Priority list of biodiversity metrics to observe from space

Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring biodiversity, its poor alignment with remote sen...

Full description

Saved in:
Bibliographic Details
Published inNature ecology & evolution Vol. 5; no. 7; pp. 896 - 906
Main Authors Skidmore, Andrew K., Coops, Nicholas C., Neinavaz, Elnaz, Ali, Abebe, Schaepman, Michael E., Paganini, Marc, Kissling, W. Daniel, Vihervaara, Petteri, Darvishzadeh, Roshanak, Feilhauer, Hannes, Fernandez, Miguel, Fernández, Néstor, Gorelick, Noel, Geijzendorffer, Ilse, Heiden, Uta, Heurich, Marco, Hobern, Donald, Holzwarth, Stefanie, Muller-Karger, Frank E., Van De Kerchove, Ruben, Lausch, Angela, Leitão, Pedro J., Lock, Marcelle C., Mücher, Caspar A., O’Connor, Brian, Rocchini, Duccio, Roeoesli, Claudia, Turner, Woody, Vis, Jan Kees, Wang, Tiejun, Wegmann, Martin, Wingate, Vladimir
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring biodiversity, its poor alignment with remote sensing products hinders interpolation between field observations. This study compiles a comprehensive, prioritized list of remote sensing biodiversity products that can further improve the monitoring of geospatial biodiversity patterns, enhancing the EBV framework and its applicability. The ecosystem structure and ecosystem function EBV classes, which capture the biological effects of disturbance as well as habitat structure, are shown by an expert review process to be the most relevant, feasible, accurate and mature for direct monitoring of biodiversity from satellites. Biodiversity products that require satellite remote sensing of a finer resolution that is still under development are given lower priority (for example, for the EBV class species traits). Some EBVs are not directly measurable by remote sensing from space, specifically the EBV class genetic composition. Linking remote sensing products to EBVs will accelerate product generation, improving reporting on the state of biodiversity from local to global scales. Remote sensing of geospatial biodiversity patterns is an important complement to field observations. This priority list suggests how remote sensing observations can be better integrated into the essential biodiversity variables.
AbstractList Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring biodiversity, its poor alignment with remote sensing products hinders interpolation between field observations. This study compiles a comprehensive, prioritized list of remote sensing biodiversity products that can further improve the monitoring of geospatial biodiversity patterns, enhancing the EBV framework and its applicability. The ecosystem structure and ecosystem function EBV classes, which capture the biological effects of disturbance as well as habitat structure, are shown by an expert review process to be the most relevant, feasible, accurate and mature for direct monitoring of biodiversity from satellites. Biodiversity products that require satellite remote sensing of a finer resolution that is still under development are given lower priority (for example, for the EBV class species traits). Some EBVs are not directly measurable by remote sensing from space, specifically the EBV class genetic composition. Linking remote sensing products to EBVs will accelerate product generation, improving reporting on the state of biodiversity from local to global scales.
Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring biodiversity, its poor alignment with remote sensing products hinders interpolation between field observations. This study compiles a comprehensive, prioritized list of remote sensing biodiversity products that can further improve the monitoring of geospatial biodiversity patterns, enhancing the EBV framework and its applicability. The ecosystem structure and ecosystem function EBV classes, which capture the biological effects of disturbance as well as habitat structure, are shown by an expert review process to be the most relevant, feasible, accurate and mature for direct monitoring of biodiversity from satellites. Biodiversity products that require satellite remote sensing of a finer resolution that is still under development are given lower priority (for example, for the EBV class species traits). Some EBVs are not directly measurable by remote sensing from space, specifically the EBV class genetic composition. Linking remote sensing products to EBVs will accelerate product generation, improving reporting on the state of biodiversity from local to global scales. Remote sensing of geospatial biodiversity patterns is an important complement to field observations. This priority list suggests how remote sensing observations can be better integrated into the essential biodiversity variables.
Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring biodiversity, its poor alignment with remote sensing products hinders interpolation between field observations. This study compiles a comprehensive, prioritized list of remote sensing biodiversity products that can further improve the monitoring of geospatial biodiversity patterns, enhancing the EBV framework and its applicability. The ecosystem structure and ecosystem function EBV classes, which capture the biological effects of disturbance as well as habitat structure, are shown by an expert review process to be the most relevant, feasible, accurate and mature for direct monitoring of biodiversity from satellites. Biodiversity products that require satellite remote sensing of a finer resolution that is still under development are given lower priority (for example, for the EBV class species traits). Some EBVs are not directly measurable by remote sensing from space, specifically the EBV class genetic composition. Linking remote sensing products to EBVs will accelerate product generation, improving reporting on the state of biodiversity from local to global scales.Remote sensing of geospatial biodiversity patterns is an important complement to field observations. This priority list suggests how remote sensing observations can be better integrated into the essential biodiversity variables.
Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring biodiversity, its poor alignment with remote sensing products hinders interpolation between field observations. This study compiles a comprehensive, prioritized list of remote sensing biodiversity products that can further improve the monitoring of geospatial biodiversity patterns, enhancing the EBV framework and its applicability. The ecosystem structure and ecosystem function EBV classes, which capture the biological effects of disturbance as well as habitat structure, are shown by an expert review process to be the most relevant, feasible, accurate and mature for direct monitoring of biodiversity from satellites. Biodiversity products that require satellite remote sensing of a finer resolution that is still under development are given lower priority (for example, for the EBV class species traits). Some EBVs are not directly measurable by remote sensing from space, specifically the EBV class genetic composition. Linking remote sensing products to EBVs will accelerate product generation, improving reporting on the state of biodiversity from local to global scales.Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring biodiversity, its poor alignment with remote sensing products hinders interpolation between field observations. This study compiles a comprehensive, prioritized list of remote sensing biodiversity products that can further improve the monitoring of geospatial biodiversity patterns, enhancing the EBV framework and its applicability. The ecosystem structure and ecosystem function EBV classes, which capture the biological effects of disturbance as well as habitat structure, are shown by an expert review process to be the most relevant, feasible, accurate and mature for direct monitoring of biodiversity from satellites. Biodiversity products that require satellite remote sensing of a finer resolution that is still under development are given lower priority (for example, for the EBV class species traits). Some EBVs are not directly measurable by remote sensing from space, specifically the EBV class genetic composition. Linking remote sensing products to EBVs will accelerate product generation, improving reporting on the state of biodiversity from local to global scales.
Author Van De Kerchove, Ruben
Lock, Marcelle C.
Turner, Woody
Geijzendorffer, Ilse
Wang, Tiejun
Vihervaara, Petteri
Mücher, Caspar A.
Schaepman, Michael E.
Heiden, Uta
Fernandez, Miguel
O’Connor, Brian
Paganini, Marc
Ali, Abebe
Vis, Jan Kees
Wingate, Vladimir
Gorelick, Noel
Leitão, Pedro J.
Heurich, Marco
Skidmore, Andrew K.
Darvishzadeh, Roshanak
Wegmann, Martin
Hobern, Donald
Fernández, Néstor
Muller-Karger, Frank E.
Rocchini, Duccio
Holzwarth, Stefanie
Lausch, Angela
Kissling, W. Daniel
Feilhauer, Hannes
Roeoesli, Claudia
Coops, Nicholas C.
Neinavaz, Elnaz
Author_xml – sequence: 1
  givenname: Andrew K.
  orcidid: 0000-0002-7446-8429
  surname: Skidmore
  fullname: Skidmore, Andrew K.
  email: a.k.skidmore@utwente.nl
  organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Department of Earth and Environmental Science, Macquarie University
– sequence: 2
  givenname: Nicholas C.
  orcidid: 0000-0002-0151-9037
  surname: Coops
  fullname: Coops, Nicholas C.
  organization: Department of Forest Resources Management, University of British Columbia
– sequence: 3
  givenname: Elnaz
  orcidid: 0000-0003-4117-2354
  surname: Neinavaz
  fullname: Neinavaz, Elnaz
  organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente
– sequence: 4
  givenname: Abebe
  surname: Ali
  fullname: Ali, Abebe
  organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Department of Geography and Environmental Studies, Wollo University
– sequence: 5
  givenname: Michael E.
  orcidid: 0000-0002-9627-9565
  surname: Schaepman
  fullname: Schaepman, Michael E.
  organization: Remote Sensing Laboratories, Department of Geography, University of Zurich
– sequence: 6
  givenname: Marc
  surname: Paganini
  fullname: Paganini, Marc
  organization: European Space Research Institute (ESRIN), European Space Agency
– sequence: 7
  givenname: W. Daniel
  orcidid: 0000-0002-7274-6755
  surname: Kissling
  fullname: Kissling, W. Daniel
  organization: Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam
– sequence: 8
  givenname: Petteri
  orcidid: 0000-0002-5889-8402
  surname: Vihervaara
  fullname: Vihervaara, Petteri
  organization: Biodiversity Centre, Finnish Environment Institute (SYKE)
– sequence: 9
  givenname: Roshanak
  orcidid: 0000-0001-7512-0574
  surname: Darvishzadeh
  fullname: Darvishzadeh, Roshanak
  organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente
– sequence: 10
  givenname: Hannes
  orcidid: 0000-0001-5758-6303
  surname: Feilhauer
  fullname: Feilhauer, Hannes
  organization: Institute of Geographical Sciences, Freie Universität Berlin, Remote Sensing Center for Earth System Research, University of Leipzig
– sequence: 11
  givenname: Miguel
  orcidid: 0000-0002-8301-1340
  surname: Fernandez
  fullname: Fernandez, Miguel
  organization: NatureServe, George Mason University
– sequence: 12
  givenname: Néstor
  orcidid: 0000-0002-9645-8571
  surname: Fernández
  fullname: Fernández, Néstor
  organization: German Centre for Integrative Biodiversity Research (iDiv), Institute of Biology, Martin Luther University Halle-Wittenberg
– sequence: 13
  givenname: Noel
  orcidid: 0000-0002-5548-2436
  surname: Gorelick
  fullname: Gorelick, Noel
  organization: Google
– sequence: 14
  givenname: Ilse
  surname: Geijzendorffer
  fullname: Geijzendorffer, Ilse
  organization: Tour du Valat
– sequence: 15
  givenname: Uta
  orcidid: 0000-0002-3865-1912
  surname: Heiden
  fullname: Heiden, Uta
  organization: Earth Observation Center (EOC), Remote Sensing Technology Institute, German Aerospace Center (DLR)
– sequence: 16
  givenname: Marco
  orcidid: 0000-0003-0051-2930
  surname: Heurich
  fullname: Heurich, Marco
  organization: Department of Visitor Management and National Park Monitoring, Bavarian Forest National Park Administration, Albert Ludwigs University of Freiburg
– sequence: 17
  givenname: Donald
  surname: Hobern
  fullname: Hobern, Donald
  organization: GBIF Secretariat
– sequence: 18
  givenname: Stefanie
  orcidid: 0000-0001-7364-7006
  surname: Holzwarth
  fullname: Holzwarth, Stefanie
  organization: Earth Observation Center (EOC), Remote Sensing Technology Institute, German Aerospace Center (DLR)
– sequence: 19
  givenname: Frank E.
