-446f5719c6c05f643b11d74e32f9065ffd444a73d5f35c26e8053fb4f34b6b593 |
IEDL.DBID | BENPR |
ISSN | 2314-8543 2314-8535 |
IngestDate | Wed Aug 27 01:21:51 EDT 2025 Sun Jul 13 04:29:45 EDT 2025 Tue Nov 14 05:30:10 EST 2023 Tue Jul 01 01:24:30 EDT 2025 Fri Feb 21 02:41:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Dynamic response Morison equation JONSWAP spectrum Numerical model Euler–Lagrange equations Blade element moment theory Von Karman turbulence model Wind turbine Variable cross-sectional tower Flexible foundation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-446f5719c6c05f643b11d74e32f9065ffd444a73d5f35c26e8053fb4f34b6b593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3495-8586 |
OpenAccessLink | https://www.proquest.com/docview/2888701172?pq-origsite=%requestingapplication% |
PQID | 2888701172 |
PQPubID | 5642984 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1d48ce63abeb4d69820a773eabe3c4fa proquest_journals_2888701172 gale_infotracacademiconefile_A772477043 crossref_primary_10_1186_s43088_023_00444_y springer_journals_10_1186_s43088_023_00444_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Beni Suef Governorate |
PublicationTitle | Beni-Suef University Journal of Basic and Applied Sciences |
PublicationTitleAbbrev | Beni-Suef Univ J Basic Appl Sci |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | Zuo, Bi, Hao (CR24) 2017; 141 Mahdy (CR53) 2023 Arrigan (CR19) 2011; 18 Liu (CR21) 2013; 56 Murtagh, Basu, Broderick (CR17) 2005; 27 Arany, Bhattacharya, Adhikari, Hogan, Macdonald (CR11) 2015; 74 CR38 CR37 CR34 Bhattacharaya, Adhikari (CR10) 2011; 31 CR31 Hussan (CR27) 2018; 160 Adhikari, Bhattacharaya (CR9) 2011; 14 AlHamaydeh, Hussain (CR18) 2011; 348 CR3 Brodersen, Bjørke, Høgsberg (CR30) 2017; 20 El Mouhsine (CR35) 2017; 22 CR49 CR47 CR45 CR44 CR43 CR42 CR41 Mohammadi, Fadaeinedjad, Moschopoulos (CR26) 2018; 421 Carswell, Johansson, Lovholt, Arwade, Madshus, DeGroot, Myers (CR46) 2015; 80 Park (CR32) 2010; 10 Negm, Maalawi (CR16) 2000; 74 Júnior (CR36) 2019; 180 Bouzid, Bhattacharya, Otsmane (CR15) 2018 Halfpenny (CR2) 1998 CR13 CR12 Xu (CR7) 2008; 33–37 CR51 Li (CR33) 2014; 38 CR50 Molenaar, Tempel (CR5) 2002; 26 Faltinsen (CR39) 1990 Hasselmann, Barnett, Bouws, Carlson, Cartwright, Enke, Ewing, Gienapp, Hasselmann, Kruseman, Meerburg, Muller, Olbers, Richter, Sell, Walden (CR40) 1973; 8 Kessentini, Choura, Najar, Franchek (CR4) 2010; 16 Sun (CR28) 2018; 99 Amer, Mahdy, Namoos (CR52) 2018; 13 CR29 Oh, Nam, Ryu, Kim, Epureanu (CR6) 2018; 88 Bhattacharya, Cox, Lombardi, Muir Wood (CR8) 2012; 166 CR23 CR22 CR20 Ahmed, Melad (CR48) 2023; 17 Wang, Huang, Li, Liu, Zhang (CR14) 2017; 9 Staino, Basu (CR25) 2015; 373 Thresher (CR1) 2009; 104 RW Thresher (444_CR1) 2009; 104 444_CR23 444_CR22 444_CR20 444_CR3 J Arrigan (444_CR19) 2011; 18 M AlHamaydeh (444_CR18) 2011; 348 CJF Júnior (444_CR36) 2019; 180 DA Bouzid (444_CR15) 2018 ML Brodersen (444_CR30) 2017; 20 S Bhattacharaya (444_CR10) 2011; 31 K Hasselmann (444_CR40) 1973; 8 444_CR38 L Arany (444_CR11) 2015; 74 444_CR37 HF Ahmed (444_CR48) 2023; 17 444_CR34 HM Negm (444_CR16) 2000; 74 444_CR31 S El Mouhsine (444_CR35) 2017; 22 M Hussan (444_CR27) 2018; 160 S Adhikari (444_CR9) 2011; 14 444_CR29 L Li (444_CR33) 2014; 38 444_CR41 E Mohammadi (444_CR26) 2018; 421 OM Faltinsen (444_CR39) 1990 H Zuo (444_CR24) 2017; 141 S Bhattacharya (444_CR8) 2012; 166 444_CR49 444_CR47 444_CR45 444_CR44 444_CR43 444_CR42 PJ Murtagh (444_CR17) 2005; 27 K-Y Oh (444_CR6) 2018; 88 DP Molenaar (444_CR5) 2002; 26 C Sun (444_CR28) 2018; 99 J-H Park (444_CR32) 2010; 10 W Carswell (444_CR46) 2015; 80 A Halfpenny (444_CR2) 1998 WY Liu (444_CR21) 2013; 56 444_CR51 444_CR50 S Kessentini (444_CR4) 2010; 16 444_CR13 444_CR12 Y Xu (444_CR7) 2008; 33–37 A Mahdy (444_CR53) 2023 S Wang (444_CR14) 2017; 9 YA Amer (444_CR52) 2018; 13 A Staino (444_CR25) 2015; 373 |
References_xml | – ident: CR45 – ident: CR22 – volume: 421 start-page: 132 year: 2018 end-page: 152 ident: CR26 article-title: Implementation of internal model based control and individual pitch control to reduce fatigue loads and tower vibrations in wind turbines publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.02.004 – volume: 348 start-page: 1470 year: 2011 end-page: 1487 ident: CR18 article-title: Optimized frequency-based foundation design for wind turbine tower utilizing soil–structure interaction publication-title: J Frankl Inst doi: 10.1016/j.jfranklin.2010.04.013 – volume: 20 start-page: 783 issue: 5 year: 2017 end-page: 796 ident: CR30 article-title: Active tuned mass damper for damping of offshore wind turbine vibrations publication-title: Wind Energy doi: 10.1002/we.2063 – volume: 38 start-page: 2695 year: 2014 end-page: 2715 ident: CR33 article-title: A mathematical model for horizontal axis wind turbine blades publication-title: Appl Math Model doi: 10.1016/j.apm.2013.10.068 – ident: CR49 – ident: CR51 – ident: CR12 – volume: 166 start-page: 159 year: 2012 end-page: 169 ident: CR8 article-title: Dynamics of offshore wind turbines supported on two foundations publication-title: Proc ICE-Geotech Eng doi: 10.1680/geng.11.00015 – volume: 16 start-page: 2001 issue: 13 year: 2010 end-page: 2021 ident: CR4 article-title: Modeling and dynamics of a horizontal axis wind turbine publication-title: J Vib Control doi: 10.1177/1077546309350189 – ident: CR29 – volume: 180 start-page: 357 year: 2019 end-page: 378 ident: CR36 article-title: Modeling wind turbine blades by geometrically-exact beam and shell elements: a comparative approach publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.09.032 – ident: CR42 – volume: 104 start-page: 89 issue: 2 year: 2009 end-page: 95 ident: CR1 article-title: Structural dynamic analysis of wind turbine systems publication-title: J Sol Energy Eng doi: 10.1115/1.3266291 – volume: 18 start-page: 840 year: 2011 end-page: 851 ident: CR19 article-title: Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers publication-title: Struct Control Health Monit doi: 10.1002/stc.404 – volume: 141 start-page: 303 year: 2017 end-page: 315 ident: CR24 article-title: Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.03.006 – year: 1998 ident: CR2 publication-title: Dynamic analysis of both on and offshore wind turbines in the frequency domain – volume: 27 start-page: 1209 year: 2005 end-page: 