Variable cross-sectional effect on bi-directional blades–tower–soil–structure dynamic interaction on offshore wind turbine subject to wind–wave loads

Background This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well as between the nacelle, blades, and the surrounding environment. This simulation accounts for both fore–aft and side-to-side movements....

Full description

Saved in:
Bibliographic Details
Published inBeni-Suef University Journal of Basic and Applied Sciences Vol. 12; no. 1; pp. 107 - 15
Main Authors El Absawy, Mostafa A., Elnaggar, Zakaria, Ibrahim, Hesham H., Taha, M. H.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2023
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well as between the nacelle, blades, and the surrounding environment. This simulation accounts for both fore–aft and side-to-side movements. To describe these interactions, the model leverages the Euler–Lagrange equations. It calculates wave loads utilizing the Morison equation, with wave data generated based on the JONSWAP spectrum. Furthermore, aerodynamic loads are determined using the blade element moment theory, and the wind spectrum is generated using the Von Karman turbulence model. The tower is represented as a variable cross-sectional beam, employing a two-noded Euler beam element with two degrees of freedom: transverse displacement and rotation, and utilizing Hermite polynomial shape functions. Results In a comparative analysis against experimental data, this modified model demonstrates significant enhancements in accurately reproducing the dynamic behavior of wind turbines with variable cross-sectional towers, outperforming models that approximate the tower with a constant cross section. Our findings reveal that the modified model achieves a remarkable improvement of 15% in replicating the tower's dynamic response when compared to the constant cross-sectional models. As a case study, a 5 MW monopile wind turbine with a flexible foundation, specifically the one provided by the National Renewable Energy Laboratory (NREL), is employed to simulate its dynamic response. Conclusions This research presents a robust numerical model for simulating wind turbine behavior in various environmental conditions. The incorporation of variable cross-sectional tower representation significantly improves the model's accuracy, making it a valuable tool for assessing wind turbine dynamics. The study's findings highlight the importance of considering tower flexibility in wind turbine simulations to enhance their real-world applicability.
AbstractList BackgroundThis study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well as between the nacelle, blades, and the surrounding environment. This simulation accounts for both fore–aft and side-to-side movements. To describe these interactions, the model leverages the Euler–Lagrange equations. It calculates wave loads utilizing the Morison equation, with wave data generated based on the JONSWAP spectrum. Furthermore, aerodynamic loads are determined using the blade element moment theory, and the wind spectrum is generated using the Von Karman turbulence model. The tower is represented as a variable cross-sectional beam, employing a two-noded Euler beam element with two degrees of freedom: transverse displacement and rotation, and utilizing Hermite polynomial shape functions.ResultsIn a comparative analysis against experimental data, this modified model demonstrates significant enhancements in accurately reproducing the dynamic behavior of wind turbines with variable cross-sectional towers, outperforming models that approximate the tower with a constant cross section. Our findings reveal that the modified model achieves a remarkable improvement of 15% in replicating the tower's dynamic response when compared to the constant cross-sectional models. As a case study, a 5 MW monopile wind turbine with a flexible foundation, specifically the one provided by the National Renewable Energy Laboratory (NREL), is employed to simulate its dynamic response.ConclusionsThis research presents a robust numerical model for simulating wind turbine behavior in various environmental conditions. The incorporation of variable cross-sectional tower representation significantly improves the model's accuracy, making it a valuable tool for assessing wind turbine dynamics. The study's findings highlight the importance of considering tower flexibility in wind turbine simulations to enhance their real-world applicability.
Abstract Background This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well as between the nacelle, blades, and the surrounding environment. This simulation accounts for both fore–aft and side-to-side movements. To describe these interactions, the model leverages the Euler–Lagrange equations. It calculates wave loads utilizing the Morison equation, with wave data generated based on the JONSWAP spectrum. Furthermore, aerodynamic loads are determined using the blade element moment theory, and the wind spectrum is generated using the Von Karman turbulence model. The tower is represented as a variable cross-sectional beam, employing a two-noded Euler beam element with two degrees of freedom: transverse displacement and rotation, and utilizing Hermite polynomial shape functions. Results In a comparative analysis against experimental data, this modified model demonstrates significant enhancements in accurately reproducing the dynamic behavior of wind turbines with variable cross-sectional towers, outperforming models that approximate the tower with a constant cross section. Our findings reveal that the modified model achieves a remarkable improvement of 15% in replicating the tower's dynamic response when compared to the constant cross-sectional models. As a case study, a 5 MW monopile wind turbine with a flexible foundation, specifically the one provided by the National Renewable Energy Laboratory (NREL), is employed to simulate its dynamic response. Conclusions This research presents a robust numerical model for simulating wind turbine behavior in various environmental conditions. The incorporation of variable cross-sectional tower representation significantly improves the model's accuracy, making it a valuable tool for assessing wind turbine dynamics. The study's findings highlight the importance of considering tower flexibility in wind turbine simulations to enhance their real-world applicability.
Background This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well as between the nacelle, blades, and the surrounding environment. This simulation accounts for both fore-aft and side-to-side movements. To describe these interactions, the model leverages the Euler-Lagrange equations. It calculates wave loads utilizing the Morison equation, with wave data generated based on the JONSWAP spectrum. Furthermore, aerodynamic loads are determined using the blade element moment theory, and the wind spectrum is generated using the Von Karman turbulence model. The tower is represented as a variable cross-sectional beam, employing a two-noded Euler beam element with two degrees of freedom: transverse displacement and rotation, and utilizing Hermite polynomial shape functions. Results In a comparative analysis against experimental data, this modified model demonstrates significant enhancements in accurately reproducing the dynamic behavior of wind turbines with variable cross-sectional towers, outperforming models that approximate the tower with a constant cross section. Our findings reveal that the modified model achieves a remarkable improvement of 15% in replicating the tower's dynamic response when compared to the constant cross-sectional models. As a case study, a 5 MW monopile wind turbine with a flexible foundation, specifically the one provided by the National Renewable Energy Laboratory (NREL), is employed to simulate its dynamic response. Conclusions This research presents a robust numerical model for simulating wind turbine behavior in various environmental conditions. The incorporation of variable cross-sectional tower representation significantly improves the model's accuracy, making it a valuable tool for assessing wind turbine dynamics. The study's findings highlight the importance of considering tower flexibility in wind turbine simulations to enhance their real-world applicability.
Background This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well as between the nacelle, blades, and the surrounding environment. This simulation accounts for both fore–aft and side-to-side movements. To describe these interactions, the model leverages the Euler–Lagrange equations. It calculates wave loads utilizing the Morison equation, with wave data generated based on the JONSWAP spectrum. Furthermore, aerodynamic loads are determined using the blade element moment theory, and the wind spectrum is generated using the Von Karman turbulence model. The tower is represented as a variable cross-sectional beam, employing a two-noded Euler beam element with two degrees of freedom: transverse displacement and rotation, and utilizing Hermite polynomial shape functions. Results In a comparative analysis against experimental data, this modified model demonstrates significant enhancements in accurately reproducing the dynamic behavior of wind turbines with variable cross-sectional towers, outperforming models that approximate the tower with a constant cross section. Our findings reveal that the modified model achieves a remarkable improvement of 15% in replicating the tower's dynamic response when compared to the constant cross-sectional models. As a case study, a 5 MW monopile wind turbine with a flexible foundation, specifically the one provided by the National Renewable Energy Laboratory (NREL), is employed to simulate its dynamic response. Conclusions This research presents a robust numerical model for simulating wind turbine behavior in various environmental conditions. The incorporation of variable cross-sectional tower representation significantly improves the model's accuracy, making it a valuable tool for assessing wind turbine dynamics. The study's findings highlight the importance of considering tower flexibility in wind turbine simulations to enhance their real-world applicability.
ArticleNumber 107
Audience Academic
Author El Absawy, Mostafa A.
Ibrahim, Hesham H.
Taha, M. H.
Elnaggar, Zakaria
Author_xml – sequence: 1
  givenname: Mostafa A.
  orcidid: 0000-0003-3495-8586
  surname: El Absawy
  fullname: El Absawy, Mostafa A.
  email: maselabsawy_2011@cu.edu.eg
  organization: Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University
– sequence: 2
  givenname: Zakaria
  surname: Elnaggar
  fullname: Elnaggar, Zakaria
  organization: Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University
– sequence: 3
  givenname: Hesham H.
  surname: Ibrahim
  fullname: Ibrahim, Hesham H.
  organization: Department of Mechatronics, Engineering and Material Sciences School, German University
– sequence: 4
  givenname: M. H.
  surname: Taha
  fullname: Taha, M. H.
  organization: Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University
BookMark eNp9Ustu1TAQjVCRKKU_wCoS6xS_EjvLquJRqRIbYGv5Mb74KrWLnXB1d_wDa36OL2Fuggor5MWMZ-Ycj47P8-Ys5QRN85KSK0rV8LoKTpTqCOMdIUKI7vikOWecik71gp_9kz9rLmvdE0LoyAhl_Lz5-dmUaOwErSu51q6Cm2NOZmohBMzbnFobOx_LY8NOxkP99f3HnA9QMNYcp1OYy-LmpUDrj8ncR9fGNEMxK-7Ek0OoXzL2DzH5FidtTNDWxe5PD815rSPRwXyDdsrG1xfN02CmCpd_4kXz6e2bjzfvu7sP725vru86J-g4d0IMoZd0dIMjfRgEt5R6KYCzMJKhD8GjKkZy3wfeOzaAIj0PVgQu7GD7kV80txuvz2avH0q8N-Wos4l6LeSy06bM0U2gqRfKwcCNBSv8MCpGjJQc8M6dCAa5Xm1cDyV_XaDOep-XgsJVzZRSklAqGU5dbVM7g6QxhTyjUng8oHL4vyFi_VpKJqQkgiOAbYD1nwqExzUp0Scb6M0GGm2gVxvoI4L4Bqo4nHZQ_u7yH9Rv0n--9w
Cites_doi 10.1016/j.jsv.2018.02.004
10.1016/j.jfranklin.2010.04.013
10.1002/we.2063
10.1016/j.apm.2013.10.068
10.1680/geng.11.00015
10.1177/1077546309350189
10.1016/j.engstruct.2018.09.032
10.1115/1.3266291
10.1002/stc.404
10.1016/j.engstruct.2017.03.006
10.1016/j.engstruct.2005.03.004
10.1016/j.oceaneng.2018.04.041
10.1016/j.renene.2015.02.058
10.4028/www.scientific.net/AMR.33-37.1169
10.1016/j.soildyn.2015.03.007
10.12989/was.2011.14.2.085
10.1260/030952402321039412
10.1016/j.promfg.2018.03.107
10.1007/s40096-022-00459-z
10.1016/j.rser.2018.02.005
10.1016/j.cap.2009.11.036
10.1016/j.soildyn.2011.01.004
10.1002/mma.9038
10.1016/S0045-7949(99)00079-6
10.1016/j.jrmge.2017.11.010
10.1098/rsta.2014.0069
10.1016/j.ymssp.2017.06.016
10.1016/j.engstruct.2013.06.008
10.36478/jeasci.2018.8489.8493
10.1177/1687814017692940
10.1016/j.rinp.2021.104091
10.1155/2013/982597
10.3390/en10010121
10.2172/947422
10.1142/S0129183121500972
10.2172/1004009
10.1088/1742-6596/1264/1/012049
10.2172/891594
10.1142/S012918312250108X
10.1088/1742-6596/1264/1/012048
10.7712/100016.2117.6772
10.3390/jmse6030102
10.1243/09544062JMES759
10.1016/j.engstruct.2015.12.019
10.1063/1.3515600
10.3390/math11092045
ContentType Journal Article
Copyright The Author(s) 2023
COPYRIGHT 2023 Springer
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1186/s43088-023-00444-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2314-8543
EndPage 15
ExternalDocumentID oai_doaj_org_article_1d48ce63abeb4d69820a773eabe3c4fa
A772477043
10_1186_s43088_023_00444_y
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAFWJ
AAIKJ
AAKKN
ABEEZ
ABJCF
ABMAC
ACACY
ACGFS
ACULB
ADBBV
ADEZE
AFGXO
AFKRA
AFPKN
AGHFR
AKRWK
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
C24
C6C
CCPQU
EBS
FDB
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
IXB
KQ8
M7P
M7S
OK1
PIMPY
PTHSS
RSV
SOJ
AAYXX
CITATION
PHGZM
PHGZT
ARCSS
8FE
8FG
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
L6V
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c419t-446f5719c6c05f643b11d74e32f9065ffd444a73d5f35c26e8053fb4f34b6b593
IEDL.DBID BENPR
ISSN 2314-8543
2314-8535
IngestDate Wed Aug 27 01:21:51 EDT 2025
Sun Jul 13 04:29:45 EDT 2025
Tue Nov 14 05:30:10 EST 2023
Tue Jul 01 01:24:30 EDT 2025
Fri Feb 21 02:41:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Dynamic response
Morison equation
JONSWAP spectrum
Numerical model
Euler–Lagrange equations
Blade element moment theory
Von Karman turbulence model
Wind turbine
Variable cross-sectional tower
Flexible foundation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-446f5719c6c05f643b11d74e32f9065ffd444a73d5f35c26e8053fb4f34b6b593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3495-8586
OpenAccessLink https://www.proquest.com/docview/2888701172?pq-origsite=%requestingapplication%
PQID 2888701172
PQPubID 5642984
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_1d48ce63abeb4d69820a773eabe3c4fa
proquest_journals_2888701172
gale_infotracacademiconefile_A772477043
crossref_primary_10_1186_s43088_023_00444_y
springer_journals_10_1186_s43088_023_00444_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Beni Suef Governorate
PublicationTitle Beni-Suef University Journal of Basic and Applied Sciences
PublicationTitleAbbrev Beni-Suef Univ J Basic Appl Sci
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References Zuo, Bi, Hao (CR24) 2017; 141
Mahdy (CR53) 2023
Arrigan (CR19) 2011; 18
Liu (CR21) 2013; 56
Murtagh, Basu, Broderick (CR17) 2005; 27
Arany, Bhattacharya, Adhikari, Hogan, Macdonald (CR11) 2015; 74
CR38
CR37
CR34
Bhattacharaya, Adhikari (CR10) 2011; 31
CR31
Hussan (CR27) 2018; 160
Adhikari, Bhattacharaya (CR9) 2011; 14
AlHamaydeh, Hussain (CR18) 2011; 348
CR3
Brodersen, Bjørke, Høgsberg (CR30) 2017; 20
El Mouhsine (CR35) 2017; 22
CR49
CR47
CR45
CR44
CR43
CR42
CR41
Mohammadi, Fadaeinedjad, Moschopoulos (CR26) 2018; 421
Carswell, Johansson, Lovholt, Arwade, Madshus, DeGroot, Myers (CR46) 2015; 80
Park (CR32) 2010; 10
Negm, Maalawi (CR16) 2000; 74
Júnior (CR36) 2019; 180
Bouzid, Bhattacharya, Otsmane (CR15) 2018
Halfpenny (CR2) 1998
CR13
CR12
Xu (CR7) 2008; 33–37
CR51
Li (CR33) 2014; 38
CR50
Molenaar, Tempel (CR5) 2002; 26
Faltinsen (CR39) 1990
Hasselmann, Barnett, Bouws, Carlson, Cartwright, Enke, Ewing, Gienapp, Hasselmann, Kruseman, Meerburg, Muller, Olbers, Richter, Sell, Walden (CR40) 1973; 8
Kessentini, Choura, Najar, Franchek (CR4) 2010; 16
Sun (CR28) 2018; 99
Amer, Mahdy, Namoos (CR52) 2018; 13
CR29
Oh, Nam, Ryu, Kim, Epureanu (CR6) 2018; 88
Bhattacharya, Cox, Lombardi, Muir Wood (CR8) 2012; 166
CR23
CR22
CR20
Ahmed, Melad (CR48) 2023; 17
Wang, Huang, Li, Liu, Zhang (CR14) 2017; 9
Staino, Basu (CR25) 2015; 373
Thresher (CR1) 2009; 104
RW Thresher (444_CR1) 2009; 104
444_CR23
444_CR22
444_CR20
444_CR3
J Arrigan (444_CR19) 2011; 18
M AlHamaydeh (444_CR18) 2011; 348
CJF Júnior (444_CR36) 2019; 180
DA Bouzid (444_CR15) 2018
ML Brodersen (444_CR30) 2017; 20
S Bhattacharaya (444_CR10) 2011; 31
K Hasselmann (444_CR40) 1973; 8
444_CR38
L Arany (444_CR11) 2015; 74
444_CR37
HF Ahmed (444_CR48) 2023; 17
444_CR34
HM Negm (444_CR16) 2000; 74
444_CR31
S El Mouhsine (444_CR35) 2017; 22
M Hussan (444_CR27) 2018; 160
S Adhikari (444_CR9) 2011; 14
444_CR29
L Li (444_CR33) 2014; 38
444_CR41
E Mohammadi (444_CR26) 2018; 421
OM Faltinsen (444_CR39) 1990
H Zuo (444_CR24) 2017; 141
S Bhattacharya (444_CR8) 2012; 166
444_CR49
444_CR47
444_CR45
444_CR44
444_CR43
444_CR42
PJ Murtagh (444_CR17) 2005; 27
K-Y Oh (444_CR6) 2018; 88
DP Molenaar (444_CR5) 2002; 26
C Sun (444_CR28) 2018; 99
J-H Park (444_CR32) 2010; 10
W Carswell (444_CR46) 2015; 80
A Halfpenny (444_CR2) 1998
WY Liu (444_CR21) 2013; 56
444_CR51
444_CR50
S Kessentini (444_CR4) 2010; 16
444_CR13
444_CR12
Y Xu (444_CR7) 2008; 33–37
A Mahdy (444_CR53) 2023
S Wang (444_CR14) 2017; 9
YA Amer (444_CR52) 2018; 13
A Staino (444_CR25) 2015; 373
References_xml – ident: CR45
– ident: CR22
– volume: 421
  start-page: 132
  year: 2018
  end-page: 152
  ident: CR26
  article-title: Implementation of internal model based control and individual pitch control to reduce fatigue loads and tower vibrations in wind turbines
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.02.004
– volume: 348
  start-page: 1470
  year: 2011
  end-page: 1487
  ident: CR18
  article-title: Optimized frequency-based foundation design for wind turbine tower utilizing soil–structure interaction
  publication-title: J Frankl Inst
  doi: 10.1016/j.jfranklin.2010.04.013
– volume: 20
  start-page: 783
  issue: 5
  year: 2017
  end-page: 796
  ident: CR30
  article-title: Active tuned mass damper for damping of offshore wind turbine vibrations
  publication-title: Wind Energy
  doi: 10.1002/we.2063
– volume: 38
  start-page: 2695
  year: 2014
  end-page: 2715
  ident: CR33
  article-title: A mathematical model for horizontal axis wind turbine blades
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2013.10.068
– ident: CR49
– ident: CR51
– ident: CR12
– volume: 166
  start-page: 159
  year: 2012
  end-page: 169
  ident: CR8
  article-title: Dynamics of offshore wind turbines supported on two foundations
  publication-title: Proc ICE-Geotech Eng
  doi: 10.1680/geng.11.00015
– volume: 16
  start-page: 2001
  issue: 13
  year: 2010
  end-page: 2021
  ident: CR4
  article-title: Modeling and dynamics of a horizontal axis wind turbine
  publication-title: J Vib Control
  doi: 10.1177/1077546309350189
– ident: CR29
– volume: 180
  start-page: 357
  year: 2019
  end-page: 378
  ident: CR36
  article-title: Modeling wind turbine blades by geometrically-exact beam and shell elements: a comparative approach
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.09.032
– ident: CR42
– volume: 104
  start-page: 89
  issue: 2
  year: 2009
  end-page: 95
  ident: CR1
  article-title: Structural dynamic analysis of wind turbine systems
  publication-title: J Sol Energy Eng
  doi: 10.1115/1.3266291
– volume: 18
  start-page: 840
  year: 2011
  end-page: 851
  ident: CR19
  article-title: Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.404
– volume: 141
  start-page: 303
  year: 2017
  end-page: 315
  ident: CR24
  article-title: Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.03.006
– year: 1998
  ident: CR2
  publication-title: Dynamic analysis of both on and offshore wind turbines in the frequency domain
– volume: 27
  start-page: 1209
  year: 2005
  end-page: 1219
  ident: CR17
  article-title: Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2005.03.004
– volume: 160
  start-page: 449
  year: 2018
  end-page: 460
  ident: CR27
  article-title: Multiple tuned mass damper for multi-mode vibration reduction of offshore wind turbine under seismic excitation
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2018.04.041
– volume: 80
  start-page: 724
  year: 2015
  end-page: 736
  ident: CR46
  article-title: Foundation damping and the dynamics of offshore wind turbine monopiles
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.02.058
– ident: CR50
– volume: 33–37
  start-page: 1169
  year: 2008
  end-page: 1174
  ident: CR7
  article-title: Static and dynamic analysis of wind turbine tower structure
  publication-title: Adv Mater Res
  doi: 10.4028/www.scientific.net/AMR.33-37.1169
– volume: 74
  start-page: 40
  year: 2015
  end-page: 45
  ident: CR11
  article-title: An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2015.03.007
– year: 1990
  ident: CR39
  publication-title: Sea loads on ships and offshore structures
– volume: 14
  start-page: 85
  issue: 2
  year: 2011
  end-page: 112
  ident: CR9
  article-title: Vibrations of wind-structures considering soil-structure interaction
  publication-title: Wind Struct
  doi: 10.12989/was.2011.14.2.085
– volume: 8
  start-page: 1
  year: 1973
  end-page: 95
  ident: CR40
  article-title: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)
  publication-title: Deut Hydrogr Z
– volume: 26
  start-page: 211
  year: 2002
  end-page: 220
  ident: CR5
  article-title: Wind turbine structural dynamics—a review of the principles for modern power generation, onshore and offshore
  publication-title: Wind Eng
  doi: 10.1260/030952402321039412
– volume: 22
  start-page: 747
  year: 2017
  end-page: 756
  ident: CR35
  article-title: Aerodynamics and structural analysis of wind turbine blade
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2018.03.107
– volume: 17
  start-page: 399
  year: 2023
  end-page: 413
  ident: CR48
  article-title: A new numerical strategy for solving nonlinear singular Emden-Fowler delay differential models with variable order
  publication-title: Math Sci
  doi: 10.1007/s40096-022-00459-z
– volume: 88
  start-page: 16
  year: 2018
  end-page: 36
  ident: CR6
  article-title: A review of foundations of offshore wind energy convertors: current status and future perspectives
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.02.005
– volume: 10
  start-page: S332
  year: 2010
  end-page: S334
  ident: CR32
  article-title: Linear vibration analysis of rotating wind-turbine blade
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2009.11.036
– volume: 31
  start-page: 805
  year: 2011
  end-page: 816
  ident: CR10
  article-title: Experimental validation of soil-structure interaction of offshore wind turbines
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2011.01.004
– ident: CR43
– year: 2023
  ident: CR53
  article-title: Stability, existence, and uniqueness for solving fractional glioblastoma multiforme using a Caputo-Fabrizio derivative
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.9038
– ident: CR47
– ident: CR37
– ident: CR23
– ident: CR44
– volume: 74
  start-page: 649
  year: 2000
  end-page: 666
  ident: CR16
  article-title: Structural design optimization of wind turbine towers
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(99)00079-6
– ident: CR3
– year: 2018
  ident: CR15
  article-title: Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2017.11.010
– ident: CR38
– volume: 373
  start-page: 20140069
  year: 2015
  ident: CR25
  article-title: Emerging trends in vibration control of wind turbines: a focus on a dual control strategy
  publication-title: Philos Trans R Soc A
  doi: 10.1098/rsta.2014.0069
– volume: 99
  start-page: 285
  year: 2018
  end-page: 305
  ident: CR28
  article-title: Semi-active control of monopile offshore wind turbines under multi-hazards
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.06.016
– ident: CR31
– ident: CR13
– volume: 56
  start-page: 954
  year: 2013
  end-page: 957
  ident: CR21
  article-title: The vibration analysis of wind turbine blade–cabin–tower coupling system
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2013.06.008
– volume: 13
  start-page: 8489
  year: 2018
  end-page: 8493
  ident: CR52
  article-title: Reduced differential transform method for solving fractional-order biological systems
  publication-title: J Eng Appl Sci
  doi: 10.36478/jeasci.2018.8489.8493
– ident: CR34
– ident: CR41
– volume: 9
  start-page: 1
  issue: 3
  year: 2017
  end-page: 17
  ident: CR14
  article-title: Dynamic analysis of wind turbines including nacelle–tower–foundation interaction for condition of incomplete structural parameters
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814017692940
– ident: CR20
– volume: 56
  start-page: 954
  year: 2013
  ident: 444_CR21
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2013.06.008
– volume: 74
  start-page: 649
  year: 2000
  ident: 444_CR16
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(99)00079-6
– ident: 444_CR49
  doi: 10.1016/j.rinp.2021.104091
– volume: 17
  start-page: 399
  year: 2023
  ident: 444_CR48
  publication-title: Math Sci
  doi: 10.1007/s40096-022-00459-z
– volume: 20
  start-page: 783
  issue: 5
  year: 2017
  ident: 444_CR30
  publication-title: Wind Energy
  doi: 10.1002/we.2063
– ident: 444_CR20
  doi: 10.1155/2013/982597
– volume: 88
  start-page: 16
  year: 2018
  ident: 444_CR6
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.02.005
– ident: 444_CR34
  doi: 10.3390/en10010121
– volume: 421
  start-page: 132
  year: 2018
  ident: 444_CR26
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.02.004
– ident: 444_CR45
  doi: 10.2172/947422
– volume: 8
  start-page: 1
  year: 1973
  ident: 444_CR40
  publication-title: Deut Hydrogr Z
– volume: 104
  start-page: 89
  issue: 2
  year: 2009
  ident: 444_CR1
  publication-title: J Sol Energy Eng
  doi: 10.1115/1.3266291
– ident: 444_CR13
– year: 2018
  ident: 444_CR15
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2017.11.010
– ident: 444_CR50
  doi: 10.1142/S0129183121500972
– volume: 348
  start-page: 1470
  year: 2011
  ident: 444_CR18
  publication-title: J Frankl Inst
  doi: 10.1016/j.jfranklin.2010.04.013
– ident: 444_CR43
  doi: 10.2172/1004009
– volume: 33–37
  start-page: 1169
  year: 2008
  ident: 444_CR7
  publication-title: Adv Mater Res
  doi: 10.4028/www.scientific.net/AMR.33-37.1169
– volume: 74
  start-page: 40
  year: 2015
  ident: 444_CR11
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2015.03.007
– ident: 444_CR38
  doi: 10.1088/1742-6596/1264/1/012049
– ident: 444_CR42
  doi: 10.2172/891594
– ident: 444_CR41
– year: 2023
  ident: 444_CR53
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.9038
– volume: 18
  start-page: 840
  year: 2011
  ident: 444_CR19
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.404
– volume: 38
  start-page: 2695
  year: 2014
  ident: 444_CR33
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2013.10.068
– volume-title: Dynamic analysis of both on and offshore wind turbines in the frequency domain
  year: 1998
  ident: 444_CR2
– volume: 80
  start-page: 724
  year: 2015
  ident: 444_CR46
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.02.058
– volume: 26
  start-page: 211
  year: 2002
  ident: 444_CR5
  publication-title: Wind Eng
  doi: 10.1260/030952402321039412
– volume: 9
  start-page: 1
  issue: 3
  year: 2017
  ident: 444_CR14
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814017692940
– volume: 166
  start-page: 159
  year: 2012
  ident: 444_CR8
  publication-title: Proc ICE-Geotech Eng
  doi: 10.1680/geng.11.00015
– ident: 444_CR47
  doi: 10.1142/S012918312250108X
– volume: 141
  start-page: 303
  year: 2017
  ident: 444_CR24
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.03.006
– ident: 444_CR44
– volume: 27
  start-page: 1209
  year: 2005
  ident: 444_CR17
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2005.03.004
– volume: 22
  start-page: 747
  year: 2017
  ident: 444_CR35
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2018.03.107
– ident: 444_CR37
  doi: 10.1088/1742-6596/1264/1/012048
– volume: 13
  start-page: 8489
  year: 2018
  ident: 444_CR52
  publication-title: J Eng Appl Sci
  doi: 10.36478/jeasci.2018.8489.8493
– volume: 10
  start-page: S332
  year: 2010
  ident: 444_CR32
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2009.11.036
– ident: 444_CR12
  doi: 10.7712/100016.2117.6772
– ident: 444_CR29
  doi: 10.3390/jmse6030102
– volume: 160
  start-page: 449
  year: 2018
  ident: 444_CR27
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2018.04.041
– volume: 99
  start-page: 285
  year: 2018
  ident: 444_CR28
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.06.016
– ident: 444_CR3
– volume: 31
  start-page: 805
  year: 2011
  ident: 444_CR10
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2011.01.004
– ident: 444_CR31
  doi: 10.1243/09544062JMES759
– volume: 373
  start-page: 20140069
  year: 2015
  ident: 444_CR25
  publication-title: Philos Trans R Soc A
  doi: 10.1098/rsta.2014.0069
– volume: 180
  start-page: 357
  year: 2019
  ident: 444_CR36
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.09.032
– volume: 14
  start-page: 85
  issue: 2
  year: 2011
  ident: 444_CR9
  publication-title: Wind Struct
  doi: 10.12989/was.2011.14.2.085
– ident: 444_CR23
  doi: 10.1016/j.engstruct.2015.12.019
– ident: 444_CR22
  doi: 10.1063/1.3515600
– volume: 16
  start-page: 2001
  issue: 13
  year: 2010
  ident: 444_CR4
  publication-title: J Vib Control
  doi: 10.1177/1077546309350189
– volume-title: Sea loads on ships and offshore structures
  year: 1990
  ident: 444_CR39
– ident: 444_CR51
  doi: 10.3390/math11092045
SSID ssj0001920123
ssib044731334
ssib052605897
Score 2.2399287
Snippet Background This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well...
Background This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well...
BackgroundThis study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding soil, as well...
Abstract Background This study introduces a numerical model designed to simulate interactions occurring between a wind turbine's tower and the surrounding...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 107
SubjectTerms Aerodynamic loads
Aerodynamics
Air-turbines
Alternative energy sources
Blades
Case studies
Comparative analysis
Dynamic response
Energy resources
Environmental conditions
Euler-Lagrange equation
Euler–Lagrange equations
Finite element analysis
Finite element method
Hermite polynomials
Investigations
JONSWAP spectrum
Mathematical analysis
Medicine
Medicine & Public Health
Model accuracy
Morison equation
Numerical model
Numerical models
Offshore
Offshore structures
Optimization techniques
Renewable resources
Robustness (mathematics)
Shape functions
Simulation
Simulation methods
Soil structure
Soils
Sustainability
Turbine industry
Turbines
Turbulence models
Variable cross-sectional tower
Vibration
Wind effects
Wind power
Wind turbine
Wind turbines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSx0xFA7iyo0otTj1QRaCizY4mWQyM0srigi6qsVdyBOVy53i3Ku463_o2j_XX9JzkrnVItKNqzCTEA7nkXNOHt8hZK8ry8i9cywK65hsZcU6FQKLeOYG8S3IHPchzy_U6aU8u6qvXpT6wjthGR44M-6Ae9m6oISxwUqvOvBYpmlEgG_hZEyhEfi8F8nUbY5bMFhYvJJp1cEgBRgUAxfFEkYae_zHEyXA_tfL8qvz0eR2TtbI6hgv0sNM5zpZCtMP5Ok7ZLj45ommqdmQ7lPhuHw9g_ZTam9Ydle5w06MD8Pvn79SWTRoh_5mgk3Cj53fBepzbXqKABJ3-bkDztPHOFz30P8A2TuFkZBKBzrMLW7g0Fmf_sNED-Y-0Elv_LBBLk-Ovx2dsrHOAnOSdzMGGWGsG9455co6QohiOfeNDKKKHUQoMXrgl2mEr6OoXaVCC5YbrYxCWmXrTnwky9N-GjYJtZbL4FFCjZdR8daY2ijDvRCxFLUsyOcFz_WPDKehUxrSKp0lpEFCOklIPxbkK4rl70iEwk4_QEH0qCD6fwpSkH0UqkaDnQH7zPjuAAhG6Ct9CPmFbJpSioJsL-SuR0sedNXCMozAeVVBvix04bn7beI_vQfxW2QF69vn-zPbZBl0IuxAFDSzu0nh_wDY3wvB
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1LaxYxcNAK4kV84mqVHAQPGtxsHrt7rMVShHqy0lvIUysf38qXr5be_A-e_XP-EifJriLVg6ewmyeZmWQm8wJ4OrZtZN45Grl1VAyio6MKgcasc0P-FmGe3yGP3qrDY_HmRJ7MTmFpsXZfVJLlpC5kPaiXSXCkCIp3DC1BzujFVbgmUXbPeL0_-zh8qjxLZhQWD5m_dv3jFirB-i8fyZd0o-XKObgFN2dekexV4N6GK2F9B64fzdrwu_D9PQq62fWJlFloKmZVuUu10iDTmthTWm-tWmFXxof04-u3kh0NyzSdrnJRwsiebQLxNUU9yXEkNtXrIY8zxZg-Tlh_jkI8wZYoUQeSzmx-xyHbqfzHgc7Nl0BWk_HpHhwfvH63f0jndAvUCTZuKQqGUfZsdMq1MiKnYhnzvQi8iyMyKjF63DrTcy8jl65TYUACjlZELqyycuT3YWc9rcMDINYyEXxr-r73Iio2GCONMsxzHlsuRQPPl-3Xn2tUDV2kkUHpCiyNwNIFWPqigVcZQr9a5ojY5ce0-aBnAtPMi8EFxY0NVng1ImeD0_OA39yJaBp4luGrM91ucfvM7H6AC84RsPQeihmi71vBG9hdUEDPBJ10N-BpnOPndQ28WNDid_W_F__w_5o_ghs5oX01mNmFHYR-eIxsz9Y-KVj-E1JdAi8
  priority: 102
  providerName: Springer Nature
Title Variable cross-sectional effect on bi-directional blades–tower–soil–structure dynamic interaction on offshore wind turbine subject to wind–wave loads
URI https://link.springer.com/article/10.1186/s43088-023-00444-y
https://www.proquest.com/docview/2888701172
https://doaj.org/article/1d48ce63abeb4d69820a773eabe3c4fa
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbtQwELVoe-GCQIAItCsfkDiA1Th2nORUtatdKqRWCFHUm2XHNrRabcpmS9UL4h8483N8CTN20gpVcLGV2HIiz4xn3tieIeRlk-eBu7ZlQdiWyVoWrFHes4B7bmDfAs3RD3l0rA5P5LvT8nRwuPXDscpxTYwLteta9JHvFgDVKgxgVuxdfGWYNQp3V4cUGhtkC5bgGsDX1sHs-P2HkaOkrASAsBuOK9F6r4d9s_Nk36BRETPQcclAd5XjzZpa7fZSgBAyUGssxlVj139prxjk_-5SfmdPNaqq-UPyYLAx6X5iikfknl8-Jr8-ASrGe1I0Ds36eAYL-6UjHbRbUnvGkopLDXZhnO9___gZU6lB3XdnC6xizNnLlacu5bOnGHRila5I4DhdCP2XDtqvAPFT6Anw29P-0qLTh667-B4GujLfPF10xvVPyMl89nF6yIbcDKyVvFkzQJGhrHjTqjYvA5g1lnNXSS-K0IBVE4KD-TKVcGUQZVsoX4O0ByuDkFbZshFPyeayW_pnhFrLpXe5qarKyaB4bUxplOFOiJCLUmbk9Tjn-iKF4NARutRKJwppoJCOFNLXGTlAstz0xPDZ8UW3-qwHadTcybr1ShjrrXSqATMIPi88PItWBpORV0hUjUK-hukzw10F-GEMl6X3AZPIqsqlyMj2SHc9SH-vb3k1I29GXrht_vfPP___aC_Ifcx2n07TbJNNoLbfAZtobSdko56_nQzsD0_TQmKpppPoZYDy6PvsD0-1ENc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoALAgFioYAPIA5gNYknrwNC5bFs6ePUot6MHdtl0ZKUzZbV3vgPnPkL_Ch-CTNO0gpVcOvJim05Ub552p4Zxh6XUeRjW1XCS1MJKCARZeac8HTmhvYtYk77kHv72eQQ3h-lR2vs1xALQ9cqB5kYBLVtKtoj30zQVcspgVny8uSroKpRdLo6lNDoyGLHrZbosrUvtt8gvk-SZPz24PVE9FUFRAVxuRDo__g0j8sqq6LUo0I2cWxzcDLxJepj7y0A6Fza1Mu0SjJXIJ16A16CyUxKyZdQ5F8BKUviqGL8bqBfgFyiy3dG3yn5CkV_Sve5s6bIhAn17mIQqCnTIY6nyDZbkMjyApWoCFncxOovXRlKClxUHBdOcINiHN9g13uLlm91JHiTrbn6Fvv5AX1wisriYWnRhhtfNK-7QMKbmpup6BRqN2Bm2rr29_cfoXAbtm0znVETMtyezh23q1p_mVacUlzMu4AMWqfxvv3U4PhyWluOM9HZd7w9NbTFxBdN6MeFlvqb47NG2_Y2O7wUzO6w9bqp3V3GjYnB2UjneW7BZ3GhdaozHVspfSRTGLFnwz9XJ13CDxUcpSJTHUIKEVIBIbUasVcEy9lMStYdOpr5sep5X8UWisplUhtnwGYlGl34eunwWVbg9Yg9JVAViZQF_j7dR0bgB1NyLrWFHhDkeQRyxDYG3FUva1p1zhkj9nyghfPhf3_8vf-v9ohdnRzs7ard7f2d--xaQoQZ7vFssHVE3j1Aa2xhHgYW4OzjZfPcH0FLRmw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqrYS4oCJALBTwAcQBrE1ix04OCLW0q5bCqkIU9Wb8C4u2SdlsWe2Nd-DMi_A4PAljJ2mFKrj1FCW2nCjfeGY-ezyD0OMySXxqjSGeakNYwTJScueID3tu4N8C5mEd8u2E7x2x18f58Rr61Z-FCWGVvU6MitrWJqyRjzKgaiIkMMtGvguLONwZvzz9SkIFqbDT2pfTaEXkwK2WQN-aF_s7gPWTLBvvvn-1R7oKA8SwtFwQ4EI-F2lpuElyD8ZZp6kVzNHMl2CbvbeMMSWozT3NTcZdATLrNfOUaa7zkIgJ1P-6AFaUDND69u7k8F0vzYwJCgTwXNrzwByKbs_uS-tbBYcmVr9LGQG7mfenego-ahgFBUDApJKY042s_rKcscDAZTNyaT83msnxBrrR-bd4qxXIm2jNVbfQzw_AyMMZLRyHJk2M_wr92nASXFdYT0lrXtsGPVPWNb-__4hl3ODa1NNZuMR8t2dzh-2qUidTg0PCi3l7PCOMU3vffK6hfTmtLIaeQP0dbs50WHDCizo-h4GW6pvDs1rZ5jY6uhLU7qBBVVfuLsJap8zZRAkhLPM8LZTKFVeppdQnNGdD9Kz_5_K0Tf8hI20quGwRkoCQjAjJ1RBtB1jOe4bU3fFBPf8kO00gU8sK4zhV2mlmeQkuGLyeOrinhnk1RE8DqDIomAX8PtWdk4APDqm65BbwISZEwugQbfa4y07zNPJingzR814WLpr__fH3_j_aI3QN5pt8sz85uI-uZ0EuY1DPJhoA8O4BuGYL_bCbAxh9vOpp9wflr0v-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+cross-sectional+effect+on+bi-directional+blades%E2%80%93tower%E2%80%93soil%E2%80%93structure+dynamic+interaction+on+offshore+wind+turbine+subject+to+wind%E2%80%93wave+loads&rft.jtitle=Beni-Suef+University+journal+of+basic+and+applied+sciences&rft.au=El+Absawy%2C+Mostafa+A.&rft.au=Elnaggar%2C+Zakaria&rft.au=Ibrahim%2C+Hesham+H.&rft.au=Taha%2C+M.+H.&rft.date=2023-12-01&rft.issn=2314-8543&rft.eissn=2314-8543&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1186%2Fs43088-023-00444-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s43088_023_00444_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-8543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-8543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-8543&client=summon