  orcidid: 0000-0003-3159-5011
  surname: Muller-Karger
  fullname: Muller-Karger, Frank E.
  organization: College of Marine Science, University of South Florida
– sequence: 20
  givenname: Ruben
  surname: Van De Kerchove
  fullname: Van De Kerchove, Ruben
  organization: Flemish Institute for Technological Research (VITO)
– sequence: 21
  givenname: Angela
  orcidid: 0000-0002-4490-7232
  surname: Lausch
  fullname: Lausch, Angela
  organization: Computational Landscape Ecology, Helmholtz Centre for Environmental Research (UFZ), Geography Department, Humboldt University of Berlin
– sequence: 22
  givenname: Pedro J.
  orcidid: 0000-0003-3038-9531
  surname: Leitão
  fullname: Leitão, Pedro J.
  organization: Technische Universität Braunschweig, Humboldt-Universität zu Berlin
– sequence: 23
  givenname: Marcelle C.
  orcidid: 0000-0001-7759-0852
  surname: Lock
  fullname: Lock, Marcelle C.
  organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Department of Earth and Environmental Science, Macquarie University
– sequence: 24
  givenname: Caspar A.
  surname: Mücher
  fullname: Mücher, Caspar A.
  organization: Wageningen Environmental Research, Wageningen University & Research
– sequence: 25
  givenname: Brian
  surname: O’Connor
  fullname: O’Connor, Brian
  organization: UN Environment World Conservation Monitoring Centre
– sequence: 26
  givenname: Duccio
  orcidid: 0000-0003-0087-0594
  surname: Rocchini
  fullname: Rocchini, Duccio
  organization: Department of Biological, Geological and Environmental Sciences, University of Bologna, Department of Applied Geoinformatics and Spatial Planning, Faculty of Environmental Sciences, Czech University of Life Sciences
– sequence: 27
  givenname: Claudia
  surname: Roeoesli
  fullname: Roeoesli, Claudia
  organization: Remote Sensing Laboratories, Department of Geography, University of Zurich
– sequence: 28
  givenname: Woody
  surname: Turner
  fullname: Turner, Woody
  organization: Earth Science Division, NASA
– sequence: 29
  givenname: Jan Kees
  surname: Vis
  fullname: Vis, Jan Kees
  organization: Unilever Europe B.V
– sequence: 30
  givenname: Tiejun
  orcidid: 0000-0002-1138-8464
  surname: Wang
  fullname: Wang, Tiejun
  organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente
– sequence: 31
  givenname: Martin
  orcidid: 0000-0003-0335-9601
  surname: Wegmann
  fullname: Wegmann, Martin
  organization: Institute of Geography and Geology, University of Wuerzburg
– sequence: 32
  givenname: Vladimir
  surname: Wingate
  fullname: Wingate, Vladimir
  organization: Land Systems and Sustainable Land Management, Geographisches Institut, Universität Bern
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33986541$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LBCEYgCWKtrb-QIcY6NJlSkcdlU4RfcFCHQq6ieu8Ey4z46buUv8-a_tiD50UeR59fXbR5uAHQOiA4BOCqTyNjHCuSlyREhPGSfm6gXYqqkRJKXva_LMfof0YZxhjIgRXdb2NRpQqWXNGdtDZfXA-uPRWdC6mwrfF1PnGLSHEj8MeUnA2FskXfhohLKFog--LODcW9tBWa7oI-1_rGD1eXT5c3JSTu-vbi_NJaRlRqaSSm0pCy6ZKilaCBcYsGG6gEQJEJUhjagoNZU0trTJCMDASt7JWNQdp6Bgdr-6dB_-ygJh076KFrjMD-EXUFa8kkST_NaNHa-jML8KQp8sUk4xKpVSmDr-oxbSHRs-D6014099ZMlCtABt8jAHaH4Rg_ZFfr_LrnF9_5tevWZJrknXJJOeHFIzr_lfpSo35neEZwu_Y_1jvGyiZTA
CitedBy_id crossref_primary_10_1080_11263504_2023_2165569
crossref_primary_10_3390_rs14236165
crossref_primary_10_3390_rs15174128
crossref_primary_10_1016_j_ecolind_2022_109004
crossref_primary_10_1038_s41598_024_64615_2
crossref_primary_10_1002_ecs2_70026
crossref_primary_10_1109_LGRS_2023_3319548
crossref_primary_10_1098_rsta_2023_0058
crossref_primary_10_1093_biosci_biae052
crossref_primary_10_3390_rs13245105
crossref_primary_10_1111_rec_14338
crossref_primary_10_1038_s41598_023_44384_0
crossref_primary_10_1007_s12524_022_01569_w
crossref_primary_10_1016_j_srs_2023_100114
crossref_primary_10_3390_rs15030820
crossref_primary_10_1007_s12080_024_00587_3
crossref_primary_10_3390_rs16132425
crossref_primary_10_1016_j_scitotenv_2022_161365
crossref_primary_10_1080_17538947_2022_2130461
crossref_primary_10_3390_land11030371
crossref_primary_10_3390_rs15081969
crossref_primary_10_1111_2041_210X_14245
crossref_primary_10_1016_j_jclepro_2023_136331
crossref_primary_10_1016_j_ecoinf_2023_102082
crossref_primary_10_1016_j_geoderma_2024_117058
crossref_primary_10_1016_j_ecolind_2024_112940
crossref_primary_10_1093_biosci_biab114
crossref_primary_10_3389_fcosc_2024_1298962
crossref_primary_10_1016_j_jag_2022_103131
crossref_primary_10_1016_j_rse_2023_113614
crossref_primary_10_1002_eap_2624
crossref_primary_10_1016_j_envres_2024_119432
crossref_primary_10_1016_j_ecoinf_2024_102702
crossref_primary_10_1038_s41559_023_02206_6
crossref_primary_10_1098_rstb_2023_0208
crossref_primary_10_3390_f15060946
crossref_primary_10_1007_s44177_022_00013_5
crossref_primary_10_1038_s41598_023_50812_y
crossref_primary_10_1098_rstb_2022_0192
crossref_primary_10_1029_2022JG007026
crossref_primary_10_3390_f15071198
crossref_primary_10_1073_pnas_2107662119
crossref_primary_10_5194_essd_15_1871_2023
crossref_primary_10_3389_fmars_2021_740953
crossref_primary_10_1016_j_oneear_2024_10_005
crossref_primary_10_1007_s41064_023_00235_1
crossref_primary_10_1016_j_asr_2025_02_052
crossref_primary_10_1109_MCG_2023_3321989
crossref_primary_10_1016_j_ecolind_2025_113085
crossref_primary_10_7780_kjrs_2024_40_5_2_8
crossref_primary_10_1080_15481603_2024_2427305
crossref_primary_10_1038_s41598_021_96047_7
crossref_primary_10_1016_j_rsase_2025_101499
crossref_primary_10_1016_j_rse_2022_113338
crossref_primary_10_1016_j_tree_2024_09_006
crossref_primary_10_1016_j_ecocom_2023_101029
crossref_primary_10_1016_j_jag_2022_103074
crossref_primary_10_1016_j_rse_2023_113918
crossref_primary_10_1007_s41324_023_00558_6
crossref_primary_10_1016_j_jenvman_2022_114944
crossref_primary_10_1016_j_rse_2023_113591
crossref_primary_10_1016_j_rse_2022_113170
crossref_primary_10_1016_j_indic_2022_100179
crossref_primary_10_1007_s11356_022_22469_z
crossref_primary_10_3390_plants11202803
crossref_primary_10_3390_rs14071631
crossref_primary_10_1038_s41559_022_01702_5
crossref_primary_10_1080_01431161_2023_2240520
crossref_primary_10_1111_geb_13516
crossref_primary_10_7717_peerj_13534
crossref_primary_10_1016_j_ecolind_2024_112970
crossref_primary_10_1016_j_rse_2024_114518
crossref_primary_10_2139_ssrn_4784271
crossref_primary_10_1038_s41597_024_04143_w
crossref_primary_10_1016_j_agrformet_2023_109337
crossref_primary_10_1016_j_isprsjprs_2022_12_028
crossref_primary_10_1088_2752_664X_ad4beb
crossref_primary_10_3390_rs16071139
crossref_primary_10_1080_10106049_2024_2387087
crossref_primary_10_3390_insects15040229
crossref_primary_10_3390_su13179897
crossref_primary_10_1016_j_rse_2022_113024
crossref_primary_10_1016_j_jag_2024_103732
crossref_primary_10_1002_rse2_333
crossref_primary_10_1080_01431161_2023_2234093
crossref_primary_10_1002_bse_3208
crossref_primary_10_1007_s10661_024_12993_5
crossref_primary_10_1016_j_scitotenv_2021_148994
crossref_primary_10_3390_rs15235593
crossref_primary_10_1038_s44185_024_00071_5
crossref_primary_10_1016_j_jag_2024_104142
crossref_primary_10_3897_neobiota_94_126714
crossref_primary_10_1016_j_compag_2025_110178
crossref_primary_10_1080_01431161_2023_2205982
crossref_primary_10_1016_j_rse_2024_114082
crossref_primary_10_3389_fenvs_2022_788843
crossref_primary_10_3390_rs14051083
crossref_primary_10_1016_j_apgeog_2024_103249
crossref_primary_10_1109_JSTARS_2023_3270884
crossref_primary_10_3390_rs14092279
crossref_primary_10_1016_j_rsase_2023_101121
crossref_primary_10_1016_j_rse_2023_113530
crossref_primary_10_1016_j_ecolind_2023_110773
crossref_primary_10_1016_j_fecs_2024_100196
crossref_primary_10_1002_rse2_248
crossref_primary_10_3390_rs14153633
crossref_primary_10_1002_spe_3098
crossref_primary_10_1126_science_abn1406
crossref_primary_10_1016_j_ecoinf_2025_102993
crossref_primary_10_1088_2515_7620_ad3c16
crossref_primary_10_1002_fee_2587
crossref_primary_10_1016_j_scitotenv_2024_178132
crossref_primary_10_1038_s41598_024_65954_w
crossref_primary_10_3390_data9120143
crossref_primary_10_1080_01431161_2021_2024912
crossref_primary_10_1016_j_rse_2024_114379
crossref_primary_10_3390_rs14215363
crossref_primary_10_1111_oik_09435
crossref_primary_10_1038_s41893_022_01020_5
crossref_primary_10_3390_rs15164061
crossref_primary_10_3390_land13101660
crossref_primary_10_1038_s43247_023_00758_w
crossref_primary_10_1111_brv_12792
crossref_primary_10_1007_s41324_022_00457_2
crossref_primary_10_1016_j_techfore_2023_122806
