Meflin-Positive Cancer-Associated Fibroblasts Inhibit Pancreatic Carcinogenesis
Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and clinical studies have suggested that there may exist at least two functionally different populations of CAFs, that is, cancer-promoting CAFs...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 79; no. 20; pp. 5367 - 5381 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.10.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and clinical studies have suggested that there may exist at least two functionally different populations of CAFs, that is, cancer-promoting CAFs (pCAF) and cancer-restraining CAFs (rCAF). Although various pCAF markers have been identified, the identity of rCAFs remains unknown because of the lack of rCAF-specific marker(s). In this study, we found that Meflin, a glycosylphosphatidylinositol-anchored protein that is a marker of mesenchymal stromal/stem cells and maintains their undifferentiated state, is expressed by pancreatic stellate cells that are a source of CAFs in pancreatic ductal adenocarcinoma (PDAC).
hybridization analysis of 71 human PDAC tissues revealed that the infiltration of Meflin-positive CAFs correlated with favorable patient outcome. Consistent herewith, Meflin deficiency led to significant tumor progression with poorly differentiated histology in a PDAC mouse model. Similarly, genetic ablation of Meflin-positive CAFs resulted in poor differentiation of tumors in a syngeneic transplantation model. Conversely, delivery of a Meflin-expressing lentivirus into the tumor stroma or overexpression of Meflin in CAFs suppressed the growth of xenograft tumors. Lineage tracing revealed that Meflin-positive cells gave rise to α-smooth muscle actin-positive CAFs that are positive or negative for Meflin, suggesting a mechanism for generating CAF heterogeneity. Meflin deficiency or low expression resulted in straightened stromal collagen fibers, which represent a signature for aggressive tumors, in mouse or human PDAC tissues, respectively. Together, the data suggest that Meflin is a marker of rCAFs that suppress PDAC progression. SIGNIFICANCE: Meflin marks and functionally contributes to a subset of cancer-associated fibroblasts that exert antitumoral effects.
http://cancerres.aacrjournals.org/content/canres/79/20/5367/F1.large.jpg. |
---|---|
AbstractList | Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and clinical studies have suggested that there may exist at least two functionally different populations of CAFs, that is, cancer-promoting CAFs (pCAF) and cancer-restraining CAFs (rCAF). Although various pCAF markers have been identified, the identity of rCAFs remains unknown because of the lack of rCAF-specific marker(s). In this study, we found that Meflin, a glycosylphosphatidylinositol-anchored protein that is a marker of mesenchymal stromal/stem cells and maintains their undifferentiated state, is expressed by pancreatic stellate cells that are a source of CAFs in pancreatic ductal adenocarcinoma (PDAC).
hybridization analysis of 71 human PDAC tissues revealed that the infiltration of Meflin-positive CAFs correlated with favorable patient outcome. Consistent herewith, Meflin deficiency led to significant tumor progression with poorly differentiated histology in a PDAC mouse model. Similarly, genetic ablation of Meflin-positive CAFs resulted in poor differentiation of tumors in a syngeneic transplantation model. Conversely, delivery of a Meflin-expressing lentivirus into the tumor stroma or overexpression of Meflin in CAFs suppressed the growth of xenograft tumors. Lineage tracing revealed that Meflin-positive cells gave rise to α-smooth muscle actin-positive CAFs that are positive or negative for Meflin, suggesting a mechanism for generating CAF heterogeneity. Meflin deficiency or low expression resulted in straightened stromal collagen fibers, which represent a signature for aggressive tumors, in mouse or human PDAC tissues, respectively. Together, the data suggest that Meflin is a marker of rCAFs that suppress PDAC progression. SIGNIFICANCE: Meflin marks and functionally contributes to a subset of cancer-associated fibroblasts that exert antitumoral effects.