1219 ident: CR17 article-title: Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading publication-title: Eng Struct doi: 10.1016/j.engstruct.2005.03.004 – volume: 160 start-page: 449 year: 2018 end-page: 460 ident: CR27 article-title: Multiple tuned mass damper for multi-mode vibration reduction of offshore wind turbine under seismic excitation publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2018.04.041 – volume: 80 start-page: 724 year: 2015 end-page: 736 ident: CR46 article-title: Foundation damping and the dynamics of offshore wind turbine monopiles publication-title: Renew Energy doi: 10.1016/j.renene.2015.02.058 – ident: CR50 – volume: 33–37 start-page: 1169 year: 2008 end-page: 1174 ident: CR7 article-title: Static and dynamic analysis of wind turbine tower structure publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.33-37.1169 – volume: 74 start-page: 40 year: 2015 end-page: 45 ident: CR11 article-title: An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2015.03.007 – year: 1990 ident: CR39 publication-title: Sea loads on ships and offshore structures – volume: 14 start-page: 85 issue: 2 year: 2011 end-page: 112 ident: CR9 article-title: Vibrations of wind-structures considering soil-structure interaction publication-title: Wind Struct doi: 10.12989/was.2011.14.2.085 – volume: 8 start-page: 1 year: 1973 end-page: 95 ident: CR40 article-title: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP) publication-title: Deut Hydrogr Z – volume: 26 start-page: 211 year: 2002 end-page: 220 ident: CR5 article-title: Wind turbine structural dynamics—a review of the principles for modern power generation, onshore and offshore publication-title: Wind Eng doi: 10.1260/030952402321039412 – volume: 22 start-page: 747 year: 2017 end-page: 756 ident: CR35 article-title: Aerodynamics and structural analysis of wind turbine blade publication-title: Procedia Manuf doi: 10.1016/j.promfg.2018.03.107 – volume: 17 start-page: 399 year: 2023 end-page: 413 ident: CR48 article-title: A new numerical strategy for solving nonlinear singular Emden-Fowler delay differential models with variable order publication-title: Math Sci doi: 10.1007/s40096-022-00459-z – volume: 88 start-page: 16 year: 2018 end-page: 36 ident: CR6 article-title: A review of foundations of offshore wind energy convertors: current status and future perspectives publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.02.005 – volume: 10 start-page: S332 year: 2010 end-page: S334 ident: CR32 article-title: Linear vibration analysis of rotating wind-turbine blade publication-title: Curr Appl Phys doi: 10.1016/j.cap.2009.11.036 – volume: 31 start-page: 805 year: 2011 end-page: 816 ident: CR10 article-title: Experimental validation of soil-structure interaction of offshore wind turbines publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2011.01.004 – ident: CR43 – year: 2023 ident: CR53 article-title: Stability, existence, and uniqueness for solving fractional glioblastoma multiforme using a Caputo-Fabrizio derivative publication-title: Math Methods Appl Sci doi: 10.1002/mma.9038 – ident: CR47 – ident: CR37 – ident: CR23 – ident: CR44 – volume: 