crossref_primary_10_1109_TGRS_2024_3353410
crossref_primary_10_1002_eap_2603
crossref_primary_10_3389_fenvs_2024_1333762
crossref_primary_10_1126_sciadv_abl8214
crossref_primary_10_7717_peerj_16972
crossref_primary_10_1109_JSTARS_2024_3456587
crossref_primary_10_3390_rs16111833
crossref_primary_10_1016_j_isprsjprs_2024_05_014
crossref_primary_10_1016_j_rse_2024_114028
crossref_primary_10_3390_rs14153618
crossref_primary_10_1016_j_foreco_2024_122094
crossref_primary_10_1080_10106049_2022_2087756
crossref_primary_10_3390_f13030445
Cites_doi 10.1016/j.cosust.2018.02.005
10.1016/j.envsci.2015.08.005
10.1111/gcb.13168
10.1038/s41559-018-0551-1
10.1038/s41559-018-0667-3
10.1186/s40462-015-0036-7
10.2307/1468118
10.1016/j.rse.2008.06.018
10.1002/ldr.636
10.1016/j.rse.2015.09.001
10.1016/j.ecocom.2013.06.003
10.3390/rs8020161
10.1016/j.rse.2016.08.013
10.1016/j.rse.2016.10.018
10.1146/annurev.polisci.11.053106.141706
10.1175/BAMS-D-13-00047.1
10.1117/1.JRS.9.094096
10.1016/j.isprsjprs.2007.03.003
10.1111/geb.12601
10.1016/j.ecolind.2016.06.022
10.1080/01431160701736489
10.14358/PERS.70.6.703
10.1007/s10531-017-1386-9
10.1016/j.gecco.2017.01.007
10.3390/rs12061044
10.1016/j.isprsjprs.2014.03.009
10.1016/S0034-4257(01)00182-1
10.1007/s10531-017-1388-7
10.1016/S0098-8472(99)00052-0
10.1016/j.rse.2008.02.010
10.1080/01431160412331330275
10.1046/j.0022-0477.2001.00634.x
10.1023/B:LAND.0000021711.40074.ae
10.1016/j.isprsjprs.2018.02.002
10.3390/rs10020157
10.1073/pnas.0912668107
10.1890/1051-0761(1998)008[1022:HOSCSA]2.0.CO;2
10.1002/eap.1682
10.1016/j.rse.2016.05.019
10.3390/rs10030443
10.1038/nature18608
10.1126/science.1229931
10.1038/523403a
10.1111/2041-210X.12510
10.1016/j.rse.2011.02.030
10.2307/2937116
10.1073/pnas.0701135104
10.3390/rs6042682
10.1126/science.1244693
10.1111/j.2006.0906-7590.04596.x
10.1111/1365-2664.12417
10.1109/AERO.2005.1559323
10.1002/rse2.4
10.1890/08-0588.1
10.1016/j.rse.2010.12.015
10.1002/ece3.6469
10.1111/j.1755-263X.2011.00211.x
10.1016/j.isprsjprs.2020.10.017
10.1016/j.biocon.2014.11.048
10.3390/rs8030221
10.1109/LGRS.2017.2657778
10.3390/rs10071120
10.1038/nplants.2016.24
10.1111/j.1365-2435.2010.01769.x
10.1038/nature16489
10.1111/nph.16771
10.1038/nature20584
10.1016/j.rse.2004.12.011
10.1007/s10021-005-0041-6
10.1126/science.aau2650
10.1016/j.ecolind.2015.08.048
10.1016/bs.aecr.2015.03.001
10.1126/science.1256014
10.1098/rstb.2010.0081
10.1016/j.rse.2006.07.013
10.1080/01431168708954756
10.1111/j.1365-2664.2012.02205.x
10.1016/j.landurbplan.2005.05.006
10.1111/mms.12544
10.1126/science.aaj1987
10.3390/rs70708830
10.1109/MIC.2011.20
10.1016/j.ecolmodel.2014.08.018
10.1371/journal.pone.0115989
10.2307/2404920
10.1111/1365-2664.12179
10.1016/j.rse.2008.05.013
10.1029/95JD01536
10.1002/ece3.601
10.1016/j.rse.2010.10.011
10.1016/j.isprsjprs.2013.05.003
10.3390/rs8030196
10.1016/B978-0-12-396992-7.00002-2
10.1126/science.aaa2478
10.1016/j.inffus.2020.07.004
10.1016/j.rse.2004.12.016
10.1016/j.ecoinf.2019.101033
10.5194/acp-10-11707-2010
10.1111/geb.12182
10.1016/j.landusepol.2003.10.011
10.1002/rse2.15
10.1007/s11629-018-5200-2
10.1111/j.1365-2745.2008.01419.x
10.3390/rs9090878
10.1038/s41559-017-0176
10.1007/s100219900062
10.1016/j.foreco.2006.01.013
10.1016/S0034-4257(02)00074-3
10.1002/rse2.29
10.1111/brv.12359
10.1046/j.1365-2435.2002.00664.x
ContentType Journal Article
Copyright Springer Nature Limited 2021. corrected publications 2021
Springer Nature Limited 2021. corrected publications 2021.
Copyright_xml – notice: Springer Nature Limited 2021. corrected publications 2021
– notice: Springer Nature Limited 2021. corrected publications 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FH
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
7X8
DOI 10.1038/s41559-021-01451-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE

ProQuest Central Student
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Ecology
EISSN 2397-334X
EndPage 906
ExternalDocumentID 33986541
10_1038_s41559_021_01451_x
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Aeronautics and Space Administration (NASA)
  grantid: NNX14AP62A; 80NSSC20K0017; NA19NOS0120199
  funderid: https://doi.org/10.13039/100000104
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 834709
  funderid: https://doi.org/10.13039/100010663
– fundername: Suomen Akatemia | Strategic Research Council (Strategisen Tutkimuksen Neuvosto)
  grantid: 312559
  funderid: https://doi.org/10.13039/501100009047
– fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
  grantid: 820852; 730329
  funderid: https://doi.org/10.13039/100010661
GroupedDBID 0R~
53G
AAEEF
AAHBH
AARCD
AAYZH
ABJNI
ABLJU
ACBWK
ACGFS
ADBBV
AEUYN
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ATCPS
AXYYD
BBNVY
BENPR
BHPHI
BKKNO
BKSAR
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
M7P
NNMJJ
O9-
ODYON
PATMY
PCBAR
PYCSY
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
AFANA
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PQGLB
8FE
8FH
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
7X8
ID FETCH-LOGICAL-c419t-385a28ef4b987f8ece44cea5aed77e7271da63ed34d68c9a774ea80f86965e8a3
IEDL.DBID BENPR
ISSN 2397-334X
IngestDate Fri Jul 11 16:17:00 EDT 2025
Wed Jul 16 16:23:48 EDT 2025
Mon Jul 21 05:59:00 EDT 2025
Tue Jul 01 00:52:48 EDT 2025
Thu Apr 24 22:54:03 EDT 2025
Fri Feb 21 02:40:12 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-385a28ef4b987f8ece44cea5aed77e7271da63ed34d68c9a774ea80f86965e8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7274-6755
0000-0002-1138-8464
0000-0002-7446-8429
0000-0001-7759-0852
0000-0003-3038-9531
0000-0002-9627-9565
0000-0001-7364-7006
0000-0003-3159-5011
0000-0003-0087-0594
0000-0002-5548-2436
0000-0002-4490-7232
0000-0003-0335-9601
0000-0001-7512-0574
0000-0002-9645-8571
0000-0002-5889-8402
0000-0003-0051-2930
0000-0002-8301-1340
0000-0003-4117-2354
0000-0001-5758-6303
0000-0002-3865-1912
0000-0002-0151-9037
OpenAccessLink https://www.nature.com/articles/s41559-021-01451-x.pdf
PMID 33986541
PQID 2548438999
PQPubID 4669716
PageCount 11
ParticipantIDs proquest_miscellaneous_2528181334
proquest_journals_2548438999
pubmed_primary_33986541
crossref_primary_10_1038_s41559_021_01451_x
crossref_citationtrail_10_1038_s41559_021_01451_x
springer_journals_10_1038_s41559_021_01451_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature ecology & evolution
PublicationTitleAbbrev Nat Ecol Evol
PublicationTitleAlternate Nat Ecol Evol
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References FassnachtFEReview of studies on tree species classification from remotely sensed dataRemote Sens. Environ.2016186648710.1016/j.rse.2016.08.013
Copernicus Global Land Service: FAPAR Copernicushttps://land.copernicus.eu/global/about (2020).
VogelDPrivate global business regulationAnnu. Rev. Polit. Sci.20081126128210.1146/annurev.polisci.11.053106.141706
PotterCRecent history of large-scale ecosystem disturbances in North America derived from the AVHRR satellite recordEcosystems2005880882410.1007/s10021-005-0041-6
SchmellerDBuilding capacity in biodiversity monitoring at the global scaleBiodivers. Conserv.2017262765279010.1007/s10531-017-1388-7
CollMEcological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystemsEcol. Indic.20166094796210.1016/j.ecolind.2015.08.048
ZhaoMSHeinschFANemaniRRRunningSWImprovements of the MODIS terrestrial gross and net primary production global data setRemote Sens. Environ.20059516417610.1016/j.rse.2004.12.011
Verger, A. & Descals, A. Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)—300 m Version 1; Algorithm Theoretical Basis Document (ATBD), Issue 1.00 (Framework Service Contract No. 199494-JRC) (Copernicus Global Land Operations CGLOPS-1, 2020).
WuSBMonitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observationsISPRS J. Photogramm. Remote Sens.2021171364810.1016/j.isprsjprs.2020.10.017
GravesSJTree species abundance predictions in a tropical agricultural landscape with a supervised classification model and imbalanced dataRemote Sens.2016816110.3390/rs8020161
PekelJCottamAGorelickNBelwardASHigh-resolution mapping of global surface water and its long-term changesNature20165404184221:CAS:528:DC%2BC28XitVWmurbJ2792673310.1038/nature20584
PereiraHMEssential biodiversity variablesScience20133392772781:CAS:528:DC%2BC3sXhslagsbc%3D2332903610.1126/science.1229931
Surface Biology and Geology (SBG) NASA Sciencehttps://science.nasa.gov/earth-science/decadal-sbg (2020).
BaiYFGrazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradientJ. Appl. Ecol.201249120412151:CAS:528:DC%2BC3sXislSmt7k%3D10.1111/j.1365-2664.2012.02205.x
GrataniLBombelliACorrelation between leaf age and other leaf traits in three Mediterranean maquis shrub species: Quercus ilex, Phillyrea latifolia and Cistus incanusEnviron. Exp. Bot.20004314115310.1016/S0098-8472(99)00052-0
LucasRRowlandsABrownAKeyworthSBuntingPRule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mappingISPRS J. Photogramm. Remote Sens.20076216518510.1016/j.isprsjprs.2007.03.003
KaysRCrofootMCJetzWWikelskiMTerrestrial animal tracking as an eye on life and planetScience2015348aaa24782606885810.1126/science.aaa2478
HansenMCStehmanSVPotapovPVQuantification of global gross forest cover lossProc. Natl Acad. Sci. USA2010107865086551:CAS:528:DC%2BC3cXmsFWmtLs%3D20421467288935410.1073/pnas.0912668107
HealyCGotelliNJPotvinCPartitioning the effects of biodiversity and environmental heterogeneity for productivity and mortality in a tropical tree plantationJ. Ecol.20089690391310.1111/j.1365-2745.2008.01419.x
CzyzEAIntraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time seriesEcol. Evol.2020107419743032760538739131910.1002/ece3.6469
ReichPBWaltersMBEllsworthDSLeaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystemsEcol. Monogr.19926236539210.2307/2937116
JonesMOJonesLAKimballJSMcDonaldKCSatellite passive microwave remote sensing for monitoring global land surface phenologyRemote Sens. Environ.20111151102111410.1016/j.rse.2010.12.015
MyneniRBGlobal products of vegetation leaf area and fraction absorbed PAR from year one of MODIS dataRemote Sens. Environ.20028321423110.1016/S0034-4257(02)00074-3
WengQHRemote sensing of impervious surfaces in the urban areas: requirements, methods, and trendsRemote Sens. Environ.2012117344910.1016/j.rse.2011.02.030
Salcedo-SanzSMachine learning information fusion in Earth observation: a comprehensive review of methods, applications and data sourcesInf. Fusion20206325627210.1016/j.inffus.2020.07.004
AsnerGPAirborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservationScience20173553853891:CAS:528:DC%2BC2sXhsVGrsLc%3D2812681510.1126/science.aaj1987
LauschAUnderstanding forest health with remote sensing, part III: requirements for a scalable multi-source forest health monitoring network based on data science approachesRemote Sens.201810112010.3390/rs10071120
BuchananGMFree satellite data key to conservationScience20183611391401:CAS:528:DC%2BC1cXhtlahtr%2FO30002246
SchmellerDSAn operational definition of essential biodiversity variablesBiodivers. Conserv.2017262967297210.1007/s10531-017-1386-9
LakePSDisturbance, patchiness, and diversity in streamsJ. N. Am. Benthol. Soc.20001957359210.2307/1468118
HustonMAWolvertonSThe global distribution of net primary production: resolving the paradoxEcol. Monogr.20097934337710.1890/08-0588.1
RoyDPBoschettiLJusticeCOJuJThe collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire productRemote Sens. Environ.20081123690370710.1016/j.rse.2008.05.013
PettorelliNFraming the concept of satellite remote sensing essential biodiversity variables: challenges and future directionsRemote Sens. Ecol. Conserv.2016212213110.1002/rse2.15
WalkerBKinzigALangridgeJPlant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor speciesEcosystems199929511310.1007/s100219900062
Morsdorf, F. et al. in Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 83–104 (Springer International, 2020).
SchmidtKSMapping coastal vegetation using an expert system and hyperspectral imageryPhotogramm. Eng. Remote Sens.20047070371510.14358/PERS.70.6.703
BushAConnecting Earth observation to high-throughput biodiversity dataNat. Ecol. Evol.20171017610.1038/s41559-017-0176
YangZSpotting East African mammals in open savannah from spacePLoS ONE20149e11598925551561428122110.1371/journal.pone.0115989
Cavender-BaresJAssociations of leaf spectra with genetic and phylogenetic variation in oaks: prospects for remote detection of biodiversityRemote Sens.2016822110.3390/rs8030221
O’Connor, B., Bojinski, S., Roosli, C. & Schaepman, M. E. Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies. Ecol. Inform. 55, 101033 (2020).
JoshiCIndirect remote sensing of a cryptic forest understorey invasive speciesFor. Ecol. Manag.200622524525610.1016/j.foreco.2006.01.013
VihervaaraPHow essential biodiversity variables and remote sensing can help national biodiversity monitoringGlob. Ecol. Conserv.201710435910.1016/j.gecco.2017.01.007
KhosravipourASkidmoreAKIsenburgMGenerating spike-free digital surface models using LiDAR raw point clouds: a new approach for forestry applicationsInt. J. Appl. Earth Obs. Geoinf.201652104114
NavarroLMMonitoring biodiversity change through effective global coordinationCurr. Opin. Environ. Sustain.20172915816910.1016/j.cosust.2018.02.005
NiklasKJ‘Diminishing returns’ in the scaling of functional leaf traits across and within species groupsProc. Natl Acad. Sci. USA2007104889188961:CAS:528:DC%2BD2sXmt1Wgt7g%3D17502616188559810.1073/pnas.0701135104
DíazSFunctional traits, the phylogeny of function, and ecosystem service vulnerabilityEcol. Evol.201332958297524101986379054310.1002/ece3.601
WuJGEffects of changing scale on landscape pattern analysis: scaling relationsLandsc. Ecol.20041912513810.1023/B:LAND.0000021711.40074.ae
RamoeloAChoMMathieuRSkidmoreAKPotential of Sentinel-2 spectral configuration to assess rangeland qualityJ. Appl. Remote Sens.2015909409610.1117/1.JRS.9.094096
ShiYFWangTJSkidmoreAKHeurichMImportant LiDAR metrics for discriminating forest tree species in Central EuropeISPRS J. Photogramm. Remote Sens.201813716317410.1016/j.isprsjprs.2018.02.002
RichardsJAWoodgatePWSkidmoreAKAn explanation of enhanced radar backscattering from flooded forestsInt. J. Remote Sens.198781093110010.1080/01431168708954756
VerstraeteMMDinerDJBezyJLPlanning for a spaceborne Earth observation mission: from user expectations to measurement requirementsEnviron. Sci. Policy20155441942710.1016/j.envsci.2015.08.005
ThackeraySJPhenological sensitivity to climate across taxa and trophic levelsNature20165352412451:CAS:528:DC%2BC28XhtVOns7bP2736222210.1038/nature18608
Belward, A. The Global Observing System for Climate: Implementation Needs Report No. GCOS-200 (Global Climate Observing System, 2016).
SkidmoreAKAn expert system classifies eucalypt forest types using Landsat thematic mapper data and a digital terrain modelPhotogramm. Eng. Remote Sens.19895514491464
BaldeckCAAsnerGPImproving remote species identification through efficient training data collectionRemote Sens.201462682269810.3390/rs6042682
GarriguesSAllardDBaretFWeissMInfluence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing dataRemote Sens. Environ.200610528629810.1016/j.rse.2006.07.013
TranquilliSLack of conservation effort rapidly increases African great ape extinction riskConserv. Lett.20125485510.1111/j.1755-263X.2011.00211.x
HerktKMBSkidmoreAKFahrJMacroecological conclusions based on IUCN expert maps: a call for cautionGlob. Ecol. Biogeogr.20172693094110.1111/geb.12601
TurnerWSensing biodiversityScience20143463013021:CAS:528:DC%2BC2cXhvFSjtbrI2532437210.1126/science.1256014
HomolovaLMaenovskyZCleversJGarcia-SantosGSchaeprnanMEReview of optical-based remote sensing for plant trait mappingEcol. Complex.20131511610.1016/j.ecocom.2013.06.003
Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IP
W Jetz (1451_CR5) 2016; 2
P Wilkes (1451_CR80) 2016; 7
PS Lake (1451_CR17) 2000; 19
J Transon (1451_CR82) 2018; 10
1451_CR46
CA Baldeck (1451_CR76) 2014; 6
DS Schmeller (1451_CR58) 2017; 26
PL Nagler (1451_CR49) 2009; 113
A Khosravipour (1451_CR25) 2016; 52
KMB Herkt (1451_CR35) 2017; 26
S Madonsela (1451_CR86) 2017; 58
AK Skidmore (1451_CR98) 2015; 523
A Bush (1451_CR87) 2017; 1
GP Asner (1451_CR71) 1998; 8
S Lavorel (1451_CR109) 2002; 16
YF Xue (1451_CR20) 2017; 9
J Hyyppa (1451_CR81) 2008; 29
I Garonna (1451_CR54) 2016; 22
MC Hansen (1451_CR36) 2013; 342
BW Brassard (1451_CR50) 2011; 25
AK Schweiger (1451_CR122) 2018; 2
J Cavender-Bares (1451_CR123) 2016; 8
C Joshi (1451_CR68) 2006; 225
W Neumann (1451_CR94) 2015; 3
R Kays (1451_CR88) 2015; 348
KS Schmidt (1451_CR28) 2004; 70
HM Pereira (1451_CR4) 2013; 339
S Tranquilli (1451_CR116) 2012; 5
M Schlerf (1451_CR19) 2005; 95
1451_CR3
B Walker (1451_CR56) 1999; 2
1451_CR26
1451_CR27
A Ramoelo (1451_CR85) 2015; 9
1451_CR1
M Paganini (1451_CR2) 2016; 2
D Schmeller (1451_CR113) 2017; 26
PJ Curran (1451_CR23) 2001; 76
H Ye (1451_CR38) 2019; 16
MN Tuanmu (1451_CR32) 2014; 23
KJ Niklas (1451_CR55) 2007; 104
J Elith (1451_CR120) 2006; 29
JP Gibert (1451_CR107) 2015; 52
1451_CR14
MS Zhao (1451_CR21) 2005; 95
S Salcedo-Sanz (1451_CR42) 2020; 63
SB Wu (1451_CR41) 2021; 171
L Gratani (1451_CR47) 2000; 43
F Urbano (1451_CR91) 2010; 365
S Bojinski (1451_CR15) 2014; 95
1451_CR103
1451_CR95
1451_CR96
1451_CR100
S Díaz (1451_CR111) 2013; 3
R De Jong (1451_CR74) 2011; 115
MO Jones (1451_CR53) 2011; 115
F Chen (1451_CR64) 2018; 10
R Barga (1451_CR9) 2011; 15
FE Muller-Karger (1451_CR10) 2018; 28
D Vogel (1451_CR115) 2008; 11
S Saura (1451_CR73) 2014; 51
EA Czyz (1451_CR121) 2020; 10
A Lausch (1451_CR78) 2016; 70
N Pettorelli (1451_CR7) 2016; 2
A Lausch (1451_CR8) 2018; 10
AK Skidmore (1451_CR67) 1997; 63
W Turner (1451_CR112) 2014; 346
GM Buchanan (1451_CR117) 2018; 361
A Lausch (1451_CR33) 2015; 295
J Pekel (1451_CR37) 2016; 540
AS Belward (1451_CR114) 2015; 103
PB Reich (1451_CR51) 1992; 62
W Turner (1451_CR118) 2015; 182
MC Hansen (1451_CR101) 2010; 107
WD Kissling (1451_CR43) 2018; 93
P Vihervaara (1451_CR102) 2017; 10
MA Huston (1451_CR52) 2009; 79
RS Defries (1451_CR69) 1995; 100
JA Richards (1451_CR45) 1987; 8
WL Qi (1451_CR84) 2016; 187
JG Masek (1451_CR99) 2008; 112
C Potter (1451_CR59) 2005; 8
1451_CR124
Z Yang (1451_CR93) 2014; 9
MM Verstraete (1451_CR97) 2015; 54
GJ Scott (1451_CR66) 2017; 14
LM Navarro (1451_CR6) 2017; 29
GR Van der Werf (1451_CR62) 2010; 10
B O’Connor (1451_CR11) 2015; 1
IR Geijzendorffer (1451_CR12) 2016; 53
JG Wu (1451_CR16) 2004; 19
AK Skidmore (1451_CR31) 1989; 55
C Healy (1451_CR44) 2008; 96
DP Roy (1451_CR60) 2008; 112
K Kitayama (1451_CR48) 2002; 90
UB Nidumolu (1451_CR63) 2004; 15
J Peterseil (1451_CR72) 2004; 21