http://cancerres.aacrjournals.org/content/canres/79/20/5367/F1.large.jpg. Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and clinical studies have suggested that there may exist at least two functionally different populations of CAFs, that is, cancer-promoting CAFs (pCAF) and cancer-restraining CAFs (rCAF). Although various pCAF markers have been identified, the identity of rCAFs remains unknown because of the lack of rCAF-specific marker(s). In this study, we found that Meflin, a glycosylphosphatidylinositol-anchored protein that is a marker of mesenchymal stromal/stem cells and maintains their undifferentiated state, is expressed by pancreatic stellate cells that are a source of CAFs in pancreatic ductal adenocarcinoma (PDAC). In situ hybridization analysis of 71 human PDAC tissues revealed that the infiltration of Meflin-positive CAFs correlated with favorable patient outcome. Consistent herewith, Meflin deficiency led to significant tumor progression with poorly differentiated histology in a PDAC mouse model. Similarly, genetic ablation of Meflin-positive CAFs resulted in poor differentiation of tumors in a syngeneic transplantation model. Conversely, delivery of a Meflin-expressing lentivirus into the tumor stroma or overexpression of Meflin in CAFs suppressed the growth of xenograft tumors. Lineage tracing revealed that Meflin-positive cells gave rise to α-smooth muscle actin-positive CAFs that are positive or negative for Meflin, suggesting a mechanism for generating CAF heterogeneity. Meflin deficiency or low expression resulted in straightened stromal collagen fibers, which represent a signature for aggressive tumors, in mouse or human PDAC tissues, respectively. Together, the data suggest that Meflin is a marker of rCAFs that suppress PDAC progression. SIGNIFICANCE: Meflin marks and functionally contributes to a subset of cancer-associated fibroblasts that exert antitumoral effects.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5367/F1.large.jpg.Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and clinical studies have suggested that there may exist at least two functionally different populations of CAFs, that is, cancer-promoting CAFs (pCAF) and cancer-restraining CAFs (rCAF). Although various pCAF markers have been identified, the identity of rCAFs remains unknown because of the lack of rCAF-specific marker(s). In this study, we found that Meflin, a glycosylphosphatidylinositol-anchored protein that is a marker of mesenchymal stromal/stem cells and maintains their undifferentiated state, is expressed by pancreatic stellate cells that are a source of CAFs in pancreatic ductal adenocarcinoma (PDAC). In situ hybridization analysis of 71 human PDAC tissues revealed that the infiltration of Meflin-positive CAFs correlated with favorable patient outcome. Consistent herewith, Meflin deficiency led to significant tumor progression with poorly differentiated histology in a PDAC mouse model. Similarly, genetic ablation of Meflin-positive CAFs resulted in poor differentiation of tumors in a syngeneic transplantation model. Conversely, delivery of a Meflin-expressing lentivirus into the tumor stroma or overexpression of Meflin in CAFs suppressed the growth of xenograft tumors. Lineage tracing revealed that Meflin-positive cells gave rise to α-smooth muscle actin-positive CAFs that are positive or negative for Meflin, suggesting a mechanism for generating CAF heterogeneity. Meflin deficiency or low expression resulted in straightened stromal collagen fibers, which represent a signature for aggressive tumors, in mouse or human PDAC tissues, respectively. Together, the data suggest that Meflin is a marker of rCAFs that suppress PDAC progression. SIGNIFICANCE: Meflin marks and functionally contributes to a subset of cancer-associated fibroblasts that exert antitumoral effects.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5367/F1.large.jpg. |
Author | Ponik, Suzanne M. Ishihara, Seiichiro Miyata, Takaki Woods, Susan L. Esaki, Nobutoshi Worthley, Daniel Haga, Hisashi Wang, Tongtong Ando, Kenju Yamada, Suguru Matsuyama, Makoto Hirooka, Yoshiki Takahashi, Masahide Enomoto, Atsushi Fujii, Tsutomu Yamaguchi, Junpei Conklin, Matthew W. Fujishiro, Mitsuhiro Iida, Tadashi Kobayashi, Tomoe Ushida, Kaori Masamune, Atsushi Shimamura, Teppei Weng, Liang Shiraki, Yukihiro Nagasaka, Arata Asai, Naoya Mizutani, Yasuyuki Hara, Akitoshi Mii, Shinji Kobayashi, Hiroki |
Author_xml | – sequence: 1 givenname: Yasuyuki surname: Mizutani fullname: Mizutani, Yasuyuki – sequence: 2 givenname: Hiroki orcidid: 0000-0002-1717-4870 surname: Kobayashi fullname: Kobayashi, Hiroki – sequence: 3 givenname: Tadashi surname: Iida fullname: Iida, Tadashi – sequence: 4 givenname: Naoya surname: Asai fullname: Asai, Naoya – sequence: 5 givenname: Atsushi surname: Masamune fullname: Masamune, Atsushi – sequence: 6 givenname: Akitoshi surname: Hara fullname: Hara, Akitoshi – sequence: 7 givenname: Nobutoshi surname: Esaki fullname: Esaki, Nobutoshi – sequence: 8 givenname: Kaori surname: Ushida fullname: Ushida, Kaori – sequence: 9 givenname: Shinji surname: Mii fullname: Mii, Shinji – sequence: 10 givenname: Yukihiro orcidid: 0000-0003-3666-0556 surname: Shiraki fullname: Shiraki, Yukihiro – sequence: 11 givenname: Kenju surname: Ando fullname: Ando, Kenju – sequence: 12 givenname: Liang surname: Weng fullname: Weng, Liang – sequence: 13 givenname: Seiichiro surname: Ishihara fullname: Ishihara, Seiichiro – sequence: 14 givenname: Suzanne M. orcidid: 0000-0003-1367-4349 surname: Ponik fullname: Ponik, Suzanne M. – sequence: 15 givenname: Matthew W. surname: Conklin fullname: Conklin, Matthew W. – sequence: 16 givenname: Hisashi surname: Haga fullname: Haga, Hisashi – sequence: 17 givenname: Arata surname: Nagasaka fullname: Nagasaka, Arata – sequence: 18 givenname: Takaki orcidid: 0000-0002-5952-0241 surname: Miyata fullname: Miyata, Takaki – sequence: 19 givenname: Makoto surname: Matsuyama fullname: Matsuyama, Makoto – sequence: 20 givenname: Tomoe orcidid: 0000-0002-1717-4870 surname: Kobayashi fullname: Kobayashi, Tomoe – sequence: 21 givenname: Tsutomu surname: Fujii fullname: Fujii, Tsutomu – sequence: 22 givenname: Suguru surname: Yamada fullname: Yamada, Suguru – sequence: 23 givenname: Junpei surname: Yamaguchi fullname: Yamaguchi, Junpei – sequence: 24 givenname: Tongtong surname: Wang fullname: Wang, Tongtong – sequence: 25 givenname: Susan L. surname: Woods fullname: Woods, Susan L. – sequence: 26 givenname: Daniel surname: Worthley fullname: Worthley, Daniel – sequence: 27 givenname: Teppei surname: Shimamura fullname: Shimamura, Teppei – sequence: 28 givenname: Mitsuhiro surname: Fujishiro fullname: Fujishiro, Mitsuhiro – sequence: 29 givenname: Yoshiki surname: Hirooka fullname: Hirooka, Yoshiki – sequence: 30 givenname: Atsushi surname: Enomoto fullname: Enomoto, Atsushi – sequence: 31 givenname: Masahide orcidid: 0000-0002-2803-2683 surname: Takahashi fullname: Takahashi, Masahide |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31439548$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM1OAyEURompsT_6CJpZuqHCDMwwcdU0Vpuo7ULXhAFGMVOoQE18e5m0deHC1c1NzndvvjMGA-usBuASoynGlN0ghBikpMqn89kzxDVEhJITMMK0YLAihA7A6JcZgnEIH2mlGNEzMCwwKWpK2AisnnTbGQvXLphovnQ2F1ZqD2chOGlE1CpbmMa7phMhhmxp301jYrZOlNciGpkCXhrr3rTVwYRzcNqKLuiLw5yA18Xdy_wBPq7ul_PZI5QE1xESgplKNRpVNwI3gqi2kqpUlKpcsKKpyrZGmBGs6pqWIk-TFQgXQmFdSloVE3C9v7v17nOnQ-QbE6TuOmG12wWeF6jMU0uGEnp1QHfNRiu-9WYj_Dc_SkjA7R6Q3oXgdculiambs9EL03GMeK-c9zp5r5Mn5RzXvFee0vRP-vjg_9wPk_aEHA |
CitedBy_id | crossref_primary_10_1053_j_gastro_2020_11_011 crossref_primary_10_1111_imr_12978 crossref_primary_10_1186_s12943_024_01990_4 crossref_primary_10_17116_patol20248606128 crossref_primary_10_1016_j_trecan_2024_11_005 crossref_primary_10_1186_s12943_021_01428_1 crossref_primary_10_1016_j_trecan_2022_03_004 crossref_primary_10_3389_fonc_2021_668349 crossref_primary_10_1016_j_trecan_2022_03_001 crossref_primary_10_1111_imm_13496 crossref_primary_10_1016_j_biomaterials_2024_122605 crossref_primary_10_1016_j_actbio_2024_12_007 crossref_primary_10_1038_s41388_022_02288_9 crossref_primary_10_1016_j_semcancer_2021_03_006 crossref_primary_10_1111_gtc_12855 crossref_primary_10_1111_cas_14346 crossref_primary_10_1016_j_isci_2022_104659 crossref_primary_10_1101_cshperspect_a041411 crossref_primary_10_1111_imr_12969 crossref_primary_10_1186_s13046_020_01611_0 crossref_primary_10_1177_03008916231176857 crossref_primary_10_7554_eLife_95009 crossref_primary_10_1111_gtc_13154 crossref_primary_10_1165_rcmb_2021_0484OC crossref_primary_10_1186_s12943_023_01731_z crossref_primary_10_1126_scisignal_abg3449 crossref_primary_10_1186_s13045_021_01037_x crossref_primary_10_1038_s41416_024_02734_3 crossref_primary_10_1093_jjco_hyae118 crossref_primary_10_3390_cancers14020411 crossref_primary_10_3390_ijms222111716 crossref_primary_10_3389_fcell_2021_749924 crossref_primary_10_1158_1541_7786_MCR_20_0439 crossref_primary_10_1016_j_prp_2024_155576 crossref_primary_10_1016_j_bbcan_2023_188945 crossref_primary_10_1002_1878_0261_13077 crossref_primary_10_3390_cancers14143471 crossref_primary_10_1111_pin_13503 crossref_primary_10_1186_s10020_023_00665_y crossref_primary_10_1111_pin_13198 crossref_primary_10_1002_mc_23517 crossref_primary_10_1016_j_isci_2021_103497 crossref_primary_10_17116_patol20228405165 crossref_primary_10_1111_cas_16443 crossref_primary_10_1038_s41419_022_05320_8 crossref_primary_10_2147_IJN_S447350 crossref_primary_10_1016_j_trecan_2020_12_014 crossref_primary_10_1016_j_bbcan_2020_188443 crossref_primary_10_1016_j_drup_2022_100864 crossref_primary_10_1016_j_bbcan_2020_188444 crossref_primary_10_31857_S0026898423050105 crossref_primary_10_3389_fonc_2022_981547 crossref_primary_10_3390_cancers13061466 crossref_primary_10_1016_j_canlet_2025_217538 crossref_primary_10_1016_j_addr_2022_114504 