74 start-page: 649 year: 2000 end-page: 666 ident: CR16 article-title: Structural design optimization of wind turbine towers publication-title: Comput Struct doi: 10.1016/S0045-7949(99)00079-6 – ident: CR3 – year: 2018 ident: CR15 article-title: Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2017.11.010 – ident: CR38 – volume: 373 start-page: 20140069 year: 2015 ident: CR25 article-title: Emerging trends in vibration control of wind turbines: a focus on a dual control strategy publication-title: Philos Trans R Soc A doi: 10.1098/rsta.2014.0069 – volume: 99 start-page: 285 year: 2018 end-page: 305 ident: CR28 article-title: Semi-active control of monopile offshore wind turbines under multi-hazards publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.06.016 – ident: CR31 – ident: CR13 – volume: 56 start-page: 954 year: 2013 end-page: 957 ident: CR21 article-title: The vibration analysis of wind turbine blade–cabin–tower coupling system publication-title: Eng Struct doi: 10.1016/j.engstruct.2013.06.008 – volume: 13 start-page: 8489 year: 2018 end-page: 8493 ident: CR52 article-title: Reduced differential transform method for solving fractional-order biological systems publication-title: J Eng Appl Sci doi: 10.36478/jeasci.2018.8489.8493 – ident: CR34 – ident: CR41 – volume: 9 start-page: 1 issue: 3 year: 2017 end-page: 17 ident: CR14 article-title: Dynamic analysis of wind turbines including nacelle–tower–foundation interaction for condition of incomplete structural parameters publication-title: Adv Mech Eng doi: 10.1177/1687814017692940 – ident: CR20 – volume: 56 start-page: 954 year: 2013 ident: 444_CR21 publication-title: Eng Struct doi: 10.1016/j.engstruct.2013.06.008 – volume: 74 start-page: 649 year: 2000 ident: 444_CR16 publication-title: Comput Struct doi: 10.1016/S0045-7949(99)00079-6 – ident: 444_CR49 doi: 10.1016/j.rinp.2021.104091 – volume: 17 start-page: 399 year: 2023 ident: 444_CR48 publication-title: Math Sci doi: 10.1007/s40096-022-00459-z – volume: 20 start-page: 783 issue: 5 year: 2017 ident: 444_CR30 publication-title: Wind Energy doi: 10.1002/we.2063 – ident: 444_CR20 doi: 10.1155/2013/982597 – volume: 88 start-page: 16 year: 2018 ident: 444_CR6 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.02.005 – ident: 444_CR34 doi: 10.3390/en10010121 – volume: 421 start-page: 132 year: 2018 ident: 444_CR26 publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.02.004 – ident: 444_CR45 doi: 10.2172/947422 – volume: 8 start-page: 1 year: 1973 ident: 444_CR40 publication-title: Deut Hydrogr Z – volume: 104 start-page: 89 issue: 2 year: 2009 ident: 444_CR1 publication-title: J Sol Energy Eng doi: 10.1115/1.3266291 – ident: 444_CR13 – year: 2018 ident: 444_CR15 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2017.11.010 – ident: 444_CR50 doi: 10.1142/S0129183121500972 – volume: 348 start-page: 1470 year: 2011 ident: 444_CR18 publication-title: J Frankl Inst doi: 10.1016/j.jfranklin.2010.04.013 – ident: 444_CR43 doi: 10.2172/1004009 – volume: 33–37 start-page: 1169 year: 2008 ident: 444_CR7 publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.33-37.1169 – volume: 74 start-page: 40 year: 