Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation

[Display omitted] •Green synthesis of copper oxide nanoparticles using Carica papaya leaves extract.•The reaction was made at room temperature.•Characterization of copper oxide nanoparticles by UV–vis spectroscopy, DLS, SEM, FT-IR and XRD.•Photocatalytic degradation of Coomassie brilliant blue R-250...

Full description

Saved in:
Bibliographic Details
Published inSpectrochimica acta. Part A, Molecular and biomolecular spectroscopy Vol. 121; pp. 746 - 750
Main Authors Sankar, Renu, Manikandan, Perumal, Malarvizhi, Viswanathan, Fathima, Tajudeennasrin, Shivashangari, Kanchi Subramanian, Ravikumar, Vilwanathan
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 05.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Green synthesis of copper oxide nanoparticles using Carica papaya leaves extract.•The reaction was made at room temperature.•Characterization of copper oxide nanoparticles by UV–vis spectroscopy, DLS, SEM, FT-IR and XRD.•Photocatalytic degradation of Coomassie brilliant blue R-250 by copper oxide nanoparticles. Copper oxide (CuO) nanoparticles were synthesized by treating 5mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV–visible spectrophotometry. An intense surface Plasmon resonance between 250–300nm in the UV–vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140nm, further negative zeta potential disclose its stability at −28.9mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.
AbstractList Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.
[Display omitted] •Green synthesis of copper oxide nanoparticles using Carica papaya leaves extract.•The reaction was made at room temperature.•Characterization of copper oxide nanoparticles by UV–vis spectroscopy, DLS, SEM, FT-IR and XRD.•Photocatalytic degradation of Coomassie brilliant blue R-250 by copper oxide nanoparticles. Copper oxide (CuO) nanoparticles were synthesized by treating 5mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV–visible spectrophotometry. An intense surface Plasmon resonance between 250–300nm in the UV–vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140nm, further negative zeta potential disclose its stability at −28.9mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.
Author Fathima, Tajudeennasrin
Sankar, Renu
Manikandan, Perumal
Ravikumar, Vilwanathan
Malarvizhi, Viswanathan
Shivashangari, Kanchi Subramanian
Author_xml – sequence: 1
  givenname: Renu
  surname: Sankar
  fullname: Sankar, Renu
  organization: Department of Biochemistry, School of Life Science, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
– sequence: 2
  givenname: Perumal
  surname: Manikandan
  fullname: Manikandan, Perumal
  organization: Department of Biochemistry, School of Life Science, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
– sequence: 3
  givenname: Viswanathan
  surname: Malarvizhi
  fullname: Malarvizhi, Viswanathan
  organization: Department of Biochemistry, School of Life Science, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
– sequence: 4
  givenname: Tajudeennasrin
  surname: Fathima
  fullname: Fathima, Tajudeennasrin
  organization: Department of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirapalli 620 024, Tamilnadu, India
– sequence: 5
  givenname: Kanchi Subramanian
  surname: Shivashangari
  fullname: Shivashangari, Kanchi Subramanian
  email: shivashangari@gmail.com
  organization: Regional Forensic Science Laboratory, Tiruchirapalli, Tamilnadu, India
– sequence: 6
  givenname: Vilwanathan
  surname: Ravikumar
  fullname: Ravikumar, Vilwanathan
  email: ravikumarbdu@gmail.com
  organization: Department of Biochemistry, School of Life Science, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24388701$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtu1TAQhq2qqDd4gG6QXyCp7ThxIlboCApSJTawtib2pPVRalu2i8iSN6_bU1h00dVc9H8jzXdOjn3wSMglZy1nfLjatxmgFYx3LRctE-yInPFRdU3X9-q49t04NFyK_pSc57xnjPFRsBNyKmQ3jorxM_L3OiF6mjdf7jC7TMNCTVjX4CystYsREw1_nEXqwYcIqTizYqYP2flbuoPkDNAIETag4C11JVOIca3r4oKnztN4F0qoI6xbhandkFq8TWCfE-_JuwXWjB9e6gX59fXLz9235ubH9ffd55vGSD6VprOTlGZmPcJgFRdSKjObmU-ik9DJgclZcDMpHBfo7TjNQsHAQS2ghmWSprsgHw9348N8j1bH5O4hbfqfixrgh4BJIeeEy_8IZ_rJt97r6ls_-dZc6Oq7MuoVY1x5fqskcOub5KcDifXn3w6TzsahN2hdQlO0De4N-hE4OJzF