crossref_primary_10_1002_cac2_12469 crossref_primary_10_3390_ijms23179512 crossref_primary_10_3390_cancers14215302 crossref_primary_10_1183_13993003_03397_2020 crossref_primary_10_3390_cancers14194880 crossref_primary_10_3390_cancers15061642 crossref_primary_10_1111_1759_7714_15477 crossref_primary_10_1186_s12943_022_01561_5 crossref_primary_10_1016_j_ajpath_2024_07_009 crossref_primary_10_1016_j_critrevonc_2023_104226 crossref_primary_10_1038_s41416_019_0705_1 crossref_primary_10_1038_s41568_025_00798_8 crossref_primary_10_1186_s12964_023_01125_0 crossref_primary_10_1007_s12094_024_03492_7 crossref_primary_10_1245_s10434_023_13867_9 crossref_primary_10_1186_s12967_024_05939_5 crossref_primary_10_1016_j_coi_2023_102410 crossref_primary_10_1016_j_semcancer_2025_02_001 crossref_primary_10_3389_fphar_2023_1329244 crossref_primary_10_3390_cancers14174243 crossref_primary_10_3389_fimmu_2024_1375013 crossref_primary_10_3390_cancers14122856 crossref_primary_10_1016_j_bbcan_2023_188901 crossref_primary_10_1016_j_intimp_2023_110601 crossref_primary_10_3390_cancers14143315 crossref_primary_10_1016_j_cell_2023_03_016 crossref_primary_10_3390_ijms24031833 crossref_primary_10_3389_fcell_2023_1166916 crossref_primary_10_1038_s41467_022_30638_4 crossref_primary_10_1371_journal_pone_0255049 crossref_primary_10_1158_2159_8290_CD_20_1484 crossref_primary_10_1016_j_bbcan_2021_188673 crossref_primary_10_1038_s41467_023_35793_w crossref_primary_10_3390_cancers14041049 crossref_primary_10_1016_j_cels_2024_07_001 crossref_primary_10_1038_s41586_024_08194_2 crossref_primary_10_1016_j_bbcan_2021_188554 crossref_primary_10_1016_j_canlet_2022_215801 crossref_primary_10_1016_j_smim_2020_101417 crossref_primary_10_3390_cancers15061899 crossref_primary_10_1016_j_molmed_2023_03_002 crossref_primary_10_1016_j_ajpath_2024_03_012 crossref_primary_10_2958_suizo_35_568 crossref_primary_10_56083_RCV3N3_041 crossref_primary_10_2147_JHC_S436962 crossref_primary_10_1111_cas_15609 crossref_primary_10_3390_ijms222010973 crossref_primary_10_1016_j_jare_2024_05_031 crossref_primary_10_1186_s13046_024_03262_x crossref_primary_10_3389_fimmu_2023_1140328 crossref_primary_10_1080_14737140_2022_2019018 crossref_primary_10_1007_s10555_024_10186_7 crossref_primary_10_1186_s12885_022_09272_2 crossref_primary_10_1111_cas_14521 crossref_primary_10_1097_MOG_0000000000000609 crossref_primary_10_1186_s12943_021_01463_y crossref_primary_10_1186_s12885_021_08142_7 crossref_primary_10_1016_j_canlet_2021_12_025 crossref_primary_10_3390_ijms242216505 crossref_primary_10_7554_eLife_57243 crossref_primary_10_3389_fphys_2022_865105 crossref_primary_10_3389_fimmu_2024_1287459 crossref_primary_10_2745_dds_36_232 crossref_primary_10_1016_j_isci_2025_112057 crossref_primary_10_1152_ajpgi_00120_2021 crossref_primary_10_3389_fimmu_2023_1286750 crossref_primary_10_1002_cbin_12009 crossref_primary_10_3390_cancers14092197 crossref_primary_10_2958_suizo_38_37 crossref_primary_10_3390_cells10071653 crossref_primary_10_1136_gutjnl_2020_321952 crossref_primary_10_3390_cancers15092614 crossref_primary_10_3390_ijms22179121 crossref_primary_10_3390_cancers12051347 crossref_primary_10_3390_cells10020304 crossref_primary_10_1038_s41598_022_21178_4 crossref_primary_10_3390_cancers15030724 crossref_primary_10_3892_ijmm_2021_5055 crossref_primary_10_3390_cancers12123770 crossref_primary_10_1158_1535_7163_MCT_21_0335 crossref_primary_10_1186_s12935_024_03436_9 crossref_primary_10_1016_j_canlet_2024_216859 crossref_primary_10_1038_s41419_023_06032_3 crossref_primary_10_1016_j_canlet_2023_216279 crossref_primary_10_1016_j_oraloncology_2022_106270 crossref_primary_10_3390_cancers15010061 crossref_primary_10_4049_jimmunol_2200660 crossref_primary_10_1002_adhm_202202609 crossref_primary_10_1126_scisignal_abj5879 crossref_primary_10_1016_j_matbio_2024_06_004 crossref_primary_10_1111_pin_13461 crossref_primary_10_3390_cancers12113108 crossref_primary_10_1007_s10238_022_00886_1 crossref_primary_10_1016_j_pharmthera_2020_107753 crossref_primary_10_3390_biomedicines12030591 crossref_primary_10_1016_j_matbio_2020_05_001 crossref_primary_10_3390_cancers16234094 crossref_primary_10_1002_path_5926 crossref_primary_10_1038_s41417_021_00318_4 crossref_primary_10_1093_biomethods_bpaf013 crossref_primary_10_3389_fonc_2024_1331355 crossref_primary_10_3390_ijms232415576 crossref_primary_10_1002_path_6211 crossref_primary_10_1016_j_bbcan_2023_189065 crossref_primary_10_3390_ijms25116003 crossref_primary_10_1371_journal_pone_0281820 crossref_primary_10_1016_j_tips_2020_01_001 crossref_primary_10_1007_s00795_025_00424_4 crossref_primary_10_1016_j_matbio_2022_03_003 crossref_primary_10_3389_fcell_2023_1277076 crossref_primary_10_1053_j_gastro_2022_07_076 crossref_primary_10_1016_j_bbcan_2020_188418 crossref_primary_10_1007_s10147_024_02507_1 crossref_primary_10_1053_j_gastro_2021_08_023 crossref_primary_10_1016_j_intimp_2024_113482 crossref_primary_10_3390_cancers14163994 crossref_primary_10_1016_j_trsl_2024_04_003 crossref_primary_10_1158_1541_7786_MCR_21_0924 crossref_primary_10_1186_s12964_023_01204_2 crossref_primary_10_3389_fcell_2021_743907 crossref_primary_10_3390_cancers14092321 crossref_primary_10_1002_cbin_12004 crossref_primary_10_1158_0008_5472_CAN_22_2213 crossref_primary_10_1038_s41598_022_14297_5 crossref_primary_10_3389_fimmu_2022_1035276 crossref_primary_10_1016_j_jcmgh_2024_01_022 crossref_primary_10_1016_j_celrep_2023_113420 crossref_primary_10_1038_s41598_023_31265_9 crossref_primary_10_3390_ijms25021300 crossref_primary_10_1158_1541_7786_MCR_21_0282 crossref_primary_10_1186_s12967_023_04281_6 crossref_primary_10_3389_fimmu_2024_1341079 crossref_primary_10_1016_j_tranon_2021_101236 crossref_primary_10_1016_j_gastha_2024_09_012 crossref_primary_10_1111_cas_14578 crossref_primary_10_1016_j_cellsig_2024_111584 crossref_primary_10_1186_s12885_022_09847_z crossref_primary_10_1158_0008_5472_CAN_23_3987 crossref_primary_10_1186_s40364_022_00406_z crossref_primary_10_26508_lsa_202101230 crossref_primary_10_1038_s41598_022_09331_5 crossref_primary_10_1210_endocr_bqab090 crossref_primary_10_1016_j_trecan_2022_08_005 crossref_primary_10_1134_S0026893323050096 crossref_primary_10_1038_s41571_021_00546_5 crossref_primary_10_3389_fimmu_2023_1337333 |
Cites_doi | 10.1007/s12032-012-0193-0 10.1016/j.ccr.2014.04.005 10.1097/MPA.0b013e3181dbf647 10.1002/ijc.27550 10.1084/jem.20162024 10.1016/j.cell.2014.12.021 10.1053/j.gastro.2011.06.047 10.1016/j.bbrc.2012.04.014 10.1158/0008-5472.CAN-18-0327 10.1016/j.stem.2017.07.011 10.1038/s41575-019-0115-0 10.1136/gut.43.1.128 10.1053/j.gastro.2012.11.037 10.1136/gut.2008.154401 10.1038/s41467-018-07582-3 10.1038/nrc3319 10.1016/j.cell.2014.08.007 10.1038/ncomms12630 10.1161/CIRCRESAHA.119.314806 10.1136/gutjnl-2018-316451 10.1073/pnas.1411679111 10.1016/S1357-4310(00)01756-1 10.1158/2159-8290.CD-18-0710 10.1002/path.4467 10.1002/ijc.23611 10.1038/nature21349 10.1038/s41586-018-0590-4 10.1084/jem.20140692 10.1016/j.ccr.2012.02.022 10.1158/1078-0432.CCR-08-0291 10.1158/2159-8290.CD-16-0733 10.1016/j.ccr.2014.04.021 10.1136/gutjnl-2015-309304 10.3389/fimmu.2018.00262 10.1038/nrc.2016.73 10.1083/jcb.137.1.231 10.1038/s41467-018-07638-4 10.1186/1741-7015-4-38 10.1016/j.addr.2015.07.007 10.1242/jcs.1.3.297 10.1016/j.ccr.2005.04.023 10.1038/srep22288 10.1016/j.cell.2009.10.027 10.1038/nm.2328 10.1016/j.ccr.2014.05.026 10.1038/nature02009 10.1038/s41573-018-0004-1 10.1016/j.ccell.2018.01.011 10.1038/bjc.2014.495 |
ContentType | Journal Article |
Copyright | 2019 American Association for Cancer Research. |
Copyright_xml | – notice: 2019 American Association for Cancer Research. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1158/0008-5472.CAN-19-0454 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 5381 |
ExternalDocumentID | 31439548 10_1158_0008_5472_CAN_19_0454 |
Genre | Journal Article |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ NPM RHF 7X8 |
ID | FETCH-LOGICAL-c419t-4418d158bd9ba1ba4df7cd6d55d2a83b76f901841d9956a21d983013ad1e6c573 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Tue Aug 05 10:02:49 EDT 2025 Wed Feb 19 02:30:27 EST 2025 Tue Jul 01 01:27:24 EDT 2025 Thu Apr 24 23:09:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | 2019 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c419t-4418d158bd9ba1ba4df7cd6d55d2a83b76f901841d9956a21d983013ad1e6c573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3666-0556 0000-0002-2803-2683 0000-0002-1717-4870 0000-0003-1367-4349 0000-0002-5952-0241 |
OpenAccessLink | https://nagoya.repo.nii.ac.jp/records/29321 |
PMID | 31439548 |
PQID | 2306214380 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2306214380 pubmed_primary_31439548 crossref_citationtrail_10_1158_0008_5472_CAN_19_0454 crossref_primary_10_1158_0008_5472_CAN_19_0454 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-15 |
PublicationDateYYYYMMDD | 2019-10-15 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2019 |