GP Asner (1451_CR104) 2017; 355
S Díaz (1451_CR106) 2016; 529
SJ Thackeray (1451_CR110) 2016; 535
MA Wulder (1451_CR119) 2015; 170
KM McManus (1451_CR90) 2016; 8
S Rohde (1451_CR13) 2006; 78
SJ Graves (1451_CR18) 2016; 8
RB Myneni (1451_CR22) 2002; 83
JE Meireles (1451_CR89) 2020; 228
YF Shi (1451_CR79) 2018; 137
QH Weng (1451_CR65) 2012; 117
HC Cubaynes (1451_CR92) 2019; 35
YF Bai (1451_CR57) 2012; 49
L Guanter (1451_CR83) 2015; 7
L Homolova (1451_CR24) 2013; 15
WD Kissling (1451_CR75) 2018; 2
S Garrigues (1451_CR40) 2006; 105
D Arvor (1451_CR29) 2013; 82
M Buchhorn (1451_CR34) 2020; 12
M Coll (1451_CR105) 2016; 60
R Lucas (1451_CR30) 2007; 62
FE Fassnacht (1451_CR77) 2016; 186
PJ Curran (1451_CR39) 2005; 26
M Hagen (1451_CR108) 2012; 46
AM Cunliffe (1451_CR70) 2016; 183
J Russell-Smith (1451_CR61) 1997; 34
34031569 - Nat Ecol Evol. 2021 May 24
34697457 - Nat Ecol Evol. 2021 Dec;5(12):1639
34282320 - Nat Ecol Evol. 2021 Jul 19
36100676 - Nature. 2022 Sep;609(7927):467
References_xml – reference: GeijzendorfferIRBridging the gap between biodiversity data and policy reporting needs: an essential biodiversity variables perspectiveJ. Appl. Ecol.2016531341135010.1111/1365-2664.12417
– reference: LauschALinking earth observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectivesEcol. Indic.20167031733910.1016/j.ecolind.2016.06.022
– reference: SchmellerDSAn operational definition of essential biodiversity variablesBiodivers. Conserv.2017262967297210.1007/s10531-017-1386-9
– reference: MeirelesJELeaf reflectance spectra capture the evolutionary history of seed plantsNew Phytol.202022848549332579721754050710.1111/nph.16771
– reference: DefriesRSMapping the land surface for global atmosphere–biosphere models—toward continuous distributions of vegetation’s functional propertiesJ. Geophys. Res. Atmos.1995100208672088210.1029/95JD01536
– reference: Cavender-BaresJAssociations of leaf spectra with genetic and phylogenetic variation in oaks: prospects for remote detection of biodiversityRemote Sens.2016822110.3390/rs8030221
– reference: PaganiniMLeidnerAKGellerGTurnerWWegmannMThe role of space agencies in remotely sensed essential biodiversity variablesRemote Sens. Ecol. Conserv.2016213214010.1002/rse2.29
– reference: JonesMOJonesLAKimballJSMcDonaldKCSatellite passive microwave remote sensing for monitoring global land surface phenologyRemote Sens. Environ.20111151102111410.1016/j.rse.2010.12.015
– reference: ChenFFast automatic airport detection in remote sensing images using convolutional neural networksRemote Sens.20181044310.3390/rs10030443
– reference: KisslingWDTowards global data products of essential biodiversity variables on species traitsNat. Ecol. Evol.20182153115403022481410.1038/s41559-018-0667-3
– reference: SkidmoreAKTurnerBJBrinkhofWKnowlesEPerformance of a neural network: mapping forests using GIS and remotely sensed dataPhotogramm. Eng. Remote Sens.199763501514
– reference: XueYFWangTJSkidmoreAKAutomatic counting of large mammals from very high resolution panchromatic satellite imageryRemote Sens.2017987810.3390/rs9090878
– reference: HansenMCHigh-resolution global maps of 21st-century forest cover changeScience20133428508531:CAS:528:DC%2BC3sXhslCrsrbO2423372210.1126/science.1244693
– reference: PekelJCottamAGorelickNBelwardASHigh-resolution mapping of global surface water and its long-term changesNature20165404184221:CAS:528:DC%2BC28XitVWmurbJ2792673310.1038/nature20584
– reference: Weiss, J. R., Smythe, W. D. & Lu, W. W. Science Traceability. In Proc. IEEE Aerospace Conference 292–299 (IEEE, 2005).
– reference: TurnerWSensing biodiversityScience20143463013021:CAS:528:DC%2BC2cXhvFSjtbrI2532437210.1126/science.1256014
– reference: BushAConnecting Earth observation to high-throughput biodiversity dataNat. Ecol. Evol.20171017610.1038/s41559-017-0176
– reference: BelwardASSkoienJOWho launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellitesISPRS J. Photogramm. Remote Sens.201510311512810.1016/j.isprsjprs.2014.03.009
– reference: SkidmoreAKAn expert system classifies eucalypt forest types using Landsat thematic mapper data and a digital terrain modelPhotogramm. Eng. Remote Sens.19895514491464
– reference: Russell-SmithJRyanPGDurieuRA LANDSAT MSS-derived fire history of Kakadu National Park, monsoonal northern Australia, 1980–94: seasonal extent, frequency and patchinessJ. Appl. Ecol.19973474876610.2307/2404920
– reference: Copernicus Global Land Service: FAPAR Copernicushttps://land.copernicus.eu/global/about (2020).
– reference: Belward, A. The Global Observing System for Climate: Implementation Needs Report No. GCOS-200 (Global Climate Observing System, 2016).
– reference: SchmellerDBuilding capacity in biodiversity monitoring at the global scaleBiodivers. Conserv.2017262765279010.1007/s10531-017-1388-7
– reference: MasekJGNorth American forest disturbance mapped from a decadal Landsat recordRemote Sens. Environ.20081122914292610.1016/j.rse.2008.02.010
– reference: SchweigerAKPlant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem functionNat. Ecol. Evol.201829769822976044010.1038/s41559-018-0551-1
– reference: ZhaoMSHeinschFANemaniRRRunningSWImprovements of the MODIS terrestrial gross and net primary production global data setRemote Sens. Environ.20059516417610.1016/j.rse.2004.12.011
– reference: VerstraeteMMDinerDJBezyJLPlanning for a spaceborne Earth observation mission: from user expectations to measurement requirementsEnviron. Sci. Policy20155441942710.1016/j.envsci.2015.08.005
– reference: SchlerfMAtzbergerCHillJRemote sensing of forest biophysical variables using HyMap imaging spectrometer dataRemote Sens. Environ.20059517719410.1016/j.rse.2004.12.016
– reference: ReichPBWaltersMBEllsworthDSLeaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystemsEcol. Monogr.19926236539210.2307/2937116
– reference: NeumannWOpportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movementMov. Ecol.2015325941571441810410.1186/s40462-015-0036-7
– reference: Muller-KargerFESatellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystemsEcol. Appl.20182874976029509310594726410.1002/eap.1682
– reference: McManusKMPhylogenetic structure of foliar spectral traits in tropical forest canopiesRemote Sens.2016819610.3390/rs8030196
– reference: MyneniRBGlobal products of vegetation leaf area and fraction absorbed PAR from year one of MODIS dataRemote Sens. Environ.20028321423110.1016/S0034-4257(02)00074-3
– reference: UrbanoFWildlife tracking data management: a new visionPhil. Trans. R. Soc. B Biol. Sci.20103652177218510.1098/rstb.2010.0081
– reference: O’ConnorBEarth observation as a tool for tracking progress towards the Aichi Biodiversity TargetsRemote Sens. Ecol. Conserv.20151192810.1002/rse2.4
– reference: BuchananGMFree satellite data key to conservationScience20183611391401:CAS:528:DC%2BC1cXhtlahtr%2FO30002246
– reference: WulderMAVirtual constellations for global terrestrial monitoringRemote Sens. Environ.2015170627610.1016/j.rse.2015.09.001
– reference: FassnachtFEReview of studies on tree species classification from remotely sensed dataRemote Sens. Environ.2016186648710.1016/j.rse.2016.08.013
– reference: GaronnaIde JongRSchaepmanMEVariability and evolution of global land surface phenology over the past three decades (1982–2012)Glob. Change Biol.2016221456146810.1111/gcb.13168
– reference: ShiYFWangTJSkidmoreAKHeurichMImportant LiDAR metrics for discriminating forest tree species in Central EuropeISPRS J. Photogramm. Remote Sens.201813716317410.1016/j.isprsjprs.2018.02.002
– reference: CunliffeAMBrazierREAndersonKUltra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetryRemote Sens. Environ.201618312914310.1016/j.rse.2016.05.019
– reference: MadonselaSMulti-phenology WorldView-2 imagery improves remote sensing of savannah tree speciesInt. J. Appl. Earth Obs. Geoinf.2017586573
– reference: HealyCGotelliNJPotvinCPartitioning the effects of biodiversity and environmental heterogeneity for productivity and mortality in a tropical tree plantationJ. Ecol.20089690391310.1111/j.1365-2745.2008.01419.x
– reference: TranquilliSLack of conservation effort rapidly increases African great ape extinction riskConserv. Lett.20125485510.1111/j.1755-263X.2011.00211.x
– reference: HyyppaJReview of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forestsInt. J. Remote Sens.2008291339136610.1080/01431160701736489
– reference: YeHImproving remote sensing-based net primary production estimation in the grazed land with defoliation formulation modelJ. Mt. Sci.20191632333610.1007/s11629-018-5200-2
– reference: SauraSBodinOFortinMJStepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networksJ. Appl. Ecol.20145117118210.1111/1365-2664.12179
– reference: LucasRRowlandsABrownAKeyworthSBuntingPRule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mappingISPRS J. Photogramm. Remote Sens.20076216518510.1016/j.isprsjprs.2007.03.003
– reference: BojinskiSThe concept of essential climate variables in support of climate research, applications, and policyBull. Am. Meteorol. Soc.2014951431144310.1175/BAMS-D-13-00047.1
– reference: BaldeckCAAsnerGPImproving remote species identification through efficient training data collectionRemote Sens.201462682269810.3390/rs6042682
– reference: HagenMBiodiversity, species interactions and ecological networks in a fragmented worldAdv. Ecol. Res.2012468921010.1016/B978-0-12-396992-7.00002-2
– reference: TuanmuMNJetzWA global 1-km consensus land-cover product for biodiversity and ecosystem modellingGlob. Ecol. Biogeogr.2014231031104510.1111/geb.12182
– reference: WuSBMonitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observationsISPRS J. Photogramm. Remote Sens.2021171364810.1016/j.isprsjprs.2020.10.017
– reference: LavorelSGarnierEPredicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy GrailFunct. Ecol.20021654555610.1046/j.1365-2435.2002.00664.x
– reference: QiWLDubayahROCombining Tandem-X InSAR and simulated GEDI LiDAR observations for forest structure mappingRemote Sens. Environ.201618725326610.1016/j.rse.2016.10.018
– reference: O’Connor, B., Bojinski, S., Roosli, C. & Schaepman, M. E. Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies. Ecol. Inform. 55, 101033 (2020).
– reference: BargaRGannonDReedDThe client and the cloud democratizing research computingIEEE Internet Comput.201115727510.1109/MIC.2011.20
– reference: KaysRCrofootMCJetzWWikelskiMTerrestrial animal tracking as an eye on life and planetScience2015348aaa24782606885810.1126/science.aaa2478
– reference: Van der WerfGRGlobal fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009)Atmos. Chem. Phys.20101011707117351:CAS:528:DC%2BC3MXmvFemsb0%3D10.5194/acp-10-11707-2010
– reference: WalkerBKinzigALangridgeJPlant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor speciesEcosystems199929511310.1007/s100219900062
– reference: RamoeloAChoMMathieuRSkidmoreAKPotential of Sentinel-2 spectral configuration to assess rangeland qualityJ. Appl. Remote Sens.2015909409610.1117/1.JRS.9.094096
– reference: Morsdorf, F. et al. in Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 83–104 (Springer International, 2020).
– reference: AsnerGPAirborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservationScience20173553853891:CAS:528:DC%2BC2sXhsVGrsLc%3D2812681510.1126/science.aaj1987
– reference: What are EBVs? GEO BONhttps://geobon.org/ebvs/what-are-ebvs/ (2020).
– reference: SchmidtKSMapping coastal vegetation using an expert system and hyperspectral imageryPhotogramm. Eng. Remote Sens.20047070371510.14358/PERS.70.6.703
– reference: PeterseilJEvaluating the ecological sustainability of Austrian agricultural landscapes—the SINUS approachLand Use Policy20042130732010.1016/j.landusepol.2003.10.011
– reference: PettorelliNFraming the concept of satellite remote sensing essential biodiversity variables: challenges and future directionsRemote Sens. Ecol. Conserv.2016212213110.1002/rse2.15
– reference: GibertJPDellAIDeLongJPPawarSScaling-up trait variation from individuals to ecosystemsAdv. Ecol. Res.20155211710.1016/bs.aecr.2015.03.001
– reference: HustonMAWolvertonSThe global distribution of net primary production: resolving the paradoxEcol. Monogr.20097934337710.1890/08-0588.1
– reference: KisslingWDBuilding essential biodiversity variables (EBVs) of species distribution and abundance at a global scaleBiol. Rev.2018936006252876690810.1111/brv.12359
– reference: LauschAUnderstanding forest health with remote sensing, part III: requirements for a scalable multi-source forest health monitoring network based on data science approachesRemote Sens.201810112010.3390/rs10071120
– reference: TurnerWFree and open-access satellite data are key to biodiversity conservationBiol. Conserv.201518217317610.1016/j.biocon.2014.11.048
– reference: DíazSFunctional traits, the phylogeny of function, and ecosystem service vulnerabilityEcol. Evol.201332958297524101986379054310.1002/ece3.601
– reference: NidumoluUBDe BieCVan KeulenHSkidmoreAKEnhancement of area-specific land-use objectives for land developmentLand Degrad. Dev.20041551352510.1002/ldr.636
– reference: HomolovaLMaenovskyZCleversJGarcia-SantosGSchaeprnanMEReview of optical-based remote sensing for plant trait mappingEcol. Complex.20131511610.1016/j.ecocom.2013.06.003
– reference: AsnerGPWessmanCASchimelDSHeterogeneity of savanna canopy structure and function from imaging spectrometry and inverse modelingEcol. Appl.199881022103610.1890/1051-0761(1998)008[1022:HOSCSA]2.0.CO;2
– reference: GravesSJTree species abundance predictions in a tropical agricultural landscape with a supervised classification model and imbalanced dataRemote Sens.2016816110.3390/rs8020161
– reference: RichardsJAWoodgatePWSkidmoreAKAn explanation of enhanced radar backscattering from flooded forestsInt. J. Remote Sens.198781093110010.1080/01431168708954756
– reference: GrataniLBombelliACorrelation between leaf age and other leaf traits in three Mediterranean maquis shrub species: Quercus ilex, Phillyrea latifolia and Cistus incanusEnviron. Exp. Bot.20004314115310.1016/S0098-8472(99)00052-0
– reference: VogelDPrivate global business regulationAnnu. Rev. Polit. Sci.20081126128210.1146/annurev.polisci.11.053106.141706
– reference: GuanterLThe EnMAP spaceborne imaging spectroscopy mission for Earth observationRemote Sens.201578830885710.3390/rs70708830
– reference: Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).
– reference: WilkesPUsing discrete-return airborne laser scanning to quantify number of canopy strata across diverse forest typesMethods Ecol. Evol.2016770071210.1111/2041-210X.12510
– reference: National Academies of Sciences, Engineering, and Medicine Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space (National Academies Press, 2018).
– reference: RoyDPBoschettiLJusticeCOJuJThe collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire productRemote Sens. Environ.20081123690370710.1016/j.rse.2008.05.013
– reference: YangZSpotting East African mammals in open savannah from spacePLoS ONE20149e11598925551561428122110.1371/journal.pone.0115989
– reference: De JongRde BruinSde WitASchaepmanMEDentDLAnalysis of monotonic greening and browning trends from global NDVI time-seriesRemote Sens. Environ.201111569270210.1016/j.rse.2010.10.011
– reference: NiklasKJ‘Diminishing returns’ in the scaling of functional leaf traits across and within species groupsProc. Natl Acad. Sci. USA2007104889188961:CAS:528:DC%2BD2sXmt1Wgt7g%3D17502616188559810.1073/pnas.0701135104
– reference: VihervaaraPHow essential biodiversity variables and remote sensing can help national biodiversity monitoringGlob. Ecol. Conserv.201710435910.1016/j.gecco.2017.01.007
– reference: CollMEcological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystemsEcol. Indic.20166094796210.1016/j.ecolind.2015.08.048
– reference: HansenMCStehmanSVPotapovPVQuantification of global gross forest cover lossProc. Natl Acad. Sci. USA2010107865086551:CAS:528:DC%2BC3cXmsFWmtLs%3D20421467288935410.1073/pnas.0912668107
– reference: Walters, M. et al. Essential Biodiversity Variables UNEP/CBD/SBSTTA/17/INF/7 (Convention on Biological Diversity, 2013).
– reference: HerktKMBSkidmoreAKFahrJMacroecological conclusions based on IUCN expert maps: a call for cautionGlob. Ecol. Biogeogr.20172693094110.1111/geb.12601
– reference: ElithJNovel methods improve prediction of species’ distributions from occurrence dataEcography20062912915110.1111/j.2006.0906-7590.04596.x
– reference: NaglerPLGlennEPHinojosa-HuertaOSynthesis of ground and remote sensing data for monitoring ecosystem functions in the Colorado River Delta, MexicoRemote Sens. Environ.20091131473148510.1016/j.rse.2008.06.018
– reference: BaiYFGrazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradientJ. Appl. Ecol.201249120412151:CAS:528:DC%2BC3sXislSmt7k%3D10.1111/j.1365-2664.2012.02205.x
– reference: ScottGJEnglandMRStarmsWAMarcumRADavisCHTraining deep convolutional neural networks for land-cover classification of high-resolution imageryIEEE Geosci. Remote Sens. Lett.20171454955310.1109/LGRS.2017.2657778
– reference: CurranPJDunganJLPetersonDLEstimating the foliar biochemical concentration of leaves with reflectance spectrometry testing the Kokaly and Clark methodologiesRemote Sens. Environ.20017634935910.1016/S0034-4257(01)00182-1
– reference: ArvorDDurieuxLAndresSLaporteMAAdvances in geographic object-based image analysis with ontologies: a review of main contributions and limitations from a remote sensing perspectiveISPRS J. Photogramm. Remote Sens.20138212513710.1016/j.isprsjprs.2013.05.003
– reference: LakePSDisturbance, patchiness, and diversity in streamsJ. N. Am. Benthol. Soc.20001957359210.2307/1468118
– reference: RohdeSHostmannMPeterAEwaldKCRoom for rivers: an integrative search strategy for floodplain restorationLandsc. Urban Plan.200678507010.1016/j.landurbplan.2005.05.006
– reference: JetzWMonitoring plant functional diversity from spaceNat. Plants20162160242724935710.1038/nplants.2016.24
– reference: Salcedo-SanzSMachine learning information fusion in Earth observation: a comprehensive review of methods, applications and data sourcesInf. Fusion20206325627210.1016/j.inffus.2020.07.004
– reference: DíazSThe global spectrum of plant form and functionNature20165291671712670081110.1038/nature16489
– reference: CurranPJSteeleCMMERIS: the re-branding of an ocean sensorInt. J. Remote Sens.2005261781179810.1080/01431160412331330275
– reference: WuJGEffects of changing scale on landscape pattern analysis: scaling relationsLandsc. Ecol.20041912513810.1023/B:LAND.0000021711.40074.ae
– reference: CubaynesHCFretwellPTBamfordCGerrishLJacksonJAWhales from space: four mysticete species described using new VHR satellite imageryMar. Mammal. Sci.20193546649110.1111/mms.12544
– reference: WengQHRemote sensing of impervious surfaces in the urban areas: requirements, methods, and trendsRemote Sens. Environ.2012117344910.1016/j.rse.2011.02.030
– reference: KhosravipourASkidmoreAKIsenburgMGenerating spike-free digital surface models using LiDAR raw point clouds: a new approach for forestry applicationsInt. J. Appl. Earth Obs. Geoinf.201652104114
– reference: BuchhornMCopernicus global land cover layers—Collection 2Remote Sens.202012104410.3390/rs12061044
– reference: TransonJd’AndrimontRMaugnardADefournyPSurvey of hyperspectral earth observation applications from space in the Sentinel-2 contextRemote Sens.20181015710.3390/rs10020157
– reference: LauschAUnderstanding and quantifying landscape structure—a review on relevant process characteristics, data models and landscape metricsEcol. Model.2015295314110.1016/j.ecolmodel.2014.08.018
– reference: NavarroLMMonitoring biodiversity change through effective global coordinationCurr. Opin. Environ. Sustain.20172915816910.1016/j.cosust.2018.02.005
– reference: SkidmoreAKAgree on biodiversity metrics to track from spaceNature20155234034051:CAS:528:DC%2BC2MXht1WksrbO2620158210.1038/523403a
– reference: JoshiCIndirect remote sensing of a cryptic forest understorey invasive speciesFor. Ecol. Manag.200622524525610.1016/j.foreco.2006.01.013
– reference: CzyzEAIntraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time seriesEcol. Evol.2020107419743032760538739131910.1002/ece3.6469
– reference: GarriguesSAllardDBaretFWeissMInfluence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing dataRemote Sens. Environ.200610528629810.1016/j.rse.2006.07.013
– reference: Surface Biology and Geology (SBG) NASA Sciencehttps://science.nasa.gov/earth-science/decadal-sbg (2020).
– reference: PotterCRecent history of large-scale ecosystem disturbances in North America derived from the AVHRR satellite recordEcosystems2005880882410.1007/s10021-005-0041-6
– reference: ThackeraySJPhenological sensitivity to climate across taxa and trophic levelsNature20165352412451:CAS:528:DC%2BC28XhtVOns7bP2736222210.1038/nature18608
– reference: KitayamaKAibaSIEcosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, BorneoJ. Ecol.200290375110.1046/j.0022-0477.2001.00634.x
– reference: Verger, A. & Descals, A. Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)—300 m Version 1; Algorithm Theoretical Basis Document (ATBD), Issue 1.00 (Framework Service Contract No. 199494-JRC) (Copernicus Global Land Operations CGLOPS-1, 2020).
– reference: PereiraHMEssential biodiversity variablesScience20133392772781:CAS:528:DC%2BC3sXhslagsbc%3D2332903610.1126/science.1229931
– reference: BrassardBWChenHYHBergeronYPareDDifferences in fine root productivity between mixed- and single-species standsFunct. Ecol.20112523824610.1111/j.1365-2435.2010.01769.x
– volume: 29
  start-page: 158
  year: 2017
  ident: 1451_CR6
  publication-title: Curr. Opin. Environ. Sustain.
  doi: 10.1016/j.cosust.2018.02.005
– volume: 54
  start-page: 419
  year: 2015
  ident: 1451_CR97
  publication-title: Environ. Sci. Policy
  doi: 10.1016/j.envsci.2015.08.005
– volume: 22
  start-page: 1456
  year: 2016
  ident: 1451_CR54
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13168
– volume: 2
  start-page: 976
  year: 2018
  ident: 1451_CR122
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-018-0551-1
– volume: 2
  start-page: 1531
  year: 2018
  ident: 1451_CR75
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-018-0667-3
– volume: 3
  year: 2015
  ident: 1451_CR94
  publication-title: Mov. Ecol.
  doi: 10.1186/s40462-015-0036-7
– volume: 19
  start-page: 573
  year: 2000
  ident: 1451_CR17
  publication-title: J. N. Am. Benthol. Soc.
  doi: 10.2307/1468118
– volume: 113
  start-page: 1473
  year: 2009
  ident: 1451_CR49
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.06.018
– volume: 15
  start-page: 513
  year: 2004
  ident: 1451_CR63
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.636
– volume: 170
  start-page: 62
  year: 2015
  ident: 1451_CR119
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.001
– volume: 15
  start-page: 1
  year: 2013
  ident: 1451_CR24
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2013.06.003
– volume: 8
  start-page: 161
  year: 2016
  ident: 1451_CR18
  publication-title: Remote Sens.
  doi: 10.3390/rs8020161
– volume: 186
  start-page: 64
  year: 2016
  ident: 1451_CR77
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.013
– volume: 187
  start-page: 253
  year: 2016
  ident: 1451_CR84
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.018
– volume: 11
  start-page: 261
  year: 2008
  ident: 1451_CR115
  publication-title: Annu. Rev. Polit. Sci.
  doi: 10.1146/annurev.polisci.11.053106.141706
– volume: 95
  start-page: 1431
  year: 2014
  ident: 1451_CR15
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-13-00047.1
– volume: 9
  start-page: 094096
  year: 2015
  ident: 1451_CR85
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.9.094096
– ident: 1451_CR27
– volume: 62
  start-page: 165
  year: 2007
  ident: 1451_CR30
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2007.03.003
– volume: 26
  start-page: 930
  year: 2017
  ident: 1451_CR35
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12601
– volume: 70
  start-page: 317
  year: 2016
  ident: 1451_CR78
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2016.06.022
– volume: 29
  start-page: 1339
  year: 2008
  ident: 1451_CR81
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701736489
– volume: 70
  start-page: 703
  year: 2004
  ident: 1451_CR28
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.70.6.703
– volume: 26
  start-page: 2967
  year: 2017
  ident: 1451_CR58
  publication-title: Biodivers. Conserv.
  doi: 10.1007/s10531-017-1386-9
– ident: 1451_CR103
– volume: 10
  start-page: 43
  year: 2017
  ident: 1451_CR102
  publication-title: Glob. Ecol. Conserv.
  doi: 10.1016/j.gecco.2017.01.007
– volume: 12
  start-page: 1044
  year: 2020
  ident: 1451_CR34
  publication-title: Remote Sens.
  doi: 10.3390/rs12061044
– volume: 103
  start-page: 115
  year: 2015
  ident: 1451_CR114
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.03.009
– volume: 76
  start-page: 349
  year: 2001
  ident: 1451_CR23
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00182-1
– volume: 26
  start-page: 2765
  year: 2017
  ident: 1451_CR113
  publication-title: Biodivers. Conserv.
  doi: 10.1007/s10531-017-1388-7
– volume: 43
  start-page: 141
  year: 2000
  ident: 1451_CR47
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/S0098-8472(99)00052-0
– volume: 112
  start-page: 2914
  year: 2008
  ident: 1451_CR99
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.02.010
– volume: 26
  start-page: 1781
  year: 2005
  ident: 1451_CR39
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160412331330275
– volume: 90
  start-page: 37
  year: 2002
  ident: 1451_CR48
  publication-title: J. Ecol.
  doi: 10.1046/j.0022-0477.2001.00634.x
– volume: 19
  start-page: 125
  year: 2004
  ident: 1451_CR16
  publication-title: Landsc. Ecol.
  doi: 10.1023/B:LAND.0000021711.40074.ae
– volume: 58
  start-page: 65
  year: 2017
  ident: 1451_CR86
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 137
  start-page: 163
  year: 2018
  ident: 1451_CR79
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.02.002
– volume: 10
  start-page: 157
  year: 2018
  ident: 1451_CR82
  publication-title: Remote Sens.
  doi: 10.3390/rs10020157
– volume: 107
  start-page: 8650
  year: 2010
  ident: 1451_CR101
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0912668107
– volume: 8
  start-page: 1022
  year: 1998
  ident: 1451_CR71
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(1998)008[1022:HOSCSA]2.0.CO;2
– volume: 28
  start-page: 749
  year: 2018
  ident: 1451_CR10
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.1682
– volume: 183
  start-page: 129
  year: 2016
  ident: 1451_CR70
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.05.019
– volume: 10
  start-page: 443
  year: 2018
  ident: 1451_CR64
  publication-title: Remote Sens.
  doi: 10.3390/rs10030443
– volume: 535
  start-page: 241
  year: 2016
  ident: 1451_CR110
  publication-title: Nature
  doi: 10.1038/nature18608
– volume: 339
  start-page: 277
  year: 2013
  ident: 1451_CR4
  publication-title: Science
  doi: 10.1126/science.1229931
– volume: 523
  start-page: 403
  year: 2015
  ident: 1451_CR98
  publication-title: Nature
  doi: 10.1038/523403a
– volume: 7
  start-page: 700
  year: 2016
  ident: 1451_CR80
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12510
– volume: 117
  start-page: 34
  year: 2012
  ident: 1451_CR65
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.02.030
– volume: 62
  start-page: 365
  year: 1992
  ident: 1451_CR51
  publication-title: Ecol. Monogr.
  doi: 10.2307/2937116
– volume: 104
  start-page: 8891
  year: 2007
  ident: 1451_CR55
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0701135104
– volume: 6
  start-page: 2682
  year: 2014
  ident: 1451_CR76
  publication-title: Remote Sens.
  doi: 10.3390/rs6042682
– volume: 342
  start-page: 850
  year: 2013
  ident: 1451_CR36
  publication-title: Science
  doi: 10.1126/science.1244693
– volume: 29
  start-page: 129
  year: 2006
  ident: 1451_CR120
  publication-title: Ecography
  doi: 10.1111/j.2006.0906-7590.04596.x
– volume: 53
  start-page: 1341
  year: 2016
  ident: 1451_CR12
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.12417
– ident: 1451_CR95
  doi: 10.1109/AERO.2005.1559323
– volume: 1
  start-page: 19
  year: 2015
  ident: 1451_CR11
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.4
– ident: 1451_CR3
– volume: 79
  start-page: 343
  year: 2009
  ident: 1451_CR52
  publication-title: Ecol. Monogr.
  doi: 10.1890/08-0588.1
– volume: 115
  start-page: 1102
  year: 2011
  ident: 1451_CR53
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.12.015
– volume: 10
  start-page: 7419
  year: 2020
  ident: 1451_CR121
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.6469
– volume: 5
  start-page: 48
  year: 2012
  ident: 1451_CR116
  publication-title: Conserv. Lett.
  doi: 10.1111/j.1755-263X.2011.00211.x
– volume: 171
  start-page: 36
  year: 2021
  ident: 1451_CR41
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.10.017
– volume: 182
  start-page: 173
  year: 2015
  ident: 1451_CR118
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2014.11.048
– volume: 8
  start-page: 221
  year: 2016
  ident: 1451_CR123
  publication-title: Remote Sens.
  doi: 10.3390/rs8030221
– volume: 14
  start-page: 549
  year: 2017
  ident: 1451_CR66
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2657778
– volume: 10
  start-page: 1120
  year: 2018
  ident: 1451_CR8
  publication-title: Remote Sens.
  doi: 10.3390/rs10071120
– volume: 2
  start-page: 16024
  year: 2016
  ident: 1451_CR5
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2016.24
– volume: 25
  start-page: 238
  year: 2011
  ident: 1451_CR50
  publication-title: Funct. Ecol.
  doi: 10.1111/j.1365-2435.2010.01769.x
– volume: 529
  start-page: 167
  year: 2016
  ident: 1451_CR106
  publication-title: Nature
  doi: 10.1038/nature16489
– volume: 228
  start-page: 485
  year: 2020
  ident: 1451_CR89
  publication-title: New Phytol.
  doi: 10.1111/nph.16771
– volume: 540
  start-page: 418
  year: 2016
  ident: 1451_CR37
  publication-title: Nature
  doi: 10.1038/nature20584
– ident: 1451_CR1
– ident: 1451_CR46
– volume: 95
  start-page: 164
  year: 2005
  ident: 1451_CR21
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.12.011
– volume: 8
  start-page: 808
  year: 2005
  ident: 1451_CR59
  publication-title: Ecosystems
  doi: 10.1007/s10021-005-0041-6
– volume: 361
  start-page: 139
  year: 2018
  ident: 1451_CR117
  publication-title: Science
  doi: 10.1126/science.aau2650
– volume: 60
  start-page: 947
  year: 2016
  ident: 1451_CR105
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.08.048
– volume: 52
  start-page: 1
  year: 2015
  ident: 1451_CR107
  publication-title: Adv. Ecol. Res.
  doi: 10.1016/bs.aecr.2015.03.001
– volume: 346
  start-page: 301
  year: 2014
  ident: 1451_CR112
  publication-title: Science
  doi: 10.1126/science.1256014
– volume: 365
  start-page: 2177
  year: 2010
  ident: 1451_CR91
  publication-title: Phil. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2010.0081
– volume: 105
  start-page: 286
  year: 2006
  ident: 1451_CR40
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.07.013
– volume: 8
  start-page: 1093
  year: 1987
  ident: 1451_CR45
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168708954756
– volume: 49
  start-page: 1204
  year: 2012
  ident: 1451_CR57
  publication-title: J. Appl. Ecol.
  doi: 10.1111/j.1365-2664.2012.02205.x
– volume: 78
  start-page: 50
  year: 2006
  ident: 1451_CR13
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2005.05.006
– volume: 35
  start-page: 466
  year: 2019
  ident: 1451_CR92
  publication-title: Mar. Mammal. Sci.
  doi: 10.1111/mms.12544
– ident: 1451_CR96
– volume: 355
  start-page: 385
  year: 2017
  ident: 1451_CR104
  publication-title: Science
  doi: 10.1126/science.aaj1987
– volume: 7
  start-page: 8830
  year: 2015
  ident: 1451_CR83
  publication-title: Remote Sens.
  doi: 10.3390/rs70708830
– ident: 1451_CR124
– volume: 15
  start-page: 72
  year: 2011
  ident: 1451_CR9
  publication-title: IEEE Internet Comput.
  doi: 10.1109/MIC.2011.20
– volume: 295
  start-page: 31
  year: 2015
  ident: 1451_CR33
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2014.08.018
– volume: 9
  start-page: e115989
  year: 2014
  ident: 1451_CR93
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0115989
– volume: 34
  start-page: 748
  year: 1997
  ident: 1451_CR61
  publication-title: J. Appl. Ecol.
  doi: 10.2307/2404920
– volume: 51
  start-page: 171
  year: 2014
  ident: 1451_CR73
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.12179
– volume: 112
  start-page: 3690
  year: 2008
  ident: 1451_CR60
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.05.013
– ident: 1451_CR26
– volume: 100
  start-page: 20867
  year: 1995
  ident: 1451_CR69
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/95JD01536
– volume: 3
  start-page: 2958
  year: 2013
  ident: 1451_CR111
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.601
– volume: 115
  start-page: 692
  year: 2011
  ident: 1451_CR74
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.10.011
– volume: 82
  start-page: 125
  year: 2013
  ident: 1451_CR29
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.05.003
– volume: 8
  start-page: 196
  year: 2016
  ident: 1451_CR90
  publication-title: Remote Sens.
  doi: 10.3390/rs8030196
– volume: 46
  start-page: 89
  year: 2012
  ident: 1451_CR108
  publication-title: Adv. Ecol. Res.
  doi: 10.1016/B978-0-12-396992-7.00002-2
– volume: 348
  start-page: aaa2478
  year: 2015
  ident: 1451_CR88
  publication-title: Science
  doi: 10.1126/science.aaa2478
– volume: 55
  start-page: 1449
  year: 1989
  ident: 1451_CR31
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 63
  start-page: 256
  year: 2020
  ident: 1451_CR42
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.07.004
– volume: 95
  start-page: 177
  year: 2005
  ident: 1451_CR19
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.12.016
– ident: 1451_CR100
  doi: 10.1016/j.ecoinf.2019.101033
– volume: 52
  start-page: 104
  year: 2016
  ident: 1451_CR25
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 10
  start-page: 11707
  year: 2010
  ident: 1451_CR62
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-11707-2010
– volume: 23
  start-page: 1031
  year: 2014
  ident: 1451_CR32
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12182
– volume: 21
  start-page: 307
  year: 2004
  ident: 1451_CR72
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2003.10.011
– volume: 2
  start-page: 122
  year: 2016
  ident: 1451_CR7
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.15
– volume: 16
  start-page: 323
  year: 2019
  ident: 1451_CR38
  publication-title: J. Mt. Sci.
  doi: 10.1007/s11629-018-5200-2
– volume: 96
  start-page: 903
  year: 2008
  ident: 1451_CR44
  publication-title: J. Ecol.
  doi: 10.1111/j.1365-2745.2008.01419.x
– volume: 9
  start-page: 878
  year: 2017
  ident: 1451_CR20
  publication-title: Remote Sens.
  doi: 10.3390/rs9090878
– volume: 1
  start-page: 0176
  year: 2017
  ident: 1451_CR87
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-017-0176
– volume: 2
  start-page: 95
  year: 1999
  ident: 1451_CR56
  publication-title: Ecosystems
  doi: 10.1007/s100219900062
– volume: 225
  start-page: 245
  year: 2006
  ident: 1451_CR68
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2006.01.013
– volume: 83
  start-page: 214
  year: 2002
  ident: 1451_CR22
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00074-3
– volume: 2
  start-page: 132
  year: 2016
  ident: 1451_CR2
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.29
– ident: 1451_CR14
– volume: 63
  start-page: 501
  year: 1997
  ident: 1451_CR67
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 93
  start-page: 600
  year: 2018
  ident: 1451_CR43
  publication-title: Biol. Rev.
  doi: 10.1111/brv.12359
– volume: 16
  start-page: 545
  year: 2002
  ident: 1451_CR109
  publication-title: Funct. Ecol.
  doi: 10.1046/j.1365-2435.2002.00664.x
– reference: 34282320 - Nat Ecol Evol. 2021 Jul 19;:
– reference: 34031569 - Nat Ecol Evol. 2021 May 24;:
– reference: 34697457 - Nat Ecol Evol. 2021 Dec;5(12):1639
– reference: 36100676 - Nature. 2022 Sep;609(7927):467
SSID ssj0001775966
Score 2.5827353
SecondaryResourceType review_article
Snippet Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 896
SubjectTerms 631/158/670
704/158
Benchmarking
Biodiversity
Biological and Physical Anthropology
Biological effects
Biomedical and Life Sciences
Ecological function
Ecology
Ecosystem
Ecosystem structure
Evolutionary Biology
Interpolation
Knowledge acquisition
Life Sciences
Monitoring
Paleontology
Perspective
Remote observing
Remote sensing
Satellites
Structure-function relationships
Zoology
Title Priority list of biodiversity metrics to observe from space
URI https://link.springer.com/article/10.1038/s41559-021-01451-x
https://www.ncbi.nlm.nih.gov/pubmed/33986541
https://www.proquest.com/docview/2548438999
https://www.proquest.com/docview/2528181334
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50vXgRxVd9EcGbBrdN2iZ4EBVFBEVEwVtJ0gkIul3dFfz5ZrrpLiJ6bpqGmXTyZV4fwIEXWVooI3ku26baTnJbOuTSpdpbnea2ptrh27vi-knePOfP0eE2immVnU1sDXXdOPKRH4eLjCKmbq1Ph--cWKMouhopNOZhIZhgpXqwcH55d_8w87KUZR4AfayW6Qt1PKITVHPKTGhZavnXzxPpF8z8FSJtT56rZViKkJGdTXS8AnM4WIWT-4-Xhojn2GtQFGs8sy9N3SVZsDciynIjNm5YY8nxiowKSViwHw7X4Onq8vHimkciBO5kqsdcqNxkCr20WpVeoUMpHZrcYF2WGBBIWptCYC1kXSinTYB0aFTfq0IXOSoj1qE3aAa4Ccyj65dO2ADrrKT2fVnqay2tKzBD48sE0k4YlYtdwoms4rVqo9VCVRMBVkGAVSvA6iuBw-k7w0mPjH9H73QyruL_Mqpm2k1gf_o47HQKX5gBNp80hjpXhTu1TGBjopvp54TQihjNEzjqlDWb_O-1bP2_lm1YzNqNQtm5O9Abf3zibsAgY7sXN9o3o2nZeA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dBeqlZ9hUfrSu2ptdjETmKrQlUfoKXAClUgcXNtZywh0Q2wi0r_FL8RTx67qlC5cY7jROPPnhnP4wN4F0SWFspKnsumqbaX3JUeufSpDk6nuauodnh_XIyO5I_j_HgJrvtaGEqr7M_E5qCuak935BvRkVHE1K3157NzTqxRFF3tKTRaWOzi3z_RZZtu7nyP6_s-y7a3Dr-NeMcqwL1M9YwLldtMYZAuuttBoUcpPdrcYlWWGNV5WtlCYCVkVSivbbSP0KphUIUuclRWxHkfwLIUxTAbwPLXrfHBz8WtTlnm0YHoqnOGQm1MSWNrTpkQDSsuv_pXA94ya2-FZBtNt_0EHncmKvvSYuopLOHkGXw6uDipieiOnUZgsDowd1JXfVIH-03EXH7KZjWrHV30IqPCFRbPK4_P4eheRPQCBpN6gq-ABfTD0gsXzUgnqV1gloZKS-cLzNCGMoG0F4bxXVdyIsc4NU10XCjTCtBEAZpGgOYqgQ_zd87anhx3jl7rZWy6_Tk1CzQl8Hb-OO4sCpfYCdaXNIY6ZUUfXibwsl2b-eeE0IoY1BP42C_WYvL__8vK3f_yBh6ODvf3zN7OeHcVHmUNaCgzeA0Gs4tLXI_2z8y97kDH4Nd94_wGUpsXsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Priority+list+of+biodiversity+metrics+to+observe+from+space&rft.jtitle=Nature+ecology+%26+evolution&rft.au=Skidmore%2C+Andrew+K&rft.au=Coops%2C+Nicholas+C&rft.au=Neinavaz+Elnaz&rft.au=Abebe%2C+Ali&rft.date=2021-07-01&rft.pub=Nature+Publishing+Group&rft.eissn=2397-334X&rft.volume=5&rft.issue=7&rft.spage=896&rft.epage=906&rft_id=info:doi/10.1038%2Fs41559-021-01451-x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-334X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-334X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-334X&client=summon