2015 ident: 444_CR11 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2015.03.007 – ident: 444_CR38 doi: 10.1088/1742-6596/1264/1/012049 – ident: 444_CR42 doi: 10.2172/891594 – ident: 444_CR41 – year: 2023 ident: 444_CR53 publication-title: Math Methods Appl Sci doi: 10.1002/mma.9038 – volume: 18 start-page: 840 year: 2011 ident: 444_CR19 publication-title: Struct Control Health Monit doi: 10.1002/stc.404 – volume: 38 start-page: 2695 year: 2014 ident: 444_CR33 publication-title: Appl Math Model doi: 10.1016/j.apm.2013.10.068 – volume-title: Dynamic analysis of both on and offshore wind turbines in the frequency domain year: 1998 ident: 444_CR2 – volume: 80 start-page: 724 year: 2015 ident: 444_CR46 publication-title: Renew Energy doi: 10.1016/j.renene.2015.02.058 – volume: 26 start-page: 211 year: 2002 ident: 444_CR5 publication-title: Wind Eng doi: 10.1260/030952402321039412 – volume: 9 start-page: 1 issue: 3 year: 2017 ident: 444_CR14 publication-title: Adv Mech Eng doi: 10.1177/1687814017692940 – volume: 166 start-page: 159 year: 2012 ident: 444_CR8 publication-title: Proc ICE-Geotech Eng doi: 10.1680/geng.11.00015 – ident: 444_CR47 doi: 10.1142/S012918312250108X – volume: 141 start-page: 303 year: 2017 ident: 444_CR24 publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.03.006 – ident: 444_CR44 – volume: 27 start-page: 1209 year: 2005 ident: 444_CR17 publication-title: Eng Struct doi: 10.1016/j.engstruct.2005.03.004 – volume: 22 start-page: 747 year: 2017 ident: 444_CR35 publication-title: Procedia Manuf doi: 10.1016/j.promfg.2018.03.107 – ident: 444_CR37 doi: 10.1088/1742-6596/1264/1/012048 – volume: 13 start-page: 8489 year: 2018 ident: 444_CR52 publication-title: J Eng Appl Sci doi: 10.36478/jeasci.2018.8489.8493 – volume: 10 start-page: S332 year: 2010 ident: 444_CR32 publication-title: Curr Appl Phys doi: 10.1016/j.cap.2009.11.036 – ident: 444_CR12 doi: 10.7712/100016.2117.6772 – ident: 444_CR29 doi: 10.3390/jmse6030102 – volume: 160 start-page: 449 year: 2018 ident: 444_CR27 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2018.04.041 – volume: 99 start-page: 285 year: 2018 ident: 444_CR28 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.06.016 – ident: 444_CR3 – volume: 31 start-page: 805 year: 2011 ident: 444_CR10 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2011.01.004 – ident: 444_CR31 doi: 10.1243/09544062JMES759 – volume: 373 start-page: 20140069 year: 2015 ident: 444_CR25 publication-title: Philos Trans R Soc A doi: 10.1098/rsta.2014.0069 – volume: 180 start-page: 357 year: 2019 ident: 444_CR36 publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.09.032 – volume: 14 start-page: 85 issue: 2 year: 2011 ident: 444_CR9 publication-title: Wind Struct doi: 10.12989/was.2011.14.2.085 – ident: 444_CR23 doi: 10.1016/j.engstruct.2015.12.019 – ident: 444_CR22 doi: 10.1063/1.3515600 – volume: 16 start-page: 2001 issue: 13 year: 2010 ident: 444_CR4 publication-title: J Vib Control doi: 10.1177/1077546309350189 – volume-title: Sea loads on ships and offshore structures year: 1990 ident: 444_CR39 – ident: 444_CR51 doi: 10.3390/math11092045 |
SSID | ssj0001920123 ssib044731334 ssib052605897 |
Score | 2.2399287 |
Snippet | Background
This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well... Background This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well... BackgroundThis study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well... Abstract Background This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding... |
SourceID | doaj proquest gale crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 107 |
SubjectTerms | Aerodynamic loads Aerodynamics Air-turbines Alternative energy sources Blades Case studies Comparative analysis Dynamic response Energy resources Environmental conditions Euler-Lagrange equation Euler–Lagrange equations Finite element analysis Finite element method Hermite polynomials Investigations JONSWAP spectrum Mathematical analysis Medicine Medicine & Public Health Model accuracy Morison equation Numerical model Numerical models Offshore Offshore structures Optimization techniques Renewable resources Robustness (mathematics) Shape functions Simulation Simulation methods Soil structure Soils Sustainability Turbine industry Turbines Turbulence models Variable cross-sectional tower Vibration Wind effects Wind power Wind turbine Wind turbines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSx0xFA7iyo0otTj1QRaCizY4mWQyM0srigi6qsVdyBOVy53i3Ku463_o2j_XX9JzkrnVItKNqzCTEA7nkXNOHt8hZK8ry8i9cywK65hsZcU6FQKLeOYG8S3IHPchzy_U6aU8u6qvXpT6wjthGR44M-6Ae9m6oISxwUqvOvBYpmlEgG_hZEyhEfi8F8nUbY5bMFhYvJJp1cEgBRgUAxfFEkYae_zHEyXA_tfL8qvz0eR2TtbI6hgv0sNM5zpZCtMP5Ok7ZLj45ommqdmQ7lPhuHw9g_ZTam9Ydle5w06MD8Pvn79SWTRoh_5mgk3Cj53fBepzbXqKABJ3-bkDztPHOFz30P8A2TuFkZBKBzrMLW7g0Fmf_sNED-Y-0Elv_LBBLk-Ovx2dsrHOAnOSdzMGGWGsG9455co6QohiOfeNDKKKHUQoMXrgl2mEr6OoXaVCC5YbrYxCWmXrTnwky9N-GjYJtZbL4FFCjZdR8daY2ijDvRCxFLUsyOcFz_WPDKehUxrSKp0lpEFCOklIPxbkK4rl70iEwk4_QEH0qCD6fwpSkH0UqkaDnQH7zPjuAAhG6Ct9CPmFbJpSioJsL-SuR0sedNXCMozAeVVBvix04bn7beI_vQfxW2QF69vn-zPbZBl0IuxAFDSzu0nh_wDY3wvB priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1LaxYxcNAK4kV84mqVHAQPGtxsHrt7rMVShHqy0lvIUysf38qXr5be_A-e_XP-EifJriLVg6ewmyeZmWQm8wJ4OrZtZN45Grl1VAyio6MKgcasc0P-FmGe3yGP3qrDY_HmRJ7MTmFpsXZfVJLlpC5kPaiXSXCkCIp3DC1BzujFVbgmUXbPeL0_-zh8qjxLZhQWD5m_dv3jFirB-i8fyZd0o-XKObgFN2dekexV4N6GK2F9B64fzdrwu_D9PQq62fWJlFloKmZVuUu10iDTmthTWm-tWmFXxof04-u3kh0NyzSdrnJRwsiebQLxNUU9yXEkNtXrIY8zxZg-Tlh_jkI8wZYoUQeSzmx-xyHbqfzHgc7Nl0BWk_HpHhwfvH63f0jndAvUCTZuKQqGUfZsdMq1MiKnYhnzvQi8iyMyKjF63DrTcy8jl65TYUACjlZELqyycuT3YWc9rcMDINYyEXxr-r73Iio2GCONMsxzHlsuRQPPl-3Xn2tUDV2kkUHpCiyNwNIFWPqigVcZQr9a5ojY5ce0-aBnAtPMi8EFxY0NVng1ImeD0_OA39yJaBp4luGrM91ucfvM7H6AC84RsPQeihmi71vBG9hdUEDPBJ10N-BpnOPndQ28WNDid_W_F__w_5o_ghs5oX01mNmFHYR-eIxsz9Y-KVj-E1JdAi8 priority: 102 providerName: Springer Nature |
Title | Variable cross-sectional effect on bi-directional blades–tower–soil–structure dynamic interaction on offshore wind turbine subject to wind–wave loads |
URI | https://link.springer.com/article/10.1186/s43088-023-00444-y https://www.proquest.com/docview/2888701172 https://doaj.org/article/1d48ce63abeb4d69820a773eabe3c4fa |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbtQwELVoe-GCQIAItCsfkDiA1Th2nORUtatdKqRWCFHUm2XHNrRabcpmS9UL4h8483N8CTN20gpVcLGV2HIiz4xn3tieIeRlk-eBu7ZlQdiWyVoWrFHes4B7bmDfAs3RD3l0rA5P5LvT8nRwuPXDscpxTYwLteta9JHvFgDVKgxgVuxdfGWYNQp3V4cUGhtkC5bgGsDX1sHs-P2HkaOkrASAsBuOK9F6r4d9s_Nk36BRETPQcclAd5XjzZpa7fZSgBAyUGssxlVj139prxjk_-5SfmdPNaqq-UPyYLAx6X5iikfknl8-Jr8-ASrGe1I0Ds36eAYL-6UjHbRbUnvGkopLDXZhnO9___gZU6lB3XdnC6xizNnLlacu5bOnGHRila5I4DhdCP2XDtqvAPFT6Anw29P-0qLTh667-B4GujLfPF10xvVPyMl89nF6yIbcDKyVvFkzQJGhrHjTqjYvA5g1lnNXSS-K0IBVE4KD-TKVcGUQZVsoX4O0ByuDkFbZshFPyeayW_pnhFrLpXe5qarKyaB4bUxplOFOiJCLUmbk9Tjn-iKF4NARutRKJwppoJCOFNLXGTlAstz0xPDZ8UW3-qwHadTcybr1ShjrrXSqATMIPi88PItWBpORV0hUjUK-hukzw10F-GEMl6X3AZPIqsqlyMj2SHc9SH-vb3k1I29GXrht_vfPP___aC_Ifcx2n07TbJNNoLbfAZtobSdko56_nQzsD0_TQmKpppPoZYDy6PvsD0-1ENc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoALAgFioYAPIA5gNYknrwNC5bFs6ePUot6MHdtl0ZKUzZbV3vgPnPkL_Ch-CTNO0gpVcOvJim05Ub552p4Zxh6XUeRjW1XCS1MJKCARZeac8HTmhvYtYk77kHv72eQQ3h-lR2vs1xALQ9cqB5kYBLVtKtoj30zQVcspgVny8uSroKpRdLo6lNDoyGLHrZbosrUvtt8gvk-SZPz24PVE9FUFRAVxuRDo__g0j8sqq6LUo0I2cWxzcDLxJepj7y0A6Fza1Mu0SjJXIJ16A16CyUxKyZdQ5F8BKUviqGL8bqBfgFyiy3dG3yn5CkV_Sve5s6bIhAn17mIQqCnTIY6nyDZbkMjyApWoCFncxOovXRlKClxUHBdOcINiHN9g13uLlm91JHiTrbn6Fvv5AX1wisriYWnRhhtfNK-7QMKbmpup6BRqN2Bm2rr29_cfoXAbtm0znVETMtyezh23q1p_mVacUlzMu4AMWqfxvv3U4PhyWluOM9HZd7w9NbTFxBdN6MeFlvqb47NG2_Y2O7wUzO6w9bqp3V3GjYnB2UjneW7BZ3GhdaozHVspfSRTGLFnwz9XJ13CDxUcpSJTHUIKEVIBIbUasVcEy9lMStYdOpr5sep5X8UWisplUhtnwGYlGl34eunwWVbg9Yg9JVAViZQF_j7dR0bgB1NyLrWFHhDkeQRyxDYG3FUva1p1zhkj9nyghfPhf3_8vf-v9ohdnRzs7ard7f2d--xaQoQZ7vFssHVE3j1Aa2xhHgYW4OzjZfPcH0FLRmw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqrYS4oCJALBTwAcQBrE1ix04OCLW0q5bCqkIU9Wb8C4u2SdlsWe2Nd-DMi_A4PAljJ2mFKrj1FCW2nCjfeGY-ezyD0OMySXxqjSGeakNYwTJScueID3tu4N8C5mEd8u2E7x2x18f58Rr61Z-FCWGVvU6MitrWJqyRjzKgaiIkMMtGvguLONwZvzz9SkIFqbDT2pfTaEXkwK2WQN-aF_s7gPWTLBvvvn-1R7oKA8SwtFwQ4EI-F2lpuElyD8ZZp6kVzNHMl2CbvbeMMSWozT3NTcZdATLrNfOUaa7zkIgJ1P-6AFaUDND69u7k8F0vzYwJCgTwXNrzwByKbs_uS-tbBYcmVr9LGQG7mfenego-ahgFBUDApJKY042s_rKcscDAZTNyaT83msnxBrrR-bd4qxXIm2jNVbfQzw_AyMMZLRyHJk2M_wr92nASXFdYT0lrXtsGPVPWNb-__4hl3ODa1NNZuMR8t2dzh-2qUidTg0PCi3l7PCOMU3vffK6hfTmtLIaeQP0dbs50WHDCizo-h4GW6pvDs1rZ5jY6uhLU7qBBVVfuLsJap8zZRAkhLPM8LZTKFVeppdQnNGdD9Kz_5_K0Tf8hI20quGwRkoCQjAjJ1RBtB1jOe4bU3fFBPf8kO00gU8sK4zhV2mlmeQkuGLyeOrinhnk1RE8DqDIomAX8PtWdk4APDqm65BbwISZEwugQbfa4y07zNPJingzR814WLpr__fH3_j_aI3QN5pt8sz85uI-uZ0EuY1DPJhoA8O4BuGYL_bCbAxh9vOpp9wflr0v- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+cross-sectional+effect+on+bi-directional+blades%E2%80%93tower%E2%80%93soil%E2%80%93structure+dynamic+interaction+on+offshore+wind+turbine+subject+to+wind%E2%80%93wave+loads&rft.jtitle=Beni-Suef+University+journal+of+basic+and+applied+sciences&rft.au=El+Absawy%2C+Mostafa+A.&rft.au=Elnaggar%2C+Zakaria&rft.au=Ibrahim%2C+Hesham+H.&rft.au=Taha%2C+M.+H.&rft.date=2023-12-01&rft.issn=2314-8543&rft.eissn=2314-8543&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1186%2Fs43088-023-00444-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s43088_023_00444_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-8543&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-8543&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-8543&client=summon |