CitedBy_id crossref_primary_10_1007_s11581_024_05457_w
crossref_primary_10_1155_2015_608412
crossref_primary_10_1002_cjce_23185
crossref_primary_10_1002_ceat_202000529
crossref_primary_10_1007_s13204_022_02441_6
crossref_primary_10_1002_slct_202401219
crossref_primary_10_1134_S1560090421030076
crossref_primary_10_1016_j_triboint_2016_01_050
crossref_primary_10_1016_j_enmm_2022_100703
crossref_primary_10_1016_j_inoche_2023_111887
crossref_primary_10_1007_s00775_019_01654_5
crossref_primary_10_1007_s42247_022_00347_1
crossref_primary_10_1021_acsanm_0c01164
crossref_primary_10_1016_j_rechem_2022_100509
crossref_primary_10_1039_D3NJ01706K
crossref_primary_10_1016_j_envres_2022_113295
crossref_primary_10_1007_s00449_015_1436_1
crossref_primary_10_1039_D0RA01479F
crossref_primary_10_13005_msri_150311
crossref_primary_10_1080_2374068X_2024_2402970
crossref_primary_10_3390_nano10122502
crossref_primary_10_2174_1573413716666210101161139
crossref_primary_10_1080_24701556_2020_1769667
crossref_primary_10_1007_s11664_021_08853_4
crossref_primary_10_1016_j_molstruc_2024_139174
crossref_primary_10_1016_j_arabjc_2022_103739
crossref_primary_10_1016_j_envres_2021_111858
crossref_primary_10_2166_wst_2020_498
crossref_primary_10_1016_j_crbiot_2020_11_001
crossref_primary_10_1016_j_inoche_2022_110372
crossref_primary_10_1016_j_matpr_2020_06_419
crossref_primary_10_1088_2053_1591_aa8822
crossref_primary_10_5582_ddt_2023_01057
crossref_primary_10_1080_19443994_2016_1175971
crossref_primary_10_1515_gps_2023_0267
crossref_primary_10_3390_antibiotics9100641
crossref_primary_10_1002_slct_202300619
crossref_primary_10_1016_j_cis_2022_102640
crossref_primary_10_1186_s40824_020_00188_1
crossref_primary_10_1016_j_envres_2022_113153
crossref_primary_10_1186_s11671_024_04166_7
crossref_primary_10_1016_j_ijleo_2020_164230
crossref_primary_10_1007_s10971_016_4239_1
crossref_primary_10_1016_j_jece_2024_112346
crossref_primary_10_1088_1742_6596_1963_1_012151
crossref_primary_10_1016_j_porgcoat_2021_106404
crossref_primary_10_1007_s13204_018_0712_1
crossref_primary_10_1039_D0EN01281E
crossref_primary_10_1016_j_jece_2017_05_009
crossref_primary_10_1155_2022_6415310
crossref_primary_10_1007_s11356_022_24225_9
crossref_primary_10_1016_j_jphotobiol_2017_09_021
crossref_primary_10_1016_j_jafr_2022_100343
crossref_primary_10_1016_j_arabjc_2021_103661
crossref_primary_10_1016_j_enmm_2021_100624
crossref_primary_10_1088_2053_1591_ab59a9
crossref_primary_10_2174_2405461507666220301122316
crossref_primary_10_1016_j_jiec_2024_06_002
crossref_primary_10_1590_mrcr7435
crossref_primary_10_1007_s44340_024_00004_9
crossref_primary_10_1007_s13738_022_02520_z
crossref_primary_10_1016_j_ijbiomac_2023_124954
crossref_primary_10_1155_2023_8011189
crossref_primary_10_1007_s40195_015_0304_y
crossref_primary_10_1016_j_mtcomm_2022_104462
crossref_primary_10_1016_j_envres_2023_116824
crossref_primary_10_1016_j_jclepro_2017_08_046
crossref_primary_10_1016_j_matpr_2019_02_103
crossref_primary_10_1007_s12668_018_0508_5
crossref_primary_10_1039_C7NJ02977B
crossref_primary_10_1002_slct_202103594
crossref_primary_10_1007_s00339_023_06735_6
crossref_primary_10_1080_24701556_2020_1723628
crossref_primary_10_1016_j_molliq_2017_07_077
crossref_primary_10_1088_2053_1591_ab2ec5
crossref_primary_10_1515_zpch_2024_0582
crossref_primary_10_1007_s12034_021_02419_0
crossref_primary_10_1016_j_ijleo_2021_168275
crossref_primary_10_1016_j_arabjc_2020_01_019
crossref_primary_10_1016_j_jphotochem_2021_113700
crossref_primary_10_1007_s13399_024_05353_3
crossref_primary_10_1088_1755_1315_1325_1_012015
crossref_primary_10_3389_fphar_2022_797804
crossref_primary_10_3390_cryst12121796
crossref_primary_10_1016_j_jallcom_2017_05_135
crossref_primary_10_1016_j_eti_2020_101228
crossref_primary_10_1007_s13204_021_01743_5
crossref_primary_10_1007_s00396_023_05159_1
crossref_primary_10_1007_s11356_016_6355_4
crossref_primary_10_3390_biology10030233
crossref_primary_10_1080_01480545_2023_2217484
crossref_primary_10_13005_bbra_3091
crossref_primary_10_4103_bbrj_bbrj_136_22
crossref_primary_10_1515_gps_2023_0174
crossref_primary_10_3390_antibiotics13111088
crossref_primary_10_1007_s13204_021_01688_9
crossref_primary_10_1016_j_matpr_2021_04_272
crossref_primary_10_1007_s11998_019_00303_5
crossref_primary_10_1016_j_enmm_2016_08_002
crossref_primary_10_1016_j_crgsc_2021_100054
crossref_primary_10_1155_2023_2892081
crossref_primary_10_1007_s12210_022_01049_w
crossref_primary_10_3390_cryst11070751
crossref_primary_10_1016_j_ijleo_2020_165138
crossref_primary_10_1007_s10534_024_00650_w
crossref_primary_10_1016_j_jclepro_2018_11_020
crossref_primary_10_1007_s12668_024_01556_0
crossref_primary_10_1007_s13399_023_03760_6
crossref_primary_10_1007_s00339_024_07770_7
crossref_primary_10_1016_j_molstruc_2016_09_054
crossref_primary_10_1002_slct_202104017
crossref_primary_10_1007_s11696_023_03001_0
crossref_primary_10_1007_s13204_020_01504_w
crossref_primary_10_1016_j_cej_2014_09_083
crossref_primary_10_3109_21691401_2015_1029630
crossref_primary_10_1007_s13399_023_04922_2
crossref_primary_10_1016_j_susmat_2022_e00463
crossref_primary_10_1021_acsomega_0c04747
crossref_primary_10_1007_s10854_020_03769_x
crossref_primary_10_1016_j_dwt_2024_100388
crossref_primary_10_13005_ojc_340622
crossref_primary_10_1002_pssa_202400404
crossref_primary_10_1016_j_enmm_2023_100803
crossref_primary_10_1016_j_jscs_2017_02_004
crossref_primary_10_1016_j_ijleo_2020_165280
crossref_primary_10_1016_j_jphotobiol_2018_12_026
crossref_primary_10_1016_j_biopha_2017_02_101
crossref_primary_10_3923_ajbs_2019_616_625
crossref_primary_10_3390_ma13173661
crossref_primary_10_1186_s12951_021_00996_0
crossref_primary_10_1007_s11356_014_3362_1
crossref_primary_10_1016_j_ijbiomac_2019_07_214
crossref_primary_10_1016_j_powtec_2018_07_089
crossref_primary_10_1007_s11696_021_01650_7
crossref_primary_10_1186_s43141_021_00229_9
crossref_primary_10_1515_revic_2020_0018
crossref_primary_10_1007_s42452_020_2811_3
crossref_primary_10_1016_j_ccr_2020_213378
crossref_primary_10_3390_mi14101849
crossref_primary_10_1016_j_inoche_2021_108618
crossref_primary_10_1007_s13204_014_0369_3
crossref_primary_10_1016_j_jece_2021_105033
crossref_primary_10_1016_j_jece_2021_105395
crossref_primary_10_1021_acsbiomaterials_8b01092
crossref_primary_10_35812_CelluloseChemTechnol_2024_58_58
crossref_primary_10_1007_s10904_020_01837_7
crossref_primary_10_1088_2632_959X_abac4d
crossref_primary_10_1186_s12934_024_02400_6
crossref_primary_10_1016_j_jmrt_2021_05_078
crossref_primary_10_1080_24701556_2019_1601738
crossref_primary_10_1088_2053_1591_aad2c6
crossref_primary_10_1016_j_molliq_2022_118966
crossref_primary_10_1016_j_inoche_2024_112769
crossref_primary_10_1007_s13204_015_0402_1
crossref_primary_10_1016_j_chemosphere_2021_129975
crossref_primary_10_1007_s12034_018_1613_3
crossref_primary_10_1002_tqem_21986
crossref_primary_10_1007_s13204_022_02549_9
crossref_primary_10_1002_bab_2010
crossref_primary_10_1007_s10876_019_01613_9
crossref_primary_10_1016_j_saa_2015_05_010
crossref_primary_10_1088_2053_1591_ad4e9d
crossref_primary_10_1186_s40538_024_00630_9
crossref_primary_10_1007_s00253_022_12107_6
crossref_primary_10_14233_ajchem_2022_23523
crossref_primary_10_37827_ntsh_chem_2022_70_159
crossref_primary_10_1016_j_apsadv_2022_100351
crossref_primary_10_1016_j_mtsust_2023_100339
crossref_primary_10_1016_j_jiec_2023_08_002
crossref_primary_10_1002_cbdv_202401596
crossref_primary_10_1039_D3EN00289F
crossref_primary_10_1007_s10904_017_0509_9
crossref_primary_10_1016_j_nxmate_2024_100337
crossref_primary_10_3390_catal14110800
crossref_primary_10_1039_D1NJ00455G
crossref_primary_10_1016_j_jphotobiol_2018_10_022
crossref_primary_10_2147_IJN_S255398
crossref_primary_10_3389_fchem_2023_1154128
crossref_primary_10_3390_molecules25214981
crossref_primary_10_4028_p_8bf786
crossref_primary_10_1016_j_carbpol_2017_08_053
crossref_primary_10_1007_s10311_017_0650_2
crossref_primary_10_1007_s10973_017_6145_3
crossref_primary_10_2478_msp_2019_0048
crossref_primary_10_1016_j_matpr_2019_07_727
crossref_primary_10_1016_j_inoche_2021_108923
crossref_primary_10_1016_j_msec_2017_08_071
crossref_primary_10_1038_s41598_023_49706_w
crossref_primary_10_1016_j_aca_2022_340064
crossref_primary_10_1016_j_mssp_2017_01_001
crossref_primary_10_1016_j_colsurfa_2024_133393
crossref_primary_10_3390_nano12111841
crossref_primary_10_1016_j_jiph_2021_10_022
crossref_primary_10_1016_j_ijbiomac_2019_01_145
crossref_primary_10_1007_s11468_023_01899_6
crossref_primary_10_1016_j_molstruc_2018_04_011
crossref_primary_10_1080_10643389_2019_1705103
crossref_primary_10_1016_j_tsf_2021_138572
crossref_primary_10_1002_btpr_3114
crossref_primary_10_1016_j_biotechadv_2022_107905
crossref_primary_10_1016_j_jics_2021_100019
crossref_primary_10_1007_s13399_024_05554_w
crossref_primary_10_1016_j_colsurfb_2019_02_048
crossref_primary_10_1088_2043_6262_ad002b
crossref_primary_10_1016_j_jallcom_2024_173658
crossref_primary_10_1007_s10876_021_02025_4
crossref_primary_10_1080_15226514_2021_1984385
crossref_primary_10_1049_iet_nbt_2018_5083
crossref_primary_10_1088_1361_6528_aba142
crossref_primary_10_1007_s11468_023_02135_x
crossref_primary_10_3390_molecules30030684
crossref_primary_10_1016_j_inoche_2023_111083
crossref_primary_10_1016_j_prerep_2024_100008
crossref_primary_10_1515_zpch_2022_0112
crossref_primary_10_1049_iet_nbt_2017_0325
crossref_primary_10_1016_j_jddst_2022_103342
crossref_primary_10_1016_j_coesh_2018_06_005
crossref_primary_10_1039_D2RA03418B
crossref_primary_10_1088_2053_1591_abcee7
crossref_primary_10_3390_catal13010163
crossref_primary_10_1016_j_heliyon_2023_e16067
crossref_primary_10_1016_j_msec_2019_02_010
crossref_primary_10_1002_masy_202400014
crossref_primary_10_1016_j_heliyon_2019_e01751
crossref_primary_10_1016_j_jmbbm_2023_106330
crossref_primary_10_1080_24701556_2023_2228777
crossref_primary_10_1007_s11082_018_1684_9
crossref_primary_10_1134_S0965544120100084
crossref_primary_10_1016_j_plana_2024_100128
crossref_primary_10_1016_j_bcab_2021_101994
crossref_primary_10_1016_j_cocom_2018_e00304
crossref_primary_10_1016_j_ecoenv_2017_11_060
crossref_primary_10_1016_j_dwt_2024_100667
crossref_primary_10_1155_2021_5589703
crossref_primary_10_1007_s42452_019_0931_4
crossref_primary_10_1016_j_apt_2018_09_009
crossref_primary_10_1016_j_inoche_2022_109855
crossref_primary_10_1016_j_matlet_2019_07_070
crossref_primary_10_1186_s42834_021_00111_w
crossref_primary_10_1016_j_inoche_2024_112118
crossref_primary_10_1007_s10534_021_00315_y
crossref_primary_10_1007_s42247_021_00335_x
crossref_primary_10_1088_1361_6528_ab79ae
crossref_primary_10_3390_catal10070755
crossref_primary_10_1016_j_msec_2015_11_052
crossref_primary_10_1016_j_gce_2021_12_004
crossref_primary_10_1016_j_jphotobiol_2017_05_001
crossref_primary_10_1590_1980_5373_mr_2016_0460
crossref_primary_10_1016_j_bcab_2018_05_011
crossref_primary_10_1016_j_cej_2024_151187
crossref_primary_10_1016_j_mtcomm_2022_103923
crossref_primary_10_1016_j_ejmcr_2024_100181
crossref_primary_10_1016_j_envres_2021_112172
crossref_primary_10_1007_s10856_014_5193_5
crossref_primary_10_1016_j_arabjc_2020_06_031
crossref_primary_10_1515_zpch_2018_1238
crossref_primary_10_1016_j_arabjc_2020_06_033
crossref_primary_10_1016_j_btre_2020_e00518
crossref_primary_10_1016_j_rsurfi_2022_100048
crossref_primary_10_3390_molecules29174164
crossref_primary_10_1007_s10904_021_02192_x
crossref_primary_10_1007_s12668_021_00851_4
crossref_primary_10_1186_s11671_024_04108_3
crossref_primary_10_3390_ma14216379
crossref_primary_10_1016_j_inoche_2024_113755
crossref_primary_10_1149_2162_8777_ac07f8
crossref_primary_10_13005_ojc_350615
crossref_primary_10_1016_j_rinp_2019_01_065
crossref_primary_10_1016_j_inoche_2020_108369
crossref_primary_10_3390_w15193471
crossref_primary_10_1007_s10562_019_02744_4
crossref_primary_10_1039_C7RA00287D
crossref_primary_10_1016_j_matpr_2023_11_136
crossref_primary_10_2174_2211550109999201113095459
crossref_primary_10_1080_10667857_2023_2247908
crossref_primary_10_1016_j_mtchem_2023_101712
crossref_primary_10_1016_j_energy_2020_119165
crossref_primary_10_1007_s10904_017_0750_2
crossref_primary_10_3390_catal13050891
crossref_primary_10_1016_j_jphotobiol_2016_03_028
crossref_primary_10_1016_j_envres_2019_108569
crossref_primary_10_1016_j_msec_2014_08_030
crossref_primary_10_1016_j_matpr_2019_07_587
crossref_primary_10_1007_s10904_018_0973_x
