Meflin-Positive Cancer-Associated Fibroblasts Inhibit Pancreatic Carcinogenesis

Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and clinical studies have suggested that there may exist at least two functionally different populations of CAFs, that is, cancer-promoting CAFs...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 79; no. 20; pp. 5367 - 5381
Main Authors Mizutani, Yasuyuki, Kobayashi, Hiroki, Iida, Tadashi, Asai, Naoya, Masamune, Atsushi, Hara, Akitoshi, Esaki, Nobutoshi, Ushida, Kaori, Mii, Shinji, Shiraki, Yukihiro, Ando, Kenju, Weng, Liang, Ishihara, Seiichiro, Ponik, Suzanne M., Conklin, Matthew W., Haga, Hisashi, Nagasaka, Arata, Miyata, Takaki, Matsuyama, Makoto, Kobayashi, Tomoe, Fujii, Tsutomu, Yamada, Suguru, Yamaguchi, Junpei, Wang, Tongtong, Woods, Susan L., Worthley, Daniel, Shimamura, Teppei, Fujishiro, Mitsuhiro, Hirooka, Yoshiki, Enomoto, Atsushi, Takahashi, Masahide
Format Journal Article
LanguageEnglish
Published United States 15.10.2019
Online AccessGet full text

Cover

Loading…
Abstract Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and clinical studies have suggested that there may exist at least two functionally different populations of CAFs, that is, cancer-promoting CAFs (pCAF) and cancer-restraining CAFs (rCAF). Although various pCAF markers have been identified, the identity of rCAFs remains unknown because of the lack of rCAF-specific marker(s). In this study, we found that Meflin, a glycosylphosphatidylinositol-anchored protein that is a marker of mesenchymal stromal/stem cells and maintains their undifferentiated state, is expressed by pancreatic stellate cells that are a source of CAFs in pancreatic ductal adenocarcinoma (PDAC). hybridization analysis of 71 human PDAC tissues revealed that the infiltration of Meflin-positive CAFs correlated with favorable patient outcome. Consistent herewith, Meflin deficiency led to significant tumor progression with poorly differentiated histology in a PDAC mouse model. Similarly, genetic ablation of Meflin-positive CAFs resulted in poor differentiation of tumors in a syngeneic transplantation model. Conversely, delivery of a Meflin-expressing lentivirus into the tumor stroma or overexpression of Meflin in CAFs suppressed the growth of xenograft tumors. Lineage tracing revealed that Meflin-positive cells gave rise to α-smooth muscle actin-positive CAFs that are positive or negative for Meflin, suggesting a mechanism for generating CAF heterogeneity. Meflin deficiency or low expression resulted in straightened stromal collagen fibers, which represent a signature for aggressive tumors, in mouse or human PDAC tissues, respectively. Together, the data suggest that Meflin is a marker of rCAFs that suppress PDAC progression. SIGNIFICANCE: Meflin marks and functionally contributes to a subset of cancer-associated fibroblasts that exert antitumoral effects. http://cancerres.aacrjournals.org/content/canres/79/20/5367/F1.large.jpg.
AbstractList Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and clinical studies have suggested that there may exist at least two functionally different populations of CAFs, that is, cancer-promoting CAFs (pCAF) and cancer-restraining CAFs (rCAF). Although various pCAF markers have been identified, the identity of rCAFs remains unknown because of the lack of rCAF-specific marker(s). In this study, we found that Meflin, a glycosylphosphatidylinositol-anchored protein that is a marker of mesenchymal stromal/stem cells and maintains their undifferentiated state, is expressed by pancreatic stellate cells that are a source of CAFs in pancreatic ductal adenocarcinoma (PDAC). hybridization analysis of 71 human PDAC tissues revealed that the infiltration of Meflin-positive CAFs correlated with favorable patient outcome. Consistent herewith, Meflin deficiency led to significant tumor progression with poorly differentiated histology in a PDAC mouse model. Similarly, genetic ablation of Meflin-positive CAFs resulted in poor differentiation of tumors in a syngeneic transplantation model. Conversely, delivery of a Meflin-expressing lentivirus into the tumor stroma or overexpression of Meflin in CAFs suppressed the growth of xenograft tumors. Lineage tracing revealed that Meflin-positive cells gave rise to α-smooth muscle actin-positive CAFs that are positive or negative for Meflin, suggesting a mechanism for generating CAF heterogeneity. Meflin deficiency or low expression resulted in straightened stromal collagen fibers, which represent a signature for aggressive tumors, in mouse or human PDAC tissues, respectively. Together, the data suggest that Meflin is a marker of rCAFs that suppress PDAC progression. SIGNIFICANCE: Meflin marks and functionally contributes to a subset of cancer-associated fibroblasts that exert antitumoral effects. http://cancerres.aacrjournals.org/content/canres/79/20/5367/F1.large.jpg.
Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and clinical studies have suggested that there may exist at least two functionally different populations of CAFs, that is, cancer-promoting CAFs (pCAF) and cancer-restraining CAFs (rCAF). Although various pCAF markers have been identified, the identity of rCAFs remains unknown because of the lack of rCAF-specific marker(s). In this study, we found that Meflin, a glycosylphosphatidylinositol-anchored protein that is a marker of mesenchymal stromal/stem cells and maintains their undifferentiated state, is expressed by pancreatic stellate cells that are a source of CAFs in pancreatic ductal adenocarcinoma (PDAC). In situ hybridization analysis of 71 human PDAC tissues revealed that the infiltration of Meflin-positive CAFs correlated with favorable patient outcome. Consistent herewith, Meflin deficiency led to significant tumor progression with poorly differentiated histology in a PDAC mouse model. Similarly, genetic ablation of Meflin-positive CAFs resulted in poor differentiation of tumors in a syngeneic transplantation model. Conversely, delivery of a Meflin-expressing lentivirus into the tumor stroma or overexpression of Meflin in CAFs suppressed the growth of xenograft tumors. Lineage tracing revealed that Meflin-positive cells gave rise to α-smooth muscle actin-positive CAFs that are positive or negative for Meflin, suggesting a mechanism for generating CAF heterogeneity. Meflin deficiency or low expression resulted in straightened stromal collagen fibers, which represent a signature for aggressive tumors, in mouse or human PDAC tissues, respectively. Together, the data suggest that Meflin is a marker of rCAFs that suppress PDAC progression. SIGNIFICANCE: Meflin marks and functionally contributes to a subset of cancer-associated fibroblasts that exert antitumoral effects.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5367/F1.large.jpg.Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and clinical studies have suggested that there may exist at least two functionally different populations of CAFs, that is, cancer-promoting CAFs (pCAF) and cancer-restraining CAFs (rCAF). Although various pCAF markers have been identified, the identity of rCAFs remains unknown because of the lack of rCAF-specific marker(s). In this study, we found that Meflin, a glycosylphosphatidylinositol-anchored protein that is a marker of mesenchymal stromal/stem cells and maintains their undifferentiated state, is expressed by pancreatic stellate cells that are a source of CAFs in pancreatic ductal adenocarcinoma (PDAC). In situ hybridization analysis of 71 human PDAC tissues revealed that the infiltration of Meflin-positive CAFs correlated with favorable patient outcome. Consistent herewith, Meflin deficiency led to significant tumor progression with poorly differentiated histology in a PDAC mouse model. Similarly, genetic ablation of Meflin-positive CAFs resulted in poor differentiation of tumors in a syngeneic transplantation model. Conversely, delivery of a Meflin-expressing lentivirus into the tumor stroma or overexpression of Meflin in CAFs suppressed the growth of xenograft tumors. Lineage tracing revealed that Meflin-positive cells gave rise to α-smooth muscle actin-positive CAFs that are positive or negative for Meflin, suggesting a mechanism for generating CAF heterogeneity. Meflin deficiency or low expression resulted in straightened stromal collagen fibers, which represent a signature for aggressive tumors, in mouse or human PDAC tissues, respectively. Together, the data suggest that Meflin is a marker of rCAFs that suppress PDAC progression. SIGNIFICANCE: Meflin marks and functionally contributes to a subset of cancer-associated fibroblasts that exert antitumoral effects.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5367/F1.large.jpg.
Author Ponik, Suzanne M.
Ishihara, Seiichiro
Miyata, Takaki
Woods, Susan L.
Esaki, Nobutoshi
Worthley, Daniel
Haga, Hisashi
Wang, Tongtong
Ando, Kenju
Yamada, Suguru
Matsuyama, Makoto
Hirooka, Yoshiki
Takahashi, Masahide
Enomoto, Atsushi
Fujii, Tsutomu
Yamaguchi, Junpei
Conklin, Matthew W.
Fujishiro, Mitsuhiro
Iida, Tadashi
Kobayashi, Tomoe
Ushida, Kaori
Masamune, Atsushi
Shimamura, Teppei
Weng, Liang
Shiraki, Yukihiro
Nagasaka, Arata
Asai, Naoya
Mizutani, Yasuyuki
Hara, Akitoshi
Mii, Shinji
Kobayashi, Hiroki
Author_xml – sequence: 1
  givenname: Yasuyuki
  surname: Mizutani
  fullname: Mizutani, Yasuyuki
– sequence: 2
  givenname: Hiroki
  orcidid: 0000-0002-1717-4870
  surname: Kobayashi
  fullname: Kobayashi, Hiroki
– sequence: 3
  givenname: Tadashi
  surname: Iida
  fullname: Iida, Tadashi
– sequence: 4
  givenname: Naoya
  surname: Asai
  fullname: Asai, Naoya
– sequence: 5
  givenname: Atsushi
  surname: Masamune
  fullname: Masamune, Atsushi
– sequence: 6
  givenname: Akitoshi
  surname: Hara
  fullname: Hara, Akitoshi
– sequence: 7
  givenname: Nobutoshi
  surname: Esaki
  fullname: Esaki, Nobutoshi
– sequence: 8
  givenname: Kaori
  surname: Ushida
  fullname: Ushida, Kaori
– sequence: 9
  givenname: Shinji
  surname: Mii
  fullname: Mii, Shinji
– sequence: 10
  givenname: Yukihiro
  orcidid: 0000-0003-3666-0556
  surname: Shiraki
  fullname: Shiraki, Yukihiro
– sequence: 11
  givenname: Kenju
  surname: Ando
  fullname: Ando, Kenju
– sequence: 12
  givenname: Liang
  surname: Weng
  fullname: Weng, Liang
– sequence: 13
  givenname: Seiichiro
  surname: Ishihara
  fullname: Ishihara, Seiichiro
– sequence: 14
  givenname: Suzanne M.
  orcidid: 0000-0003-1367-4349
  surname: Ponik
  fullname: Ponik, Suzanne M.
– sequence: 15
  givenname: Matthew W.
  surname: Conklin
  fullname: Conklin, Matthew W.
– sequence: 16
  givenname: Hisashi
  surname: Haga
  fullname: Haga, Hisashi
– sequence: 17
  givenname: Arata
  surname: Nagasaka
  fullname: Nagasaka, Arata
– sequence: 18
  givenname: Takaki
  orcidid: 0000-0002-5952-0241
  surname: Miyata
  fullname: Miyata, Takaki
– sequence: 19
  givenname: Makoto
  surname: Matsuyama
  fullname: Matsuyama, Makoto
– sequence: 20
  givenname: Tomoe
  orcidid: 0000-0002-1717-4870
  surname: Kobayashi
  fullname: Kobayashi, Tomoe
– sequence: 21
  givenname: Tsutomu
  surname: Fujii
  fullname: Fujii, Tsutomu
– sequence: 22
  givenname: Suguru
  surname: Yamada
  fullname: Yamada, Suguru
– sequence: 23
  givenname: Junpei
  surname: Yamaguchi
  fullname: Yamaguchi, Junpei
– sequence: 24
  givenname: Tongtong
  surname: Wang
  fullname: Wang, Tongtong
– sequence: 25
  givenname: Susan L.
  surname: Woods
  fullname: Woods, Susan L.
– sequence: 26
  givenname: Daniel
  surname: Worthley
  fullname: Worthley, Daniel
– sequence: 27
  givenname: Teppei
  surname: Shimamura
  fullname: Shimamura, Teppei
– sequence: 28
  givenname: Mitsuhiro
  surname: Fujishiro
  fullname: Fujishiro, Mitsuhiro
– sequence: 29
  givenname: Yoshiki
  surname: Hirooka
  fullname: Hirooka, Yoshiki
– sequence: 30
  givenname: Atsushi
  surname: Enomoto
  fullname: Enomoto, Atsushi
– sequence: 31
  givenname: Masahide
  orcidid: 0000-0002-2803-2683
  surname: Takahashi
  fullname: Takahashi, Masahide
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31439548$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1OAyEURompsT_6CJpZuqHCDMwwcdU0Vpuo7ULXhAFGMVOoQE18e5m0deHC1c1NzndvvjMGA-usBuASoynGlN0ghBikpMqn89kzxDVEhJITMMK0YLAihA7A6JcZgnEIH2mlGNEzMCwwKWpK2AisnnTbGQvXLphovnQ2F1ZqD2chOGlE1CpbmMa7phMhhmxp301jYrZOlNciGpkCXhrr3rTVwYRzcNqKLuiLw5yA18Xdy_wBPq7ul_PZI5QE1xESgplKNRpVNwI3gqi2kqpUlKpcsKKpyrZGmBGs6pqWIk-TFQgXQmFdSloVE3C9v7v17nOnQ-QbE6TuOmG12wWeF6jMU0uGEnp1QHfNRiu-9WYj_Dc_SkjA7R6Q3oXgdculiambs9EL03GMeK-c9zp5r5Mn5RzXvFee0vRP-vjg_9wPk_aEHA
CitedBy_id crossref_primary_10_1053_j_gastro_2020_11_011
crossref_primary_10_1111_imr_12978
crossref_primary_10_1186_s12943_024_01990_4
crossref_primary_10_17116_patol20248606128
crossref_primary_10_1016_j_trecan_2024_11_005
crossref_primary_10_1186_s12943_021_01428_1
crossref_primary_10_1016_j_trecan_2022_03_004
crossref_primary_10_3389_fonc_2021_668349
crossref_primary_10_1016_j_trecan_2022_03_001
crossref_primary_10_1111_imm_13496
crossref_primary_10_1016_j_biomaterials_2024_122605
crossref_primary_10_1016_j_actbio_2024_12_007
crossref_primary_10_1038_s41388_022_02288_9
crossref_primary_10_1016_j_semcancer_2021_03_006
crossref_primary_10_1111_gtc_12855
crossref_primary_10_1111_cas_14346
crossref_primary_10_1016_j_isci_2022_104659
crossref_primary_10_1101_cshperspect_a041411
crossref_primary_10_1111_imr_12969
crossref_primary_10_1186_s13046_020_01611_0
crossref_primary_10_1177_03008916231176857
crossref_primary_10_7554_eLife_95009
crossref_primary_10_1111_gtc_13154
crossref_primary_10_1165_rcmb_2021_0484OC
crossref_primary_10_1186_s12943_023_01731_z
crossref_primary_10_1126_scisignal_abg3449
crossref_primary_10_1186_s13045_021_01037_x
crossref_primary_10_1038_s41416_024_02734_3
crossref_primary_10_1093_jjco_hyae118
crossref_primary_10_3390_cancers14020411
crossref_primary_10_3390_ijms222111716
crossref_primary_10_3389_fcell_2021_749924
crossref_primary_10_1158_1541_7786_MCR_20_0439
crossref_primary_10_1016_j_prp_2024_155576
crossref_primary_10_1016_j_bbcan_2023_188945
crossref_primary_10_1002_1878_0261_13077
crossref_primary_10_3390_cancers14143471
crossref_primary_10_1111_pin_13503
crossref_primary_10_1186_s10020_023_00665_y
crossref_primary_10_1111_pin_13198
crossref_primary_10_1002_mc_23517
crossref_primary_10_1016_j_isci_2021_103497
crossref_primary_10_17116_patol20228405165
crossref_primary_10_1111_cas_16443
crossref_primary_10_1038_s41419_022_05320_8
crossref_primary_10_2147_IJN_S447350
crossref_primary_10_1016_j_trecan_2020_12_014
crossref_primary_10_1016_j_bbcan_2020_188443
crossref_primary_10_1016_j_drup_2022_100864
crossref_primary_10_1016_j_bbcan_2020_188444
crossref_primary_10_31857_S0026898423050105
crossref_primary_10_3389_fonc_2022_981547
crossref_primary_10_3390_cancers13061466
crossref_primary_10_1016_j_canlet_2025_217538
crossref_primary_10_1016_j_addr_2022_114504
crossref_primary_10_1002_cac2_12469
crossref_primary_10_3390_ijms23179512
crossref_primary_10_3390_cancers14215302
crossref_primary_10_1183_13993003_03397_2020
crossref_primary_10_3390_cancers14194880
crossref_primary_10_3390_cancers15061642
crossref_primary_10_1111_1759_7714_15477
crossref_primary_10_1186_s12943_022_01561_5
crossref_primary_10_1016_j_ajpath_2024_07_009
crossref_primary_10_1016_j_critrevonc_2023_104226
crossref_primary_10_1038_s41416_019_0705_1
crossref_primary_10_1038_s41568_025_00798_8
crossref_primary_10_1186_s12964_023_01125_0
crossref_primary_10_1007_s12094_024_03492_7
crossref_primary_10_1245_s10434_023_13867_9
crossref_primary_10_1186_s12967_024_05939_5
crossref_primary_10_1016_j_coi_2023_102410
crossref_primary_10_1016_j_semcancer_2025_02_001
crossref_primary_10_3389_fphar_2023_1329244
crossref_primary_10_3390_cancers14174243
crossref_primary_10_3389_fimmu_2024_1375013
crossref_primary_10_3390_cancers14122856
crossref_primary_10_1016_j_bbcan_2023_188901
crossref_primary_10_1016_j_intimp_2023_110601
crossref_primary_10_3390_cancers14143315
crossref_primary_10_1016_j_cell_2023_03_016
crossref_primary_10_3390_ijms24031833
crossref_primary_10_3389_fcell_2023_1166916
crossref_primary_10_1038_s41467_022_30638_4
crossref_primary_10_1371_journal_pone_0255049
crossref_primary_10_1158_2159_8290_CD_20_1484
crossref_primary_10_1016_j_bbcan_2021_188673
crossref_primary_10_1038_s41467_023_35793_w
crossref_primary_10_3390_cancers14041049
crossref_primary_10_1016_j_cels_2024_07_001
crossref_primary_10_1038_s41586_024_08194_2
crossref_primary_10_1016_j_bbcan_2021_188554
crossref_primary_10_1016_j_canlet_2022_215801
crossref_primary_10_1016_j_smim_2020_101417
crossref_primary_10_3390_cancers15061899
crossref_primary_10_1016_j_molmed_2023_03_002
crossref_primary_10_1016_j_ajpath_2024_03_012
crossref_primary_10_2958_suizo_35_568
crossref_primary_10_56083_RCV3N3_041
crossref_primary_10_2147_JHC_S436962
crossref_primary_10_1111_cas_15609
crossref_primary_10_3390_ijms222010973
crossref_primary_10_1016_j_jare_2024_05_031
crossref_primary_10_1186_s13046_024_03262_x
crossref_primary_10_3389_fimmu_2023_1140328
crossref_primary_10_1080_14737140_2022_2019018
crossref_primary_10_1007_s10555_024_10186_7
crossref_primary_10_1186_s12885_022_09272_2
crossref_primary_10_1111_cas_14521
crossref_primary_10_1097_MOG_0000000000000609
crossref_primary_10_1186_s12943_021_01463_y
crossref_primary_10_1186_s12885_021_08142_7
crossref_primary_10_1016_j_canlet_2021_12_025
crossref_primary_10_3390_ijms242216505
crossref_primary_10_7554_eLife_57243
crossref_primary_10_3389_fphys_2022_865105
crossref_primary_10_3389_fimmu_2024_1287459
crossref_primary_10_2745_dds_36_232
crossref_primary_10_1016_j_isci_2025_112057
crossref_primary_10_1152_ajpgi_00120_2021
crossref_primary_10_3389_fimmu_2023_1286750
crossref_primary_10_1002_cbin_12009
crossref_primary_10_3390_cancers14092197
crossref_primary_10_2958_suizo_38_37
crossref_primary_10_3390_cells10071653
crossref_primary_10_1136_gutjnl_2020_321952
crossref_primary_10_3390_cancers15092614
crossref_primary_10_3390_ijms22179121
crossref_primary_10_3390_cancers12051347
crossref_primary_10_3390_cells10020304
crossref_primary_10_1038_s41598_022_21178_4
crossref_primary_10_3390_cancers15030724
crossref_primary_10_3892_ijmm_2021_5055
crossref_primary_10_3390_cancers12123770
crossref_primary_10_1158_1535_7163_MCT_21_0335
crossref_primary_10_1186_s12935_024_03436_9
crossref_primary_10_1016_j_canlet_2024_216859
crossref_primary_10_1038_s41419_023_06032_3
crossref_primary_10_1016_j_canlet_2023_216279
crossref_primary_10_1016_j_oraloncology_2022_106270
crossref_primary_10_3390_cancers15010061
crossref_primary_10_4049_jimmunol_2200660
crossref_primary_10_1002_adhm_202202609
crossref_primary_10_1126_scisignal_abj5879
crossref_primary_10_1016_j_matbio_2024_06_004
crossref_primary_10_1111_pin_13461
crossref_primary_10_3390_cancers12113108
crossref_primary_10_1007_s10238_022_00886_1
crossref_primary_10_1016_j_pharmthera_2020_107753
crossref_primary_10_3390_biomedicines12030591
crossref_primary_10_1016_j_matbio_2020_05_001
crossref_primary_10_3390_cancers16234094
crossref_primary_10_1002_path_5926
crossref_primary_10_1038_s41417_021_00318_4
crossref_primary_10_1093_biomethods_bpaf013
crossref_primary_10_3389_fonc_2024_1331355
crossref_primary_10_3390_ijms232415576
crossref_primary_10_1002_path_6211
crossref_primary_10_1016_j_bbcan_2023_189065
crossref_primary_10_3390_ijms25116003
crossref_primary_10_1371_journal_pone_0281820
crossref_primary_10_1016_j_tips_2020_01_001
crossref_primary_10_1007_s00795_025_00424_4
crossref_primary_10_1016_j_matbio_2022_03_003
crossref_primary_10_3389_fcell_2023_1277076
crossref_primary_10_1053_j_gastro_2022_07_076
crossref_primary_10_1016_j_bbcan_2020_188418
crossref_primary_10_1007_s10147_024_02507_1
crossref_primary_10_1053_j_gastro_2021_08_023
crossref_primary_10_1016_j_intimp_2024_113482
crossref_primary_10_3390_cancers14163994
crossref_primary_10_1016_j_trsl_2024_04_003
crossref_primary_10_1158_1541_7786_MCR_21_0924
crossref_primary_10_1186_s12964_023_01204_2
crossref_primary_10_3389_fcell_2021_743907
crossref_primary_10_3390_cancers14092321
crossref_primary_10_1002_cbin_12004
crossref_primary_10_1158_0008_5472_CAN_22_2213
crossref_primary_10_1038_s41598_022_14297_5
crossref_primary_10_3389_fimmu_2022_1035276
crossref_primary_10_1016_j_jcmgh_2024_01_022
crossref_primary_10_1016_j_celrep_2023_113420
crossref_primary_10_1038_s41598_023_31265_9
crossref_primary_10_3390_ijms25021300
crossref_primary_10_1158_1541_7786_MCR_21_0282
crossref_primary_10_1186_s12967_023_04281_6
crossref_primary_10_3389_fimmu_2024_1341079
crossref_primary_10_1016_j_tranon_2021_101236
crossref_primary_10_1016_j_gastha_2024_09_012
crossref_primary_10_1111_cas_14578
crossref_primary_10_1016_j_cellsig_2024_111584
crossref_primary_10_1186_s12885_022_09847_z
crossref_primary_10_1158_0008_5472_CAN_23_3987
crossref_primary_10_1186_s40364_022_00406_z
crossref_primary_10_26508_lsa_202101230
crossref_primary_10_1038_s41598_022_09331_5
crossref_primary_10_1210_endocr_bqab090
crossref_primary_10_1016_j_trecan_2022_08_005
crossref_primary_10_1134_S0026893323050096
crossref_primary_10_1038_s41571_021_00546_5
crossref_primary_10_3389_fimmu_2023_1337333
Cites_doi 10.1007/s12032-012-0193-0
10.1016/j.ccr.2014.04.005
10.1097/MPA.0b013e3181dbf647
10.1002/ijc.27550
10.1084/jem.20162024
10.1016/j.cell.2014.12.021
10.1053/j.gastro.2011.06.047
10.1016/j.bbrc.2012.04.014
10.1158/0008-5472.CAN-18-0327
10.1016/j.stem.2017.07.011
10.1038/s41575-019-0115-0
10.1136/gut.43.1.128
10.1053/j.gastro.2012.11.037
10.1136/gut.2008.154401
10.1038/s41467-018-07582-3
10.1038/nrc3319
10.1016/j.cell.2014.08.007
10.1038/ncomms12630
10.1161/CIRCRESAHA.119.314806
10.1136/gutjnl-2018-316451
10.1073/pnas.1411679111
10.1016/S1357-4310(00)01756-1
10.1158/2159-8290.CD-18-0710
10.1002/path.4467
10.1002/ijc.23611
10.1038/nature21349
10.1038/s41586-018-0590-4
10.1084/jem.20140692
10.1016/j.ccr.2012.02.022
10.1158/1078-0432.CCR-08-0291
10.1158/2159-8290.CD-16-0733
10.1016/j.ccr.2014.04.021
10.1136/gutjnl-2015-309304
10.3389/fimmu.2018.00262
10.1038/nrc.2016.73
10.1083/jcb.137.1.231
10.1038/s41467-018-07638-4
10.1186/1741-7015-4-38
10.1016/j.addr.2015.07.007
10.1242/jcs.1.3.297
10.1016/j.ccr.2005.04.023
10.1038/srep22288
10.1016/j.cell.2009.10.027
10.1038/nm.2328
10.1016/j.ccr.2014.05.026
10.1038/nature02009
10.1038/s41573-018-0004-1
10.1016/j.ccell.2018.01.011
10.1038/bjc.2014.495
ContentType Journal Article
Copyright 2019 American Association for Cancer Research.
Copyright_xml – notice: 2019 American Association for Cancer Research.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1158/0008-5472.CAN-19-0454
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 5381
ExternalDocumentID 31439548
10_1158_0008_5472_CAN_19_0454
Genre Journal Article
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WH7
WOQ
YKV
YZZ
NPM
RHF
7X8
ID FETCH-LOGICAL-c419t-4418d158bd9ba1ba4df7cd6d55d2a83b76f901841d9956a21d983013ad1e6c573
ISSN 0008-5472
1538-7445
IngestDate Tue Aug 05 10:02:49 EDT 2025
Wed Feb 19 02:30:27 EST 2025
Tue Jul 01 01:27:24 EDT 2025
Thu Apr 24 23:09:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License 2019 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c419t-4418d158bd9ba1ba4df7cd6d55d2a83b76f901841d9956a21d983013ad1e6c573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3666-0556
0000-0002-2803-2683
0000-0002-1717-4870
0000-0003-1367-4349
0000-0002-5952-0241
OpenAccessLink https://nagoya.repo.nii.ac.jp/records/29321
PMID 31439548
PQID 2306214380
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2306214380
pubmed_primary_31439548
crossref_citationtrail_10_1158_0008_5472_CAN_19_0454
crossref_primary_10_1158_0008_5472_CAN_19_0454
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-15
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2019
References Barker (2022061706301277500_bib42) 2012; 12
Kalluri (2022061706301277500_bib3) 2016; 16
Apte (2022061706301277500_bib37) 2013; 144
Sinn (2022061706301277500_bib16) 2014; 111
Maeda (2022061706301277500_bib26) 2016; 6
Chronopoulos (2022061706301277500_bib50) 2016; 7
Costa (2022061706301277500_bib9) 2018; 33
Hara (2022061706301277500_bib41) 2019
Underwood (2022061706301277500_bib18) 2015; 235
Lee (2022061706301277500_bib24) 2014; 111
Bailey (2022061706301277500_bib25) 2008; 14
Rhim (2022061706301277500_bib23) 2014; 25
Biffi (2022061706301277500_bib36) 2018; 9
Ishii (2022061706301277500_bib6) 2016; 99
Özdemir (2022061706301277500_bib22) 2014; 25
Poggi (2022061706301277500_bib20) 2018; 9
Kawase (2022061706301277500_bib14) 2008; 123
Gore (2022061706301277500_bib21) 2014; 25
Neesse (2022061706301277500_bib12) 2019; 68
Zhang (2022061706301277500_bib27) 2018; 9
Tabula Muris Consortium (2022061706301277500_bib32) 2018; 562
Fujita (2022061706301277500_bib15) 2010; 39
El Agha (2022061706301277500_bib30) 2017; 21
Kobayashi (2022061706301277500_bib8) 2019; 16
Purcell (2022061706301277500_bib19) 2018; 78
Provenzano (2022061706301277500_bib44) 2006; 4
Chen (2022061706301277500_bib2) 2017; 541
Hamada (2022061706301277500_bib29) 2012; 421
Levental (2022061706301277500_bib43) 2009; 139
Stoker (2022061706301277500_bib45) 1966; 1
Valach (2022061706301277500_bib17) 2012; 131
Boj (2022061706301277500_bib40) 2015; 160
Neesse (2022061706301277500_bib11) 2015; 64
Bissell (2022061706301277500_bib48) 2005; 7
Apte (2022061706301277500_bib31) 1998; 43
Froeling (2022061706301277500_bib49) 2011; 141
Chen (2022061706301277500_bib4) 2019; 18
Sherman (2022061706301277500_bib33) 2014; 159
Yuzawa (2022061706301277500_bib13) 2012; 29
Masamune (2022061706301277500_bib28) 2009; 58
Thayer (2022061706301277500_bib38) 2003; 425
Weaver (2022061706301277500_bib46) 1997; 137
Öhlund (2022061706301277500_bib35) 2017; 214
Bissell (2022061706301277500_bib7) 2011; 17
Northey (2022061706301277500_bib10) 2017; 7
Park (2022061706301277500_bib47) 2000; 6
Öhlund (2022061706301277500_bib5) 2014; 211
Bartoschek (2022061706301277500_bib39) 2018; 9
Hingorani (2022061706301277500_bib34) 2005; 7
Hanahan (2022061706301277500_bib1) 2012; 21
References_xml – volume: 29
  start-page: 2824
  year: 2012
  ident: 2022061706301277500_bib13
  article-title: PDGFRβ expression in tumor stroma of pancreatic adenocarcinoma as a reliable prognostic marker
  publication-title: Med Oncol
  doi: 10.1007/s12032-012-0193-0
– volume: 25
  start-page: 719
  year: 2014
  ident: 2022061706301277500_bib22
  article-title: Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.04.005
– volume: 39
  start-page: 1254
  year: 2010
  ident: 2022061706301277500_bib15
  article-title: α-Smooth muscle actin expressing stroma promotes an aggressive tumor biology in pancreatic ductal adenocarcinoma
  publication-title: Pancreas
  doi: 10.1097/MPA.0b013e3181dbf647
– volume: 131
  start-page: 2499
  year: 2012
  ident: 2022061706301277500_bib17
  article-title: Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: increased expression of galectin-1 and induction of poor prognosis factors
  publication-title: Int J Cancer
  doi: 10.1002/ijc.27550
– volume: 214
  start-page: 579
  year: 2017
  ident: 2022061706301277500_bib35
  article-title: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer
  publication-title: J Exp Med
  doi: 10.1084/jem.20162024
– volume: 160
  start-page: 324
  year: 2015
  ident: 2022061706301277500_bib40
  article-title: Organoid models of human and mouse ductal pancreatic cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2014.12.021
– volume: 141
  start-page: 1486
  year: 2011
  ident: 2022061706301277500_bib49
  article-title: Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-β-catenin signaling to slow tumor progression
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.06.047
– volume: 421
  start-page: 349
  year: 2012
  ident: 2022061706301277500_bib29
  article-title: Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2012.04.014
– volume: 78
  start-page: 4059
  year: 2018
  ident: 2022061706301277500_bib19
  article-title: LRRC15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-18-0327
– volume: 21
  start-page: 166
  year: 2017
  ident: 2022061706301277500_bib30
  article-title: Mesenchymal stem cells in fibrotic disease
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.07.011
– volume: 16
  start-page: 282
  year: 2019
  ident: 2022061706301277500_bib8
  article-title: Cancer-associated fibroblasts in gastrointestinal cancer
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/s41575-019-0115-0
– volume: 43
  start-page: 128
  year: 1998
  ident: 2022061706301277500_bib31
  article-title: Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture
  publication-title: Gut
  doi: 10.1136/gut.43.1.128
– volume: 144
  start-page: 1210
  year: 2013
  ident: 2022061706301277500_bib37
  article-title: A starring role for stellate cells in the pancreatic cancer microenvironment
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2012.11.037
– volume: 58
  start-page: 550
  year: 2009
  ident: 2022061706301277500_bib28
  article-title: Fibrinogen induces cytokine and collagen production in pancreatic stellate cells
  publication-title: Gut
  doi: 10.1136/gut.2008.154401
– volume: 9
  start-page: 5150
  year: 2018
  ident: 2022061706301277500_bib39
  article-title: Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07582-3
– volume: 12
  start-page: 540
  year: 2012
  ident: 2022061706301277500_bib42
  article-title: The rationale for targeting the LOX family in cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3319
– volume: 159
  start-page: 80
  year: 2014
  ident: 2022061706301277500_bib33
  article-title: Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.007
– volume: 7
  start-page: 12630
  year: 2016
  ident: 2022061706301277500_bib50
  article-title: ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion
  publication-title: Nat Commun
  doi: 10.1038/ncomms12630
– year: 2019
  ident: 2022061706301277500_bib41
  article-title: Roles of the mesenchymal stromal/stem cell marker Meflin in cardiac tissue repair and the development of diastolic dysfunction
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.119.314806
– volume: 68
  start-page: 159
  year: 2019
  ident: 2022061706301277500_bib12
  article-title: Stromal biology and therapy in pancreatic cancer: ready for clinical translation?
  publication-title: Gut
  doi: 10.1136/gutjnl-2018-316451
– volume: 111
  start-page: E3091
  year: 2014
  ident: 2022061706301277500_bib24
  article-title: Stromal response to Hedgehog signaling restrains pancreatic cancer progression
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1411679111
– volume: 6
  start-page: 324
  year: 2000
  ident: 2022061706301277500_bib47
  article-title: The influence of the microenvironment on the malignant phenotype
  publication-title: Mol Med Today
  doi: 10.1016/S1357-4310(00)01756-1
– volume: 9
  start-page: 282
  year: 2018
  ident: 2022061706301277500_bib36
  article-title: IL-1-induced JAK/STAT signaling is antagonized by TGF-beta to shape CAF heterogeneity in pancreatic ductal adenocarcinoma
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-18-0710
– volume: 235
  start-page: 466
  year: 2015
  ident: 2022061706301277500_bib18
  article-title: Cancer-associated fibroblasts predict poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma
  publication-title: J Pathol
  doi: 10.1002/path.4467
– volume: 123
  start-page: 1053
  year: 2008
  ident: 2022061706301277500_bib14
  article-title: Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma
  publication-title: Int J Cancer
  doi: 10.1002/ijc.23611
– volume: 541
  start-page: 321
  year: 2017
  ident: 2022061706301277500_bib2
  article-title: Elements of cancer immunity and the cancer-immune set point
  publication-title: Nature
  doi: 10.1038/nature21349
– volume: 562
  start-page: 367
  year: 2018
  ident: 2022061706301277500_bib32
  article-title: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
  publication-title: Nature
  doi: 10.1038/s41586-018-0590-4
– volume: 211
  start-page: 1503
  year: 2014
  ident: 2022061706301277500_bib5
  article-title: Fibroblast heterogeneity in the cancer wound
  publication-title: J Exp Med
  doi: 10.1084/jem.20140692
– volume: 21
  start-page: 309
  year: 2012
  ident: 2022061706301277500_bib1
  article-title: Accessories to the crime: functions of cells recruited to the tumor microenvironment
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.02.022
– volume: 14
  start-page: 5995
  year: 2008
  ident: 2022061706301277500_bib25
  article-title: Sonic hedgehog promotes desmoplasia in pancreatic cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-0291
– volume: 7
  start-page: 1224
  year: 2017
  ident: 2022061706301277500_bib10
  article-title: Tissue force programs cell fate and tumor aggression
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-16-0733
– volume: 25
  start-page: 735
  year: 2014
  ident: 2022061706301277500_bib23
  article-title: Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.04.021
– volume: 64
  start-page: 1476
  year: 2015
  ident: 2022061706301277500_bib11
  article-title: Stromal biology and therapy in pancreatic cancer: a changing paradigm
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-309304
– volume: 9
  start-page: 262
  year: 2018
  ident: 2022061706301277500_bib20
  article-title: How to hit mesenchymal stromal cells and make the tumor microenvironment immunostimulant rather than immunosuppressive
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.00262
– volume: 7
  start-page: 17
  year: 2005
  ident: 2022061706301277500_bib48
  article-title: Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment?
  publication-title: Cancer Cell
– volume: 16
  start-page: 582
  year: 2016
  ident: 2022061706301277500_bib3
  article-title: The biology and function of fibroblasts in cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc.2016.73
– volume: 137
  start-page: 231
  year: 1997
  ident: 2022061706301277500_bib46
  article-title: Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies
  publication-title: J Cell Biol
  doi: 10.1083/jcb.137.1.231
– volume: 9
  start-page: 5129
  year: 2018
  ident: 2022061706301277500_bib27
  article-title: Islr regulates canonical Wnt signaling-mediated skeletal muscle regeneration by stabilizing dishevelled-2 and preventing autophagy
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07638-4
– volume: 4
  start-page: 38
  year: 2006
  ident: 2022061706301277500_bib44
  article-title: Collagen reorganization at the tumor-stromal interface facilitates local invasion
  publication-title: BMC Med
  doi: 10.1186/1741-7015-4-38
– volume: 99
  start-page: 186
  year: 2016
  ident: 2022061706301277500_bib6
  article-title: Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2015.07.007
– volume: 1
  start-page: 297
  year: 1966
  ident: 2022061706301277500_bib45
  article-title: Growth inhibition of polyoma-transformed cells by contact with static normal fibroblasts
  publication-title: J Cell Sci
  doi: 10.1242/jcs.1.3.297
– volume: 7
  start-page: 469
  year: 2005
  ident: 2022061706301277500_bib34
  article-title: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2005.04.023
– volume: 6
  start-page: 22288
  year: 2016
  ident: 2022061706301277500_bib26
  article-title: Identification of Meflin as a potential marker for mesenchymal stromal cells
  publication-title: Sci Rep
  doi: 10.1038/srep22288
– volume: 139
  start-page: 891
  year: 2009
  ident: 2022061706301277500_bib43
  article-title: Matrix crosslinking forces tumor progression by enhancing integrin signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2009.10.027
– volume: 17
  start-page: 320
  year: 2011
  ident: 2022061706301277500_bib7
  article-title: Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression
  publication-title: Nat Med
  doi: 10.1038/nm.2328
– volume: 25
  start-page: 711
  year: 2014
  ident: 2022061706301277500_bib21
  article-title: Pancreatic cancer stroma: friend or foe?
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.05.026
– volume: 425
  start-page: 851
  year: 2003
  ident: 2022061706301277500_bib38
  article-title: Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis
  publication-title: Nature
  doi: 10.1038/nature02009
– volume: 18
  start-page: 99
  year: 2019
  ident: 2022061706301277500_bib4
  article-title: Turning foes to friends: targeting cancer-associated fibroblasts
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-018-0004-1
– volume: 33
  start-page: 463
  year: 2018
  ident: 2022061706301277500_bib9
  article-title: Fibroblast heterogeneity and immunosuppressive environment in human breast cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.01.011
– volume: 111
  start-page: 1917
  year: 2014
  ident: 2022061706301277500_bib16
  article-title: α-Smooth muscle actin expression and desmoplastic stromal reaction in pancreatic cancer: results from the CONKO-001 study
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2014.495
SSID ssj0005105
Score 2.6675098
Snippet Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 5367
Title Meflin-Positive Cancer-Associated Fibroblasts Inhibit Pancreatic Carcinogenesis
URI https://www.ncbi.nlm.nih.gov/pubmed/31439548
https://www.proquest.com/docview/2306214380
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEF7aFEJeQu86PVChb0ZqtNqV5MdgGtIWuy04kD6JPaRG1JWCJRWcX9-ZXV1pEnq8yEJrrdDM8O032jkIeSMk0DZNU1cAGXUZ9TM4C7AWIQu5llyozERbLMOTU_bhjJ8NWzEmu6SWnrq8Ma_kf7QK10CvmCX7D5rtJ4ULcA76hSNoGI5_peNFmgFLdD-bwKuf6XSOKty4nciBSx6DN1xKYMh1BVBwnsu8BtJYWKqoMNxD5UX5DQEvr8ZE1U41bWsBnZvNXhu1YVBlvfZG3xAW-WVT2-ZQ06-iarbN97xHcgCMLXZsMotcvimHofe5NtR1JTT-obe9yrbIXopyK8ZfJfwZwrnNy_TSAUkjZmtFdlBr-8a0JkUPR8DJA9uV4zqi89iGQMYuZxH15kdLF_OumK09PdLyxQ-j5gAYIFaxGxa4PuywG7pL7lHwKhAWP34Zissj12yTvOCpb2985h7Z7Wa5ymRucU8MTVndJ_utf-EcWWN5QO6kxUOyu2gjKB6RT7_ZjHPNZpyRzTitzTiDzThXbeYxOT1-t5qfuG1TDVcxf1a7QH9jDa8n9UwKXwqms0jpUHOuqYgDGYUZUMSY-RpzngWF3xgWgUBoPw0Vj4InZKcoi_QZcZQKwXsOGM30IRMqiHGLncsw82UAc9EJYZ2AEtVWnMfGJ-vEeJ48xsiHOEERJyDixJ8lKOIJ8frbLmzJlT_d8LqTfgLgiDteokjLpkrQv6Y-NlWYkKdWLf2UnRoPbh15TvYG035BdupNk74EClrLV8ZwfgHnvIAJ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meflin-Positive+Cancer-Associated+Fibroblasts+Inhibit+Pancreatic+Carcinogenesis&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Mizutani%2C+Yasuyuki&rft.au=Kobayashi%2C+Hiroki&rft.au=Iida%2C+Tadashi&rft.au=Asai%2C+Naoya&rft.date=2019-10-15&rft.eissn=1538-7445&rft.volume=79&rft.issue=20&rft.spage=5367&rft_id=info:doi/10.1158%2F0008-5472.CAN-19-0454&rft_id=info%3Apmid%2F31439548&rft.externalDocID=31439548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon