Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies
Antibody-based drugs and vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being expedited through preclinical and clinical development. Data from the study of SARS-CoV and other respiratory viruses suggest that anti-SARS-CoV-2 antibodies could exacerbate COVID-19 thr...
Saved in:
Published in | Nature microbiology Vol. 5; no. 10; pp. 1185 - 1191 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antibody-based drugs and vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being expedited through preclinical and clinical development. Data from the study of SARS-CoV and other respiratory viruses suggest that anti-SARS-CoV-2 antibodies could exacerbate COVID-19 through antibody-dependent enhancement (ADE). Previous respiratory syncytial virus and dengue virus vaccine studies revealed human clinical safety risks related to ADE, resulting in failed vaccine trials. Here, we describe key ADE mechanisms and discuss mitigation strategies for SARS-CoV-2 vaccines and therapies in development. We also outline recently published data to evaluate the risks and opportunities for antibody-based protection against SARS-CoV-2.
Mechanisms of antibody-dependent enhancement of disease and mitigation strategies for SARS-CoV-2 vaccines and therapies are discussed. |
---|---|
AbstractList | Antibody-based drugs and vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being expedited through preclinical and clinical development. Data from the study of SARS-CoV and other respiratory viruses suggest that anti-SARS-CoV-2 antibodies could exacerbate COVID-19 through antibody-dependent enhancement (ADE). Previous respiratory syncytial virus and dengue virus vaccine studies revealed human clinical safety risks related to ADE, resulting in failed vaccine trials. Here, we describe key ADE mechanisms and discuss mitigation strategies for SARS-CoV-2 vaccines and therapies in development. We also outline recently published data to evaluate the risks and opportunities for antibody-based protection against SARS-CoV-2. Antibody-based drugs and vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being expedited through preclinical and clinical development. Data from the study of SARS-CoV and other respiratory viruses suggest that anti-SARS-CoV-2 antibodies could exacerbate COVID-19 through antibody-dependent enhancement (ADE). Previous respiratory syncytial virus and dengue virus vaccine studies revealed human clinical safety risks related to ADE, resulting in failed vaccine trials. Here, we describe key ADE mechanisms and discuss mitigation strategies for SARS-CoV-2 vaccines and therapies in development. We also outline recently published data to evaluate the risks and opportunities for antibody-based protection against SARS-CoV-2.Antibody-based drugs and vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being expedited through preclinical and clinical development. Data from the study of SARS-CoV and other respiratory viruses suggest that anti-SARS-CoV-2 antibodies could exacerbate COVID-19 through antibody-dependent enhancement (ADE). Previous respiratory syncytial virus and dengue virus vaccine studies revealed human clinical safety risks related to ADE, resulting in failed vaccine trials. Here, we describe key ADE mechanisms and discuss mitigation strategies for SARS-CoV-2 vaccines and therapies in development. We also outline recently published data to evaluate the risks and opportunities for antibody-based protection against SARS-CoV-2. Antibody-based drugs and vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being expedited through preclinical and clinical development. Data from the study of SARS-CoV and other respiratory viruses suggest that anti-SARS-CoV-2 antibodies could exacerbate COVID-19 through antibody-dependent enhancement (ADE). Previous respiratory syncytial virus and dengue virus vaccine studies revealed human clinical safety risks related to ADE, resulting in failed vaccine trials. Here, we describe key ADE mechanisms and discuss mitigation strategies for SARS-CoV-2 vaccines and therapies in development. We also outline recently published data to evaluate the risks and opportunities for antibody-based protection against SARS-CoV-2.Mechanisms of antibody-dependent enhancement of disease and mitigation strategies for SARS-CoV-2 vaccines and therapies are discussed. Antibody-based drugs and vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being expedited through preclinical and clinical development. Data from the study of SARS-CoV and other respiratory viruses suggest that anti-SARS-CoV-2 antibodies could exacerbate COVID-19 through antibody-dependent enhancement (ADE). Previous respiratory syncytial virus and dengue virus vaccine studies revealed human clinical safety risks related to ADE, resulting in failed vaccine trials. Here, we describe key ADE mechanisms and discuss mitigation strategies for SARS-CoV-2 vaccines and therapies in development. We also outline recently published data to evaluate the risks and opportunities for antibody-based protection against SARS-CoV-2. Mechanisms of antibody-dependent enhancement of disease and mitigation strategies for SARS-CoV-2 vaccines and therapies are discussed. |
Author | Kent, Stephen J. DeKosky, Brandon J. Lee, Wen Shi Wheatley, Adam K. |
Author_xml | – sequence: 1 givenname: Wen Shi orcidid: 0000-0001-7285-4054 surname: Lee fullname: Lee, Wen Shi organization: Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity – sequence: 2 givenname: Adam K. orcidid: 0000-0002-5593-9387 surname: Wheatley fullname: Wheatley, Adam K. organization: Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne – sequence: 3 givenname: Stephen J. orcidid: 0000-0002-8539-4891 surname: Kent fullname: Kent, Stephen J. email: skent@unimelb.edu.au organization: Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University – sequence: 4 givenname: Brandon J. orcidid: 0000-0001-6406-0836 surname: DeKosky fullname: DeKosky, Brandon J. email: dekosky@ku.edu organization: Department of Pharmaceutical Chemistry, The University of Kansas, Department of Chemical Engineering, The University of Kansas, Bioengineering Graduate Program, The University of Kansas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32908214$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rGzEQhkVwaJyPP5BDMfTSixpp9LHao3HbJBAI5KNXMSuN6w221pXWhfz7rmOnLTnkpEE8z8ww7zEbpS4RY-dSfJFCuYuipbGaCxBciMrV3BywMQjjuIHKjv6rj9hZKU9CCGnBWmc_sCMFtXAg9Zh9naa-bbr4zCOtKUVK_YTSAlOg1bbGFCf307t7Put-cJj8xhDaROXlv19QxnVL5ZQdznFZ6Gz_nrDH798eZlf85vbyeja94UHLuueKGkUEFoVWjTLO6eg02Ih1CKYCNUcboTEIShhZR4wwx1A1CFVF0KBUJ-zzru86d782VHq_akug5RITdZviQWtpt8cQA_rpDfrUbXIathuoStfOKVMP1Mc9tWlWFP06tyvMz_71PgMAOyDkrpRM87-IFH6bg9_l4Icc_EsO3gySeyOFtse-7VKfsV2-r6qdWoY56Sflf2u_Y_0Bys6Zxg |
CitedBy_id | crossref_primary_10_1007_s11596_021_2395_1 crossref_primary_10_1016_j_cossms_2021_100964 crossref_primary_10_4049_jimmunol_2200272 crossref_primary_10_1038_s41587_021_01131_y crossref_primary_10_5662_wjm_v12_i4_200 crossref_primary_10_1016_j_csbj_2022_08_010 crossref_primary_10_1093_infdis_jiab421 crossref_primary_10_47183_mes_2023_040 crossref_primary_10_1002_eji_202149374 crossref_primary_10_1007_s42247_021_00175_9 crossref_primary_10_1016_j_vaccine_2023_03_005 crossref_primary_10_3389_fimmu_2022_974364 crossref_primary_10_1016_j_intimp_2022_108943 crossref_primary_10_1007_s41745_021_00268_8 crossref_primary_10_1007_s40820_021_00771_8 crossref_primary_10_1556_650_2021_32172 crossref_primary_10_3390_v14081739 crossref_primary_10_3346_jkms_2021_36_e54 crossref_primary_10_1126_science_abh1823 crossref_primary_10_1016_j_banm_2021_02_013 crossref_primary_10_3390_cells10030506 crossref_primary_10_1007_s11684_023_1021_y crossref_primary_10_1016_j_cmi_2021_09_019 crossref_primary_10_2174_1568026622666220307125446 crossref_primary_10_1021_acs_molpharmaceut_1c00447 crossref_primary_10_1016_j_actbio_2022_09_048 crossref_primary_10_1161_HYPERTENSIONAHA_124_22064 crossref_primary_10_1093_femsre_fuab035 crossref_primary_10_3389_fcimb_2021_644574 crossref_primary_10_1016_j_cell_2021_06_021 crossref_primary_10_1038_s41541_022_00528_3 crossref_primary_10_1038_s41422_021_00531_8 crossref_primary_10_1186_s40779_021_00342_3 crossref_primary_10_1038_s41598_022_11374_7 crossref_primary_10_1038_s41590_022_01248_5 crossref_primary_10_1128_cmr_00200_21 crossref_primary_10_20411_pai_v7i1_491 crossref_primary_10_1084_jem_20202756 crossref_primary_10_1002_pro_4221 crossref_primary_10_1002_tre_802 crossref_primary_10_1093_abt_tbab006 crossref_primary_10_1007_s40123_021_00338_1 crossref_primary_10_1021_acs_jmedchem_3c01607 crossref_primary_10_1186_s40794_023_00212_x crossref_primary_10_3390_pathogens10081030 crossref_primary_10_3390_v14081837 crossref_primary_10_3390_pathogens12040602 crossref_primary_10_1051_medsci_2021143 crossref_primary_10_1016_j_isci_2021_103006 crossref_primary_10_1016_j_virusres_2022_198711 crossref_primary_10_1016_j_heliyon_2023_e16847 crossref_primary_10_1146_annurev_med_042420_112725 crossref_primary_10_3390_v15071584 crossref_primary_10_1016_j_ijid_2021_07_015 crossref_primary_10_3390_v13040628 crossref_primary_10_1016_j_matt_2021_04_005 crossref_primary_10_1136_postgradmedj_2021_139835 crossref_primary_10_3389_fmicb_2020_588409 crossref_primary_10_3390_pathogens12020169 crossref_primary_10_1016_j_rmcr_2024_102096 crossref_primary_10_3389_fimmu_2023_1055457 crossref_primary_10_1016_j_cell_2021_05_005 crossref_primary_10_1016_j_ijbiomac_2023_128191 crossref_primary_10_3390_vaccines12050459 crossref_primary_10_1021_jacs_1c06600 crossref_primary_10_1021_acs_nanolett_3c04510 crossref_primary_10_1093_oxfimm_iqab018 crossref_primary_10_1038_s41467_023_40758_0 crossref_primary_10_4103_jfmpc_jfmpc_1975_21 crossref_primary_10_1056_NEJMoa2033130 crossref_primary_10_1016_j_celrep_2021_109164 crossref_primary_10_3390_covid3040038 crossref_primary_10_15252_embr_202357724 crossref_primary_10_1017_qrd_2021_12 crossref_primary_10_3390_j6020017 crossref_primary_10_1126_scitranslmed_abl8124 crossref_primary_10_1080_22221751_2021_1957400 crossref_primary_10_1089_vim_2021_0121 crossref_primary_10_1038_s41467_021_21037_2 crossref_primary_10_1097_MRM_0000000000000306 crossref_primary_10_1016_j_jddst_2021_102967 crossref_primary_10_1038_s41467_022_29909_x crossref_primary_10_1016_j_coi_2022_102234 crossref_primary_10_1038_s41467_021_24979_9 crossref_primary_10_1111_jog_14748 crossref_primary_10_1016_j_heliyon_2024_e39941 crossref_primary_10_1038_s41392_022_01112_w crossref_primary_10_2174_1872208315666211209094457 crossref_primary_10_1007_s40259_022_00529_7 crossref_primary_10_1021_acs_jmedchem_1c02000 crossref_primary_10_1016_j_medcli_2021_05_008 crossref_primary_10_1128_mBio_02395_21 crossref_primary_10_1038_s41541_021_00311_w crossref_primary_10_1002_advs_202102181 crossref_primary_10_1371_journal_pone_0255169 crossref_primary_10_1016_j_meegid_2024_105626 crossref_primary_10_3390_life11080734 crossref_primary_10_15406_ijfcm_2022_06_00257 crossref_primary_10_7554_eLife_75228 crossref_primary_10_3389_fimmu_2021_637651 crossref_primary_10_1111_vox_13439 crossref_primary_10_1016_j_chom_2021_08_002 crossref_primary_10_1111_all_15441 crossref_primary_10_3389_fvets_2021_679248 crossref_primary_10_3390_v14030481 crossref_primary_10_1021_jacs_2c09870 crossref_primary_10_1038_s41577_024_01067_9 crossref_primary_10_1016_j_vaccine_2022_02_029 crossref_primary_10_2222_jsv_70_167 crossref_primary_10_7326_M20_8149 crossref_primary_10_1080_08830185_2022_2089666 crossref_primary_10_2217_rme_2022_0096 crossref_primary_10_1021_acsnano_1c01129 crossref_primary_10_3389_fimmu_2021_633184 crossref_primary_10_1016_j_xcrm_2022_100850 crossref_primary_10_1126_sciadv_abg7996 crossref_primary_10_1136_bmjopen_2020_045782 crossref_primary_10_3390_life11040298 crossref_primary_10_1128_Spectrum_01059_21 crossref_primary_10_1093_cid_ciab083 crossref_primary_10_1016_j_isci_2024_109703 crossref_primary_10_1016_j_biopha_2025_117936 crossref_primary_10_1016_j_ijid_2021_06_031 crossref_primary_10_1016_j_drudis_2021_04_018 crossref_primary_10_7554_eLife_86015 crossref_primary_10_3390_vaccines9101082 crossref_primary_10_4110_in_2021_21_e8 crossref_primary_10_1007_s42398_021_00175_9 crossref_primary_10_1186_s40779_021_00360_1 crossref_primary_10_1016_S2666_5247_23_00139_8 crossref_primary_10_2184_lsj_50_2_92 crossref_primary_10_1007_s11427_020_1859_y crossref_primary_10_1556_650_2021_32210 crossref_primary_10_3324_haematol_2021_279289 crossref_primary_10_4049_jimmunol_2100272 crossref_primary_10_1080_08927022_2022_2111421 crossref_primary_10_1007_s10875_021_01193_2 crossref_primary_10_3390_pathogens12020233 crossref_primary_10_1186_s12951_021_00768_w crossref_primary_10_1016_j_vaccine_2021_07_087 crossref_primary_10_1038_s41598_021_90797_0 crossref_primary_10_1080_22221751_2021_1957720 crossref_primary_10_3390_jcm10081580 crossref_primary_10_3390_diagnostics11060955 crossref_primary_10_1007_s12098_022_04266_1 crossref_primary_10_1080_21505594_2024_2441397 crossref_primary_10_1186_s12866_023_03080_9 crossref_primary_10_3389_fimmu_2021_657711 crossref_primary_10_1097_QAD_0000000000003050 crossref_primary_10_2174_1871526522666220425103031 crossref_primary_10_1038_s41392_021_00797_9 crossref_primary_10_1016_j_isci_2023_106256 crossref_primary_10_1016_j_isci_2023_107224 crossref_primary_10_1016_j_eclinm_2021_100843 crossref_primary_10_3389_fmicb_2024_1334152 crossref_primary_10_1007_s11357_021_00323_3 crossref_primary_10_3389_fimmu_2021_772511 crossref_primary_10_3390_microorganisms10030598 crossref_primary_10_1038_s41577_021_00542_x crossref_primary_10_3389_fcimb_2021_598875 crossref_primary_10_1111_jpc_15232 crossref_primary_10_1002_med_21862 crossref_primary_10_3390_pharmaceutics14051101 crossref_primary_10_1016_j_medj_2022_08_002 crossref_primary_10_3390_vaccines12040417 crossref_primary_10_1038_s41392_022_00996_y crossref_primary_10_1038_s41598_022_19780_7 crossref_primary_10_1038_s41598_022_19993_w crossref_primary_10_1038_s41598_023_40277_4 crossref_primary_10_1093_infdis_jiab256 crossref_primary_10_1016_j_compbiomed_2022_106522 crossref_primary_10_1016_j_mattod_2023_04_008 crossref_primary_10_1371_journal_pone_0260714 crossref_primary_10_1002_adhm_202300351 crossref_primary_10_3389_fmicb_2022_845316 crossref_primary_10_1002_14651858_CD013825_pub2 crossref_primary_10_1016_j_apsb_2023_01_005 crossref_primary_10_3390_vaccines9020081 crossref_primary_10_1016_j_jiph_2021_02_012 crossref_primary_10_1093_jmcb_mjad062 crossref_primary_10_1142_S1793984421300107 crossref_primary_10_1016_j_ebiom_2022_104414 crossref_primary_10_3390_v13010134 crossref_primary_10_1007_s13205_022_03281_5 crossref_primary_10_1021_acsnano_0c07197 crossref_primary_10_1007_s00011_022_01582_2 crossref_primary_10_1038_s41467_021_21825_w crossref_primary_10_1071_MA21010 crossref_primary_10_1007_s00204_021_03214_w crossref_primary_10_1248_yakushi_21_00234_3 crossref_primary_10_1371_journal_pone_0253487 crossref_primary_10_47184_td_2021_01_04 crossref_primary_10_5817_CSF2022_1_3 crossref_primary_10_3390_jcm12144672 crossref_primary_10_1002_jmv_27292 crossref_primary_10_2139_ssrn_3986016 crossref_primary_10_1016_j_nantod_2022_101580 crossref_primary_10_4103_mjdrdypu_mjdrdypu_819_22 crossref_primary_10_1186_s13045_021_01046_w crossref_primary_10_3389_fviro_2022_994843 crossref_primary_10_3390_vaccines9101168 crossref_primary_10_1002_eji_202049163 crossref_primary_10_1016_j_celrep_2022_111020 crossref_primary_10_1016_j_ebiom_2022_104424 crossref_primary_10_1556_650_2021_32414 crossref_primary_10_1038_s41573_022_00495_3 crossref_primary_10_1097_MRM_0000000000000393 crossref_primary_10_1002_14651858_CD014945 crossref_primary_10_1016_j_transci_2021_103063 crossref_primary_10_3389_fimmu_2022_1008285 crossref_primary_10_3389_fphys_2021_624675 crossref_primary_10_3390_vaccines10040608 crossref_primary_10_1038_s41586_021_04232_5 crossref_primary_10_1038_s41598_021_03273_0 crossref_primary_10_1038_s41390_023_02549_7 crossref_primary_10_1016_j_imj_2021_08_001 crossref_primary_10_1038_s41379_022_01069_9 crossref_primary_10_3390_v13081507 crossref_primary_10_14336_AD_2021_0611 crossref_primary_10_1631_jzus_B2200049 crossref_primary_10_1016_j_nantod_2021_101350 crossref_primary_10_1016_S1473_3099_21_00751_9 crossref_primary_10_1111_pai_13401 crossref_primary_10_3389_fimmu_2024_1505752 crossref_primary_10_3390_pharmaceutics12121247 crossref_primary_10_1016_j_isci_2022_104709 crossref_primary_10_1021_acs_biomac_2c00112 crossref_primary_10_3390_ijms23116078 crossref_primary_10_1080_08830185_2021_2019727 crossref_primary_10_1016_j_taap_2021_115796 crossref_primary_10_1016_j_isci_2022_104705 crossref_primary_10_1002_14651858_CD013825 crossref_primary_10_1007_s11033_022_07651_3 crossref_primary_10_1016_j_tim_2024_01_005 crossref_primary_10_1002_pd_5985 crossref_primary_10_1016_j_mehy_2021_110640 crossref_primary_10_1128_mBio_01987_21 crossref_primary_10_3390_vaccines9020178 crossref_primary_10_1007_s15010_023_02146_0 crossref_primary_10_1002_14651858_CD014945_pub2 crossref_primary_10_1007_s00284_021_02657_9 crossref_primary_10_3390_vaccines9080881 crossref_primary_10_1007_s11071_022_07939_w crossref_primary_10_54044_RAMI_2021_01_07 crossref_primary_10_1007_s00508_020_01763_1 crossref_primary_10_3390_ijms231911364 crossref_primary_10_3390_vaccines9101195 crossref_primary_10_1172_JCI150613 crossref_primary_10_3389_ijph_2021_1603975 crossref_primary_10_3390_vaccines9070733 crossref_primary_10_1186_s12967_022_03382_y crossref_primary_10_1089_jir_2024_0018 crossref_primary_10_1038_s41467_021_21239_8 crossref_primary_10_1021_acsnano_2c06803 crossref_primary_10_3390_v13112243 crossref_primary_10_1002_wnan_1785 crossref_primary_10_1099_jgv_0_001698 crossref_primary_10_3390_v13060957 crossref_primary_10_1080_21645515_2021_2006026 crossref_primary_10_3390_vaccines10070991 crossref_primary_10_47360_1995_4484_2020_469_479 crossref_primary_10_1016_j_jconrel_2021_10_023 crossref_primary_10_1186_s12879_021_06233_1 crossref_primary_10_1007_s11033_022_07493_z crossref_primary_10_1111_trf_17485 crossref_primary_10_3390_ijerph17218155 crossref_primary_10_1126_scisignal_ade0326 crossref_primary_10_1002_cbin_11903 crossref_primary_10_1016_j_ejpb_2023_09_015 crossref_primary_10_1093_ckj_sfab073 crossref_primary_10_3390_ijms241310799 crossref_primary_10_1134_S0006297924010048 crossref_primary_10_3389_fvets_2022_1080927 crossref_primary_10_3390_vaccines11071240 crossref_primary_10_1126_sciadv_abn4188 crossref_primary_10_1002_jmv_27420 crossref_primary_10_1371_journal_pone_0257930 crossref_primary_10_5812_apid_136044 crossref_primary_10_1002_jmv_28997 crossref_primary_10_1021_acsinfecdis_1c00486 crossref_primary_10_1016_j_jointm_2021_04_003 crossref_primary_10_1038_s41579_020_00462_y crossref_primary_10_1016_j_xcrm_2021_100191 crossref_primary_10_1093_jpids_piad113 crossref_primary_10_3390_vaccines13010065 crossref_primary_10_1016_j_antiviral_2023_105738 crossref_primary_10_1016_j_celrep_2021_109433 crossref_primary_10_1126_sciadv_abo1827 crossref_primary_10_1210_clinem_dgab055 crossref_primary_10_1016_j_vaccine_2021_12_024 crossref_primary_10_3389_fimmu_2022_782198 crossref_primary_10_3892_etm_2021_10843 crossref_primary_10_1002_ange_202100225 crossref_primary_10_1016_j_imlet_2023_05_007 crossref_primary_10_1080_14760584_2022_2071264 crossref_primary_10_1080_21645515_2021_1953351 crossref_primary_10_1016_j_applthermaleng_2021_117855 crossref_primary_10_1186_s12890_020_01361_x crossref_primary_10_1007_s00103_022_03600_4 crossref_primary_10_3390_vaccines10122150 crossref_primary_10_2147_IJN_S427990 crossref_primary_10_1038_s41467_023_36561_6 crossref_primary_10_1016_j_lfs_2023_121907 crossref_primary_10_1021_acs_chemrev_2c00915 crossref_primary_10_3390_vaccines12030330 crossref_primary_10_5582_bst_2021_01227 crossref_primary_10_1007_s11356_021_14941_z crossref_primary_10_1038_s41392_021_00653_w crossref_primary_10_1136_bmjmed_2022_000427 crossref_primary_10_1016_S0140_6736_22_00101_5 crossref_primary_10_1002_path_5642 crossref_primary_10_1016_j_antiviral_2024_105834 crossref_primary_10_1371_journal_pone_0253758 crossref_primary_10_3389_fimmu_2022_941923 crossref_primary_10_3390_jcm11020405 crossref_primary_10_1002_jmv_27458 crossref_primary_10_1016_j_lana_2021_100079 crossref_primary_10_3389_fimmu_2020_581076 crossref_primary_10_3389_fimmu_2022_940715 crossref_primary_10_1007_s11684_021_0847_4 crossref_primary_10_3390_v14040827 crossref_primary_10_3389_fmed_2021_756922 crossref_primary_10_1016_j_isci_2023_106126 crossref_primary_10_3389_fimmu_2020_610688 crossref_primary_10_1002_jmv_29638 crossref_primary_10_15407_biotech16_06_069 crossref_primary_10_1186_s12879_022_07513_0 crossref_primary_10_1002_anie_202100225 crossref_primary_10_2222_jsv_71_1 crossref_primary_10_4103_jmms_jmms_93_21 crossref_primary_10_3390_microorganisms9122414 crossref_primary_10_7554_eLife_70330 crossref_primary_10_1172_JCI144685 crossref_primary_10_1155_2021_9673453 crossref_primary_10_1002_cti2_1269 crossref_primary_10_3389_fimmu_2022_859905 crossref_primary_10_1007_s12247_023_09713_w crossref_primary_10_1016_j_celrep_2022_110904 crossref_primary_10_1016_j_addr_2020_12_011 crossref_primary_10_1093_infdis_jiac091 crossref_primary_10_1142_S2661341723720033 crossref_primary_10_1016_j_scr_2020_102125 crossref_primary_10_1080_08820139_2021_1936009 crossref_primary_10_1016_j_cytogfr_2021_03_001 crossref_primary_10_1016_j_jconrel_2023_06_025 crossref_primary_10_1371_journal_ppat_1012493 crossref_primary_10_2139_ssrn_3910133 crossref_primary_10_1016_j_isci_2021_103720 crossref_primary_10_1097_JBR_0000000000000144 crossref_primary_10_3390_ijms26051898 crossref_primary_10_1038_s41392_021_00750_w crossref_primary_10_1016_j_jconrel_2021_03_043 crossref_primary_10_1186_s12879_022_07610_0 crossref_primary_10_3390_genes13122287 crossref_primary_10_3390_ijerph182011001 crossref_primary_10_1016_j_clicom_2021_10_001 crossref_primary_10_3389_fimmu_2021_757691 crossref_primary_10_1007_s15010_021_01664_z crossref_primary_10_3390_vaccines10030349 crossref_primary_10_3390_vaccines9121376 crossref_primary_10_1002_prp2_691 crossref_primary_10_3390_v13081498 crossref_primary_10_3390_pathogens12070868 crossref_primary_10_1007_s00415_022_11188_7 crossref_primary_10_3390_antib14010004 crossref_primary_10_1126_sciadv_abl6015 crossref_primary_10_1016_j_vaccine_2025_126744 crossref_primary_10_1038_s41379_021_00814_w crossref_primary_10_1371_journal_pbio_3001804 crossref_primary_10_35366_100075 crossref_primary_10_7759_cureus_24927 crossref_primary_10_1016_j_molimm_2022_11_010 crossref_primary_10_3389_fphar_2022_835136 crossref_primary_10_1016_j_ijid_2021_09_021 crossref_primary_10_1016_j_medcle_2021_05_003 crossref_primary_10_1016_j_addr_2020_12_006 crossref_primary_10_3390_v14061181 crossref_primary_10_1093_cid_ciab621 crossref_primary_10_1126_sciadv_abq6527 crossref_primary_10_2174_1568026623666230411095417 crossref_primary_10_2174_1874471014666211011122250 crossref_primary_10_3390_pathogens12121408 crossref_primary_10_1016_j_trsl_2021_02_006 crossref_primary_10_1093_intimm_dxab061 crossref_primary_10_1016_j_ijbiomac_2021_08_076 crossref_primary_10_1016_j_xcrp_2023_101249 crossref_primary_10_1089_hum_2021_052 crossref_primary_10_1038_s42003_021_01813_y crossref_primary_10_1002_jssc_202300380 crossref_primary_10_1038_s41467_021_23173_1 crossref_primary_10_1126_scitranslmed_abg1143 crossref_primary_10_1016_j_lfs_2020_118919 crossref_primary_10_1371_journal_pone_0266923 crossref_primary_10_3390_biomedicines9040412 crossref_primary_10_1371_journal_ppat_1010155 crossref_primary_10_3389_fimmu_2021_730088 crossref_primary_10_23736_S2724_5276_22_06935_X crossref_primary_10_3389_fcimb_2024_1384939 crossref_primary_10_3923_jpt_2022_50_57 crossref_primary_10_1177_20587384211050199 crossref_primary_10_3389_fimmu_2023_1183727 crossref_primary_10_3389_fcimb_2024_1346349 crossref_primary_10_3389_fviro_2021_815388 crossref_primary_10_1002_jcb_30017 crossref_primary_10_3390_vetsci9090470 crossref_primary_10_3390_biomed3010016 crossref_primary_10_1016_j_celrep_2022_110318 crossref_primary_10_1016_j_biomaterials_2020_120597 crossref_primary_10_31857_10_31857_S0320972524010042 crossref_primary_10_1002_advs_202100985 crossref_primary_10_1016_j_vaccine_2023_06_063 crossref_primary_10_3389_fimmu_2023_1204543 crossref_primary_10_1038_s41573_023_00672_y crossref_primary_10_1111_jam_15340 crossref_primary_10_17816_MAJ108729 crossref_primary_10_1016_j_bbih_2023_100677 crossref_primary_10_1371_journal_ppat_1011596 crossref_primary_10_3389_fmolb_2021_654866 crossref_primary_10_3389_fimmu_2021_673699 crossref_primary_10_1126_scitranslmed_ado2817 crossref_primary_10_1097_IM9_0000000000000072 crossref_primary_10_1371_journal_pone_0271463 crossref_primary_10_1093_occmed_kqaa208 crossref_primary_10_3390_ijms241310583 crossref_primary_10_1007_s00011_022_01567_1 crossref_primary_10_1016_j_cell_2021_02_035 crossref_primary_10_1038_s41467_022_32867_z crossref_primary_10_3390_v13122483 crossref_primary_10_1080_13543784_2022_2030310 crossref_primary_10_3390_v15122421 crossref_primary_10_1016_j_antiviral_2022_105271 crossref_primary_10_1093_jleuko_qiad143 crossref_primary_10_1021_acscentsci_1c00361 crossref_primary_10_3389_fimmu_2021_763098 crossref_primary_10_1002_prot_26140 crossref_primary_10_4103_cdr_cdr_48_21 crossref_primary_10_3390_v13061037 crossref_primary_10_3389_fimmu_2022_882972 crossref_primary_10_3390_molecules28124645 crossref_primary_10_1002_jmv_27613 crossref_primary_10_2174_1389201023666220507003726 crossref_primary_10_1038_s42003_022_03207_0 crossref_primary_10_7759_cureus_22669 crossref_primary_10_1016_j_jnma_2021_12_003 crossref_primary_10_1021_acsnano_3c07741 crossref_primary_10_1038_s41418_020_00711_w crossref_primary_10_1073_pnas_2104847118 crossref_primary_10_1016_j_rmed_2021_106355 crossref_primary_10_1093_abt_tbac032 crossref_primary_10_1038_s41577_020_00480_0 crossref_primary_10_1016_j_cell_2021_02_026 crossref_primary_10_1371_journal_pone_0250780 crossref_primary_10_3389_fimmu_2022_882856 crossref_primary_10_3389_fmicb_2023_1117494 crossref_primary_10_1080_22221751_2021_1902245 crossref_primary_10_3390_pathogens12091108 crossref_primary_10_3390_antib13020028 crossref_primary_10_1186_s41231_021_00093_2 crossref_primary_10_1016_j_yrtph_2022_105189 crossref_primary_10_2147_ITT_S360151 crossref_primary_10_2174_2666796703666220623090158 crossref_primary_10_1371_journal_ppat_1011569 crossref_primary_10_1016_j_gene_2021_146134 crossref_primary_10_1016_j_immuni_2022_05_005 crossref_primary_10_1007_s00203_021_02265_y crossref_primary_10_3389_fimmu_2023_1307398 crossref_primary_10_1016_j_addr_2021_113966 crossref_primary_10_3390_v14061127 crossref_primary_10_1186_s13578_021_00644_y crossref_primary_10_1007_s12250_021_00371_1 crossref_primary_10_3389_fimmu_2021_660019 crossref_primary_10_1073_pnas_2026153118 crossref_primary_10_1038_s41392_022_00920_4 crossref_primary_10_3390_diagnostics13121990 crossref_primary_10_4103_abr_abr_134_23 |
Cites_doi | 10.3851/IMP3243 10.1073/pnas.1402458111 10.1172/jci.insight.123158 10.1016/S0140-6736(20)30251-8 10.1016/S1473-3099(20)30232-2 10.1038/s41586-020-2381-y 10.1093/oxfordjournals.aje.a120955 10.1056/NEJMoa1800820 10.1038/s41586-020-2380-z 10.1126/science.abd0827 10.1172/JCI84428 10.1016/j.cell.2020.05.025 10.1084/jem.20020781 10.1001/jama.2020.10044 10.1126/science.abc5902 10.1002/jmv.1890360312 10.1038/nature02463 10.1016/j.vaccine.2006.08.011 10.4049/jimmunol.181.9.6337 10.1021/acsinfecdis.6b00006 10.1126/science.abb2507 10.1038/nm918 10.1056/NEJMp2005630 10.1371/journal.pone.0035421 10.1038/s41586-020-2169-0 10.1128/JVI.06048-11 10.1128/JVI.02980-14 10.1084/jem.146.1.201 10.1038/s41467-018-08165-y 10.1172/JCI122466 10.1016/j.cell.2020.02.052 10.1016/0147-9571(81)90003-5 10.1126/science.abc7520 10.1016/S0022-3476(68)80396-8 10.1016/S2213-2600(20)30193-4 10.1128/mBio.01753-18 10.1038/s41591-020-0965-6 10.1016/j.vaccine.2016.04.083 10.1016/S0140-6736(04)16501-X 10.1016/j.micinf.2020.02.006 10.1016/j.tim.2017.10.004 10.1128/JVI.00671-11 10.1128/JVI.78.22.12672-12676.2004 10.1371/journal.pmed.0030525 10.1080/21645515.2016.1177688 10.1128/JVI.75.5.2324-2330.2001 10.1093/infdis/jiz137 10.1128/JVI.02015-19 10.1126/science.aai8128 10.1126/science.abc1932 10.1073/pnas.0401939101 10.3201/eid1111.040659 10.1126/science.abb7269 10.1093/infdis/jit504 10.1073/pnas.1108360108 10.1016/S0140-6736(88)91657-1 10.1128/jvi.64.3.1407-1409.1990 10.1172/JCI138003 10.1038/s41421-020-0153-3 10.1007/BF01310476 10.1016/j.chest.2020.03.039 10.1136/bmj.m1443 10.1093/infdis/jiu396 10.1016/S0065-3527(03)60011-4 10.1007/s10096-004-1271-9 10.1128/JVI.79.12.7819-7826.2005 10.1001/jama.2020.4783 10.3389/fimmu.2017.00317 10.3389/fimmu.2019.00697 10.1126/science.abb2762 10.1186/1743-422X-11-82 10.1073/pnas.2004168117 10.3346/jkms.2020.35.e149 10.1016/j.vaccine.2005.06.038 10.1007/s12250-018-0009-2 10.1111/j.1537-2995.2012.03663.x 10.1073/pnas.1821317116 10.1292/jvms.60.49 10.1016/j.vaccine.2005.01.033 10.1073/pnas.86.12.4710 10.1126/science.1185181 10.1126/science.abc1731 10.1016/j.virol.2014.02.005 10.1038/nature06106 10.1203/PDR.0b013e3180686ce0 10.1128/JVI.77.13.7539-7544.2003 10.1371/journal.pone.0154461 10.1101/2020.03.29.20041962 10.1172/JCI140200 10.1093/cid/ciaa344 10.1016/j.cell.2020.08.017 10.1101/2020.06.07.137802 10.1101/2020.05.18.099507 10.1126/science.abc8511 10.1101/2020.03.24.006544 10.1093/cid/ciaa325 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2020 Springer Nature Limited 2020. |
Copyright_xml | – notice: Springer Nature Limited 2020 – notice: Springer Nature Limited 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FH AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1038/s41564-020-00789-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2058-5276 |
EndPage | 1191 |
ExternalDocumentID | 32908214 10_1038_s41564_020_00789_5 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: R21AI143407 funderid: https://doi.org/10.13039/100000002 – fundername: Australian National Health and Medical Research Council (1162760) Australian National Health and Medical Research Council Fellowship – fundername: COVID-19 Fast Grants The Jack Ma Foundation – fundername: Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology Australian National Health and Medical Research Council (1149990) Australian National Health and Medical Research Council Fellowship – fundername: NIH HHS grantid: DP5 OD023118 – fundername: NIAID NIH HHS grantid: R21 AI143407 |
GroupedDBID | 0R~ 53G 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABJNI ABLJU ACBWK ACGFS ADBBV AFBBN AFKRA AFSHS AFWHJ AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD BBNVY BENPR BHPHI BKKNO CCPQU EBS EJD FSGXE FZEXT HCIFZ HZ~ LK8 M7P NNMJJ O9- ODYON R9- RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM PQGLB AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS PUEGO 7X8 |
ID | FETCH-LOGICAL-c419t-3eb3ee26a043b35884d8426da9cc5723fa6d2b5a230519dad2fac7ba277e2ba13 |
IEDL.DBID | BENPR |
ISSN | 2058-5276 |
IngestDate | Fri Jul 11 05:48:06 EDT 2025 Sat Aug 23 14:22:39 EDT 2025 Sun Jul 20 01:30:39 EDT 2025 Tue Jul 01 00:55:55 EDT 2025 Thu Apr 24 22:50:53 EDT 2025 Fri Feb 21 02:38:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-3eb3ee26a043b35884d8426da9cc5723fa6d2b5a230519dad2fac7ba277e2ba13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7285-4054 0000-0002-5593-9387 0000-0001-6406-0836 0000-0002-8539-4891 |
OpenAccessLink | https://www.nature.com/articles/s41564-020-00789-5.pdf |
PMID | 32908214 |
PQID | 2474988359 |
PQPubID | 2069616 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2441607890 proquest_journals_2474988359 pubmed_primary_32908214 crossref_primary_10_1038_s41564_020_00789_5 crossref_citationtrail_10_1038_s41564_020_00789_5 springer_journals_10_1038_s41564_020_00789_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature microbiology |
PublicationTitleAbbrev | Nat Microbiol |
PublicationTitleAlternate | Nat Microbiol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Nader, Horwitz, Rousseau (CR11) 1968; 72 Wang (CR30) 2017; 355 Zhou (CR45) 2014; 209 Bolles (CR57) 2011; 85 Bukreyev (CR72) 2004; 363 Sariol, Nogueira, Vasilakis (CR38) 2018; 26 Lu (CR2) 2020; 395 Zhang (CR95) 2020; 158 Weingartl (CR60) 2004; 78 Winarski (CR21) 2019; 116 Yip (CR42) 2016; 22 Honda-Okubo (CR62) 2015; 89 Polack (CR12) 2007; 62 Shi (CR80) 2020; 584 Ana-Sosa-Batiz (CR43) 2016; 11 CR47 Ye (CR20) 2017; 8 Hessell (CR86) 2007; 449 Ko (CR90) 2018; 23 Luo (CR68) 2018; 33 Halstead (CR83) 2003; 60 Wang (CR67) 2016; 2 London, Kimmelman (CR64) 2020; 368 Ahn (CR94) 2020; 35 Sridhar (CR14) 2018; 379 Qin (CR69) 2006; 24 Cheung (CR41) 2005; 79 Liu (CR85) 2019; 10 CR54 CR52 CR51 Agrawal (CR59) 2016; 12 Wan (CR39) 2020; 94 Hiatt (CR28) 2014; 111 Hashem (CR63) 2019; 220 Tseng (CR55) 2012; 7 Yan (CR5) 2020; 367 Long (CR50) 2020; 26 Dejnirattisai (CR13) 2010; 328 Jaume (CR40) 2011; 85 Crowley, Ackerman (CR88) 2019; 10 Ho (CR46) 2005; 11 Kam (CR70) 2007; 25 Liu (CR48) 2020; 20 Cao (CR81) 2020; 182 Yip (CR32) 2014; 11 Li (CR97) 2020; 324 Hui (CR31) 2020; 8 Hohdatsu, Nakamura, Ishizuka, Yamada, Koyama (CR18) 1991; 120 Vennema (CR17) 1990; 64 Shen (CR92) 2020; 323 Takada, Feldmann, Ksiazek, Kawaoka (CR36) 2003; 77 Hoffmann (CR4) 2020; 181 Gralinski (CR25) 2018; 9 CR75 Liu (CR66) 2019; 4 Hansen (CR78) 2020; 369 Wrapp (CR8) 2020; 367 Lam (CR3) 2020; 583 Cheng (CR91) 2005; 24 Ochiai (CR37) 1992; 36 Deming (CR56) 2006; 3 CR6 CR7 Tetro (CR53) 2020; 22 Weiss, Scott (CR19) 1981; 4 Yasui (CR58) 2008; 181 Czub, Weingartl, Czub, He, Cao (CR61) 2005; 23 Yuan (CR79) 2020; 368 Polack (CR22) 2002; 196 Brouwer (CR77) 2020; 369 Bisht (CR73) 2004; 101 Pandey, Vyas (CR100) 2012; 52 Zheng (CR49) 2020; 369 Robinson (CR34) 1989; 86 Graham (CR10) 2016; 34 Halstead, O’Rourke (CR16) 1977; 146 Mair-Jenkins (CR89) 2015; 211 Duan (CR93) 2020; 117 Rogers (CR82) 2020; 369 Hohdatsu (CR15) 1998; 60 Yang (CR71) 2004; 428 Parsons (CR87) 2019; 129 CR98 Kim (CR9) 1969; 89 CR96 DiLillo, Palese, Wilson, Ravetch (CR84) 2016; 126 Takada, Watanabe, Okazaki, Kida, Kawaoka (CR35) 2001; 75 Polack, Hoffman, Crujeiras, Griffin (CR23) 2003; 9 Zhou (CR1) 2020; 6 Robinson, Montefiori, Mitchell (CR33) 1988; 1 Lurie, Saville, Hatchett, Halton (CR65) 2020; 382 Zeitlin (CR29) 2011; 108 Ju (CR76) 2020; 584 Casadevall, Pirofski (CR99) 2020; 130 CR27 CR26 CR24 Gao (CR74) 2020; 369 Yasui (CR44) 2014; 454–455 H Vennema (789_CR17) 1990; 64 789_CR24 789_CR26 789_CR27 BS Graham (789_CR10) 2016; 34 S Sridhar (789_CR14) 2018; 379 TF Rogers (789_CR82) 2020; 369 TT Wang (789_CR30) 2017; 355 M Czub (789_CR61) 2005; 23 M Bolles (789_CR57) 2011; 85 AS Agrawal (789_CR59) 2016; 12 F Yasui (789_CR44) 2014; 454–455 J Mair-Jenkins (789_CR89) 2015; 211 TT Lam (789_CR3) 2020; 583 Y Zhou (789_CR1) 2020; 6 CA Sariol (789_CR38) 2018; 26 R Yan (789_CR5) 2020; 367 789_CR7 C Shen (789_CR92) 2020; 323 789_CR6 M Jaume (789_CR40) 2011; 85 Y Cheng (789_CR91) 2005; 24 ZW Ye (789_CR20) 2017; 8 MS Yip (789_CR32) 2014; 11 FP Polack (789_CR22) 2002; 196 D Deming (789_CR56) 2006; 3 YW Kam (789_CR70) 2007; 25 J Zhou (789_CR45) 2014; 209 AJ London (789_CR64) 2020; 368 N Lurie (789_CR65) 2020; 382 J Hansen (789_CR78) 2020; 369 MS Yip (789_CR42) 2016; 22 Y Liu (789_CR48) 2020; 20 PR Nader (789_CR11) 1968; 72 JH Ko (789_CR90) 2018; 23 MS Parsons (789_CR87) 2019; 129 D Wrapp (789_CR8) 2020; 367 F Luo (789_CR68) 2018; 33 FP Polack (789_CR12) 2007; 62 F Yasui (789_CR58) 2008; 181 H Weingartl (789_CR60) 2004; 78 SB Halstead (789_CR83) 2003; 60 KPY Hui (789_CR31) 2020; 8 S Pandey (789_CR100) 2012; 52 K Duan (789_CR93) 2020; 117 Y Liu (789_CR85) 2019; 10 789_CR98 Y Honda-Okubo (789_CR62) 2015; 89 AJ Hessell (789_CR86) 2007; 449 JY Ahn (789_CR94) 2020; 35 Y Cao (789_CR81) 2020; 182 DJ DiLillo (789_CR84) 2016; 126 M Hoffmann (789_CR4) 2020; 181 789_CR96 RC Weiss (789_CR19) 1981; 4 KL Winarski (789_CR21) 2019; 116 CY Cheung (789_CR41) 2005; 79 AR Crowley (789_CR88) 2019; 10 S Zheng (789_CR49) 2020; 369 Q Wang (789_CR67) 2016; 2 R Lu (789_CR2) 2020; 395 FP Polack (789_CR23) 2003; 9 E Qin (789_CR69) 2006; 24 LE Gralinski (789_CR25) 2018; 9 AM Hashem (789_CR63) 2019; 220 W Dejnirattisai (789_CR13) 2010; 328 PJM Brouwer (789_CR77) 2020; 369 QX Long (789_CR50) 2020; 26 T Hohdatsu (789_CR18) 1991; 120 MS Ho (789_CR46) 2005; 11 789_CR75 WE Robinson Jr (789_CR34) 1989; 86 M Yuan (789_CR79) 2020; 368 SB Halstead (789_CR16) 1977; 146 A Hiatt (789_CR28) 2014; 111 Q Gao (789_CR74) 2020; 369 A Takada (789_CR36) 2003; 77 HW Kim (789_CR9) 1969; 89 L Zeitlin (789_CR29) 2011; 108 789_CR47 H Bisht (789_CR73) 2004; 101 JA Tetro (789_CR53) 2020; 22 CT Tseng (789_CR55) 2012; 7 L Li (789_CR97) 2020; 324 H Ochiai (789_CR37) 1992; 36 L Liu (789_CR66) 2019; 4 A Casadevall (789_CR99) 2020; 130 WE Robinson Jr (789_CR33) 1988; 1 789_CR54 T Hohdatsu (789_CR15) 1998; 60 F Ana-Sosa-Batiz (789_CR43) 2016; 11 ZY Yang (789_CR71) 2004; 428 Y Wan (789_CR39) 2020; 94 789_CR51 789_CR52 B Zhang (789_CR95) 2020; 158 B Ju (789_CR76) 2020; 584 R Shi (789_CR80) 2020; 584 A Takada (789_CR35) 2001; 75 A Bukreyev (789_CR72) 2004; 363 |
References_xml | – volume: 23 start-page: 617 year: 2018 end-page: 622 ident: CR90 article-title: Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: a single centre experience publication-title: Antivir. Ther. doi: 10.3851/IMP3243 – volume: 111 start-page: 5992 year: 2014 end-page: 5997 ident: CR28 article-title: Glycan variants of a respiratory syncytial virus antibody with enhanced effector function and in vivo efficacy publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1402458111 – volume: 4 start-page: e123158 year: 2019 ident: CR66 article-title: Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection publication-title: JCI Insight doi: 10.1172/jci.insight.123158 – ident: CR51 – volume: 395 start-page: 565 year: 2020 end-page: 574 ident: CR2 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet doi: 10.1016/S0140-6736(20)30251-8 – volume: 20 start-page: 656 year: 2020 end-page: 657 ident: CR48 article-title: Viral dynamics in mild and severe cases of COVID-19 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30232-2 – ident: CR54 – volume: 584 start-page: 120 year: 2020 end-page: 124 ident: CR80 article-title: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2381-y – volume: 89 start-page: 422 year: 1969 end-page: 434 ident: CR9 article-title: Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine publication-title: Am. J. Epidemiol. doi: 10.1093/oxfordjournals.aje.a120955 – volume: 379 start-page: 327 year: 2018 end-page: 340 ident: CR14 article-title: Effect of dengue serostatus on dengue vaccine safety and efficacy publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1800820 – volume: 584 start-page: 115 year: 2020 end-page: 119 ident: CR76 article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Nature doi: 10.1038/s41586-020-2380-z – volume: 369 start-page: 1010 year: 2020 end-page: 1014 ident: CR78 article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail publication-title: Science doi: 10.1126/science.abd0827 – volume: 126 start-page: 605 year: 2016 end-page: 610 ident: CR84 article-title: Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection publication-title: J. Clin. Invest. doi: 10.1172/JCI84428 – volume: 182 start-page: 73 year: 2020 end-page: 84 ident: CR81 article-title: Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells publication-title: Cell doi: 10.1016/j.cell.2020.05.025 – volume: 196 start-page: 859 year: 2002 end-page: 865 ident: CR22 article-title: A role for immune complexes in enhanced respiratory syncytial virus disease publication-title: J. Exp. Med. doi: 10.1084/jem.20020781 – volume: 324 start-page: 460 year: 2020 end-page: 470 ident: CR97 article-title: Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2020.10044 – volume: 369 start-page: 643 year: 2020 end-page: 650 ident: CR77 article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability publication-title: Science doi: 10.1126/science.abc5902 – volume: 36 start-page: 217 year: 1992 end-page: 221 ident: CR37 article-title: Infection enhancement of influenza A NWS virus in primary murine macrophages by anti-hemagglutinin monoclonal antibody publication-title: J. Med. Virol. doi: 10.1002/jmv.1890360312 – volume: 428 start-page: 561 year: 2004 end-page: 564 ident: CR71 article-title: A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice publication-title: Nature doi: 10.1038/nature02463 – volume: 25 start-page: 729 year: 2007 end-page: 740 ident: CR70 article-title: Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro publication-title: Vaccine doi: 10.1016/j.vaccine.2006.08.011 – volume: 181 start-page: 6337 year: 2008 end-page: 6348 ident: CR58 article-title: Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV publication-title: J. Immunol. doi: 10.4049/jimmunol.181.9.6337 – ident: CR47 – volume: 2 start-page: 361 year: 2016 end-page: 376 ident: CR67 article-title: Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.6b00006 – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: CR8 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 9 start-page: 1209 year: 2003 end-page: 1213 ident: CR23 article-title: A role for nonprotective complement-fixing antibodies with low avidity for measles virus in atypical measles publication-title: Nat. Med. doi: 10.1038/nm918 – volume: 382 start-page: 1969 year: 2020 end-page: 1973 ident: CR65 article-title: Developing Covid-19 vaccines at pandemic speed publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp2005630 – volume: 7 start-page: e35421 year: 2012 ident: CR55 article-title: Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus publication-title: PLoS ONE doi: 10.1371/journal.pone.0035421 – volume: 583 start-page: 282 year: 2020 end-page: 285 ident: CR3 article-title: Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins publication-title: Nature doi: 10.1038/s41586-020-2169-0 – volume: 85 start-page: 12201 year: 2011 end-page: 12215 ident: CR57 article-title: A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge publication-title: J. Virol. doi: 10.1128/JVI.06048-11 – ident: CR6 – volume: 89 start-page: 2995 year: 2015 end-page: 3007 ident: CR62 article-title: Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology publication-title: J. Virol. doi: 10.1128/JVI.02980-14 – ident: CR27 – volume: 146 start-page: 201 year: 1977 end-page: 217 ident: CR16 article-title: Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody publication-title: J. Exp. Med. doi: 10.1084/jem.146.1.201 – volume: 10 year: 2019 ident: CR85 article-title: Cross-lineage protection by human antibodies binding the influenza B hemagglutinin publication-title: Nat. Commun. doi: 10.1038/s41467-018-08165-y – volume: 129 start-page: 182 year: 2019 end-page: 191 ident: CR87 article-title: Fc-dependent functions are redundant to efficacy of anti-HIV antibody PGT121 in macaques publication-title: J. Clin. Invest. doi: 10.1172/JCI122466 – volume: 181 start-page: 271 year: 2020 end-page: 280 ident: CR4 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 4 start-page: 175 year: 1981 end-page: 189 ident: CR19 article-title: Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever publication-title: Comp. Immunol. Microbiol. Infect. Dis. doi: 10.1016/0147-9571(81)90003-5 – volume: 22 start-page: 25 year: 2016 end-page: 31 ident: CR42 article-title: Antibody-dependent enhancement of SARS coronavirus infection and its role in the pathogenesis of SARS publication-title: Hong Kong Med. J. – volume: 369 start-page: 956 year: 2020 end-page: 963 ident: CR82 article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model publication-title: Science doi: 10.1126/science.abc7520 – volume: 72 start-page: 22 year: 1968 end-page: 28 ident: CR11 article-title: Atypical exanthem following exposure to natural measles: eleven cases in children previously inoculated with killed vaccine publication-title: J. Pediatr. doi: 10.1016/S0022-3476(68)80396-8 – ident: CR52 – volume: 8 start-page: 687 year: 2020 end-page: 695 ident: CR31 article-title: Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30193-4 – volume: 9 start-page: e01753-18 year: 2018 ident: CR25 article-title: Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis publication-title: mBio doi: 10.1128/mBio.01753-18 – volume: 26 start-page: 1200 year: 2020 end-page: 1204 ident: CR50 article-title: Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections publication-title: Nat. Med. doi: 10.1038/s41591-020-0965-6 – volume: 34 start-page: 3535 year: 2016 end-page: 3541 ident: CR10 article-title: Vaccines against respiratory syncytial virus: the time has finally come publication-title: Vaccine doi: 10.1016/j.vaccine.2016.04.083 – volume: 363 start-page: 2122 year: 2004 end-page: 2127 ident: CR72 article-title: Mucosal immunisation of African green monkeys ( ) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS publication-title: Lancet doi: 10.1016/S0140-6736(04)16501-X – ident: CR24 – volume: 22 start-page: 72 year: 2020 end-page: 73 ident: CR53 article-title: Is COVID-19 receiving ADE from other coronaviruses? publication-title: Microbes Infect. doi: 10.1016/j.micinf.2020.02.006 – volume: 26 start-page: 186 year: 2018 end-page: 190 ident: CR38 article-title: A tale of two viruses: does heterologous flavivirus immunity enhance Zika disease? publication-title: Trends Microbiol. doi: 10.1016/j.tim.2017.10.004 – volume: 85 start-page: 10582 year: 2011 end-page: 10597 ident: CR40 article-title: Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway publication-title: J. Virol. doi: 10.1128/JVI.00671-11 – volume: 78 start-page: 12672 year: 2004 end-page: 12676 ident: CR60 article-title: Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets publication-title: J. Virol. doi: 10.1128/JVI.78.22.12672-12676.2004 – volume: 3 start-page: e525 year: 2006 ident: CR56 article-title: Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants publication-title: PLoS Med. doi: 10.1371/journal.pmed.0030525 – volume: 12 start-page: 2351 year: 2016 end-page: 2356 ident: CR59 article-title: Immunization with inactivated Middle East respiratory syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus publication-title: Hum. Vaccin. Immunother. doi: 10.1080/21645515.2016.1177688 – volume: 75 start-page: 2324 year: 2001 end-page: 2330 ident: CR35 article-title: Infectivity-enhancing antibodies to Ebola virus glycoprotein publication-title: J. Virol. doi: 10.1128/JVI.75.5.2324-2330.2001 – volume: 220 start-page: 1558 year: 2019 end-page: 1567 ident: CR63 article-title: A highly immunogenic, protective, and safe adenovirus-based vaccine expressing Middle East respiratory syndrome coronavirus S1-CD40L fusion protein in a transgenic human dipeptidyl peptidase 4 mouse model publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiz137 – volume: 94 start-page: e02015-19 year: 2020 ident: CR39 article-title: Molecular mechanism for antibody-dependent enhancement of coronavirus entry publication-title: J. Virol. doi: 10.1128/JVI.02015-19 – volume: 355 start-page: 395 year: 2017 end-page: 398 ident: CR30 article-title: IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity publication-title: Science doi: 10.1126/science.aai8128 – volume: 369 start-page: 77 year: 2020 end-page: 81 ident: CR74 article-title: Rapid development of an inactivated vaccine candidate for SARS-CoV-2 publication-title: Science doi: 10.1126/science.abc1932 – volume: 101 start-page: 6641 year: 2004 end-page: 6646 ident: CR73 article-title: Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0401939101 – volume: 11 start-page: 1730 year: 2005 end-page: 1737 ident: CR46 article-title: Neutralizing antibody response and SARS severity publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1111.040659 – volume: 368 start-page: 630 year: 2020 end-page: 633 ident: CR79 article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science doi: 10.1126/science.abb7269 – volume: 209 start-page: 1331 year: 2014 end-page: 1342 ident: CR45 article-title: Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis publication-title: J. Infect. Dis. doi: 10.1093/infdis/jit504 – ident: CR96 – volume: 108 start-page: 20690 year: 2011 end-page: 20694 ident: CR29 article-title: Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1108360108 – ident: CR75 – volume: 1 start-page: 790 year: 1988 end-page: 794 ident: CR33 article-title: Antibody-dependent enhancement of human immunodeficiency virus type 1 infection publication-title: Lancet doi: 10.1016/S0140-6736(88)91657-1 – volume: 64 start-page: 1407 year: 1990 end-page: 1409 ident: CR17 article-title: Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization publication-title: J. Virol. doi: 10.1128/jvi.64.3.1407-1409.1990 – volume: 130 start-page: 1545 year: 2020 end-page: 1548 ident: CR99 article-title: The convalescent sera option for containing COVID-19 publication-title: J. Clin. Invest. doi: 10.1172/JCI138003 – volume: 6 start-page: 14 year: 2020 ident: CR1 article-title: Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2 publication-title: Cell Discov. doi: 10.1038/s41421-020-0153-3 – volume: 120 start-page: 207 year: 1991 end-page: 217 ident: CR18 article-title: A study on the mechanism of antibody-dependent enhancement of feline infectious peritonitis virus infection in feline macrophages by monoclonal antibodies publication-title: Arch. Virol. doi: 10.1007/BF01310476 – volume: 158 start-page: e9 year: 2020 end-page: e13 ident: CR95 article-title: Treatment with convalescent plasma for critically ill patients with SARS-CoV-2 infection publication-title: Chest doi: 10.1016/j.chest.2020.03.039 – volume: 369 start-page: m1443 year: 2020 ident: CR49 article-title: Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January–March 2020: retrospective cohort study publication-title: BMJ doi: 10.1136/bmj.m1443 – volume: 211 start-page: 80 year: 2015 end-page: 90 ident: CR89 article-title: The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiu396 – volume: 60 start-page: 421 year: 2003 end-page: 467 ident: CR83 article-title: Neutralization and antibody-dependent enhancement of dengue viruses publication-title: Adv. Virus. Res. doi: 10.1016/S0065-3527(03)60011-4 – volume: 24 start-page: 44 year: 2005 end-page: 46 ident: CR91 article-title: Use of convalescent plasma therapy in SARS patients in Hong Kong. publication-title: J. Clin. Microbiol. Infect. Dis. doi: 10.1007/s10096-004-1271-9 – volume: 79 start-page: 7819 year: 2005 end-page: 7826 ident: CR41 article-title: Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis publication-title: J. Virol. doi: 10.1128/JVI.79.12.7819-7826.2005 – ident: CR26 – volume: 323 start-page: 1582 year: 2020 end-page: 1589 ident: CR92 article-title: Treatment of 5 critically ill patients with COVID-19 with convalescent plasma publication-title: JAMA doi: 10.1001/jama.2020.4783 – volume: 8 start-page: 317 year: 2017 ident: CR20 article-title: Antibody-dependent cell-mediated cytotoxicity epitopes on the hemagglutinin head region of pandemic H1N1 influenza virus play detrimental roles in H1N1-infected mice publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.00317 – volume: 10 start-page: 69 year: 2019 ident: CR88 article-title: Mind the gap: how interspecies variability in IgG and its receptors may complicate comparisons of human and non-human primate effector function publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00697 – volume: 367 start-page: 1444 year: 2020 end-page: 1448 ident: CR5 article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 publication-title: Science doi: 10.1126/science.abb2762 – volume: 11 start-page: 82 year: 2014 ident: CR32 article-title: Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus publication-title: Virol. J. doi: 10.1186/1743-422X-11-82 – volume: 117 start-page: 9490 year: 2020 end-page: 9496 ident: CR93 article-title: Effectiveness of convalescent plasma therapy in severe COVID-19 patients publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2004168117 – volume: 35 start-page: e149 year: 2020 ident: CR94 article-title: Use of convalescent plasma therapy in two COVID-19 patients with acute respiratory distress syndrome in Korea publication-title: J. Korean Med. Sci. doi: 10.3346/jkms.2020.35.e149 – volume: 24 start-page: 1028 year: 2006 end-page: 1034 ident: CR69 article-title: Immunogenicity and protective efficacy in monkeys of purified inactivated Vero-cell SARS vaccine publication-title: Vaccine doi: 10.1016/j.vaccine.2005.06.038 – volume: 33 start-page: 201 year: 2018 end-page: 204 ident: CR68 article-title: Evaluation of antibody-dependent enhancement of SARS-CoV infection in rhesus macaques immunized with an inactivated SARS-CoV vaccine publication-title: Virol. Sin. doi: 10.1007/s12250-018-0009-2 – volume: 52 start-page: 65S issue: Suppl. 1 year: 2012 end-page: 79S ident: CR100 article-title: Adverse effects of plasma transfusion publication-title: Transfusion doi: 10.1111/j.1537-2995.2012.03663.x – ident: CR98 – volume: 116 start-page: 15194 year: 2019 end-page: 15199 ident: CR21 article-title: Antibody-dependent enhancement of influenza disease promoted by increase in hemagglutinin stem flexibility and virus fusion kinetics publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1821317116 – volume: 60 start-page: 49 year: 1998 end-page: 55 ident: CR15 article-title: Antibody-dependent enhancement of feline infectious peritonitis virus infection in feline alveolar macrophages and human monocyte cell line U937 by serum of cats experimentally or naturally infected with feline coronavirus publication-title: J. Vet. Med. Sci. doi: 10.1292/jvms.60.49 – volume: 23 start-page: 2273 year: 2005 end-page: 2279 ident: CR61 article-title: Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets publication-title: Vaccine doi: 10.1016/j.vaccine.2005.01.033 – volume: 86 start-page: 4710 year: 1989 end-page: 4714 ident: CR34 article-title: Antibody-dependent enhancement of human immunodeficiency virus type 1 (HIV-1) infection in vitro by serum from HIV-1-infected and passively immunized chimpanzees publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.86.12.4710 – volume: 328 start-page: 745 year: 2010 end-page: 748 ident: CR13 article-title: Cross-reacting antibodies enhance dengue virus infection in humans publication-title: Science doi: 10.1126/science.1185181 – ident: CR7 – volume: 368 start-page: 476 year: 2020 end-page: 477 ident: CR64 article-title: Against pandemic research exceptionalism publication-title: Science doi: 10.1126/science.abc1731 – volume: 454–455 start-page: 157 year: 2014 end-page: 168 ident: CR44 article-title: Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus publication-title: Virology doi: 10.1016/j.virol.2014.02.005 – volume: 449 start-page: 101 year: 2007 end-page: 104 ident: CR86 article-title: Fc receptor but not complement binding is important in antibody protection against HIV publication-title: Nature doi: 10.1038/nature06106 – volume: 62 start-page: 111 year: 2007 end-page: 115 ident: CR12 article-title: Atypical measles and enhanced respiratory syncytial virus disease (ERD) made simple publication-title: Pediatr. Res. doi: 10.1203/PDR.0b013e3180686ce0 – volume: 77 start-page: 7539 year: 2003 end-page: 7544 ident: CR36 article-title: Antibody-dependent enhancement of Ebola virus infection publication-title: J. Virol. doi: 10.1128/JVI.77.13.7539-7544.2003 – volume: 11 start-page: e0154461 year: 2016 ident: CR43 article-title: Influenza-specific antibody-dependent phagocytosis publication-title: PLoS ONE doi: 10.1371/journal.pone.0154461 – volume: 369 start-page: 956 year: 2020 ident: 789_CR82 publication-title: Science doi: 10.1126/science.abc7520 – volume: 22 start-page: 25 year: 2016 ident: 789_CR42 publication-title: Hong Kong Med. J. – volume: 324 start-page: 460 year: 2020 ident: 789_CR97 publication-title: JAMA doi: 10.1001/jama.2020.10044 – ident: 789_CR24 doi: 10.1101/2020.03.29.20041962 – volume: 182 start-page: 73 year: 2020 ident: 789_CR81 publication-title: Cell doi: 10.1016/j.cell.2020.05.025 – volume: 584 start-page: 115 year: 2020 ident: 789_CR76 publication-title: Nature doi: 10.1038/s41586-020-2380-z – volume: 22 start-page: 72 year: 2020 ident: 789_CR53 publication-title: Microbes Infect. doi: 10.1016/j.micinf.2020.02.006 – volume: 7 start-page: e35421 year: 2012 ident: 789_CR55 publication-title: PLoS ONE doi: 10.1371/journal.pone.0035421 – ident: 789_CR96 doi: 10.1172/JCI140200 – volume: 6 start-page: 14 year: 2020 ident: 789_CR1 publication-title: Cell Discov. doi: 10.1038/s41421-020-0153-3 – volume: 2 start-page: 361 year: 2016 ident: 789_CR67 publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.6b00006 – volume: 368 start-page: 630 year: 2020 ident: 789_CR79 publication-title: Science doi: 10.1126/science.abb7269 – volume: 9 start-page: e01753-18 year: 2018 ident: 789_CR25 publication-title: mBio doi: 10.1128/mBio.01753-18 – volume: 158 start-page: e9 year: 2020 ident: 789_CR95 publication-title: Chest doi: 10.1016/j.chest.2020.03.039 – ident: 789_CR27 – volume: 584 start-page: 120 year: 2020 ident: 789_CR80 publication-title: Nature doi: 10.1038/s41586-020-2381-y – volume: 1 start-page: 790 year: 1988 ident: 789_CR33 publication-title: Lancet doi: 10.1016/S0140-6736(88)91657-1 – volume: 454–455 start-page: 157 year: 2014 ident: 789_CR44 publication-title: Virology doi: 10.1016/j.virol.2014.02.005 – volume: 25 start-page: 729 year: 2007 ident: 789_CR70 publication-title: Vaccine doi: 10.1016/j.vaccine.2006.08.011 – ident: 789_CR47 doi: 10.1093/cid/ciaa344 – volume: 72 start-page: 22 year: 1968 ident: 789_CR11 publication-title: J. Pediatr. doi: 10.1016/S0022-3476(68)80396-8 – volume: 363 start-page: 2122 year: 2004 ident: 789_CR72 publication-title: Lancet doi: 10.1016/S0140-6736(04)16501-X – ident: 789_CR51 doi: 10.1016/j.cell.2020.08.017 – volume: 60 start-page: 49 year: 1998 ident: 789_CR15 publication-title: J. Vet. Med. Sci. doi: 10.1292/jvms.60.49 – volume: 583 start-page: 282 year: 2020 ident: 789_CR3 publication-title: Nature doi: 10.1038/s41586-020-2169-0 – ident: 789_CR7 doi: 10.1101/2020.06.07.137802 – volume: 323 start-page: 1582 year: 2020 ident: 789_CR92 publication-title: JAMA doi: 10.1001/jama.2020.4783 – volume: 117 start-page: 9490 year: 2020 ident: 789_CR93 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2004168117 – volume: 120 start-page: 207 year: 1991 ident: 789_CR18 publication-title: Arch. Virol. doi: 10.1007/BF01310476 – ident: 789_CR6 – volume: 89 start-page: 422 year: 1969 ident: 789_CR9 publication-title: Am. J. Epidemiol. doi: 10.1093/oxfordjournals.aje.a120955 – volume: 12 start-page: 2351 year: 2016 ident: 789_CR59 publication-title: Hum. Vaccin. Immunother. doi: 10.1080/21645515.2016.1177688 – volume: 24 start-page: 44 year: 2005 ident: 789_CR91 publication-title: J. Clin. Microbiol. Infect. Dis. doi: 10.1007/s10096-004-1271-9 – volume: 428 start-page: 561 year: 2004 ident: 789_CR71 publication-title: Nature doi: 10.1038/nature02463 – volume: 108 start-page: 20690 year: 2011 ident: 789_CR29 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1108360108 – volume: 23 start-page: 2273 year: 2005 ident: 789_CR61 publication-title: Vaccine doi: 10.1016/j.vaccine.2005.01.033 – volume: 86 start-page: 4710 year: 1989 ident: 789_CR34 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.86.12.4710 – volume: 211 start-page: 80 year: 2015 ident: 789_CR89 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiu396 – volume: 94 start-page: e02015-19 year: 2020 ident: 789_CR39 publication-title: J. Virol. doi: 10.1128/JVI.02015-19 – volume: 75 start-page: 2324 year: 2001 ident: 789_CR35 publication-title: J. Virol. doi: 10.1128/JVI.75.5.2324-2330.2001 – volume: 23 start-page: 617 year: 2018 ident: 789_CR90 publication-title: Antivir. Ther. doi: 10.3851/IMP3243 – volume: 111 start-page: 5992 year: 2014 ident: 789_CR28 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1402458111 – volume: 3 start-page: e525 year: 2006 ident: 789_CR56 publication-title: PLoS Med. doi: 10.1371/journal.pmed.0030525 – volume: 20 start-page: 656 year: 2020 ident: 789_CR48 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30232-2 – volume: 35 start-page: e149 year: 2020 ident: 789_CR94 publication-title: J. Korean Med. Sci. doi: 10.3346/jkms.2020.35.e149 – volume: 62 start-page: 111 year: 2007 ident: 789_CR12 publication-title: Pediatr. Res. doi: 10.1203/PDR.0b013e3180686ce0 – volume: 9 start-page: 1209 year: 2003 ident: 789_CR23 publication-title: Nat. Med. doi: 10.1038/nm918 – volume: 8 start-page: 317 year: 2017 ident: 789_CR20 publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.00317 – volume: 116 start-page: 15194 year: 2019 ident: 789_CR21 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1821317116 – volume: 355 start-page: 395 year: 2017 ident: 789_CR30 publication-title: Science doi: 10.1126/science.aai8128 – ident: 789_CR26 doi: 10.1101/2020.05.18.099507 – volume: 8 start-page: 687 year: 2020 ident: 789_CR31 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30193-4 – volume: 11 start-page: 82 year: 2014 ident: 789_CR32 publication-title: Virol. J. doi: 10.1186/1743-422X-11-82 – volume: 369 start-page: 77 year: 2020 ident: 789_CR74 publication-title: Science doi: 10.1126/science.abc1932 – volume: 181 start-page: 6337 year: 2008 ident: 789_CR58 publication-title: J. Immunol. doi: 10.4049/jimmunol.181.9.6337 – volume: 10 start-page: 69 year: 2019 ident: 789_CR88 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00697 – volume: 368 start-page: 476 year: 2020 ident: 789_CR64 publication-title: Science doi: 10.1126/science.abc1731 – ident: 789_CR52 doi: 10.1126/science.abc8511 – volume: 367 start-page: 1260 year: 2020 ident: 789_CR8 publication-title: Science doi: 10.1126/science.abb2507 – volume: 4 start-page: e123158 year: 2019 ident: 789_CR66 publication-title: JCI Insight doi: 10.1172/jci.insight.123158 – volume: 130 start-page: 1545 year: 2020 ident: 789_CR99 publication-title: J. Clin. Invest. doi: 10.1172/JCI138003 – volume: 33 start-page: 201 year: 2018 ident: 789_CR68 publication-title: Virol. Sin. doi: 10.1007/s12250-018-0009-2 – volume: 85 start-page: 10582 year: 2011 ident: 789_CR40 publication-title: J. Virol. doi: 10.1128/JVI.00671-11 – volume: 60 start-page: 421 year: 2003 ident: 789_CR83 publication-title: Adv. Virus. Res. doi: 10.1016/S0065-3527(03)60011-4 – ident: 789_CR54 doi: 10.1101/2020.03.24.006544 – volume: 126 start-page: 605 year: 2016 ident: 789_CR84 publication-title: J. Clin. Invest. doi: 10.1172/JCI84428 – volume: 78 start-page: 12672 year: 2004 ident: 789_CR60 publication-title: J. Virol. doi: 10.1128/JVI.78.22.12672-12676.2004 – volume: 129 start-page: 182 year: 2019 ident: 789_CR87 publication-title: J. Clin. Invest. doi: 10.1172/JCI122466 – volume: 85 start-page: 12201 year: 2011 ident: 789_CR57 publication-title: J. Virol. doi: 10.1128/JVI.06048-11 – volume: 369 start-page: m1443 year: 2020 ident: 789_CR49 publication-title: BMJ doi: 10.1136/bmj.m1443 – volume: 89 start-page: 2995 year: 2015 ident: 789_CR62 publication-title: J. Virol. doi: 10.1128/JVI.02980-14 – volume: 64 start-page: 1407 year: 1990 ident: 789_CR17 publication-title: J. Virol. doi: 10.1128/jvi.64.3.1407-1409.1990 – volume: 11 start-page: e0154461 year: 2016 ident: 789_CR43 publication-title: PLoS ONE doi: 10.1371/journal.pone.0154461 – volume: 101 start-page: 6641 year: 2004 ident: 789_CR73 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0401939101 – volume: 79 start-page: 7819 year: 2005 ident: 789_CR41 publication-title: J. Virol. doi: 10.1128/JVI.79.12.7819-7826.2005 – volume: 146 start-page: 201 year: 1977 ident: 789_CR16 publication-title: J. Exp. Med. doi: 10.1084/jem.146.1.201 – volume: 11 start-page: 1730 year: 2005 ident: 789_CR46 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1111.040659 – volume: 367 start-page: 1444 year: 2020 ident: 789_CR5 publication-title: Science doi: 10.1126/science.abb2762 – volume: 26 start-page: 1200 year: 2020 ident: 789_CR50 publication-title: Nat. Med. doi: 10.1038/s41591-020-0965-6 – volume: 10 year: 2019 ident: 789_CR85 publication-title: Nat. Commun. doi: 10.1038/s41467-018-08165-y – volume: 209 start-page: 1331 year: 2014 ident: 789_CR45 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jit504 – volume: 24 start-page: 1028 year: 2006 ident: 789_CR69 publication-title: Vaccine doi: 10.1016/j.vaccine.2005.06.038 – volume: 369 start-page: 1010 year: 2020 ident: 789_CR78 publication-title: Science doi: 10.1126/science.abd0827 – volume: 196 start-page: 859 year: 2002 ident: 789_CR22 publication-title: J. Exp. Med. doi: 10.1084/jem.20020781 – volume: 379 start-page: 327 year: 2018 ident: 789_CR14 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1800820 – volume: 4 start-page: 175 year: 1981 ident: 789_CR19 publication-title: Comp. Immunol. Microbiol. Infect. Dis. doi: 10.1016/0147-9571(81)90003-5 – volume: 220 start-page: 1558 year: 2019 ident: 789_CR63 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiz137 – volume: 181 start-page: 271 year: 2020 ident: 789_CR4 publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – ident: 789_CR75 doi: 10.1093/cid/ciaa325 – volume: 369 start-page: 643 year: 2020 ident: 789_CR77 publication-title: Science doi: 10.1126/science.abc5902 – ident: 789_CR98 – volume: 395 start-page: 565 year: 2020 ident: 789_CR2 publication-title: Lancet doi: 10.1016/S0140-6736(20)30251-8 – volume: 328 start-page: 745 year: 2010 ident: 789_CR13 publication-title: Science doi: 10.1126/science.1185181 – volume: 52 start-page: 65S issue: Suppl. 1 year: 2012 ident: 789_CR100 publication-title: Transfusion doi: 10.1111/j.1537-2995.2012.03663.x – volume: 26 start-page: 186 year: 2018 ident: 789_CR38 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2017.10.004 – volume: 382 start-page: 1969 year: 2020 ident: 789_CR65 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp2005630 – volume: 34 start-page: 3535 year: 2016 ident: 789_CR10 publication-title: Vaccine doi: 10.1016/j.vaccine.2016.04.083 – volume: 449 start-page: 101 year: 2007 ident: 789_CR86 publication-title: Nature doi: 10.1038/nature06106 – volume: 77 start-page: 7539 year: 2003 ident: 789_CR36 publication-title: J. Virol. doi: 10.1128/JVI.77.13.7539-7544.2003 – volume: 36 start-page: 217 year: 1992 ident: 789_CR37 publication-title: J. Med. Virol. doi: 10.1002/jmv.1890360312 |
SSID | ssj0001626686 |
Score | 2.619581 |
SecondaryResourceType | review_article |
Snippet | Antibody-based drugs and vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being expedited through preclinical and clinical... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1185 |
SubjectTerms | 13/1 631/250/255 631/61/24 Animals Antibodies Antibodies, Monoclonal - administration & dosage Antibodies, Neutralizing - administration & dosage Antibodies, Viral - administration & dosage Antibodies, Viral - immunology Antibody-Dependent Enhancement - immunology Betacoronavirus - immunology Biomedical and Life Sciences Clinical trials Coronavirus Infections - drug therapy Coronavirus Infections - immunology Coronavirus Infections - prevention & control Coronavirus Infections - therapy Coronaviruses COVID-19 COVID-19 Drug Treatment COVID-19 Serotherapy COVID-19 Vaccines Dengue fever Humans Immunization, Passive - adverse effects In Vitro Techniques Infectious Diseases Life Sciences Medical Microbiology Microbiology Models, Immunological Pandemics - prevention & control Parasitology Perspective Pneumonia, Viral - immunology Pneumonia, Viral - prevention & control Pneumonia, Viral - therapy Respiratory syncytial virus Respiratory Tract Diseases - etiology Respiratory Tract Diseases - immunology Risk Factors Safety SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 Vaccines Viral Vaccines - adverse effects Viral Vaccines - immunology Virology |
Title | Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies |
URI | https://link.springer.com/article/10.1038/s41564-020-00789-5 https://www.ncbi.nlm.nih.gov/pubmed/32908214 https://www.proquest.com/docview/2474988359 https://www.proquest.com/docview/2441607890 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED62hMJexn61c9cVD_a2idiSbMtPI8kSwmBhJEvJm5ElmRaGnTXOIP_9dLacMMLyasu2uJPv7ruT7gP4mAQ0V0ZGRMaJBSgiDYkMuSJGpkWi44JHGoHi93k8W_Fv62jtEm5bt62ys4mNodaVwhz5gPKEp8LGC-mXzW-CrFFYXXUUGk-hb02wED3ojybzH4tjlsXG67GI3WmZgInBFhELJ4ia0D2mJPrXI52EmScl0sbzTF_Acxcy-sNWxy_hiSlfwUVLIrl_DV-HZf2QV3pPOkLb2jflPWoTM3--LLW_HC6WZFzdEer_kQpr6dvmenv6yoLlN7CaTn6OZ8RxIxDFw7QmzIJgY2gsA85yhqdNtbDOVstUqSihrJCxpnkkLcKwMZqWmhZSJbmkSWJoLkN2Cb2yKs1b8C3GMzoyiheGc2X9UyFyERQWmDBt8RT1IOzkkynXOBz5K35lTQGbiayVaWZlmjUyzSIPPh2e2bRtM86OvunEnrlfaJsdFe7Bh8Ntu_ixoiFLU-1wDMcGeSINPLhq1XX4HKPI5h5yDz53-ju-_P9zuT4_l3fwjOLaabbz3UCvftyZ9zYsqfNb6A-no9H81q3Bv_eK3lc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9IN4ECgQJTmA1sZ3EOSC09KEtbVeoD9Sb69iOioSSwqag_VP8Rmby2BWq6K3XxHGs8WfPfDMeD8CbLOKF9SZhJs2QoKg8ZiaWlnmTl5lLS5k4IooH03RyIj-fJqcr8GfIhaFjlcOe2G7UrrbkI9_gMpO5Qnsh_3jxg1HVKIquDiU0Oljs-flvpGyzD7tbOL9vOd_ZPt6csL6qALMyzhsmkD56z1MTSVEIytN0CtWUM7m1ScZFaVLHi8SgbY7WjTOOl8ZmheFZ5nlhYoH93oJVKdKIj2D10_b0y-HSq4P8IFVpn50TCbUxI4YkGbE0Usc5S_7VgFfM2ish2VbT7dyDu72JGo47TN2HFV89gNtd0cr5Q9gaV823onZzNhTQbUJfnRN6yNMYmsqFR-PDI7ZZf2U8_GUsxe5n7fMu2wvJ-SM4uRGpPYZRVVf-KYTIKb1LvJWll9KiPixVoaISiZBwyN94APEgH237i8qpXsZ33QbMhdKdTDXKVLcy1UkA7xbfXHTXdFzben0Qu-6X7EwvARbA68VrXGwUQTGVry-pjaQL-VQeBfCkm67F7wSn6vGxDOD9MH_Lzv8_lmfXj-UV3JkcH-zr_d3p3nNY44Sj9ijhOoyan5f-BZpETfGyx2EIZzcN_b-dpBp9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibody-dependent+enhancement+and+SARS-CoV-2+vaccines+and+therapies&rft.jtitle=Nature+microbiology&rft.au=Lee%2C+Wen+Shi&rft.au=Wheatley%2C+Adam+K.&rft.au=Kent%2C+Stephen+J.&rft.au=DeKosky%2C+Brandon+J.&rft.date=2020-10-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2058-5276&rft.volume=5&rft.issue=10&rft.spage=1185&rft.epage=1191&rft_id=info:doi/10.1038%2Fs41564-020-00789-5&rft.externalDocID=10_1038_s41564_020_00789_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-5276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-5276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-5276&client=summon |