crossref_primary_10_1007_s10098_019_01765_2
crossref_primary_10_1016_j_mtcomm_2023_107214
crossref_primary_10_1039_D1NA00509J
crossref_primary_10_1016_j_physb_2021_412950
crossref_primary_10_1007_s11356_023_29707_y
crossref_primary_10_3390_su13042017
crossref_primary_10_1039_D1MA00927C
crossref_primary_10_1155_2020_2932434
crossref_primary_10_1002_aoc_3950
crossref_primary_10_1002_slct_202403599
crossref_primary_10_1016_j_matpr_2021_05_515
crossref_primary_10_1016_j_electacta_2019_01_186
crossref_primary_10_1016_j_arabjc_2021_103184
crossref_primary_10_1007_s11468_023_01835_8
crossref_primary_10_3390_molecules27238269
crossref_primary_10_1016_j_plana_2025_100138
crossref_primary_10_1016_j_inoche_2022_109676
crossref_primary_10_1007_s12011_023_03823_9
crossref_primary_10_1016_j_jddst_2023_104795
crossref_primary_10_1038_s41598_021_91093_7
crossref_primary_10_1016_j_matlet_2017_08_002
crossref_primary_10_1016_j_saa_2015_02_075
crossref_primary_10_1016_j_rechem_2023_101152
crossref_primary_10_1016_j_inoche_2024_113155
crossref_primary_10_1016_j_cej_2016_12_049
crossref_primary_10_1080_03235408_2020_1792599
crossref_primary_10_1039_C8RA09186B
crossref_primary_10_3390_cryst13020330
crossref_primary_10_1007_s13399_022_02436_x
crossref_primary_10_1088_2053_1591_ab52a6
crossref_primary_10_1016_j_inoche_2022_109786
crossref_primary_10_1007_s13399_023_04217_6
crossref_primary_10_1088_1757_899X_736_4_042003
crossref_primary_10_1016_j_matchemphys_2017_09_032
crossref_primary_10_1016_j_ces_2022_117937
crossref_primary_10_3390_jof7110900
crossref_primary_10_1021_acsomega_4c02133
crossref_primary_10_3390_catal12101115
crossref_primary_10_1007_s10529_024_03471_6
crossref_primary_10_1186_s12903_023_02916_0
crossref_primary_10_1016_j_ibiod_2021_105201
crossref_primary_10_1680_jgrma_24_00139
crossref_primary_10_1016_j_jddst_2021_102838
crossref_primary_10_3390_w13081095
crossref_primary_10_1016_j_kjs_2024_100356
crossref_primary_10_1515_revce_2017_0005
crossref_primary_10_1007_s11837_023_05897_1
crossref_primary_10_1111_jam_15472
crossref_primary_10_1088_2043_6254_ab52f5
crossref_primary_10_1080_02603594_2021_1895127
crossref_primary_10_1016_j_molstruc_2023_137318
crossref_primary_10_1080_01932691_2024_2351916
crossref_primary_10_1088_1757_899X_805_1_012038
crossref_primary_10_1002_slct_201903228
crossref_primary_10_1016_j_colsurfa_2022_130056
crossref_primary_10_1016_j_jhazmat_2019_05_004
crossref_primary_10_1016_j_inoche_2021_109027
crossref_primary_10_3390_nano6110205
crossref_primary_10_1039_C9NJ01834D
crossref_primary_10_53471_bahce_1483062
crossref_primary_10_5004_dwt_2020_26345
crossref_primary_10_1080_01932691_2024_2428354
crossref_primary_10_4028_www_scientific_net_MSF_962_51
crossref_primary_10_1016_j_microc_2018_07_035
crossref_primary_10_1016_j_ijleo_2016_05_142
crossref_primary_10_1016_j_molstruc_2020_128599
crossref_primary_10_1016_j_rsurfi_2023_100164
crossref_primary_10_13005_ojc_390108
crossref_primary_10_1039_D0MA00829J
crossref_primary_10_3390_molecules26030586
crossref_primary_10_1007_s10854_020_04219_4
crossref_primary_10_20964_2017_12_08
crossref_primary_10_1039_C9RA02225B
crossref_primary_10_1186_s40066_020_00271_9
crossref_primary_10_1021_acsomega_2c07559
crossref_primary_10_1016_j_hybadv_2024_100375
crossref_primary_10_1016_j_jphotobiol_2018_09_014
crossref_primary_10_1007_s42250_024_00881_x
crossref_primary_10_1016_j_bbrc_2018_08_045
crossref_primary_10_1016_j_envres_2022_114986
crossref_primary_10_3390_molecules28227499
crossref_primary_10_1016_j_saa_2018_06_046
crossref_primary_10_1016_j_jallcom_2023_170780
crossref_primary_10_1016_j_ijbiomac_2019_12_260
crossref_primary_10_1007_s12034_022_02848_5
crossref_primary_10_1016_j_ceramint_2019_05_272
crossref_primary_10_1016_j_matchemphys_2023_128393
crossref_primary_10_1016_j_saa_2019_117961
crossref_primary_10_1016_j_ijleo_2015_10_021
crossref_primary_10_1002_tcr_201800069
crossref_primary_10_1007_s11356_023_30269_2
crossref_primary_10_1016_j_jece_2018_02_038
crossref_primary_10_1016_j_arabjc_2017_07_002
crossref_primary_10_1088_2053_1591_aad426
crossref_primary_10_1155_2022_7967294
crossref_primary_10_1080_09593330_2021_1914180
crossref_primary_10_3390_pr11123356
crossref_primary_10_1016_j_jece_2020_104123
crossref_primary_10_1080_10826068_2019_1711393
crossref_primary_10_1016_j_jddst_2020_101759
crossref_primary_10_1515_revic_2024_0031
crossref_primary_10_1016_j_jddst_2023_104567
Cites_doi 10.1016/j.colsurfb.2012.11.022
10.1016/j.electacta.2008.02.080
10.1016/j.jhazmat.2006.05.039
10.1016/j.colsurfb.2009.10.008
10.1016/S0960-8524(00)00080-8
10.2147/IJN.S29020
10.1186/1556-276X-7-70
10.1021/la9502711
10.1016/j.saa.2011.02.051
10.1111/j.1151-2916.2000.tb01670.x
10.4061/2011/454090
10.1016/j.colsurfb.2012.01.040
10.1016/j.jcis.2004.03.003
10.1016/j.saa.2012.02.001
10.1016/j.colsurfb.2013.02.033
10.1016/j.materresbull.2006.05.020
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright © 2013 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: Copyright © 2013 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1016/j.saa.2013.12.020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3557
EndPage 750
ExternalDocumentID 24388701
10_1016_j_saa_2013_12_020
S1386142513014510
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
WH7
XPP
ZMT
~G-
1RT
53G
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
M36
R2-
SEW
SSH
UHS
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c419t-3d944cb05ea6d712447cbcb19234a34604b21c97e8fa5d89b27a61a7fa76f94c3
IEDL.DBID .~1
ISSN 1386-1425
IngestDate Thu Jan 02 22:14:21 EST 2025
Thu Apr 24 23:07:51 EDT 2025
Tue Jul 01 01:48:37 EDT 2025
Fri Feb 23 02:28:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photocatalytic activity
FT-IR
Coomassie brilliant blue
Carica papaya
Rod shape
Copper oxide nanoparticles
Language English
License Copyright © 2013 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-3d944cb05ea6d712447cbcb19234a34604b21c97e8fa5d89b27a61a7fa76f94c3
PMID 24388701
PageCount 5
ParticipantIDs pubmed_primary_24388701
crossref_primary_10_1016_j_saa_2013_12_020
crossref_citationtrail_10_1016_j_saa_2013_12_020
elsevier_sciencedirect_doi_10_1016_j_saa_2013_12_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-05
PublicationDateYYYYMMDD 2014-03-05
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-05
  day: 05
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
PublicationTitleAlternate Spectrochim Acta A Mol Biomol Spectrosc
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References He (b0015) 2007; 42
Ethiraj, Kang (b0065) 2012; 7
Robinson, McMullan, Marchant, Nigam (b0025) 2004; 77
Krishnaraj, Jagan, Rajasekar, Selvakumar, Kalaichelvan, Mohan (b0040) 2010; 76
Mulvaney (b0060) 1996; 12
Lin, Qiu, Cao, Jin (b0070) 2008; 53
Nishio, Tokumura, Znad, Kawase (b0030) 2006; 138
Arunachalam, Dhanasingh, Kalimuthu, Uthirappan, Rose, Mandal (b0050) 2012; 94
Baik, Sakai, Miura, Yamazoe (b0020) 2000; 83
Azam, Ahmed, Oves, Khan, Memic (b0055) 2012; 7
Ahmad, Sharma, Singh, Shamsi, Fatma, Mehta (b0075) 2011; 2011
Shankar, Rai, Ahmad, Sastry (b0035) 2004; 275
Kumar, Sinha, Mandal, Ghosh, Kumar, Reddy (b0005) 2012; 91
Sheny, Mathew, Philip (b0045) 2011; 79
Sankar, Karthik, Prabu, Karthik, Shivashangari, Ravikumar (b0010) 2013; 108
Kumar, Govindaraju, Senthamilselvi, Premkumar (b0080) 2012; 103
He (10.1016/j.saa.2013.12.020_b0015) 2007; 42
Kumar (10.1016/j.saa.2013.12.020_b0080) 2012; 103
Robinson (10.1016/j.saa.2013.12.020_b0025) 2004; 77
Lin (10.1016/j.saa.2013.12.020_b0070) 2008; 53
Krishnaraj (10.1016/j.saa.2013.12.020_b0040) 2010; 76
Kumar (10.1016/j.saa.2013.12.020_b0005) 2012; 91
Sheny (10.1016/j.saa.2013.12.020_b0045) 2011; 79
Ethiraj (10.1016/j.saa.2013.12.020_b0065) 2012; 7
Shankar (10.1016/j.saa.2013.12.020_b0035) 2004; 275
Sankar (10.1016/j.saa.2013.12.020_b0010) 2013; 108
Nishio (10.1016/j.saa.2013.12.020_b0030) 2006; 138
Azam (10.1016/j.saa.2013.12.020_b0055) 2012; 7
Ahmad (10.1016/j.saa.2013.12.020_b0075) 2011; 2011
Arunachalam (10.1016/j.saa.2013.12.020_b0050) 2012; 94
Baik (10.1016/j.saa.2013.12.020_b0020) 2000; 83
Mulvaney (10.1016/j.saa.2013.12.020_b0060) 1996; 12
References_xml – volume: 94
  start-page: 226
  year: 2012
  end-page: 230
  ident: b0050
  publication-title: Colloids Surf. B
– volume: 76
  start-page: 50
  year: 2010
  end-page: 56
  ident: b0040
  publication-title: Colloids Surf. B
– volume: 7
  start-page: 3527
  year: 2012
  end-page: 3535
  ident: b0055
  publication-title: Int. J. Nanomedicine
– volume: 108
  start-page: 80
  year: 2013
  end-page: 84
  ident: b0010
  publication-title: Colloids Surf. B
– volume: 77
  start-page: 247
  year: 2004
  end-page: 255
  ident: b0025
  publication-title: Bioresour. Technol.
– volume: 138
  start-page: 106
  year: 2006
  end-page: 115
  ident: b0030
  publication-title: J. Hazard. Mater.
– volume: 42
  start-page: 190
  year: 2007
  end-page: 195
  ident: b0015
  publication-title: Mater. Res. Bull.
– volume: 79
  start-page: 254
  year: 2011
  end-page: 262
  ident: b0045
  publication-title: Spectrochim. Acta A
– volume: 91
  start-page: 228
  year: 2012
  end-page: 233
  ident: b0005
  publication-title: Spectrochim. Acta A
– volume: 275
  start-page: 496
  year: 2004
  end-page: 502
  ident: b0035
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 70
  year: 2012
  ident: b0065
  publication-title: Nanoscale Res. Lett.
– volume: 83
  start-page: 2983
  year: 2000
  end-page: 2987
  ident: b0020
  publication-title: J. Am. Ceram. Soc.
– volume: 12
  start-page: 788
  year: 1996
  end-page: 800
  ident: b0060
  publication-title: Langmuir
– volume: 103
  start-page: 658
  year: 2012
  end-page: 661
  ident: b0080
  publication-title: Colloids Surf. B
– volume: 53
  start-page: 5368
  year: 2008
  end-page: 5372
  ident: b0070
  publication-title: Electrochim. Acta
– volume: 2011
  start-page: 454090
  year: 2011
  ident: b0075
  publication-title: Biotechnol. Res. Int.
– volume: 103
  start-page: 658
  year: 2012
  ident: 10.1016/j.saa.2013.12.020_b0080
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2012.11.022
– volume: 53
  start-page: 5368
  year: 2008
  ident: 10.1016/j.saa.2013.12.020_b0070
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.02.080
– volume: 138
  start-page: 106
  year: 2006
  ident: 10.1016/j.saa.2013.12.020_b0030
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.05.039
– volume: 76
  start-page: 50
  year: 2010
  ident: 10.1016/j.saa.2013.12.020_b0040
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2009.10.008
– volume: 77
  start-page: 247
  year: 2004
  ident: 10.1016/j.saa.2013.12.020_b0025
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(00)00080-8
– volume: 7
  start-page: 3527
  year: 2012
  ident: 10.1016/j.saa.2013.12.020_b0055
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S29020
– volume: 7
  start-page: 70
  year: 2012
  ident: 10.1016/j.saa.2013.12.020_b0065
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-7-70
– volume: 12
  start-page: 788
  year: 1996
  ident: 10.1016/j.saa.2013.12.020_b0060
  publication-title: Langmuir
  doi: 10.1021/la9502711
– volume: 79
  start-page: 254
  year: 2011
  ident: 10.1016/j.saa.2013.12.020_b0045
  publication-title: Spectrochim. Acta A
  doi: 10.1016/j.saa.2011.02.051
– volume: 83
  start-page: 2983
  year: 2000
  ident: 10.1016/j.saa.2013.12.020_b0020
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2000.tb01670.x
– volume: 2011
  start-page: 454090
  year: 2011
  ident: 10.1016/j.saa.2013.12.020_b0075
  publication-title: Biotechnol. Res. Int.
  doi: 10.4061/2011/454090
– volume: 94
  start-page: 226
  year: 2012
  ident: 10.1016/j.saa.2013.12.020_b0050
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2012.01.040
– volume: 275
  start-page: 496
  year: 2004
  ident: 10.1016/j.saa.2013.12.020_b0035
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.03.003
– volume: 91
  start-page: 228
  year: 2012
  ident: 10.1016/j.saa.2013.12.020_b0005
  publication-title: Spectrochim. Acta A
  doi: 10.1016/j.saa.2012.02.001
– volume: 108
  start-page: 80
  year: 2013
  ident: 10.1016/j.saa.2013.12.020_b0010
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2013.02.033
– volume: 42
  start-page: 190
  year: 2007
  ident: 10.1016/j.saa.2013.12.020_b0015
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2006.05.020
SSID ssj0001820
Score 2.5644228
Snippet [Display omitted] •Green synthesis of copper oxide nanoparticles using Carica papaya leaves extract.•The reaction was made at room...
Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied...
SourceID pubmed
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 746
SubjectTerms Carica - chemistry
Carica papaya
Catalysis - radiation effects
Colloids
Coloring Agents - chemistry
Coomassie brilliant blue
Copper - chemistry
Copper oxide nanoparticles
FT-IR
Green Chemistry Technology - methods
Light
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Particle Size
Photocatalytic activity
Photolysis
Rod shape
Scattering, Radiation
Spectrometry, X-Ray Emission
Spectrophotometry, Ultraviolet
Spectroscopy, Fourier Transform Infrared
Static Electricity
X-Ray Diffraction
Title Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation
URI https://dx.doi.org/10.1016/j.saa.2013.12.020
https://www.ncbi.nlm.nih.gov/pubmed/24388701
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Ni9UwEA_LiuhFdP1aP5Y5eBLqa17y2ua4PFyeyj4EXdhbmXxUK9KWbQXfRfA_dyZt1_XyDt6akqQlE-Y3k_llRohXlXFZCEonxpOLoi35rIipTbAoDAOWkp7vDp9vs82Ffn-5ujwQ6_kuDNMqJ90_6vSorac3i2k1F11dLz5JVRC2ED6rWG6W_Xatc97lb379pXlwgvLodBVZwr3nyGbkePXIqYekiieCXPJ7LzbdAJ6z--LeZDHC6fhTD8RBaI7EnfVcqO1I3I4sTtc_FL8jiwb6XUNmXV_30FbAgm5rTzO4tuvCFbQ_ax-gwYbc5YkVB8x-_wJrZKUIHeHnDgEbD_XQw40QN9QNdF_boY2HPjsaDH4XwHPCibE20yNxcfb283qTTDUWEqelGRLljdbOpquAmc8Z7HNnnWW7T6PSWartUjqTh6LClS-MXeaYScwrzLPKaKcei8OmbcJTAWgVclxP5t5z0B6D8iR2pU0w9KyORTqvbummBORcB-N7OTPNvpUkkJIFUsplSQI5Fq-vh3Rj9o19nfUssvKfLVQSOuwb9mQU7_UXllqR6k3ls_-b8Lm4Sy0diWqrF-JwuPoRXpLlMtiTuDVPxK3Tdx82W2ptP57_ATbp7v4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbQoopeqkKhQEvrA6dK0cZr5-EjWhUtBfYCSNwsv9IGoSQiqdQ99p8z4yQruOyBW5RknMhjzTfj-TxDyGkhbeo9F5F0EKIIAzGr1rGJdJ5LBCzOHJ4dvl6mizvx6z653yLz8SwM0ioH29_b9GCthzvTYTanTVlObxjPAVsAn3loNwtx-zZWp0omZPvs4nKxXBtkrFEe4q48jVBgTG4GmlersfoQ42FTELt-b4SnF9hz_pF8GJxGetb_1y7Z8tUe2ZmPvdr2yLtA5LTtJ_I_EGlou6rAs2vLltYFRV3XpYMRbN00_onW_0rnaaUriJgHYhxFAvxvOtdoF2kDELrSVFeOll1LX2S5aVnR5k_d1WHfZwXC1K08dVhzom_PtE_uzn_ezhfR0GYhsoLJLuJOCmFNnHidugzxPrPGGnT9hOYijYWZMSsznxc6cbk0s0ynTGeFztJCCssPyKSqK39IqDZcY2qPZc5h3l577kDzXEgv4ZofkXicXWWHGuTYCuNRjWSzBwUKUagQxWYKFHJEfqxFmr4Ax6aXxagy9WoVKQCITWKfe_WuvzATHKxvzI7fNuB3srO4vb5SVxfLyy_kPTwRgbeWfCWT7umvPwFHpjPfhoX6DMmy8KM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+synthesis+of+colloidal+copper+oxide+nanoparticles+using+Carica+papaya+and+its+application+in+photocatalytic+dye+degradation&rft.jtitle=Spectrochimica+acta.+Part+A%2C+Molecular+and+biomolecular+spectroscopy&rft.au=Sankar%2C+Renu&rft.au=Manikandan%2C+Perumal&rft.au=Malarvizhi%2C+Viswanathan&rft.au=Fathima%2C+Tajudeennasrin&rft.date=2014-03-05&rft.issn=1386-1425&rft.volume=121&rft.spage=746&rft.epage=750&rft_id=info:doi/10.1016%2Fj.saa.2013.12.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_saa_2013_12_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-1425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-1425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-1425&client=summon