References | Barker (2022061706301277500_bib42) 2012; 12 Kalluri (2022061706301277500_bib3) 2016; 16 Apte (2022061706301277500_bib37) 2013; 144 Sinn (2022061706301277500_bib16) 2014; 111 Maeda (2022061706301277500_bib26) 2016; 6 Chronopoulos (2022061706301277500_bib50) 2016; 7 Costa (2022061706301277500_bib9) 2018; 33 Hara (2022061706301277500_bib41) 2019 Underwood (2022061706301277500_bib18) 2015; 235 Lee (2022061706301277500_bib24) 2014; 111 Bailey (2022061706301277500_bib25) 2008; 14 Rhim (2022061706301277500_bib23) 2014; 25 Biffi (2022061706301277500_bib36) 2018; 9 Ishii (2022061706301277500_bib6) 2016; 99 Özdemir (2022061706301277500_bib22) 2014; 25 Poggi (2022061706301277500_bib20) 2018; 9 Kawase (2022061706301277500_bib14) 2008; 123 Gore (2022061706301277500_bib21) 2014; 25 Neesse (2022061706301277500_bib12) 2019; 68 Zhang (2022061706301277500_bib27) 2018; 9 Tabula Muris Consortium (2022061706301277500_bib32) 2018; 562 Fujita (2022061706301277500_bib15) 2010; 39 El Agha (2022061706301277500_bib30) 2017; 21 Kobayashi (2022061706301277500_bib8) 2019; 16 Purcell (2022061706301277500_bib19) 2018; 78 Provenzano (2022061706301277500_bib44) 2006; 4 Chen (2022061706301277500_bib2) 2017; 541 Hamada (2022061706301277500_bib29) 2012; 421 Levental (2022061706301277500_bib43) 2009; 139 Stoker (2022061706301277500_bib45) 1966; 1 Valach (2022061706301277500_bib17) 2012; 131 Boj (2022061706301277500_bib40) 2015; 160 Neesse (2022061706301277500_bib11) 2015; 64 Bissell (2022061706301277500_bib48) 2005; 7 Apte (2022061706301277500_bib31) 1998; 43 Froeling (2022061706301277500_bib49) 2011; 141 Chen (2022061706301277500_bib4) 2019; 18 Sherman (2022061706301277500_bib33) 2014; 159 Yuzawa (2022061706301277500_bib13) 2012; 29 Masamune (2022061706301277500_bib28) 2009; 58 Thayer (2022061706301277500_bib38) 2003; 425 Weaver (2022061706301277500_bib46) 1997; 137 Öhlund (2022061706301277500_bib35) 2017; 214 Bissell (2022061706301277500_bib7) 2011; 17 Northey (2022061706301277500_bib10) 2017; 7 Park (2022061706301277500_bib47) 2000; 6 Öhlund (2022061706301277500_bib5) 2014; 211 Bartoschek (2022061706301277500_bib39) 2018; 9 Hingorani (2022061706301277500_bib34) 2005; 7 Hanahan (2022061706301277500_bib1) 2012; 21 |
References_xml | – volume: 29 start-page: 2824 year: 2012 ident: 2022061706301277500_bib13 article-title: PDGFRβ expression in tumor stroma of pancreatic adenocarcinoma as a reliable prognostic marker publication-title: Med Oncol doi: 10.1007/s12032-012-0193-0 – volume: 25 start-page: 719 year: 2014 ident: 2022061706301277500_bib22 article-title: Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.04.005 – volume: 39 start-page: 1254 year: 2010 ident: 2022061706301277500_bib15 article-title: α-Smooth muscle actin expressing stroma promotes an aggressive tumor biology in pancreatic ductal adenocarcinoma publication-title: Pancreas doi: 10.1097/MPA.0b013e3181dbf647 – volume: 131 start-page: 2499 year: 2012 ident: 2022061706301277500_bib17 article-title: Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: increased expression of galectin-1 and induction of poor prognosis factors publication-title: Int J Cancer doi: 10.1002/ijc.27550 – volume: 214 start-page: 579 year: 2017 ident: 2022061706301277500_bib35 article-title: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer publication-title: J Exp Med doi: 10.1084/jem.20162024 – volume: 160 start-page: 324 year: 2015 ident: 2022061706301277500_bib40 article-title: Organoid models of human and mouse ductal pancreatic cancer publication-title: Cell doi: 10.1016/j.cell.2014.12.021 – volume: 141 start-page: 1486 year: 2011 ident: 2022061706301277500_bib49 article-title: Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-β-catenin signaling to slow tumor progression publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.06.047 – volume: 421 start-page: 349 year: 2012 ident: 2022061706301277500_bib29 article-title: Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2012.04.014 – volume: 78 start-page: 4059 year: 2018 ident: 2022061706301277500_bib19 article-title: LRRC15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-0327 – volume: 21 start-page: 166 year: 2017 ident: 2022061706301277500_bib30 article-title: Mesenchymal stem cells in fibrotic disease publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.07.011 – volume: 16 start-page: 282 year: 2019 ident: 2022061706301277500_bib8 article-title: Cancer-associated fibroblasts in gastrointestinal cancer publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/s41575-019-0115-0 – volume: 43 start-page: 128 year: 1998 ident: 2022061706301277500_bib31 article-title: Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture publication-title: Gut doi: 10.1136/gut.43.1.128 – volume: 144 start-page: 1210 year: 2013 ident: 2022061706301277500_bib37 article-title: A starring role for stellate cells in the pancreatic cancer microenvironment publication-title: Gastroenterology doi: 10.1053/j.gastro.2012.11.037 – volume: 58 start-page: 550 year: 2009 ident: 2022061706301277500_bib28 article-title: Fibrinogen induces cytokine and collagen production in pancreatic stellate cells publication-title: Gut doi: 10.1136/gut.2008.154401 – volume: 9 start-page: 5150 year: 2018 ident: 2022061706301277500_bib39 article-title: Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing publication-title: Nat Commun doi: 10.1038/s41467-018-07582-3 – volume: 12 start-page: 540 year: 2012 ident: 2022061706301277500_bib42 article-title: The rationale for targeting the LOX family in cancer publication-title: Nat Rev Cancer doi: 10.1038/nrc3319 – volume: 159 start-page: 80 year: 2014 ident: 2022061706301277500_bib33 article-title: Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy publication-title: Cell doi: 10.1016/j.cell.2014.08.007 – volume: 7 start-page: 12630 year: 2016 ident: 2022061706301277500_bib50 article-title: ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion publication-title: Nat Commun doi: 10.1038/ncomms12630 – year: 2019 ident: 2022061706301277500_bib41 article-title: Roles of the mesenchymal stromal/stem cell marker Meflin in cardiac tissue repair and the development of diastolic dysfunction publication-title: Circ Res doi: 10.1161/CIRCRESAHA.119.314806 – volume: 68 start-page: 159 year: 2019 ident: 2022061706301277500_bib12 article-title: Stromal biology and therapy in pancreatic cancer: ready for clinical translation? publication-title: Gut doi: 10.1136/gutjnl-2018-316451 – volume: 111 start-page: E3091 year: 2014 ident: 2022061706301277500_bib24 article-title: Stromal response to Hedgehog signaling restrains pancreatic cancer progression publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1411679111 – volume: 6 start-page: 324 year: 2000 ident: 2022061706301277500_bib47 article-title: The influence of the microenvironment on the malignant phenotype publication-title: Mol Med Today doi: 10.1016/S1357-4310(00)01756-1 – volume: 9 start-page: 282 year: 2018 ident: 2022061706301277500_bib36 article-title: IL-1-induced JAK/STAT signaling is antagonized by TGF-beta to shape CAF heterogeneity in pancreatic ductal adenocarcinoma publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-18-0710 – volume: 235 start-page: 466 year: 2015 ident: 2022061706301277500_bib18 article-title: Cancer-associated fibroblasts predict poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma publication-title: J Pathol doi: 10.1002/path.4467 – volume: 123 start-page: 1053 year: 2008 ident: 2022061706301277500_bib14 article-title: Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma publication-title: Int J Cancer doi: 10.1002/ijc.23611 – volume: 541 start-page: 321 year: 2017 ident: 2022061706301277500_bib2 article-title: Elements of cancer immunity and the cancer-immune set point publication-title: Nature doi: 10.1038/nature21349 – volume: 562 start-page: 367 year: 2018 ident: 2022061706301277500_bib32 article-title: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris publication-title: Nature doi: 10.1038/s41586-018-0590-4 – volume: 211 start-page: 1503 year: 2014 ident: 2022061706301277500_bib5 article-title: Fibroblast heterogeneity in the cancer wound publication-title: J Exp Med doi: 10.1084/jem.20140692 – volume: 21 start-page: 309 year: 2012 ident: 2022061706301277500_bib1 article-title: Accessories to the crime: functions of cells recruited to the tumor microenvironment publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.02.022 – volume: 14 start-page: 5995 year: 2008 ident: 2022061706301277500_bib25 article-title: Sonic hedgehog promotes desmoplasia in pancreatic cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-0291 – volume: 7 start-page: 1224 year: 2017 ident: 2022061706301277500_bib10 article-title: Tissue force programs cell fate and tumor aggression publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-16-0733 – volume: 25 start-page: 735 year: 2014 ident: 2022061706301277500_bib23 article-title: Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.04.021 – volume: 64 start-page: 1476 year: 2015 ident: 2022061706301277500_bib11 article-title: Stromal biology and therapy in pancreatic cancer: a changing paradigm publication-title: Gut doi: 10.1136/gutjnl-2015-309304 – volume: 9 start-page: 262 year: 2018 ident: 2022061706301277500_bib20 article-title: How to hit mesenchymal stromal cells and make the tumor microenvironment immunostimulant rather than immunosuppressive publication-title: Front Immunol doi: 10.3389/fimmu.2018.00262 – volume: 7 start-page: 17 year: 2005 ident: 2022061706301277500_bib48 article-title: Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? publication-title: Cancer Cell – volume: 16 start-page: 582 year: 2016 ident: 2022061706301277500_bib3 article-title: The biology and function of fibroblasts in cancer publication-title: Nat Rev Cancer doi: 10.1038/nrc.2016.73 – volume: 137 start-page: 231 year: 1997 ident: 2022061706301277500_bib46 article-title: Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies publication-title: J Cell Biol doi: 10.1083/jcb.137.1.231 – volume: 9 start-page: 5129 year: 2018 ident: 2022061706301277500_bib27 article-title: Islr regulates canonical Wnt signaling-mediated skeletal muscle regeneration by stabilizing dishevelled-2 and preventing autophagy publication-title: Nat Commun doi: 10.1038/s41467-018-07638-4 – volume: 4 start-page: 38 year: 2006 ident: 2022061706301277500_bib44 article-title: Collagen reorganization at the tumor-stromal interface facilitates local invasion publication-title: BMC Med doi: 10.1186/1741-7015-4-38 – volume: 99 start-page: 186 year: 2016 ident: 2022061706301277500_bib6 article-title: Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2015.07.007 – volume: 1 start-page: 297 year: 1966 ident: 2022061706301277500_bib45 article-title: Growth inhibition of polyoma-transformed cells by contact with static normal fibroblasts publication-title: J Cell Sci doi: 10.1242/jcs.1.3.297 – volume: 7 start-page: 469 year: 2005 ident: 2022061706301277500_bib34 article-title: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.04.023 – volume: 6 start-page: 22288 year: 2016 ident: 2022061706301277500_bib26 article-title: Identification of Meflin as a potential marker for mesenchymal stromal cells publication-title: Sci Rep doi: 10.1038/srep22288 – volume: 139 start-page: 891 year: 2009 ident: 2022061706301277500_bib43 article-title: Matrix crosslinking forces tumor progression by enhancing integrin signaling publication-title: Cell doi: 10.1016/j.cell.2009.10.027 – volume: 17 start-page: 320 year: 2011 ident: 2022061706301277500_bib7 article-title: Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression publication-title: Nat Med doi: 10.1038/nm.2328 – volume: 25 start-page: 711 year: 2014 ident: 2022061706301277500_bib21 article-title: Pancreatic cancer stroma: friend or foe? publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.05.026 – volume: 425 start-page: 851 year: 2003 ident: 2022061706301277500_bib38 article-title: Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis publication-title: Nature doi: 10.1038/nature02009 – volume: 18 start-page: 99 year: 2019 ident: 2022061706301277500_bib4 article-title: Turning foes to friends: targeting cancer-associated fibroblasts publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-018-0004-1 – volume: 33 start-page: 463 year: 2018 ident: 2022061706301277500_bib9 article-title: Fibroblast heterogeneity and immunosuppressive environment in human breast cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.01.011 – volume: 111 start-page: 1917 year: 2014 ident: 2022061706301277500_bib16 article-title: α-Smooth muscle actin expression and desmoplastic stromal reaction in pancreatic cancer: results from the CONKO-001 study publication-title: Br J Cancer doi: 10.1038/bjc.2014.495 |
SSID | ssj0005105 |
Score | 2.6675098 |
Snippet | Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 5367 |
Title | Meflin-Positive Cancer-Associated Fibroblasts Inhibit Pancreatic Carcinogenesis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31439548 https://www.proquest.com/docview/2306214380 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEF7aFEJeQu86PVChb0ZqtNqV5MdgGtIWuy04kD6JPaRG1JWCJRWcX9-ZXV1pEnq8yEJrrdDM8O032jkIeSMk0DZNU1cAGXUZ9TM4C7AWIQu5llyozERbLMOTU_bhjJ8NWzEmu6SWnrq8Ma_kf7QK10CvmCX7D5rtJ4ULcA76hSNoGI5_peNFmgFLdD-bwKuf6XSOKty4nciBSx6DN1xKYMh1BVBwnsu8BtJYWKqoMNxD5UX5DQEvr8ZE1U41bWsBnZvNXhu1YVBlvfZG3xAW-WVT2-ZQ06-iarbN97xHcgCMLXZsMotcvimHofe5NtR1JTT-obe9yrbIXopyK8ZfJfwZwrnNy_TSAUkjZmtFdlBr-8a0JkUPR8DJA9uV4zqi89iGQMYuZxH15kdLF_OumK09PdLyxQ-j5gAYIFaxGxa4PuywG7pL7lHwKhAWP34Zissj12yTvOCpb2985h7Z7Wa5ymRucU8MTVndJ_utf-EcWWN5QO6kxUOyu2gjKB6RT7_ZjHPNZpyRzTitzTiDzThXbeYxOT1-t5qfuG1TDVcxf1a7QH9jDa8n9UwKXwqms0jpUHOuqYgDGYUZUMSY-RpzngWF3xgWgUBoPw0Vj4InZKcoi_QZcZQKwXsOGM30IRMqiHGLncsw82UAc9EJYZ2AEtVWnMfGJ-vEeJ48xsiHOEERJyDixJ8lKOIJ8frbLmzJlT_d8LqTfgLgiDteokjLpkrQv6Y-NlWYkKdWLf2UnRoPbh15TvYG035BdupNk74EClrLV8ZwfgHnvIAJ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meflin-Positive+Cancer-Associated+Fibroblasts+Inhibit+Pancreatic+Carcinogenesis&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Mizutani%2C+Yasuyuki&rft.au=Kobayashi%2C+Hiroki&rft.au=Iida%2C+Tadashi&rft.au=Asai%2C+Naoya&rft.date=2019-10-15&rft.eissn=1538-7445&rft.volume=79&rft.issue=20&rft.spage=5367&rft_id=info:doi/10.1158%2F0008-5472.CAN-19-0454&rft_id=info%3Apmid%2F31439548&rft.externalDocID=31439548 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |